EP0895653B1 - Electric radiation source and irradiation system with this radiation source - Google Patents

Electric radiation source and irradiation system with this radiation source Download PDF

Info

Publication number
EP0895653B1
EP0895653B1 EP97942813A EP97942813A EP0895653B1 EP 0895653 B1 EP0895653 B1 EP 0895653B1 EP 97942813 A EP97942813 A EP 97942813A EP 97942813 A EP97942813 A EP 97942813A EP 0895653 B1 EP0895653 B1 EP 0895653B1
Authority
EP
European Patent Office
Prior art keywords
radiation source
electrodes
discharge
individual
source according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97942813A
Other languages
German (de)
French (fr)
Other versions
EP0895653A1 (en
Inventor
Frank Vollkommer
Lothar Hitzschke
Jens Mücke
Rolf Siebauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0895653A1 publication Critical patent/EP0895653A1/en
Application granted granted Critical
Publication of EP0895653B1 publication Critical patent/EP0895653B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/06Lamps in which a gas filling is excited to luminesce by radioactive material structurally associated with the lamp, e.g. inside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field

Definitions

  • the invention relates to an electrical radiation source according to the preamble of claim 1.
  • the invention also relates to an irradiation system with this radiation source and with a voltage source according to the preamble of claim 15.
  • the radiation source emits by means of a dielectric barrier Discharge incoherent radiation.
  • a dielectric barrier discharge is generated by using one or both of the two with the voltage source connected electrodes of the discharge arrangement by a dielectric is separated from the discharge inside the discharge vessel or are (one-sided or two-sided dielectric discharge).
  • UV (U ltra v iolet) - and IR (I nfra r ot) emitters as well as discharge lamps which emit visible light in particular, to understand.
  • Radiation sources of this type are suitable, depending on the spectrum of the emitted radiation, for general and auxiliary lighting, such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays), for the transport and signal lighting, as well as for UV radiation, e.g. disinfection or photolytics.
  • general and auxiliary lighting such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays), for the transport and signal lighting, as well as for UV radiation, e.g. disinfection or photolytics.
  • the invention is based on WO 94/23442 and those disclosed therein Operating mode for dielectrically disabled discharges.
  • This mode of operation uses a basically unlimited sequence of voltage pulses, which are separated from each other by dead times or break times. critical for the efficiency of the generation of useful radiation are among others Pulse shape and the duration of the pulse or dead times. To be favoured for this mode of operation narrow, e.g. used strip-like electrodes, which can be dielectrically impeded on one or both sides.
  • Discharge structures may have their respective location along the electrodes can change spontaneously, causing some instability of the Radiation distribution results.
  • the discharge structures also accumulate in partial areas of the discharge vessel, whereby the Power distribution in relation to the total volume of the discharge vessel can be very uneven.
  • EP 0 254 111 B1 describes a radiator with a first transparent and a second flat metal electrode, e.g. known a metal layer.
  • the transparent electrode is a transparent, electrically conductive layer or implemented as a wire mesh.
  • the individual discharges therefore have two Degrees of freedom, corresponding to the respective two dimensions of the two Electrode surfaces.
  • the individual discharges can be anywhere along the warp or weft threads of the wire mesh, always have another degree of freedom.
  • EP-A-0 578 953 describes a high-performance radiator in the form of a coaxial one Double tube arrangement disclosed.
  • An outer electrode in the form of a Wire mesh extends over the entire circumference of the outer quartz tube.
  • a helical inner electrode is inserted into the inner quartz tube.
  • the inside of the inner quartz tube is filled with a coolant felt that has a high dielectric constant and except for cooling also serves to couple the inner electrode to the inner quartz tube.
  • the discharge space is formed Apply a variety of AC voltage between the electrodes Discharge channels.
  • To improve the ignition behavior at the first Ignition or after longer breaks in operation means are provided that due to local field distortion or field elevation at one point in the discharge space to force an initial spark.
  • the invention has for its object to eliminate the disadvantages mentioned and a radiation source with one with respect to the total volume of their discharge vessel more even power distribution as well as with a in particular also to specify a more stable overall discharge over time.
  • Another aspect of the invention is the improvement of the efficiency of the production of useful radiation.
  • Another object of the invention is to provide an irradiation system which contains said radiation source. This task will according to the invention by the characterizing features of claim 15 solved.
  • the basic idea of the invention is local by means of a multitude limited amplifications of the electric field specifically spatially preferred To create starting points for the individual discharges.
  • the individual discharges are forced to the places of these local field reinforcements and remain essentially stationary there, i.e. they have none Degree of freedom more to move to a location in the immediate vicinity.
  • the overall structure of the discharge is largely temporal stable.
  • the specific form of the individual discharges only plays a subordinate role Role.
  • the delta and hourglass-shaped ones mentioned at the outset are true Individual discharges due to their high efficiency in generating useful radiation particularly suitable. Nevertheless, the invention is not limited to single discharges shaped in this way.
  • the electric field strength E (r) in the discharge space can be influenced by the capacitive effect of the dielectric layer (s) of the disabled electrode (s). Because of the capacitive effect of the dielectric, the electric field strength E (r) in the discharge space is weakened.
  • the locations of local field strengthening are therefore due to the targeted structure at least one of the electrodes and / or the dielectric material is created.
  • the geometrical extent of the places is on the concrete Dimensions of the individual discharges matched.
  • Structure are both form, structure, material and understand spatial arrangement and orientation.
  • the distance reductions ⁇ d (r i ) are achieved by specially shaped or structured electrodes, which are also suitably arranged spatially to one another.
  • the specific design of the electrode configuration is matched to the shape or symmetry of the discharge vessel.
  • bipolar voltage pulses it should be taken into account that the electrodes of different polarity alternately act as cathode or anode and, consequently, should ideally be of completely the same design.
  • unipolar voltage pulses it is expedient to structure or shape only the cathode in a targeted manner, since the “tips” of the delta-shaped individual discharges start there.
  • two or more substantially elongated electrodes that are parallel to each other are arranged.
  • Structuring the electrode doesn't matter if the electrodes are all outside or inside, on one side or on opposite sides Sides of the discharge vessel are arranged. It is only important that either at least the electrodes of one polarity (one-sided dielectric disabled discharge) or the electrodes of both polarities (Dielectric barrier discharge on both sides) by a dielectric Layer are separated from the discharge.
  • Rod-shaped electrodes with nose-like shapes or "zigzag" and rectangular shapes are suitable, for example.
  • the shapes or shapes of the respective electrodes are dimensioned such that the local field reinforcements E ( r i ) thereby achieved are on the one hand sufficiently high to reliably generate the individual discharges at only these points r i of the distance reductions ⁇ d (r i ) .
  • the partial volume of the discharge vessel claimed by the shapes or by the shape of the electrode cannot be used by the individual discharges themselves. Given the requirement to create a discharge vessel that is as compact as possible or an efficiently used vessel volume, a relatively small reduction in distance should therefore be aimed for. An acceptable compromise can therefore be found in individual cases.
  • Typical relationships between the shortening of the distance ⁇ d (r i ) and the effective striking distance w for the individual discharges are in the range between approx. 0.1 and 0.4.
  • a combination is particularly suitable for cylindrical discharge vessels consisting of a helical and one or more elongated electrodes.
  • the helical electrode is preferably centrally axially inside of the discharge vessel arranged.
  • the elongated electrode or electrodes are at a predeterminable distance from the outer surface of the electrode coil, for example on the outer wall of the cylinder jacket of the discharge vessel, preferably arranged parallel to the longitudinal axis of the cylinder.
  • the pitch - i.e. the distance within which the helix is one complete revolution - is preferably about the size of that maximum transverse expansion - in delta-like forms this corresponds to the Foot width - of the individual discharges or larger, to overlap the individual discharges to prevent.
  • DE 41 40 497 A1 already contains a high-power radiator, in particular for ultraviolet light, disclosed with a helical inner electrode.
  • this inner electrode is only used for coupling of a pole of an AC voltage source to a distributed additional capacitance acting molded body.
  • the pulse voltage source delivers voltage pulses interrupted by pauses, such as in WO 94/23442.
  • Another aspect of the invention is the overlap of individual discharges to be largely prevented or at least restricted. It It has been shown that the efficiency for the production of useful radiation increases with decreasing overlap. On the other hand lets by moving together or overlapping the individual discharges the volume of electrical discharge that can be coupled into the discharge vessel increase. Therefore, a suitable compromise between the Level of performance (greater overlap) and level of efficiency (less overlap) to choose. Depending on the requirement, either the absolute value of the radiant power or the efficiency of the Radiant power, i.e. in the case of visible radiation, the height of the Luminous flux or the luminous efficacy, weighted more.
  • the maximum transverse expansion has to be considered of the individual discharges standardized distance in the range of approx. 0.5 to 1.5 proved to be suitable.
  • spaced partial discharges i.e. that between the partial discharges is a discharge-free area, a mutual influence of the Partial discharges can be largely excluded.
  • Figure 1 serves primarily to explain the principle of the invention - namely the targeted localization of the individual discharges of a pulsed dielectrically disabled discharge using local field amplifiers - and based on local shortening of the electrode spacing of a discharge arrangement 1.
  • Figure 1 shows a longitudinal section of the Discharge arrangement 1 with two arranged parallel to each other at a distance d elongated electrodes 2,3 in a schematic representation.
  • a first one 2 of the two electrodes 2, 3 is covered by a dielectric layer 4 adjacent discharge space, which extends between the two electrodes 2, 3 Cut.
  • the second metallic electrode 3, however, is uncoated.
  • This is a one-sided dielectric barrier Discharge arrangement that is particularly efficient with unipolar voltage pulses is operated.
  • the polarity is chosen so that the dielectric handicapped electrode 2 as the anode and the unhindered electrode 3 consequently act as a cathode.
  • the cathode 3 has four nose-like extensions 9-12, which face the anode 2. As a result, locally limited reinforcements of the electric field are generated at the locations of the extensions 9-12. These targeted field reinforcements have the effect that - assuming a sufficiently high electrical power - a delta-shaped individual discharge 5-8 starts at each of these extensions 9-12.
  • the transverse extension s of the respective extension ie the extension along the cathode 3 is relatively small compared to the width f of the Foot of a single discharge.
  • the transverse extension s is typically about 1/10 of the foot width f .
  • the lateral extent of the extensions 9-12 ie the extent in the direction of the shortest distance to the opposite anode 2 - that is, the shortening of the distance ⁇ d ( r i ) previously explained in the description.
  • the respective distance between the extensions 9-12 and the anode - minus the dielectric layer 4 - thus gives the effective striking distance w for the individual discharges 5-8.
  • the ratio of lateral expansion Schlag and effective stroke length w is in the range between approx. 0.1 and 0.4.
  • the distances between adjacent individual discharges 5-8 can be influenced by the distances a of the associated extensions 9-12. To clarify this concept, the distances between the successive extensions 9-12 and consequently also the associated individual discharges 5-8 are selected differently in FIG. It is also assumed that the delta-shaped individual discharges 5-8 have the shape of an equilateral triangle.
  • the mutual distance between the first two extensions 9 and 10 corresponds exactly to half the foot width f of the two associated individual discharges 5 and 6, corresponding to a distance of 0.5 normalized to the foot width f . Consequently, these two individual discharges 5 and 6 overlap in the overlap region 13.
  • the mutual distance between the second and third extensions 6 and 7 corresponds to the entire foot width f of the two associated individual discharges 6 and 7, corresponding to a standardized distance of 1.
  • Figures 2 and 3 are variations of the discharge arrangement of Figure 1 with two anodes arranged parallel to each other schematically shown. Identical features are provided with the same reference numbers.
  • the local reductions in the electrode spacing are complete a "zigzag" arranged centrally in the plane of the two anodes 2a, 2b - or sawtooth-shaped cathode 14, for example made of a metal wire bent, realized.
  • the six points 15-20 of the cathode 14 point alternating with one or the other of the two anodes 2a, 2b.
  • To this Way is achieved that with appropriate electrical power at everyone the prongs 15-20 apply a delta-shaped individual discharge 21-26.
  • FIG. 3 only the cathode 27 has been changed compared to FIG. 1, specifically in such a way that a centrally between the two anodes 2a, 2b Sequence of four stages 28-31, for example bent from a metal wire, extends. Steps 28-31 alternate with one anode 2a and other anodes 2b oriented, so that these steps as local shortenings function of the electrode gap.
  • the discharge arrangement in FIG. 3 is particularly suitable for "curtain-like" discharge structures, such as those under certain discharge conditions, e.g. relatively low pressure of the gas or gas mixture can be generated within the discharge vessel. Under these Under special conditions, no delta-shaped individual discharges are formed out. Rather, then burn between levels 28,30 and adjacent anode 2a on the one hand and between steps 29, 31 and adjacent anode 2b, on the other hand, each have rectangular discharges 32.34 and 33.35, respectively.
  • the step-like cathode is additionally of a thin one dielectric layer coated (not shown). That way is one Dielectric barrier arrangement realized on both sides. So that's one efficient operation with bipolar voltage pulses possible. Change in the process the alignment of the delta-shaped individual discharges constantly the changing polarity of the voltage pulses in the opposite direction. With typical pulse repetition frequencies in the range of a few tens Kilohertz creates the visual impression of "hourglass-shaped" individual discharges (not shown).
  • the inventive feature of locally limited shortenings of the electrode spacing can be printed, such as in the EP 0 363 832 A1.
  • Essential for the beneficial effect of The invention is merely the additional means for local field amplification an average per single discharge. You can also use the electrodes instead of being arranged spatially just as well in one plane.
  • FIGS. 4a and 4b show a schematic representation of an embodiment of an irradiation system with flat radiator 36 and electrical supply device 37, partly in longitudinal section or in cross section.
  • the electrode arrangement is similar to that shown in FIG. 1 to explain the inventive idea.
  • the radiator 36 consists of an elongated cuboidal discharge vessel 38 made of glass. Xenon is located in the interior of the discharge vessel 38 with a filling pressure of approximately 8 kPa.
  • a first electrode 39 (cathode) connected to the negative pole of the supply device 37 (cathode) is arranged centrally in the longitudinal axis of the discharge vessel 38.
  • a further strip-shaped electrode 41a, 41b (anode) made of aluminum foil connected to the positive pole of the supply device 37 is arranged.
  • the cathode 39 consists of a metal rod which is provided with three pairs of nose-like extensions 42a, 42b-44a, 44b at a mutual spacing of approximately 15 mm.
  • the two extensions of each pair 42a, 42b-44a, 44b are oriented in the opposite direction and towards each of the two anodes 41a, 41b.
  • the extensions 42a, 42b-44a, 44b are semicircular with a diameter of approximately 2 mm. The lateral expansion l in the direction of the respective anode is therefore approx.
  • the supply device 37 delivers a sequence of negative voltage pulses with widths (full width at half height) of approx. 1 ⁇ s and a pulse repetition frequency of approx. 80 kHz.
  • a delta-shaped individual discharge 45a, 45b-47a, 47b can be generated on each of the extensions 42a, 42b-44a, 44b within the discharge vessel 38.
  • Each individual discharge begins with its tip on an extension and widens as far as the opposite side wall 40a, 40b, which acts as a dielectric layer, on the outer wall of which the associated anode 41a, 41b is fastened.
  • FIG. 5a shows the side view
  • FIG. 5b the cross section
  • FIG. 5c shows a partial longitudinal section of a further embodiment of a discharge lamp 48.
  • Its outer shape resembles conventional lamps with an Edison base 49.
  • An elongated inner electrode 51 is arranged centrally within the circular cylindrical discharge vessel 50 made of 0.7 mm thick glass.
  • the discharge vessel 50 has a diameter of approximately 50 mm.
  • the inside of the discharge vessel 50 is filled with xenon at a pressure of 173 hPa.
  • the inner electrode 51 is formed from metal wire as a right-handed spiral.
  • the respective diameters of the metal wire and the helix 51 are 1.2 mm and 10 mm, respectively.
  • the pitch h - ie the distance within which the helix makes one complete turn - is 15 mm. This value corresponds approximately to the foot width f of the delta-shaped individual discharges.
  • the tip of a delta-shaped individual discharge 54a-54d starts at these four points with the shortest stroke length w and widens up to the inner wall of the discharge vessel 50 in the direction of the outer electrodes 52a-52d. These locations of the shortest pitch are repeated from turn to turn and along the outer electrodes 52a-52d.
  • the individual discharges burn in a deliberate manner, separated from one another, in two planes intersecting perpendicularly in the longitudinal axis of the lamp, each plane passing through two opposite outer electrodes 52a, 52c and 52b, 52d.
  • the outer electrodes 52a-52d are electrically conductively connected to one another by means of a conductive silver strip 52e attached to the outer wall in a ring.
  • the inner wall of the discharge vessel 50 is coated with a phosphor layer 55. It is a three-band phosphor with the blue component BaMgAl 10 O 17 : Eu 2+ , the green component La-PO 4 : (Tb 3+ , Ce 3+ ) and the red component (Gd, Y) BO 3 : Eu 3+ . This results in a luminous efficacy of approx. 45 lm / W in pulse mode with voltage pulses of approx.
  • ballast (not shown), which the for the operation of the lamp supplies the necessary voltage pulses in the lamp base 49 integrated.
  • Figures 6a, 6b show a schematic representation of a top view or Side view of a flat fluorescent lamp operating white light emitted. It is used as a backlight for an LCD (Liquid Crystal Display).
  • LCD Liquid Crystal Display
  • the flat lamp 56 consists of a flat discharge vessel 57 with a rectangular base, four strip-like metallic cathodes 58 (-) and dielectric anodes 59 (+).
  • the discharge vessel 57 in turn consists of a base plate 60, a cover plate 61 and a frame 62.
  • Base plate 60 and cover plate 61 are each gas-tightly connected to the frame 62 by means of glass solder 63 such that the interior 64 of the discharge vessel 57 is cuboid.
  • the base plate 60 is larger than the cover plate 61 in such a way that the discharge vessel 57 has a circumferential free-standing edge.
  • the inner wall of the ceiling plate 61 is coated with a phosphor mixture (not visible in the illustration), which converts the UV / VUV radiation generated by the discharge into visible white light. It is a three-band phosphor with the blue component BAM (BaMgAl 10 O 17 : Eu 2+ ), the green component LAP (LaPO 4 : [Tb 3+ , Ce 3+ ]) and the red component YOB ([Y, Gd) BO 3 : Eu 3+ ).
  • the opening in the ceiling plate 61 is used for illustrative purposes only and provides a view of part of the cathodes 58 and anodes 59.
  • the cathodes 58 and anodes 59 are alternating and parallel on the inner wall the bottom plate 60 is arranged.
  • the anodes 59 and cathodes 58 are each extended at one end and on the base plate 60 from the inside 64 of the discharge vessel 57 on both sides to the outside performed such that the associated anodic or cathodic bushings arranged on opposite sides of the base plate are.
  • the electrode strips go on the edge of the base plate 60 58.59 each in the cathode-side 65 and anode-side 66 external power supply about.
  • the outer power supply lines 65, 66 serve as contacts for connection to an electrical pulse voltage source (not ) Shown. The connection with the two poles of a pulse voltage source usually takes place as follows.
  • the individual anodic and cathodic power supplies with each other connected, e.g. using a suitable connector (not shown) including connecting lines.
  • a suitable connector not shown
  • the two become common anodic or cathodic connecting lines with the associated two poles of the pulse voltage source connected.
  • the anodes 59 are completely included a glass layer 67 covered, the thickness of which is approximately 250 microns.
  • the cathode strips 58 have nose-like, the respectively adjacent anode 58 facing semicircular extensions 68. They work locally limited reinforcements of the electric field and consequently that the delta-shaped Single discharges (not shown) exclusively on these Ignite the spots and then burn locally.
  • the distance between the extensions 68 and the respective immediately neighboring anode strips is approx. 6 mm.
  • the radius of the semicircular Extensions 68 is approximately 2 mm.
  • the individual electrodes 58, 59 including bushings and outer ones Power supply lines 65, 66 are each in the form of a coherent interconnect Structures formed.
  • the structures are using screen printing technology applied directly to the base plate 60.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Radiation-Therapy Devices (AREA)
  • Lasers (AREA)

