EP0385205B1 - High-power radiation device - Google Patents
High-power radiation device Download PDFInfo
- Publication number
- EP0385205B1 EP0385205B1 EP90103082A EP90103082A EP0385205B1 EP 0385205 B1 EP0385205 B1 EP 0385205B1 EP 90103082 A EP90103082 A EP 90103082A EP 90103082 A EP90103082 A EP 90103082A EP 0385205 B1 EP0385205 B1 EP 0385205B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dielectric
- high power
- power emitter
- emitter according
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 23
- 239000003989 dielectric material Substances 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 229910052786 argon Inorganic materials 0.000 claims description 14
- 239000011261 inert gas Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- 239000010453 quartz Substances 0.000 description 20
- 238000000576 coating method Methods 0.000 description 11
- 229910052743 krypton Inorganic materials 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 229910052724 xenon Inorganic materials 0.000 description 9
- 229910052734 helium Inorganic materials 0.000 description 8
- 229910052754 neon Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 229910052756 noble gas Inorganic materials 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000000976 ink Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001227 electron beam curing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
- H01J65/04—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
- H01J65/042—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
- H01J65/046—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
Definitions
- the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by a first tubular and a second radiation-permeable dielectric, which has first and second electrodes on its surfaces facing away from the discharge space is provided with an AC power source connected to the first and second electrodes for feeding the discharge.
- the invention relates to a state of the art, such as that derived from EP-A 054 111, US patent application 07/076 926 or EP patent application 88113393.3 from 08/22/1988 or US patent application 07 / 260,869 from October 21, 1988.
- UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
- the classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the mercury low-pressure lamps at 185 nm and especially at 254 nm.
- Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but their radiation over you distribute a larger wavelength range.
- the new excimer lasers have provided some new wavelengths for basic photochemical experiments. for cost reasons for an industrial process probably only suitable in exceptional cases.
- the high-performance radiators mentioned are characterized by high efficiency, economical structure and enable the creation of large area radiators, with the restriction that large-area flat radiators require a rather large technical effort.
- omnidirectional radiators on the other hand, a not inconsiderable proportion of the radiation due to the shadow effect of the inner electrode is not used.
- the invention has for its object to provide a high-performance radiator, in particular for UV or VUV radiation, which is characterized in particular by high efficiency, is economical to manufacture, enables the construction of very large area radiators and in which the Shadow effect of the inner electrode (s) is reduced to a minimum.
- the second dielectric is a rod made of dielectric material which is arranged within the first tubular dielectric and in the interior of which an electrical conductor is inserted or embedded, which conductor forms the second electrode.
- the outer diameter of the rod which is preferably made of quartz glass, is preferably five to ten times smaller than the inner diameter of the outer tube.
- the radiation should preferably be coupled out in one direction, for example in order to irradiate a surface.
- the ideal discharge geometry for this purpose is a flat radiator mirrored on the back (for example according to EP-A-0254 111).
- the production of flat quartz cells is associated with great technical effort and correspondingly high costs.
- One can easily achieve a preferred direction of the radiation if the discharge is distributed unevenly in the discharge gap, which can be achieved most simply by an eccentric arrangement of the dielectric rod. It is thereby achieved that the electrical discharge takes place predominantly on the side on which the optical radiation is to be coupled out.
- the layer simultaneously serving as an electrode and reflector is sufficient, the layer simultaneously serving as an electrode and reflector.
- Aluminum which is provided with a suitable protective layer (anodized, MgF2 coating), is a suitable material that is both easy to vaporize and has a high UV reflection.
- the (semi-cylindrical) recesses in the aluminum block also serve as a holder for the quartz discharge tubes, as an (earth) electrode and as a reflector. Any number of these discharge tubes can be connected in parallel by placing the internal electrodes on a common AC voltage source. For special applications you can combine tubes with different gas filling and therefore different (UV) wavelengths.
- the aluminum blocks described do not necessarily have to have flat surfaces. One can also imagine cylindrical arrangements in which the recesses for receiving the discharge tubes are either outside or inside.