Abstract

PCT No. PCT/DE97/01989 Sec. 371 Date May 6, 1998 Sec. 102(e) Date May 6, 1998 PCT Filed Sep. 8, 1997 PCT Pub. No. WO98/11596 PCT Pub. Date Mar. 19, 1998A radiation source, in particular a discharge lamp suitable for operating a dielectrically hindered pulsed discharge by means of a ballast, has at least one electrode separated by dielectric material from the inside of the discharge vessel. By appropriately designing at least one of the electrodes and/or the dielectric material, local field reinforcement areas are created, so that during the pulsed mode of operation one or more dielectrically hindered individual discharges are generated exclusively in these areas, maximum one individual discharge being generated in each area. These areas are obtained in particular by shortening the spacing in locally limited areas, for example by providing on one of the electrodes hemispherical projections which extend towards the counter-electrode. This measure achieves a timestable discharge structure with a high useful radiation effectiveness uniformly distributed throughout the discharge vessel.

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine elektrische Strahlungsquelle gemäß dem Oberbegriff des Patentanspruches 1. Außerdem betrifft die Erfindung ein Bestrahlungssystem mit dieser Strahlungsquelle und mit einer Spannungsquelle gemäß dem Oberbegriff des Patentanspruches 15.The invention relates to an electrical radiation source according to the preamble of claim 1. The invention also relates to an irradiation system with this radiation source and with a voltage source according to the preamble of claim 15.

Im Betrieb emittiert die Strahlungsquelle mittels einer dielektrisch behinderten Entladung inkohärente Strahlung. Eine dielektrisch behinderte Entladung wird dadurch erzeugt, daß eine oder beide der mit der Spannungsquelle verbundenen Elektroden der Entladungsanordnung durch ein Dielektrikum von der Entladung im Innern des Entladungsgefäßes getrennt ist bzw. sind (einseitig bzw. beidseitig dielektrisch behinderte Entladung).In operation, the radiation source emits by means of a dielectric barrier Discharge incoherent radiation. A dielectric barrier discharge is generated by using one or both of the two with the voltage source connected electrodes of the discharge arrangement by a dielectric is separated from the discharge inside the discharge vessel or are (one-sided or two-sided dielectric discharge).

Unter inkohärent emittierenden Strahlungsquellen sind hier UV(Ultraviolett)- und IR(Infrarot)-Strahler sowie Entladungslampen, die insbesondere sichtbares Licht abstrahlen, zu verstehen.Under incoherently emitting radiation sources are here UV (U ltra v iolet) - and IR (I nfra r ot) emitters as well as discharge lamps which emit visible light in particular, to understand.

Strahlungsquellen dieser Art eignen sich, je nach dem Spektrum der emittierten Strahlung, für die Allgemein- und Hilfsbeleuchtung, z.B. Wohn- und Bürobeleuchtung bzw. Hintergrundbeleuchtung von Anzeigen, beispielsweise LCD's (Liquid Crystal Displays), für die Verkehrs- und Signalbeleuchtung, sowie für die UV-Bestrahlung, z.B. Entkeimung oder Photolytik. Radiation sources of this type are suitable, depending on the spectrum of the emitted radiation, for general and auxiliary lighting, such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays), for the transport and signal lighting, as well as for UV radiation, e.g. disinfection or photolytics.

Stand der TechnikState of the art

Die Erfindung geht aus von der WO 94/23442 und der darin offenbarten Betriebsweise für dielektrisch behinderte Entladungen. Diese Betriebsweise verwendet eine im Prinzip unbeschränkte Folge von Spannungsimpulsen, die durch Totzeiten oder Pausenzeiten voneinander getrennt sind. Entscheidend für die Effizienz der Nutzstrahlungserzeugung sind unter anderem die Impulsform sowie die Zeitdauern der Puls- bzw. Totzeiten. Bevorzugt werden für diese Betriebsweise schmale, z.B. streifenartige Elektroden verwendet, die ein- oder zweiseitig dielektrisch behindert sein können. Stehen sich beispielsweise zwei längliche Elektroden parallel gegenüber, so wird eine Vielzahl gleichartiger, in Draufsicht, also senkrecht zur Ebene, in der die beiden Elektroden angeordnet sind, deltaähnlicher (Δ) Entladungsstrukturen erzeugt, die nebeneinander entlang der Elektroden aufgereiht sind und sich jeweils in Richtung der (momentanen) Anode verbreitern. Im Fall wechselnder Polarität der Spannungspulse einer zweiseitig dielektrisch behinderten Entladung erscheint visuell eine Überlagerung zweier deltaförmiger Strukturen. Da diese Entladungsstrukturen bevorzugt mit Wiederholfrequenzen im kHz-Bereich erzeugt werden, nimmt der Betrachter nur eine der zeitlichen Auflösung des menschlichen Auges entsprechende "mittlere" Entladungsstruktur wahr, etwa in der Form einer Sanduhr. Die Anzahl der einzelnen Entladungsstrukturen ist unter anderem durch die eingekoppelte elektrische Leistung beeinflußbar. Nachteilig allerdings ist, daß einzelne Entladungsstrukturen ihren jeweilige Ort entlang der Elektroden unter Umständen spontan ändern können, wodurch eine gewisse Instabilität der Strahlungsverteilung resultiert. Außerdem können sich die Entladungsstrukturen auch in Teilbereichen des Entladungsgefäßes häufen, wodurch die Leistungsverteilung in Bezug auf das gesamte Volumen des Entladungsgefäßes sehr ungleichmäßig sein kann. The invention is based on WO 94/23442 and those disclosed therein Operating mode for dielectrically disabled discharges. This mode of operation uses a basically unlimited sequence of voltage pulses, which are separated from each other by dead times or break times. critical for the efficiency of the generation of useful radiation are among others Pulse shape and the duration of the pulse or dead times. To be favoured for this mode of operation narrow, e.g. used strip-like electrodes, which can be dielectrically impeded on one or both sides. Stand up For example, two elongated electrodes in parallel opposite one another Large number of similar, in plan view, that is perpendicular to the plane in which the two electrodes are arranged, delta-like (Δ) discharge structures generated, which are lined up along the electrodes and themselves widen in the direction of the (current) anode. In the case of changing Polarity of the voltage pulses of a double-sided dielectric barrier Discharge appears to be a superimposition of two delta-shaped structures. Because these discharge structures prefer repetition frequencies generated in the kHz range, the viewer takes only one of the temporal Resolution of the human eye corresponding to "medium" discharge structure true, in the shape of an hourglass. The number of each Discharge structures is inter alia due to the electrical power can be influenced. The disadvantage, however, is that some Discharge structures may have their respective location along the electrodes can change spontaneously, causing some instability of the Radiation distribution results. In addition, the discharge structures also accumulate in partial areas of the discharge vessel, whereby the Power distribution in relation to the total volume of the discharge vessel can be very uneven.

Aus der Patentliteratur sind eine Vielzahl von Strahlungsquellen für den Betrieb mittels Wechselspannung bekannt. Auch hier können die einzelnen Entladungsstrukturen ihren Ort spontan ändern. Außerdem läßt sich ebenfalls nicht vorhersagen an welcher konkreten Stelle genau eine individuelle Einzelentladung zünden wird. Die Entstehung der Einzelentladungen zeigt vielmehr sowohl räumlich als auch zeitlich ein stochastisches Verhalten.A variety of radiation sources for the are from the patent literature Operation using alternating voltage is known. Here, too, the individual Discharge structures change their location spontaneously. In addition, you can also do not predict exactly where an individual is Single discharge will ignite. The emergence of the individual discharges shows rather, a spatial and temporal stochastic behavior.

In der DE 40 10 809 A1 beispielsweise ist ein Hochleistungsstrahler mit zueinander parallelen, streifen- bzw. drahtförmigen Elektroden offenbart. In der jeweiligen Längsrichtung zweier unmittelbar benachbarter Elektroden unterschiedlicher Polarität ist kein Ort gegenüber den Nachbarorten besonders ausgezeichnet. Folglich haben die zwischen diesen Elektroden zündenden Einzelentladungen einen Freiheitsgrad, entsprechend der einen gemeinsamen Dimension der parallelen, länglichen Elektroden.In DE 40 10 809 A1, for example, there is a high-power radiator with one another parallel, strip or wire-shaped electrodes disclosed. In the respective longitudinal direction of two directly adjacent electrodes different polarity, no place is special compared to the neighboring places excellent. As a result, they ignite between these electrodes Single discharges a degree of freedom, corresponding to a common one Dimension of the parallel, elongated electrodes.

Aus der EP 0 254 111 B1 ist ein Strahler mit einer ersten transparenten und einer zweiten flächigen Metallelektrode, z.B. einer Metallschicht bekannt. Die transparente Elektrode ist als transparente elektrisch leitende Schicht oder als Drahtnetz realisiert. Im ersten Fall, d.h. wenn sich zwei flächige Elektroden gegenüber stehen, haben die Einzelentladungen folglich zwei Freiheitsgrade, entsprechend den jeweiligen zwei Dimensionen der beiden Elektrodenflächen. Im zweiten Fall können die Einzelentladungen irgendwo längs der Kett- oder Schußfäden des Drahtnetzes entstehen, haben also immer noch einen Freiheitsgrad.EP 0 254 111 B1 describes a radiator with a first transparent and a second flat metal electrode, e.g. known a metal layer. The transparent electrode is a transparent, electrically conductive layer or implemented as a wire mesh. In the first case, i.e. if there are two flat If the electrodes face each other, the individual discharges therefore have two Degrees of freedom, corresponding to the respective two dimensions of the two Electrode surfaces. In the second case, the individual discharges can be anywhere along the warp or weft threads of the wire mesh, always have another degree of freedom.

In der EP 0 312 732 B1 ist schließlich ein Strahler mit zwei, jeweils aus einem Drahtnetz bestehenden, zueinander parallelen Elektroden bekannt. Hier können die Einzelentladungen jeweils irgendwo längs zweier einander gegenüber stehender und zueinander paralleler Kett- oder Schußfäden beider Drahtnetze entstehen. Jede individuelle Einzelentladung hat also wiederum einen Freiheitsgrad, entsprechend der einen gemeinsamen Dimension der parallelen Kett- oder Schußfäden.Finally, in EP 0 312 732 B1 there is a radiator with two, each consisting of one Wire network existing, mutually parallel electrodes known. Here the individual discharges can each be somewhere along two opposite each other standing and mutually parallel warp or weft threads of both Wire networks are created. Each individual individual discharge therefore has in turn a degree of freedom corresponding to the one common dimension of parallel warp or weft threads.

In der EP-A-0 578 953 ist ein Hochleistungsstrahler in Gestalt einer koaxialen Doppelrohr-Anordnung offenbart. Eine Außenelektrode in Form eines Drahtnetzes erstreckt sich über den gesamten Umfang des äußeren Quarzrohres. In das innere Quarzrohr ist eine wendelförmige Innenelektrode eingeschoben. Das Innere des inneren Quarzrohres ist mit einer Kühlflüssigkeit gefühlt, die eine hohe Dielektrizitätskonstante hat und außer zur Kühlung auch zur Ankopplung der Innenelektrode an das innere Quarzrohr dient. Im Raum zwischen den beiden Rohren, dem Entladungsraum, bildet sich bei Anliegen einer Wechselspannung zwischen den Elektroden eine Vielzahl von Entladungskanälen. Zur Verbesserung des Zündverhaltens beim ersten Zünden bzw. nach längeren Betriebspausen sind Mittel vorgesehen, die durch lokale Feldverzerrung bzw. Feldüberhöhung an einer Stelle im Entladungsraum eine Initialzündung erzwingen. Durch die dabei entstehende UV-Strahlung und die Ladungsträger dieser lokalen Entladung wird dann die zuverlässige Zündung des gesamten Entladungsvolumens erzwungen. Als geeignete Mittel zur Feldverzerrung sind offenbart: eine Delle im Innenoder Außenrohr, die etwa bis zur halben Spaltweite an das jeweilige andere Rohr heranreicht; eine Kugel aus dielektrischem Material im Entladungsraum; ein an die Innenfläche des Außenrohrs oder die Außenfläche des Innenrohrs angeschmolzener Quarztropfen; bei langgestreckten Strahlern zwei oder mehrere dieser Kugeln; auch ist die Kombination von Kugel(n) und Dellen oder Buckeln möglich.EP-A-0 578 953 describes a high-performance radiator in the form of a coaxial one Double tube arrangement disclosed. An outer electrode in the form of a Wire mesh extends over the entire circumference of the outer quartz tube. A helical inner electrode is inserted into the inner quartz tube. The inside of the inner quartz tube is filled with a coolant felt that has a high dielectric constant and except for cooling also serves to couple the inner electrode to the inner quartz tube. in the Space between the two tubes, the discharge space, is formed Apply a variety of AC voltage between the electrodes Discharge channels. To improve the ignition behavior at the first Ignition or after longer breaks in operation means are provided that due to local field distortion or field elevation at one point in the discharge space to force an initial spark. By the resulting UV radiation and the charge carriers of this local discharge will then the reliable ignition of the entire discharge volume is enforced. The following are disclosed as suitable means for field distortion: a dent in the interior or Outer tube that is about half the gap to the other Pipe reaches; a ball of dielectric material in the discharge space; one on the inner surface of the outer tube or the outer surface of the inner tube melted quartz drops; in elongated Spotlights two or more these balls; also is that Combination of ball (s) and dents or humps possible.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, die genannten Nachteile zu beseitigen und eine Strahlungsquelle mit einer bezüglich des Gesamtvolumens ihres Entladungsgefäßes gleichmäßigeren Leistungsverteilung sowie mit einer, insbesondere auch zeitlich stabileren Gesamtentladung anzugeben. Ein weiterer Aspekt der Erfindung ist die Verbesserung der Effizienz der Nutzstrahlungserzeugung.The invention has for its object to eliminate the disadvantages mentioned and a radiation source with one with respect to the total volume of their discharge vessel more even power distribution as well as with a in particular also to specify a more stable overall discharge over time. On Another aspect of the invention is the improvement of the efficiency of the production of useful radiation.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen beschrieben.This object is achieved by the characterizing features of claim 1 solved. Particularly advantageous versions of the Invention are described in the subclaims.

Eine weitere Aufgabe der Erfindung ist es, ein Bestrahlungssystem anzugeben, welches die genannte Strahlungsquelle enthält. Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 15 gelöst.Another object of the invention is to provide an irradiation system which contains said radiation source. This task will according to the invention by the characterizing features of claim 15 solved.

Der Grundgedanke der Erfindung besteht darin, mittels einer Vielzahl lokal begrenzter Verstärkungen des elektrischen Feldes gezielt räumlich bevorzugte Ansatzpunkte für die Einzelentladungen zu schaffen. Die Einzelentladungen werden gleichsam an die Stellen dieser lokalen Feldverstärkungen gezwungen und bleiben dort im wesentlichen ortsfest, d.h. sie haben keinen Freiheitsgrad mehr, an einen Ort in der unmittelbaren Nachbarschaft auszuweichen. Folglich ist die Gesamtstruktur der Entladung zeitlich weitgehend stabil. Die konkrete Form der Einzelentladungen spielt dabei nur eine untergeordnete Rolle. Zwar sind die eingangs genannten delta- und sanduhrförmigen Einzelentladungen aufgrund ihrer hohen Effizienz der Nutzstrahlungserzeugung besonders geeignet. Gleichwohl ist die Erfindung nicht auf derart geformte Einzelentladungen beschränkt.The basic idea of the invention is local by means of a multitude limited amplifications of the electric field specifically spatially preferred To create starting points for the individual discharges. The individual discharges are forced to the places of these local field reinforcements and remain essentially stationary there, i.e. they have none Degree of freedom more to move to a location in the immediate vicinity. As a result, the overall structure of the discharge is largely temporal stable. The specific form of the individual discharges only plays a subordinate role Role. The delta and hourglass-shaped ones mentioned at the outset are true Individual discharges due to their high efficiency in generating useful radiation particularly suitable. Nevertheless, the invention is not limited to single discharges shaped in this way.

Die Stellen zur lokalen Feldverstärkung können durch verschiedene Maßnahmen realisiert werden, wie folgende vereinfachende Betrachtung zeigt. Bezeichnet U(t) die an zwei im Abstand d angeordneten Elektroden angelegte zeitlich veränderliche Spannung, so resultiert daraus zwischen den Elektroden ein elektrisches Feld mit der näherungsweise Stärke E(t) = U(t)/d. Folglich können die lokalen Feldverstärkungen E(t;r=ri) = U(t)/d(ri) durch lokales Verkürzen des Elektrodenabstandes d(r) an den entsprechenden Stellen ri realisiert werden, wobei i = 1,2,3,...n und n die Gesamtzahl der Feldverstärkungen bezeichnen.The points for local field reinforcement can be implemented by various measures, as the following simplified analysis shows. If U (t) denotes the time-varying voltage applied to two electrodes arranged at a distance d , this results in an electric field between the electrodes with the approximate strength E (t) = U (t) / d. Consequently, the local field amplifications E (t; r = r i ) = U (t) / d (r i ) can be achieved by locally shortening the electrode spacing d (r) at the corresponding points r i , where i = 1,2, 3, ... n and n denote the total number of field reinforcements.

Außerdem ist die elektrische Feldstärke E(r) im Entladungsraum durch die kapazitive Wirkung der dielektrischen Schicht(en) der behinderten Elektrode(n) beeinflußbar. Durch die kapazitive Wirkung des Dielektrikums wird nämlich die elektrische Feldstärke E(r) im Entladungsraum geschwächt. Erfindungsgemäße lokale Feldverstärkungen E(r=ri) sind folglich auch durch lokal begrenzte Verringerungen der (Gesamt)Dicke b(ri) und/oder durch Erhöhungen der relativen Dielektrizitätskonstante(n) ε (ri) der dielektrischen Schicht(en) an den entsprechenden Stellen ri realisierbar.In addition, the electric field strength E (r) in the discharge space can be influenced by the capacitive effect of the dielectric layer (s) of the disabled electrode (s). Because of the capacitive effect of the dielectric, the electric field strength E (r) in the discharge space is weakened. Local field reinforcements E (r = r i ) according to the invention are consequently also due to locally limited reductions in the (total) thickness b (r i ) and / or through increases in the relative dielectric constant (s) ε (r i ) of the dielectric layer (s) the corresponding places r i can be realized.

Die Stellen lokaler Feldverstärkung werden also durch den gezielten Aufbau mindestens einer der Elektroden und/oder des dielektrischen Materials geschaffen. Die geometrische Ausdehnung der Stellen ist dabei auf die konkreten Abmessungen der jeweiligen Einzelentladungen abgestimmt. Unter der Bezeichnung "Aufbau" sind dabei sowohl Form, Struktur, Material als auch räumliche Anordnung und Orientierung zu verstehen.The locations of local field strengthening are therefore due to the targeted structure at least one of the electrodes and / or the dielectric material is created. The geometrical extent of the places is on the concrete Dimensions of the individual discharges matched. Under the Designation "structure" are both form, structure, material and understand spatial arrangement and orientation.