- the individual gas discharge tubes can also be cooled if, for example, forms the inner electrode as a cooling channel.
- UV treatment in the absence of air is indicated.
- the first reason is when the radiation is so short-wave that it is absorbed by air and thus weakened (wavelengths ⁇ 190 nm). This radiation leads to the splitting of oxygen and thus to the undesirable Ozone formation.
- the second reason is when the intended photochemical effect of UV radiation is hindered by the presence of oxygen (oxygen inhibition). This occurs, for example, in the photo crosslinking (UV polymerization, UV drying) of paints and inks.
- a quartz tube 1 with a wall thickness of approximately 0.5 to 1.5 mm and an outer diameter of approximately 20 to 30 mm is provided with an outer electrode 2 in the form of a wire mesh.
- a second quartz tube 3 is arranged concentrically in the quartz tube 1 and has a substantially smaller outside diameter than the inside diameter of the quartz tube 1, typically 3 to 5 mm outside diameter.
- a wire 4 is inserted into the inner quartz tube 3. This forms the inner electrode of the radiator, the wire mesh 2 the outer electrode of the radiator.
- the outer quartz tube 1 is closed at both ends.
- the space between the two tubes 1 and 3, the discharge space 5, is filled with a gas / gas mixture which emits radiation under discharge conditions.
- the two electrodes 2, 4 are connected to the two poles of an alternating current source 6.
- the AC power source basically corresponds to those used to feed ozone generators. It typically delivers an adjustable AC voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few 1000 kHz - depending on the electrode geometry, pressure in the discharge space and composition of the filler gas.
- the fill gas is e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
- a substance / substance mixture according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm Argon + fluorine 180-200 nm Argon + chlorine 165-190 nm Argon + krypton + chlorine 165-190, 200-240 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124, 140-160 nm Krypton + fluorine 240 - 255 nm Krypton + chlorine 200-240 nm mercury 185, 254, 320-370, 390-420 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 340 - 360 nm, 400 - 550 nm Xenon + chlorine 300-320 nm
- the electron energy distribution can be optimally adjusted by the thickness of the dielectrics and their properties, pressure and / or temperature in the discharge space.
- quartz rods into which a metal wire is melted can also be used.
- Metal rods covered with a dielectric also lead to success.
- a perforated metal foil or a UV-transparent, electrically conductive covering can also be used.
- the discharge is distributed unevenly in the discharge space.
- the easiest way to do this is by eccentrically arranging the inner dielectric tube 3 in the outer tube 1, as is illustrated in FIG. 2, for example.
- the inner quartz tube 3 is arranged outside the center near the inner wall of the tube 1. In the limit case, the tube 3 can even rest against the tube 1 and be glued there linearly or at certain points to the inner wall.
- the eccentric arrangement of the inner quartz tube and thus the inner electrode 4 has no decisive influence on the quality of the discharge.
- the peak voltage is set just a small area in the immediate vicinity of the quartz tube 3 ignites.
- the discharge zone can be gradually enlarged until the entire discharge space 5 is filled with luminous plasma.
- an electrode 2 (FIG. 2) applied to the entire outer circumference of the outer dielectric tube 1 (FIG. 2) is sufficient also a partial coating of the outer surface of the tube 1, as illustrated in Figure 3.
- an eccentric arrangement of the inner quartz tube 3 is also possible here, the coating 7 only extending symmetrically over the outer wall section facing the inner quartz tube 3. This layer 7 is simultaneously the outer electrode and the reflector.
- Aluminum is particularly suitable as a material that is both easy to vaporize and has a high UV reflection.
- FIG. 5 illustrates the manner in which a multiplicity of concentric radiators according to FIG. 3 can be combined to form a surface radiator.
- 6 shows a corresponding arrangement with eccentrically arranged inner quartz tubes 3 according to FIG.
- an aluminum body 8 is provided with a plurality of parallel grooves 9 with a circular cross section, which are spaced apart from one another by more than one outer tube diameter.