Die Abstandsverkürzungen Δd(ri) werden durch besonders geformte bzw. strukturierte Elektroden erzielt, die zudem in geeigneter Weise räumlich zueinander angeordnet sind. Die konkrete Ausführung der Elektrodenkonfiguration ist auf die Form bzw. Symmetrie des Entladungsgefäßes abgestimmt. Außerdem ist bei der Verwendung von bipolaren Spannungspulsen zu berücksichtigen, daß die Elektroden unterschiedlicher Polarität abwechselnd als Kathode bzw. Anode wirken und folglich idealerweise völlig gleich gestaltet sein sollten. Im Falle der Verwendung von unipolaren Spannungspulsen ist es hingegen zweckmäßig, nur die Kathode gezielt zu strukturieren bzw. zu formen, da dort die "Spitzen" der deltaförmigen Einzelentladungen ansetzen.The distance reductions Δd (r i ) are achieved by specially shaped or structured electrodes, which are also suitably arranged spatially to one another. The specific design of the electrode configuration is matched to the shape or symmetry of the discharge vessel. In addition, when using bipolar voltage pulses, it should be taken into account that the electrodes of different polarity alternately act as cathode or anode and, consequently, should ideally be of completely the same design. If unipolar voltage pulses are used, on the other hand, it is expedient to structure or shape only the cathode in a targeted manner, since the “tips” of the delta-shaped individual discharges start there.

Für quaderförmige oder flächenartig ebene Entladungsgefäße eignen sich zwei oder mehrere im wesentlichen längliche Elektroden, die parallel zueinander angeordnet sind. Für die vorteilhafte Wirkung der erfindungsgemäßen Strukturierung der Elektrode spielt es keine Rolle, ob die Elektroden alle außerhalb oder innerhalb, auf einer Seite oder auf einander gegenüberliegenden Seiten des Entladungsgefäßes angeordnet sind. Wichtig ist nur, daß entweder mindestens die Elektroden einer Polarität (einseitig dielektrisch behinderte Entladung) oder auch die Elektroden beiderlei Polarität (beidseitig dielektrisch behinderte Entladung) durch eine dielektrische Schicht von der Entladung getrennt sind.For cuboid or flat discharge vessels are suitable two or more substantially elongated electrodes that are parallel to each other are arranged. For the advantageous effect of the invention Structuring the electrode doesn't matter if the electrodes are all outside or inside, on one side or on opposite sides Sides of the discharge vessel are arranged. It is only important that either at least the electrodes of one polarity (one-sided dielectric disabled discharge) or the electrodes of both polarities (Dielectric barrier discharge on both sides) by a dielectric Layer are separated from the discharge.

Mindestens die Elektroden einer Polarität sind in der Gefäßebene in regelmäßigen Abständen mit Ausformungen versehen, die sich in Richtung der Gegenelektrode(n) derart erstrecken, daß dadurch eine vorgebbare Anzahl n von Abstandsverkürzungen Δd(ri) mit i=1,2,3,...n erreicht wird. Geeignet sind z.B. stabförmige Elektroden mit nasenartigen Ausformungen oder "zickzack-" sowie rechteckartige Formen.At least the electrodes of one polarity are provided at regular intervals in the vessel plane with formations which extend in the direction of the counterelectrode (s) in such a way that a predeterminable number n of distance reductions Δd (r i ) with i = 1,2,3, ... n is reached. Rod-shaped electrodes with nose-like shapes or "zigzag" and rectangular shapes are suitable, for example.

Halbkreisrunde bzw. halbkugelige Ausformungen sind besonders günstig, da in diesem Fall - im Unterschied zu rechteckigen oder dreieckigen Formen - sowohl jeweils ein definiert kürzester Abstand realisiert wird als auch unerwünschte Spitzenwirkungen vermieden werden.Semicircular or hemispherical shapes are particularly cheap, because in this case - in contrast to rectangular or triangular shapes - Both a defined shortest distance is realized as well undesirable peak effects can be avoided.

Die Ausformungen bzw. Formgebungen der jeweiligen Elektrode sind so bemessen, daß die dadurch erzielten lokalen Feldverstärkungen E(ri ) einerseits ausreichend hoch sind, um die Einzelentladungen zuverlässig an ausschließlich diesen Stellen ri der Abstandsverkürzungen Δd(ri) zu erzeugen. Andererseits ist das von den Ausformungen bzw. durch die Formgebung der Elektrode beanspruchte Teilvolumen des Entladungsgefäßes von den Einzelentladungen selbst nicht nutzbar. Unter der Vorgabe, ein möglichst kompaktes Entladungsgefäßes bzw. ein effizient genutztes Gefäßvolumen zu schaffen, ist daher eher eine relativ geringe Abstandsverkürzung anzustreben. Im Einzelfall ist also ein akzeptabler Kompromiß zu finden.The shapes or shapes of the respective electrodes are dimensioned such that the local field reinforcements E ( r i ) thereby achieved are on the one hand sufficiently high to reliably generate the individual discharges at only these points r i of the distance reductions Δd (r i ) . On the other hand, the partial volume of the discharge vessel claimed by the shapes or by the shape of the electrode cannot be used by the individual discharges themselves. Given the requirement to create a discharge vessel that is as compact as possible or an efficiently used vessel volume, a relatively small reduction in distance should therefore be aimed for. An acceptable compromise can therefore be found in individual cases.

Typische Verhältnisse zwischen Abstandsverkürzung Δd(ri ) und effektiver Schlagweite w für die Einzelentladungen liegen im Bereich zwischen ca. 0,1 und 0,4. Als effektive Schlagweite w ist hier der um die Dicke b des Dielektrikums verminderte jeweilige Abstand d(ri) zwischen einander benachbarten Elektroden unterschiedlicher Polarität an den Stellen ri bezeichnet, also w = d(ri )-b. Typical relationships between the shortening of the distance Δd (r i ) and the effective striking distance w for the individual discharges are in the range between approx. 0.1 and 0.4. The effective distance w is the respective distance d (r i ) between adjacent electrodes of different polarity at points r i , ie w = d ( r i ) -b, reduced by the thickness b of the dielectric .

Für zylindrische Entladungsgefäße eignet sich insbesondere eine Kombination aus einer wendelförmigen und einer oder mehrerer länglicher Elektroden. Die wendelförmige Elektrode ist bevorzugt zentrisch axial im Innern des Entladungsgefäßes angeordnet. Die längliche Elektrode bzw. Elektroden sind in einem vorgebbaren Abstand zur Mantelfläche der Elektrodenwendel, beispielsweise auf der Außenwandung des Zylindermantels des Entladungsgefäßes, bevorzugt parallel zur Zylinderlängsachse angeordnet. Durch diese gezielte Formgebung sowie Anordnung der Elektroden ist eine Vielzahl voneinander getrennter Stellen mit verkürzten Elektrodenabständen geschaffen. Die Ganghöhe - d.h. die Strecke, innerhalb der die Wendel eine vollständige Umdrehung ausführt - ist bevorzugt ungefähr so groß wie die maximalen Querausdehnung - bei deltaartigen Formen entspricht dies der Fußbreite - der Einzelentladungen oder größer, um ein Überlappen der Einzelentladungen zu verhindern.A combination is particularly suitable for cylindrical discharge vessels consisting of a helical and one or more elongated electrodes. The helical electrode is preferably centrally axially inside of the discharge vessel arranged. The elongated electrode or electrodes are at a predeterminable distance from the outer surface of the electrode coil, for example on the outer wall of the cylinder jacket of the discharge vessel, preferably arranged parallel to the longitudinal axis of the cylinder. By this targeted shaping and arrangement of the electrodes is a multitude separate locations with shortened electrode spacing created. The pitch - i.e. the distance within which the helix is one complete revolution - is preferably about the size of that maximum transverse expansion - in delta-like forms this corresponds to the Foot width - of the individual discharges or larger, to overlap the individual discharges to prevent.

In der DE 41 40 497 A1 ist zwar bereits ein Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einer wendelförmigen Innenelektrode offenbart. Diese Innenelektrode dient allerdings lediglich der Ankopplung eines Pols einer Wechselspannungsquelle an einen als verteilte Zusatzkapazität wirkenden Formkörper. Die Ankopplung des elektrischen Wechselfeldes wird durch eine Flüssigkeit mit hoher Dielektrizitätskonstante, vorzugsweise demineralisiertes Wasser (ε=81) unterstützt. Außerdem ist die Gegenelektrode in Form eines Drahtnetzes realisiert. Jeweils lokal auf die Einzelentladungen der eingangs geschilderten Art begrenzte Feldverstärkungen resultieren aus dieser Konfiguration nicht. Folglich ist damit weder eine Erzeugung noch eine erfindungsgemäße Separierung von entsprechenden Einzelentladungen möglich.DE 41 40 497 A1 already contains a high-power radiator, in particular for ultraviolet light, disclosed with a helical inner electrode. However, this inner electrode is only used for coupling of a pole of an AC voltage source to a distributed additional capacitance acting molded body. The coupling of the alternating electrical field is preferred by a liquid with high dielectric constant, preferably demineralized water (ε = 81). Besides, that is Counter electrode realized in the form of a wire mesh. Each locally on the Individual discharges of the type described at the beginning of limited field reinforcements do not result from this configuration. Hence neither generation or separation according to the invention Single discharges possible.

Zur Vervollständigung der Strahlungsquelle zu einem Bestrahlungssystem sind die Elektroden der Strahlungsquelle wechselweise mit den beiden Polen einer Impulsspannungsquelle verbunden. Die Impulsspannungsquelle liefert durch Pausen unterbrochene Spannungspulse, wie beispielsweise in der WO 94/23442 offenbart.To complete the radiation source to an irradiation system are the electrodes of the radiation source alternating with the two poles connected to a pulse voltage source. The pulse voltage source delivers voltage pulses interrupted by pauses, such as in WO 94/23442.

Ein weiterer Aspekt der Erfindung ist es, die Überlappung von Einzelentladungen weitgehend zu verhindern oder aber mindestens einzuschränken. Es hat sich nämlich gezeigt, daß die Effizienz für die Erzeugung von Nutzstrahlung mit abnehmender Überlappung zunimmt. Auf der anderen Seite läßt sich durch Zusammenrücken bzw. Überlappen der Einzelentladungen die in das Volumen des Entladungsgefäßes einkoppelbare elektrische Leistung steigern. Daher ist im Einzelfall ein geeigneter Kompromiß zwischen der Höhe der Leistung (stärkere Überlappung) und der Höhe der Effizienz (geringere Überlappung) zu wählen. Je nach Anforderung kann dabei entweder der absolute Wert der Strahlungsleistung oder die Effizienz der Strahlungsleistung, d.h. im Falle von sichtbarer Strahlung die Höhe des Lichtstroms bzw. der Lichtausbeute, stärker gewichtet werden.Another aspect of the invention is the overlap of individual discharges to be largely prevented or at least restricted. It It has been shown that the efficiency for the production of useful radiation increases with decreasing overlap. On the other hand lets by moving together or overlapping the individual discharges the volume of electrical discharge that can be coupled into the discharge vessel increase. Therefore, a suitable compromise between the Level of performance (greater overlap) and level of efficiency (less overlap) to choose. Depending on the requirement, either the absolute value of the radiant power or the efficiency of the Radiant power, i.e. in the case of visible radiation, the height of the Luminous flux or the luminous efficacy, weighted more.

Unter diesen Gesichtspunkten hat sich ein auf die maximale Querausdehnung der Einzelentladungen normierter Abstand im Bereich von ca. 0,5 bis 1,5 als geeignet erwiesen. Dabei bedeuten normierte Abstände von z.B. 0,5, 1 und 1,5, daß die Mittelachsen benachbarter Teilentladungen um die Hälfte, das Einfache bzw. Eineinhalbfache ihrer maximalen Querausdehnung voneinander entfernt sind, was einer Überlappung, einer Berührung ohne Überlappung bzw. einer Beabstandung der Teilentladungen entspricht. Im Falle beabstandeter Teilentladungen, d.h. daß zwischen den Teilentladungen ein entladungsfreier Bereich ist, kann eine gegenseitige Beeinflussung der Teilentladungen weitgehend ausgeschlossen werden.From these points of view, the maximum transverse expansion has to be considered of the individual discharges standardized distance in the range of approx. 0.5 to 1.5 proved to be suitable. Here, standardized distances of e.g. 0.5, 1 and 1.5 that the central axes of adjacent partial discharges by half, the single or one and a half times their maximum transverse extent from each other are removed, which is an overlap, a touch without Overlap or a spacing of the partial discharges corresponds. in the Case of spaced partial discharges, i.e. that between the partial discharges is a discharge-free area, a mutual influence of the Partial discharges can be largely excluded.

Beschreibung der ZeichnungenDescription of the drawings

Die Erfindung wird im folgenden anhand einiger Ausführungsbeispiele näher erläutert. Es zeigen

Fig. 1
eine Prinzipdarstellung einer Entladungsanordnung für eine gepulste, einseitig dielektrisch behinderte Entladung mit zwei nebeneinander angeordneten Elektroden mit lokalen Verkürzungen des Elektrodenabstandes,
Fig. 2
eine Variation der Anordnung aus Figur 1 mit zwei Anoden und sägezahnförmiger Kathode,
Fig. 3
eine weitere Variation der Anordnung aus Figur 1 mit zwei Anoden und stufenförmiger Kathode,
Fig. 4
ein Ausführungsbeispiel eines Flachstrahlers mit einer Kathode mit nasenartigen Fortsätzen,
Fig. 5a
ein Ausführungsbeispiel einer zylindrischen Entladungslampe mit einer spiralförmigen Kathode in Seitenansicht,
Fig. 5b
den Querschnitt entlang A-A der in Figur 5a gezeigten Entladungslampe,
Fig. 5c
einen Teil eines Längsschnittes entlang B-B der in Figur 5a gezeigten Entladungslampe,
Fig. 6a
eine schematische Darstellung einer teilweise durchbrochenen Draufsicht einer erfindungsgemäßen Flachlampe mit auf der Bodenplatte angeordneten Elektroden mit lokalen Verkürzungen des Elektrodenabstandes,
Fig. 6b
eine schematische Darstellung einer Seitenansicht der Flachlampe aus Figur 6a.
The invention is explained in more detail below with the aid of a few exemplary embodiments. Show it
Fig. 1
1 shows a schematic diagram of a discharge arrangement for a pulsed discharge which is dielectrically impeded on one side and has two electrodes arranged next to one another with local reductions in the electrode spacing,
Fig. 2
1 shows a variation of the arrangement from FIG. 1 with two anodes and a sawtooth-shaped cathode,
Fig. 3
1 shows a further variation of the arrangement from FIG. 1 with two anodes and a stepped cathode,
Fig. 4
an embodiment of a flat radiator with a cathode with nose-like extensions,
Fig. 5a
an embodiment of a cylindrical discharge lamp with a spiral cathode in side view,
Fig. 5b
the cross section along AA of the discharge lamp shown in Figure 5a,
Fig. 5c
FIG. 5a shows a part of a longitudinal section along BB of the discharge lamp shown in FIG. 5a,
Fig. 6a
1 shows a schematic representation of a partially broken top view of a flat lamp according to the invention with electrodes arranged on the base plate with local reductions in the electrode spacing,
Fig. 6b
is a schematic representation of a side view of the flat lamp of Figure 6a.

Figur 1 dient in erster Linie zur Erläuterung des Prinzips der Erfindung - nämlich die gezielte Lokalisierung der Einzelentladungen einer gepulsten dielektrisch behinderten Entladung mittels lokaler Feldverstärktingen - und zwar anhand lokaler Verkürzungen des Elektrodenabstandes einer Entladungsanordnung 1. Zu diesem Zweck zeigt Figur 1 einen Längsschnitt der Entladungsanordnung 1 mit zwei zueinander parallel im Abstand d angeordneten länglichen Elektroden 2,3 in schematischer Darstellung. Eine erste 2 der beiden Elektroden 2,3 ist durch eine dielektrische Schicht 4 vom angrenzenden, sich zwischen den beiden Elektroden 2,3 erstreckenden Entladungsraum getrennt. Die zweite metallische Elektrode 3 ist hingegen unbeschichtet. Es handelt sich hierbei also um eine einseitig dielektrisch behinderte Entladungsanordnung, die besonders effizient mit unipolaren Spannungspulsen betrieben wird. Dabei ist die Polarität so gewählt, daß die dielektrisch behinderte Elektrode 2 als Anode und die unbehinderte Elektrode 3 folglich als Kathode wirken.Figure 1 serves primarily to explain the principle of the invention - namely the targeted localization of the individual discharges of a pulsed dielectrically disabled discharge using local field amplifiers - and based on local shortening of the electrode spacing of a discharge arrangement 1. For this purpose, Figure 1 shows a longitudinal section of the Discharge arrangement 1 with two arranged parallel to each other at a distance d elongated electrodes 2,3 in a schematic representation. A first one 2 of the two electrodes 2, 3 is covered by a dielectric layer 4 adjacent discharge space, which extends between the two electrodes 2, 3 Cut. The second metallic electrode 3, however, is uncoated. This is a one-sided dielectric barrier Discharge arrangement that is particularly efficient with unipolar voltage pulses is operated. The polarity is chosen so that the dielectric handicapped electrode 2 as the anode and the unhindered electrode 3 consequently act as a cathode.

Die Kathode 3 weist vier nasenartige Fortsätze 9-12 auf, die der Anode 2 zugewandt sind. Dadurch werden an den Stellen der Fortsätze 9-12 lokal begrenzte Verstärkungen des elektrischen Feldes erzeugt. Diese gezielte Feldverstärkungen bewirken, daß - eine ausreichend hohe elektrische Leistung vorausgesetzt - an jedem dieser Fortsätze 9-12 jeweils eine deltaförmige Einzelentladung 5-8 mit ihrer Spitze ansetzt. Um ein unerwünschtes Wandern der Ansatzstellen für die Spitzen der Einzelentladungen 5-8 auf den Fortsätzen 9-12 zu verhindern oder zumindest zu begrenzen, ist die Transversalausdehnung s des jeweiligen Fortsatzes, d.h. die Ausdehnung längs der Kathode 3 relativ gering im Vergleich zur Breite f des Fußes einer Einzelentladung. Typisch beträgt die Transversalausdehnung s etwa 1/10 von der Fußbreite f. Ein weiteres wichtiges Maß sind die Lateralausdehnungen der Fortsätze 9-12, d.h. die Ausdehnung in Richtung der jeweils kürzesten Entfernung zur gegenüber liegenden Anode 2 - also die in der Beschreibung zuvor erläuterte Abstandsverkürzung Δd(ri ). Der jeweilige Abstand zwischen den Fortsätzen 9-12 und der Anode - abzüglich der dielektrischen Schicht 4 - ergibt somit die effektive Schlagweite w für die Einzelentladungen 5-8. Folglich werden die Lateralausdehnungen ℓ so bemessen, daß bei angelegter Elektrodenspannung U(t) eine ausreichende Feldverstärkung E(t) = U(t)/w erzielt wird, um ein zuverlässiges Ansetzen der Einzelentladungen 5-8 zu gewährleisten. Typisch liegt das Verhältnis von Lateralausdehnung ℓ und effektiver Schlagweite w im Bereich zwischen ca. 0,1 und 0,4.The cathode 3 has four nose-like extensions 9-12, which face the anode 2. As a result, locally limited reinforcements of the electric field are generated at the locations of the extensions 9-12. These targeted field reinforcements have the effect that - assuming a sufficiently high electrical power - a delta-shaped individual discharge 5-8 starts at each of these extensions 9-12. In order to prevent or at least limit undesired migration of the starting points for the tips of the individual discharges 5-8 on the extensions 9-12, the transverse extension s of the respective extension, ie the extension along the cathode 3, is relatively small compared to the width f of the Foot of a single discharge. The transverse extension s is typically about 1/10 of the foot width f . Another important measure is the lateral extent of the extensions 9-12, ie the extent in the direction of the shortest distance to the opposite anode 2 - that is, the shortening of the distance Δd ( r i ) previously explained in the description. The respective distance between the extensions 9-12 and the anode - minus the dielectric layer 4 - thus gives the effective striking distance w for the individual discharges 5-8. Consequently, the lateral dimensions aus are dimensioned such that a sufficient field gain E (t) = U (t) / w is achieved when the electrode voltage U ( t ) is applied, in order to ensure that the individual discharges 5-8 are reliably applied. Typically, the ratio of lateral expansion Schlag and effective stroke length w is in the range between approx. 0.1 and 0.4.

Die Abstände benachbarter Einzelentladungen 5-8 sind durch die Abstände a der zugehörigen Fortsätze 9-12 beeinflußbar. Zur Verdeutlichung dieses Konzeptes sind in der Figur 1 die Abstände der aufeinander folgenden Fortsätze 9-12 und folglich auch der zugehörigen Einzelentladungen 5-8 unterschiedlich gewählt. Außerdem ist angenommen, daß die deltaförmigen Einzelentladungen 5-8 die Form eines gleichseitigen Dreiecks aufweisen. Der gegenseitige Abstand der beiden ersten Fortsätze 9 und 10 entspricht gerade der halben Fußbreite f der beiden zugehörigen Einzelentladungen 5 und 6, entsprechend einem auf die Fußbreite f normierten Abstand von 0,5. Folglich überlappen sich diese beiden Einzelentladungen 5 und 6 im Überlappbereich 13. Der gegenseitige Abstand des zweiten und dritten Fortsatzes 6 bzw. 7 entspricht gerade der ganzen Fußbreite f der beiden zugehörigen Einzelentladungen 6 und 7, entsprechend einem normierten Abstand von 1. Folglich schließen diese beiden Einzelentladungen 6 und 7 unmittelbar aneinander an, ohne Überlapp, aber auch ohne entladungsfreien Raum zwischen den Fußbereichen beider Einzelentladungen 6 und 7. Der gegenseitige Abstand des dritten und vierten Fortsatzes 11 bzw. 12 ist schließlich größer als die Fußbreite f der beiden zugehörigen Einzelentladungen 7 und 8, entsprechend einem normierten Abstand größer 1. Folglich sind diese beiden Einzelentladungen 7 und 8 von einander durch einen entladungsfreien Raum zwischen ihren Fußbereichen getrennt.The distances between adjacent individual discharges 5-8 can be influenced by the distances a of the associated extensions 9-12. To clarify this concept, the distances between the successive extensions 9-12 and consequently also the associated individual discharges 5-8 are selected differently in FIG. It is also assumed that the delta-shaped individual discharges 5-8 have the shape of an equilateral triangle. The mutual distance between the first two extensions 9 and 10 corresponds exactly to half the foot width f of the two associated individual discharges 5 and 6, corresponding to a distance of 0.5 normalized to the foot width f . Consequently, these two individual discharges 5 and 6 overlap in the overlap region 13. The mutual distance between the second and third extensions 6 and 7 corresponds to the entire foot width f of the two associated individual discharges 6 and 7, corresponding to a standardized distance of 1. Consequently, these two close Individual discharges 6 and 7 directly adjacent to one another, without overlap, but also without discharge-free space between the foot areas of the two individual discharges 6 and 7. The mutual spacing of the third and fourth extensions 11 and 12 is finally greater than the foot width f of the two associated individual discharges 7 and 8, corresponding to a normalized distance greater than 1. Consequently, these two individual discharges 7 and 8 are separated from one another by a discharge-free space between their foot areas.

In den Figuren 2 und 3 sind Variationen der Entladungsanordnung von Figur 1 mit jeweils zwei zueinander parallel angeordneten Anoden schematisch dargestellt. Gleichartige Merkmale sind mit gleichen Bezugsziffern versehen.In Figures 2 and 3 are variations of the discharge arrangement of Figure 1 with two anodes arranged parallel to each other schematically shown. Identical features are provided with the same reference numbers.

In Figur 2 sind die lokalen Verkürzungen des Elektrodenabstandes durch eine in der Ebene der beiden Anoden 2a,2b zentrisch angeordneten "zickzack"- bzw. sägezahnförmigen Kathode 14, beispielsweise aus einem Metalldraht gebogen, realisiert. Die sechs Zacken 15-20 der Kathode 14 weisen abwechselnd zu der einen bzw. anderen der beiden Anoden 2a,2b. Auf diese Weise wird erreicht, daß bei entsprechender elektrischer Leistung an jeder der Zacken 15-20 genau eine deltaförmige Einzelentladung 21-26 ansetzt. Dabei enden die an den "ungeradzahligen Zacken", d.h. der ersten Zacke 15 und an den jeweils übernächsten Zacken 17 und 19 ansetzenden Einzelentladung 21,23,25 an der einen Anode 2a. Die an den dazwischen liegenden bzw. nächst folgenden "geradzahligen" Zacken 16,18,20 ansetzenden Einzelentladung 22,24,26 enden hingegen an der gegenüberliegenden anderen Anode 2b. Die gegenseitigen Abstände der Einzelentladungen sind durch die entsprechenden Abstände der Zacken beeinflußbar. In der Figur 2 sind die Abstände zwischen den übernächsten Nachbarzacken 15,17; 17,19 bzw. 16,18 und 18,20 jeweils genauso groß gewählt, wie die Fußbreite der Einzelentladungen 21-26. Folglich sind sowohl die "ungeradzahligen" als auch die "geradzahligen" Einzelentladungen 21,23,25 bzw. 22,24,26 jeweils unmittelbar aneinander angrenzend zu beiden Seiten der Kathode 14 aufgereiht.In Figure 2 the local reductions in the electrode spacing are complete a "zigzag" arranged centrally in the plane of the two anodes 2a, 2b - or sawtooth-shaped cathode 14, for example made of a metal wire bent, realized. The six points 15-20 of the cathode 14 point alternating with one or the other of the two anodes 2a, 2b. To this Way is achieved that with appropriate electrical power at everyone the prongs 15-20 apply a delta-shaped individual discharge 21-26. The ends at the "odd-numbered points", i.e. the first point 15 and at the individual buttocks 17 and 19 starting after the next but one 21, 23, 25 on one anode 2a. The ones in between or the next following "even-numbered" spikes 16, 18, 20 starting individual discharge 22,24,26, however, end at the opposite one Anode 2b. The mutual distances of the individual discharges are through the corresponding distances between the points can be influenced. In Figure 2 are the distances between the next but one neighboring points 15, 17; 17.19 or 16, 18 and 18, 20 were chosen to be the same size as the foot width of the individual discharges 21-26. As a result, both are "odd" as well the "even-numbered" individual discharges 21, 23, 25 and 22, 24, 26 each immediately lined up adjacent to each other on both sides of the cathode 14.

In Figur 3 ist gegenüber Figur 1 lediglich die Kathode 27 geändert und zwar in der Weise, daß sich zentrisch zwischen den beiden Anoden 2a,2b eine Folge von vier Stufen 28-31, beispielsweise aus einem Metalldraht gebogen, erstreckt. Die Stufen 28-31 sind abwechselnd zu der einen Anode 2a bzw. anderen Anoden 2b orientiert, so daß diese Stufen als lokale Verkürzungen des Elektrodenabstandes fungieren.In FIG. 3, only the cathode 27 has been changed compared to FIG. 1, specifically in such a way that a centrally between the two anodes 2a, 2b Sequence of four stages 28-31, for example bent from a metal wire, extends. Steps 28-31 alternate with one anode 2a and other anodes 2b oriented, so that these steps as local shortenings function of the electrode gap.

Die Entladungsanordnung in Figur 3 eignet sich insbesondere für "vorhangähnliche" Entladungsstrukturen, wie sie unter bestimmten Entladungsbedingungen, z.B. relativ geringem Druck des Gases oder Gasgemisches innerhalb des Entladungsgefäßes, erzeugt werden können. Unter diesen besonderen Bedingungen bilden sich also keine deltaförmige Einzelentladungen aus. Vielmehr brennen dann zwischen den Stufen 28,30 und der benachbarten Anode 2a einerseits sowie zwischen den Stufen 29,31 und der benachbarten Anode 2b andererseits jeweils rechteckartige Entladungen 32,34 bzw. 33,35. The discharge arrangement in FIG. 3 is particularly suitable for "curtain-like" discharge structures, such as those under certain discharge conditions, e.g. relatively low pressure of the gas or gas mixture can be generated within the discharge vessel. Under these Under special conditions, no delta-shaped individual discharges are formed out. Rather, then burn between levels 28,30 and adjacent anode 2a on the one hand and between steps 29, 31 and adjacent anode 2b, on the other hand, each have rectangular discharges 32.34 and 33.35, respectively.

In einer Variante ist die stufenartige Kathode zusätzlich von einer dünnen dielektrischen Schicht überzogen (nicht dargestellt). Auf diese Weise ist eine beidseitig dielektrisch behinderte Anordnung realisiert. Damit ist auch eine effiziente Betriebsweise mit bipolaren Spannungspulsen möglich. Dabei ändern sich die Ausrichtung der deltaförmigen Einzelentladungen ständig mit der wechselnden Polarität der Spannungspulse in entgegengesetzter Richtung. Bei typischen Pulswiederholfrequenzen im Bereich von einigen zehn Kilohertz entsteht der visuelle Eindruck von "sanduhrförmigen" Einzelentladungen (nicht dargestellt).In one variant, the step-like cathode is additionally of a thin one dielectric layer coated (not shown). That way is one Dielectric barrier arrangement realized on both sides. So that's one efficient operation with bipolar voltage pulses possible. Change in the process the alignment of the delta-shaped individual discharges constantly the changing polarity of the voltage pulses in the opposite direction. With typical pulse repetition frequencies in the range of a few tens Kilohertz creates the visual impression of "hourglass-shaped" individual discharges (not shown).

Darüber hinaus sind noch viele weitere geeignete Formen für die Kathode denkbar, die das erfindungsgemäße Merkmal lokal begrenzter Verkürzungen des Elektrodenabstands aufweisen. Insbesondere können die Elektroden auch in Form von Leiterbahnen auf einer Innen- oder Außenwandung des Entladungsgefäßes aufgedruckt sein, wie beispielsweise in der EP 0 363 832 A1 beschrieben. Wesentlich für die vorteilhafte Wirkung der Erfindung sind lediglich die zusätzlichen Mittel zur lokalen Feldverstärkung und zwar je ein Mittel pro Einzelentladung. Außerdem können die Elektroden statt in einer Ebene genauso gut räumlich angeordnet sein.There are also many other suitable shapes for the cathode conceivable that the inventive feature of locally limited shortenings of the electrode spacing. In particular, the electrodes also in the form of conductor tracks on an inner or outer wall of the Discharge vessel can be printed, such as in the EP 0 363 832 A1. Essential for the beneficial effect of The invention is merely the additional means for local field amplification an average per single discharge. You can also use the electrodes instead of being arranged spatially just as well in one plane.

Die Figuren 4a und 4b zeigen in schematischer Darstellung eine Ausführungsform eines Bestrahlungssystems mit flächenartigem Strahler 36 und elektrischem Versorgungsgerät 37 teils im Längsschnitt bzw. im Querschnitt. Die Elektrodenanordnung ist ähnlich, wie die zur Erläuterung der Erfindungsidee in Figur 1 gezeigte. Der Strahler 36 besteht aus einem länglichen quaderförmigen Entladungsgefäß 38 aus Glas. Im Innern des Entladungsgefäßes 38 befindet sich Xenon mit einem Fülldruck von ca. 8 kPa. In der Längsachse des Entladungsgefäßes 38 ist eine erste, mit dem Minuspol des Versorgungsgeräts 37 verbundene Elektrode 39 (Kathode) zentrisch angeordnet. Auf den Außenwandungen der beiden zur Längsachse parallelen schmalen Seitenflächen 40a,40b sind jeweils eine weitere, mit dem Pluspol des Versorgungsgeräts 37 verbundene streifenförmige Elektrode 41a,41b (Anode) aus Aluminiumfolie angeordnet. Die Kathode 39 besteht aus einem Metallstab, der im gegenseitigen Abstand von ca. 15 mm mit drei Paaren von nasenartigen Fortsätzen 42a,42b-44a,44b versehen ist. Die beiden Fortsätze eines jeden Paares 42a,42b-44a,44b sind in entgegen gesetzter Richtung und zu je einer der beiden Anoden 41a,41b hin orientiert. Die Fortsätze 42a,42b-44a,44b sind halbkreisförmig mit einem Durchmesser von ca. 2 mm ausgebildet. Die Lateralausdehnung ℓ in Richtung jeweiliger Anode beträgt also ca. 1 mm. Zusammen mit einer effektive Schlagweite ω von ca. 9 mm folgt daraus für den Quotienten /w ein Wert von ca. 0,11. Das Versorgungsgerät 37 liefert im Betrieb eine Folge von negativen Spannungspulsen mit Breiten (volle Breite bei halber Höhe) von ca. 1 µs und einer Pulswiederholfrequenz von ca. 80 kHz. Damit können innerhalb des Entladungsgefäßes 38 an jedem der Fortsätze 42a,42b-44a,44b je eine deltaförmige Einzelentladung 45a,45b-47a,47b erzeugt werden. Dabei setzt jede Einzelentladung mit ihrer Spitze an einem Fortsatz an und verbreitert sich bis zur als dielektrische Schicht wirkenden gegenüberliegenden Seitenwand 40a,40b, auf deren Außenwandung die zugehörige Anode 41a,41b befestigt ist.Figures 4a and 4b show a schematic representation of an embodiment of an irradiation system with flat radiator 36 and electrical supply device 37, partly in longitudinal section or in cross section. The electrode arrangement is similar to that shown in FIG. 1 to explain the inventive idea. The radiator 36 consists of an elongated cuboidal discharge vessel 38 made of glass. Xenon is located in the interior of the discharge vessel 38 with a filling pressure of approximately 8 kPa. A first electrode 39 (cathode) connected to the negative pole of the supply device 37 (cathode) is arranged centrally in the longitudinal axis of the discharge vessel 38. On the outer walls of the two narrow side surfaces 40a, 40b parallel to the longitudinal axis, a further strip-shaped electrode 41a, 41b (anode) made of aluminum foil connected to the positive pole of the supply device 37 is arranged. The cathode 39 consists of a metal rod which is provided with three pairs of nose-like extensions 42a, 42b-44a, 44b at a mutual spacing of approximately 15 mm. The two extensions of each pair 42a, 42b-44a, 44b are oriented in the opposite direction and towards each of the two anodes 41a, 41b. The extensions 42a, 42b-44a, 44b are semicircular with a diameter of approximately 2 mm. The lateral expansion ℓ in the direction of the respective anode is therefore approx. 1 mm. Together with an effective stroke distance ω of approx. 9 mm, this results in a value of approx. 0.11 for the quotient / w . In operation, the supply device 37 delivers a sequence of negative voltage pulses with widths (full width at half height) of approx. 1 μs and a pulse repetition frequency of approx. 80 kHz. Thus, a delta-shaped individual discharge 45a, 45b-47a, 47b can be generated on each of the extensions 42a, 42b-44a, 44b within the discharge vessel 38. Each individual discharge begins with its tip on an extension and widens as far as the opposite side wall 40a, 40b, which acts as a dielectric layer, on the outer wall of which the associated anode 41a, 41b is fastened.

In Figur 5a ist die Seitenansicht, in Figur 5b der Querschnitt und in Figur 5c ein Teillängsschnitt einer weiteren Ausführungsform einer Entladungslampe 48 gezeigt. Sie ähnelt in ihrer äußeren Form konventionellen Lampen mit Edison-Sockel 49. Innerhalb des kreiszylindrischen Entladungsgefäßes 50 aus 0,7 mm dickem Glas ist eine längliche Innenelektrode 51 zentrisch angeordnet. Das Entladungsgefäß 50 weist einen Durchmesser von ca. 50 mm auf. Das Innere des Entladungsgefäßes 50 ist mit Xenon bei einem Druck von 173 hPa gefüllt. Die Innenelektrode 51 ist aus Metalldraht als rechtsdrehende Wendel geformt. Die jeweiligen Durchmesser des Metalldrahtes und der Wendel 51 betragen 1,2 mm bzw. 10 mm. Die Ganghöhe h - d.h. die Strecke, innerhalb der die Wendel eine vollständige Umdrehung ausführt - beträgt 15 mm. Dieser Wert entspricht ungefähr der Fußbreite f der deltaförmigen Einzelentladungen. Auf der Außenwandung des Entladungsgefäßes 50 sind vier Außenelektroden 52a-52d in Form von 8 cm langen Leitsilberstreifen äquidistant und parallel zur Wendellängsachse angebracht. Folglich gibt es pro Windung jeweils vier äquidistante Stellen 53a-53d auf der Außenfläche der Wendelelektrode 51, die den korrespondierenden Außenelektroden 52a-52d unmittelbar benachbart sind. An diesen vier Stellen mit kürzester Schlagweite w setzt jeweils die Spitze einer deltaförmigen Einzelentladung 54a-54d an und verbreitert sich bis zur Innenwandung des Entladungsgefäßes 50 in Richtung Außenelektroden 52a-52d. Diese Stellen kürzester Schlagweite wiederholen sich von Windung zu Windung und längs der Außenelektroden 52a-52d. Auf diese Weise brennen die Einzelentladungen gezielt voneinander separiert in zwei sich senkrecht in der Lampenlängsachse schneidenden Ebenen, wobei jede Ebene durch zwei gegenüberliegende Außenelektroden 52a,52c bzw. 52b,52d hindurch verläuft. Außerdem ist durch die gezielte Wahl von h = f gewährleistet, daß sich die Einzelentladungen längs der Außenelektroden 52a-52d nicht gegenseitig überlappen.FIG. 5a shows the side view, FIG. 5b the cross section and FIG. 5c shows a partial longitudinal section of a further embodiment of a discharge lamp 48. Its outer shape resembles conventional lamps with an Edison base 49. An elongated inner electrode 51 is arranged centrally within the circular cylindrical discharge vessel 50 made of 0.7 mm thick glass. The discharge vessel 50 has a diameter of approximately 50 mm. The inside of the discharge vessel 50 is filled with xenon at a pressure of 173 hPa. The inner electrode 51 is formed from metal wire as a right-handed spiral. The respective diameters of the metal wire and the helix 51 are 1.2 mm and 10 mm, respectively. The pitch h - ie the distance within which the helix makes one complete turn - is 15 mm. This value corresponds approximately to the foot width f of the delta-shaped individual discharges. On the outer wall of the discharge vessel 50, four outer electrodes 52a-52d in the form of 8 cm long conductive silver strips are attached equidistantly and parallel to the longitudinal axis of the coil. Consequently, there are four equidistant locations 53a-53d per turn on the outer surface of the spiral electrode 51, which are immediately adjacent to the corresponding outer electrodes 52a-52d. The tip of a delta-shaped individual discharge 54a-54d starts at these four points with the shortest stroke length w and widens up to the inner wall of the discharge vessel 50 in the direction of the outer electrodes 52a-52d. These locations of the shortest pitch are repeated from turn to turn and along the outer electrodes 52a-52d. In this way, the individual discharges burn in a deliberate manner, separated from one another, in two planes intersecting perpendicularly in the longitudinal axis of the lamp, each plane passing through two opposite outer electrodes 52a, 52c and 52b, 52d. In addition, the targeted choice of h = f ensures that the individual discharges along the outer electrodes 52a-52d do not overlap one another.

Im Bereich des Sockels des Entladungsgefäßes 50 sind die Außenelektroden 52a-52d mittels eines ringförmig auf die Außenwand angebrachten Leitsilberstreifens 52e miteinander elektrisch leitend verbunden. Die Innenwand des Entladungsgefäßes 50 ist mit einer Leuchtstoffschicht 55 beschichtet. Es handelt sich dabei um einen Dreibandenleuchtstoff mit der Blaukomponente BaMgAl10O17: Eu2+, der Grünkomponente La-PO4: (Tb3+, Ce3+) und der Rotkomponente (Gd,Y)BO3: Eu3+. Damit werden im Pulsbetrieb mit Spannungspulsen von ca. 1,2 µs Pulsbreite, jeweils voneinander getrennt durch 37,4 µs Pausendauer, eine Lichtausbeute von ca. 45 lm/W erzielt. Dies entspricht gegenüber der in der WO 94/23442 offenbarten Lampe ähnlichen Typs, aber mit Stabelektrode, d.h. ohne gezielte Separierung der Einzelentladungen, einer Ausbeutesteigerung von ca. 12-13 %.In the area of the base of the discharge vessel 50, the outer electrodes 52a-52d are electrically conductively connected to one another by means of a conductive silver strip 52e attached to the outer wall in a ring. The inner wall of the discharge vessel 50 is coated with a phosphor layer 55. It is a three-band phosphor with the blue component BaMgAl 10 O 17 : Eu 2+ , the green component La-PO 4 : (Tb 3+ , Ce 3+ ) and the red component (Gd, Y) BO 3 : Eu 3+ . This results in a luminous efficacy of approx. 45 lm / W in pulse mode with voltage pulses of approx. 1.2 µs pulse width, each separated by 37.4 µs pause time. Compared to the lamp of the similar type disclosed in WO 94/23442, but with a stick electrode, ie without specific separation of the individual discharges, this corresponds to an increase in yield of approximately 12-13%.

In einer Variante ist ein Vorschaltgerät (nicht dargestellt), welches die für den Betrieb der Lampe erforderlichen Spannungspulse liefert, in den Lampensockel 49 integriert.In a variant is a ballast (not shown), which the for the operation of the lamp supplies the necessary voltage pulses in the lamp base 49 integrated.

Die Figuren 6a, 6b zeigen in schematischer Darstellung eine Draufsicht bzw. Seitenansicht einer flachen Leuchtstofflampe, die im Betrieb weißes Licht emittiert. Sie ist als Hintergrundbeleuchtung für ein LCD (Liquid Crystal Display) konzipiert.Figures 6a, 6b show a schematic representation of a top view or Side view of a flat fluorescent lamp operating white light emitted. It is used as a backlight for an LCD (Liquid Crystal Display).

Die Flachlampe 56 besteht aus einem flachen Entladungsgefäß 57 mit rechteckiger Grundfläche, vier streifenartigen metallischen Kathoden 58 (-) sowie dielektrisch behinderten Anoden 59 (+). Das Entladungsgefäß 57 besteht seinerseits aus einer Bodenplatte 60, einer Deckenplatte 61 und einem Rahmen 62. Bodenplatte 60 und Deckenplatte 61 sind jeweils mittels Glaslot 63 mit dem Rahmen 62 gasdicht verbunden derart, daß das Innere 64 des Entladungsgefäßes 57 quaderförmig ausgebildet ist. Die Bodenplatte 60 ist größer als die Deckenplatte 61 derart, daß das Entladungsgefäß 57 einen umlaufenden freistehenden Rand aufweist. Die Innenwandung der Deckenplatte 61 ist mit einem Leuchtstoffgemisch beschichtet (in der Darstellung nicht sichtbar), welches die von der Entladung erzeugte UV/VUV-Strahlung in sichtbares weißes Licht konvertiert. Es handelt sich dabei um einen Dreibandenleuchtstoff mit der Blaukomponente BAM (BaMgAl10O17: Eu2+), der Grünkomponente LAP (LaPO4: [Tb3+, Ce3+]) und der Rotkomponente YOB ([Y, Gd)BO3: Eu3+). Der Durchbruch in der Deckenplatte 61 dient lediglich darstellerischen Zwecken und gibt den Blick auf einen Teil der Kathoden 58 und Anoden 59 frei. The flat lamp 56 consists of a flat discharge vessel 57 with a rectangular base, four strip-like metallic cathodes 58 (-) and dielectric anodes 59 (+). The discharge vessel 57 in turn consists of a base plate 60, a cover plate 61 and a frame 62. Base plate 60 and cover plate 61 are each gas-tightly connected to the frame 62 by means of glass solder 63 such that the interior 64 of the discharge vessel 57 is cuboid. The base plate 60 is larger than the cover plate 61 in such a way that the discharge vessel 57 has a circumferential free-standing edge. The inner wall of the ceiling plate 61 is coated with a phosphor mixture (not visible in the illustration), which converts the UV / VUV radiation generated by the discharge into visible white light. It is a three-band phosphor with the blue component BAM (BaMgAl 10 O 17 : Eu 2+ ), the green component LAP (LaPO 4 : [Tb 3+ , Ce 3+ ]) and the red component YOB ([Y, Gd) BO 3 : Eu 3+ ). The opening in the ceiling plate 61 is used for illustrative purposes only and provides a view of part of the cathodes 58 and anodes 59.

Die Kathoden 58 und Anoden 59 sind abwechselnd und parallel auf der Innenwandung der Bodenplatte 60 angeordnet. Die Anoden 59 und Kathoden 58 sind jeweils an ihrem einen Ende verlängert und auf der Bodenplatte 60 aus dem Innern 64 des Entladungsgefäßes 57 beidseitig nach außen geführt derart, daß die zugehörigen anodischen bzw. kathodischen Durchführungen auf zueinander entgegengesetzten Seiten der Bodenplatte angeordnet sind. Auf dem Rand der Bodenplatte 60 gehen die Elektrodenstreifen 58,59 jeweils in kathodenseitige 65 bzw. anodenseitige 66 äußere Stromzuführung über. Die äußeren Stromzuführungen 65,66 dienen als Kontakte für die Verbindung mit einer elektrischen Impulsspannungsquelle (nicht dargestellt). Die Verbindung mit den beiden Polen einer Impulsspannungsquelle geht üblicherweise wie folgt von statten. Zunächst werden die einzelnen anodischen und kathodischen Stromzuführungen jeweils untereinander verbunden, z.B. mittels je eines geeigneten Steckverbinders (nicht dargestellt) inklusive Verbindungsleitungen. Schließlich werden die beiden gemeinsamen anodischen bzw. kathodischen Verbindungsleitungen mit den zugehörigen beiden Polen der Impulsspannungsquelle verbunden.The cathodes 58 and anodes 59 are alternating and parallel on the inner wall the bottom plate 60 is arranged. The anodes 59 and cathodes 58 are each extended at one end and on the base plate 60 from the inside 64 of the discharge vessel 57 on both sides to the outside performed such that the associated anodic or cathodic bushings arranged on opposite sides of the base plate are. The electrode strips go on the edge of the base plate 60 58.59 each in the cathode-side 65 and anode-side 66 external power supply about. The outer power supply lines 65, 66 serve as contacts for connection to an electrical pulse voltage source (not ) Shown. The connection with the two poles of a pulse voltage source usually takes place as follows. First, the individual anodic and cathodic power supplies with each other connected, e.g. using a suitable connector (not shown) including connecting lines. Eventually the two become common anodic or cathodic connecting lines with the associated two poles of the pulse voltage source connected.

Im Innern 64 des Entladungsgefäßes 57 sind die Anoden 59 vollständig mit einer Glasschicht 67 bedeckt, deren Dicke ca. 250 µm beträgt.In the interior 64 of the discharge vessel 57, the anodes 59 are completely included a glass layer 67 covered, the thickness of which is approximately 250 microns.

Die Kathodenstreifen 58 weisen nasenartige, der jeweils benachbarten Anode 58 zugewandte, halbkreisförmige Fortsätze 68 auf. Sie bewirken lokal begrenzte Verstärkungen des elektrischen Feldes und folglich, daß die deltaförmigen Einzelentladungen (nicht dargestellt) ausschließlich an diesen Stellen zünden und anschließend dort lokalisiert brennen.The cathode strips 58 have nose-like, the respectively adjacent anode 58 facing semicircular extensions 68. They work locally limited reinforcements of the electric field and consequently that the delta-shaped Single discharges (not shown) exclusively on these Ignite the spots and then burn locally.

Der Abstand zwischen den Fortsätzen 68 und dem jeweiligen unmittelbar benachbarten Anodenstreifen beträgt ca. 6 mm. Der Radius der halbkreisförmigen Fortsätze 68 beträgt ca. 2 mm. The distance between the extensions 68 and the respective immediately neighboring anode strips is approx. 6 mm. The radius of the semicircular Extensions 68 is approximately 2 mm.

Die einzelnen Elektroden 58,59 inklusive Durchführungen und äußere Stromzuführungen 65,66 sind jeweils als zusammenhängende leiterbahnähnliche Strukturen ausgebildet. Die Strukturen sind mittels Siebdrucktechnik direkt auf der Bodenplatte 60 aufgebracht.The individual electrodes 58, 59 including bushings and outer ones Power supply lines 65, 66 are each in the form of a coherent interconnect Structures formed. The structures are using screen printing technology applied directly to the base plate 60.

Im Innern 64 der Flachlampe 56 befindet sich eine Gasfüllung aus Xenon mit einem Fülldruck von 10 kPa.In the interior 64 of the flat lamp 56 there is a gas filling made of xenon a filling pressure of 10 kPa.

Die Erfindung ist nicht auf die angegebenen Ausführungsbeispiele beschränkt. Insbesondere können einzelne Merkmale verschiedener Ausführungsbeispiele in geeigneter Weise miteinander kombiniert werden.The invention is not restricted to the specified exemplary embodiments. In particular, individual features of different exemplary embodiments be combined in a suitable manner.

Claims (15)

  1. Radiation source (36; 48; 56) which is suitable for operating a dielectrically obstructed, pulsed discharge, the radiation source (36; 48; 56) having an at least partially transparent discharge vessel, which is closed (38; 50) and filled with a gas filling, or which is open and is flowed through by a gas or gas mixture, which discharge vessel is made from an electrically nonconductive material and has electrodes (39, 41a, 41b; 51, 52a-52d; 58, 59), at least the electrodes of one polarity (41a, 41b; 52a-52d; 59) being separated from the interior of the discharge vessel by dielectric material (40a, 40b; 50; 67), and during the pulsed operation an electric field being generated in each case between the electrodes of opposite polarity, characterized in that the design of at least the electrodes of one polarity and/or of the dielectric material creates a multiplicity of sites for local amplification of the electric field in such a way that during the pulsed operation one or more dielectrically obstructed individual discharges are generated exclusively at these sites, at most one individual discharge being generated per site.
  2. Radiation source according to Claim 1, characterized in that the mutual spacing of the individual sites for local amplification of the electric field is selected in such a way that the individual discharges essentially do not overlap.
  3. Radiation source according to Claim 1, characterized in that the spacing of the individual sites for local amplification of the electric field, which spacing is normalized to the maximum transverse extent of the individual discharges, is in the range between approximately 0.5 and 1.5, preferably in the region between 0.9 and 1.3.
  4. Radiation source according to one of Claims 1 to 3, characterized in that the design through which the sites for local field amplification are created is such that the electrodes of opposite polarity in each case have locally limited shortenings of the spacing.
  5. Radiation source according to Claim 4, characterized in that the locally limited shortenings of the spacing are realized as nose-like protuberances (9-12; 42a; 42b-44a; 44b; 68).
  6. Radiation source according to Claim 5, characterized in that the protuberances have the shape of a semicircle (68) or a hemisphere (42a; 42b-44a; 44b).
  7. Radiation source according to Claim 1, characterized in that the discharge vessel (57) is shaped in a two-dimensional manner and the electrodes (58, 59) are of essentially elongated design.
  8. Radiation source according to Claim 4, characterized in that the locally limited shortenings of the spacing are realized by means of an electrode (27) having the shape of a square wave.
  9. Radiation source according to Claim 4, characterized in that the locally limited shortenings of the spacing are realized by means of a saw-tooth electrode (14).
  10. Radiation source according to Claim 4, characterized in that the locally limited shortenings of the spacing are realized by means of a helical electrode (51) and at least one elongated counterelectrode (52a-52d), the counter electrode(s) (52a-52d) being arranged essentially parallel to the longitudinal axis of the helical electrode (51).
  11. Radiation source according to Claim 10, characterized in that the pitch (h) of the helical electrode (51) corresponds at least to the maximum transverse extent (f) of the individual discharges (54a).
  12. Radiation source according to Claim 4, characterized in that the ratio between the value of the local shortening of the spacing (l) and the striking distance (w) for the individual discharges is in the range of between approximately 0.1 and 0.4.
  13. Radiation source according to Claim 1, characterized in that the design through which the sites for local field amplification are created is such that the dielectric material has appropriately locally limited shortenings of the thickness of the dielectric layer.
  14. Radiation source according to Claim 1, characterized in that the design through which the sites for local field amplification are created is such that the dielectric material has appropriately locally limited increases in the relative dielectric constant.
  15. Radiation system having a radiation source (36) and a voltage source (37), which voltage source (37) is capable of supplying a sequence of voltage pulses, the individual voltage pulses being separated from one another by off periods, which radiation source (36) is suitable for a dielectrically obstructed, pulsed discharge, the radiation source (36) having an at least partially transparent discharge vessel, which is closed (38) and filled with a gas filling, or which is open and is flowed through by a gas or gas mixture, which discharge vessel is made from an electrically nonconductive material and has electrodes (39; 41a; 41b), at least the electrodes of one polarity (41a; 41b) being separated from the interior of the discharge vessel by dielectric material (38), which electrodes (39; 41a; 41b) are connected to the voltage source (37), and during the pulsed operation an electric field being generated in each case between the electrodes of opposite polarity, characterized in that the design of at least the electrodes of one polarity and/or of the dielectric material creates a multiplicity of sites for local amplification of the electric field in such a way that during the operation of the voltage source (37) one or more dielectrically obstructed individual discharges are generated exclusively at these sites, at most one individual discharge being generated per site.
EP97942813A 1996-09-11 1997-09-08 Electric radiation source and irradiation system with this radiation source Expired - Lifetime EP0895653B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19636965 1996-09-11
DE19636965A DE19636965B4 (en) 1996-09-11 1996-09-11 Electrical radiation source and radiation system with this radiation source
PCT/DE1997/001989 WO1998011596A1 (en) 1996-09-11 1997-09-08 Electric radiation source and irradiation system with this radiation source

Publications (2)

Publication Number Publication Date
EP0895653A1 EP0895653A1 (en) 1999-02-10
EP0895653B1 true EP0895653B1 (en) 2002-11-20

Family

ID=7805296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97942813A Expired - Lifetime EP0895653B1 (en) 1996-09-11 1997-09-08 Electric radiation source and irradiation system with this radiation source

Country Status (12)

Country Link
US (1) US6060828A (en)
EP (1) EP0895653B1 (en)
JP (2) JP3634870B2 (en)
KR (1) KR100351344B1 (en)
CN (1) CN1123057C (en)
AT (1) ATE228268T1 (en)
CA (1) CA2237176C (en)
DE (2) DE19636965B4 (en)
ES (1) ES2188981T3 (en)
HU (1) HU220260B (en)
TW (1) TW451255B (en)
WO (1) WO1998011596A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3098260B2 (en) * 1997-03-21 2000-10-16 パテント―トロイハント―ゲゼルシヤフト フユア エレクトリツシエ グリユーランペン ミツト ベシユレンクテル ハフツング Gas discharge lamp with electrodes covered with dielectric
EP0926705A1 (en) 1997-12-23 1999-06-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat radiator with locally modulated surface illumination density
EP0932185A1 (en) 1997-12-23 1999-07-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Signal lamp and phosphor
DE19817480B4 (en) * 1998-03-20 2004-03-25 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat lamp for dielectrically disabled discharges with spacers
DE19817477A1 (en) * 1998-04-20 1999-10-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Fluorescent lamp
DE19817476B4 (en) * 1998-04-20 2004-03-25 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Fluorescent lamp with spacers and locally thinned fluorescent layer thickness
DE19826808C2 (en) * 1998-06-16 2003-04-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with dielectric barrier electrodes
DE19844721A1 (en) * 1998-09-29 2000-04-27 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp for dielectrically handicapped discharges with improved electrode configuration
DE19844720A1 (en) * 1998-09-29 2000-04-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dimmable discharge lamp for dielectric barrier discharges
DE19845228A1 (en) * 1998-10-01 2000-04-27 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dimmable discharge lamp for dielectric barrier discharges
US6492772B1 (en) 1999-02-10 2002-12-10 Matsushita Electric Industrial Co., Ltd. High pressure discharge lamp, high pressure discharge lamp electrode, method of producing the high pressure discharge lamp electrode, and illumination device and image display apparatus respectively using the high pressure discharge lamps
DE19916877A1 (en) 1999-04-14 2000-10-19 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with base
DE19953531A1 (en) * 1999-11-05 2001-05-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with electrode holder
DE19953533A1 (en) * 1999-11-05 2001-05-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with electrode holder
DE10048986A1 (en) 2000-09-27 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectric barrier discharge lamp
DE10048409A1 (en) * 2000-09-29 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with capacitive field modulation
DE10057881A1 (en) * 2000-11-21 2002-05-23 Philips Corp Intellectual Pty Gas discharge lamp, used in e.g. color copiers and color scanners, comprises a discharge vessel, filled with a gas, having a wall made from a dielectric material and a wall with a surface partially transparent for visible radiation
DE10063931A1 (en) * 2000-12-20 2002-07-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Image display device from a large number of silent gas discharge lamps
JP3471782B2 (en) 2001-02-13 2003-12-02 Nec液晶テクノロジー株式会社 Flat fluorescent lamp unit and liquid crystal display device using the same
DE10147961A1 (en) * 2001-09-28 2003-04-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Igniting, operating dielectric barrier discharge lamp involves applying ignition voltage between sub-electrodes to ignite auxiliary discharge at gap between sub-electrodes during ignition
JP2003277747A (en) * 2002-03-25 2003-10-02 Konica Corp Method for manufacturing phosphor and phosphor
JP3889987B2 (en) * 2002-04-19 2007-03-07 パナソニック フォト・ライティング 株式会社 Discharge lamp device and backlight
DE10222100A1 (en) * 2002-05-17 2003-11-27 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectric barrier discharge lamp for producing visible, ultraviolet, vacuum ultraviolet and infrared radiation has base with tube fitted to lamp foot end of discharge vessel and enclosing lamp foot
DE10310144A1 (en) * 2003-03-07 2004-09-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Discharge lamp for dielectrically handicapped discharges with recessed discharge electrode sections
DE10336088A1 (en) * 2003-08-06 2005-03-03 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH UV lamp with tubular discharge vessel
US7863816B2 (en) * 2003-10-23 2011-01-04 General Electric Company Dielectric barrier discharge lamp
US7196473B2 (en) * 2004-05-12 2007-03-27 General Electric Company Dielectric barrier discharge lamp
US20060006804A1 (en) * 2004-07-06 2006-01-12 Lajos Reich Dielectric barrier discharge lamp
US7446477B2 (en) 2004-07-06 2008-11-04 General Electric Company Dielectric barrier discharge lamp with electrodes in hexagonal arrangement
US7675237B2 (en) * 2004-07-09 2010-03-09 Koninklijke Philips Electronics N.V. Dielectric barrier discharge lamp with integrated multifunction means
US7495396B2 (en) * 2005-12-14 2009-02-24 General Electric Company Dielectric barrier discharge lamp
DE102007006861B3 (en) * 2007-02-12 2008-05-29 Universität Karlsruhe (Th) Radiation source for producing electromagnetic radiation having a first wavelength region comprises electrodes connected to an alternating voltage source, a gas-filled transparent discharge vessel and a dielectric layer
DE102009007859A1 (en) 2009-02-06 2010-08-12 Osram Gesellschaft mit beschränkter Haftung Dielectric barrier-discharge lamp for UV-illumination in e.g. process engineering, has centering disk extending from inner electrode till to inner side of tube and loosely supported by burl that is formed by part of wall of external tube
JP5504095B2 (en) * 2010-08-10 2014-05-28 株式会社オーク製作所 Discharge lamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043276A2 (en) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Gas discharge lamp with dielectrically impeded electrodes
WO1998043278A2 (en) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat light emitter
WO1998043277A2 (en) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat fluorescent light for background lighting and liquid crystal display device fitted with said flat fluorescent light

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2577564B1 (en) * 1985-02-14 1987-07-17 Atochem PROCESS FOR THE SURFACE TREATMENT OF VINYLIDENE POLYFLUORIDE FOR ADHESION TO A SUBSTRATE. MATERIAL OBTAINED FROM TREATED VINYLIDENE POLYFLUORIDE
CH670171A5 (en) * 1986-07-22 1989-05-12 Bbc Brown Boveri & Cie
CH675178A5 (en) * 1987-10-23 1990-08-31 Bbc Brown Boveri & Cie
CH676168A5 (en) * 1988-10-10 1990-12-14 Asea Brown Boveri
US4924356A (en) * 1988-12-07 1990-05-08 General Electric Company Illumination system for a display device
DE4010809A1 (en) * 1989-04-11 1990-10-18 Asea Brown Boveri High power esp. ultraviolet emitter - with electrode arrangement providing high efficiency
JPH04249507A (en) * 1991-01-07 1992-09-04 Daikin Ind Ltd Fluorocopolymer and hardenable composition
KR940005879B1 (en) * 1991-09-26 1994-06-24 섬성전관 주식회사 Color plasma display element and manufacturing method thereof
DE4140497C2 (en) * 1991-12-09 1996-05-02 Heraeus Noblelight Gmbh High-power radiation
JPH05247305A (en) * 1992-03-10 1993-09-24 Asahi Glass Co Ltd Cold-curable composition and sealant
WO1993022379A1 (en) * 1992-05-07 1993-11-11 E.I. Du Pont De Nemours And Company Perfluoroelastomers with enhanced properties
DE4222130C2 (en) * 1992-07-06 1995-12-14 Heraeus Noblelight Gmbh High-power radiation
JPH06115000A (en) * 1992-09-30 1994-04-26 Nippon Carbide Ind Co Inc Primer composition and resin laminated metal plate using the same
DE4235743A1 (en) * 1992-10-23 1994-04-28 Heraeus Noblelight Gmbh High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically
DE4238324A1 (en) * 1992-11-13 1994-05-19 Abb Research Ltd Removal of dangerous contaminants from oxygen-contg. gases - gas stream is treated with ozone as well as with UV-light
DE4311197A1 (en) * 1993-04-05 1994-10-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for operating an incoherently radiating light source
JP3334301B2 (en) * 1993-11-25 2002-10-15 日本メクトロン株式会社 Adhesive between fluoroplastic substrate and metal
JPH07228848A (en) * 1994-02-22 1995-08-29 Asahi Glass Co Ltd Weather-resistant adhesive composition
KR100322057B1 (en) * 1994-10-11 2002-05-13 김순택 Surface light source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043276A2 (en) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Gas discharge lamp with dielectrically impeded electrodes
WO1998043278A2 (en) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat light emitter
WO1998043277A2 (en) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat fluorescent light for background lighting and liquid crystal display device fitted with said flat fluorescent light

Also Published As

Publication number Publication date
JP3634870B2 (en) 2005-03-30
JP2000500277A (en) 2000-01-11
ES2188981T3 (en) 2003-07-01
CN1123057C (en) 2003-10-01
ATE228268T1 (en) 2002-12-15
CA2237176C (en) 2005-08-16
WO1998011596A1 (en) 1998-03-19
CA2237176A1 (en) 1998-03-19
JP4133999B2 (en) 2008-08-13
KR19990067475A (en) 1999-08-25
DE59708773D1 (en) 2003-01-02
DE19636965B4 (en) 2004-07-01
EP0895653A1 (en) 1999-02-10
HUP9901298A3 (en) 2000-09-28
KR100351344B1 (en) 2002-11-18
HUP9901298A2 (en) 1999-08-30
TW451255B (en) 2001-08-21
CN1200840A (en) 1998-12-02
DE19636965A1 (en) 1998-03-12
US6060828A (en) 2000-05-09
JP2005044816A (en) 2005-02-17
HU220260B (en) 2001-11-28

Similar Documents

Publication Publication Date Title
EP0895653B1 (en) Electric radiation source and irradiation system with this radiation source
EP0839436B1 (en) Method for operating a lighting system and suitable lighting system therefor
EP0912990B1 (en) Gas discharge lamp with dielectrically impeded electrodes
EP0733266B1 (en) Process for operating an incoherently emitting radiation source
EP0912991B1 (en) Flat fluorescent light for background lighting and liquid crystal display device fitted with said flat fluorescent light
DE19718395C1 (en) Fluorescent lamp and method of operating it
EP0883897B1 (en) Use of a cold cathode for discharge lamps, discharge lamp fitted with said cold cathode, and principle of operation of said discharge lamp
EP0901687B1 (en) Flat light emitter
EP0912992B1 (en) Flat light emitter
WO2000019485A1 (en) Dimmable discharge lamp for dielectrically impeded discharges
EP1417699B1 (en) Discharge lamp with starting aid
EP1175692A2 (en) Flat gas discharge lamp with spacer elements
DE69103133T2 (en) HIGH FREQUENCY SUPPLIED DISPLAY DEVICE.
EP1276137B1 (en) Dielectric-barrier discharge lamp with starting aid
EP1118099B1 (en) Dimmable discharge lamp for dielectrically impeded discharges
EP0990262B1 (en) Discharge lamp with dielectrically impeded electrodes
DE102005047079A1 (en) A fluorescent lamp has electrodes with a di-electric coating arranged in spiral pairs
WO2012171752A1 (en) High-pressure discharge lamp with a starting aid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980505

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FI FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20010305

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FI FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 228268

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59708773

Country of ref document: DE

Date of ref document: 20030102

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2188981

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030821

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59708773

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120911

Year of fee payment: 16

Ref country code: FI

Payment date: 20120912

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20121010

Year of fee payment: 16

Ref country code: BE

Payment date: 20121010

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20121019

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59708773

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120911

Year of fee payment: 16

Ref country code: AT

Payment date: 20120810

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59708773

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20130930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140401

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130908

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 228268

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130908

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20141107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130909

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160921

Year of fee payment: 20

Ref country code: GB

Payment date: 20160920

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160921

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160922

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59708773

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170907