- the grooves 9 are adapted to the outer quartz tubes 1 and treated by polishing or the like so that they reflect well. Additional bores 10, which run in the direction of the tubes 1, serve to cool the radiators.
- the AC source 6 leads with one pole to the aluminum body 8, the inner electrodes 4 of the radiators are connected in parallel and connected to the other pole of the source 6.
- the groove walls serve both as an outer electrode and as reflectors.
- single emitters can be combined with different gas fillings and thus different (UV) wavelengths.
- the aluminum bodies 8 do not necessarily have to have flat surfaces.
- E.g. 7 and 8 illustrate a variant with a hollow cylindrical aluminum body 8a with axially parallel grooves 9 regularly distributed over its inner circumference, in each of which a radiator element according to FIGS. 3 and 4 is inserted.
- the radiator according to Fig. 9 basically corresponds to that according to Fig. 5. with additional channels 11 running in the longitudinal direction of the metal block 8. These channels are connected to the treatment room 12 via a multiplicity of bores or slots 13 in the metal block 8, specifically via the comparatively narrow gap between the outer ones, which is caused by inevitable manufacturing tolerances of the quartz tubes 1 Quartz tubes 1 and the grooves 9 in the metal block 8 in connection.
- the channels 11 are connected to an inert gas source, not shown, e.g. Nitrogen or argon source connected.
- the pressurized inert gas reaches the treatment room 12 from the channels 11 in the manner described. This treatment room is delimited on the one hand by legs 14 on the metal block 8 and by the substrate 15 to be irradiated.
- FIG. 9 A further possibility of supplying inert gas to the treatment room 12 is illustrated in FIG.
- the emitter largely corresponds to that according to Fig. 6.
- Metal blocks 8 extending channels 11 are provided, which are connected directly to the treatment room 12 via bores or slots 13. Otherwise the structure and mode of operation correspond to those according to Fig. 9.
- the cylinder emitters according to FIGS. 7 and 8 can also be provided with means for supplying inert gas to the treatment room (there the inside of the tube 8a) without leaving the scope of the invention.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüllten Entladungsraum, dessen Wandungen durch ein erstes rohrförmiges und ein zweites Strahlungsdurchlässiges Dielektrikum gebildet sind, welches auf seinen dem Entladungsraum abgewandten Oberflächen mit ersten und zweiten Elektroden versehen ist, mit einer an die ersten und zweiten Elektroden angeschlossenen Wechselstromquelle zur Speisung der Entladung.The invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by a first tubular and a second radiation-permeable dielectric, which has first and second electrodes on its surfaces facing away from the discharge space is provided with an AC power source connected to the first and second electrodes for feeding the discharge.
Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er sich etwa aus der EP-A 054 111, der US-Patentanmeldung 07/076 926 oder auch der EP-Patentanmeldung 88113393.3 vom 22.08.1988 oder der US-Patentanmeldung 07/260,869 vom 21.10.1988 ergibt.The invention relates to a state of the art, such as that derived from EP-A 054 111, US patent application 07/076 926 or EP patent application 88113393.3 from 08/22/1988 or US patent application 07 / 260,869 from October 21, 1988.
Der industrielle Einsatz photochemischer Verfahren hängt stark von der der Verfügbarkeit geeigneter UV-Quellen ab. Die klassischen UV-Strahler liefern niedrige bis mittlere UV-Intensitäten bei einigen diskreten Wellenlängen, wie z.B. die Quecksilber-Niederdrucklampen bei 185 nm und insbesondere bei 254 nm. Wirklich hohe UV-Leistungen erhält man nur aus Hochdrucklampen (Xe, Hg), die dann aber ihre Strahlung über einen grösseren Wellenlängenbereich verteilen. Die neuen Excimer-Laser haben einige neue Wellenlängen für photochemische Grundlagenexperimente bereitgestellt, sind z.Zt. aus Kostengründen für einen industriellen Prozess wohl nur in Ausnahmefällen geeignet.The industrial use of photochemical processes depends heavily on the availability of suitable UV sources. The classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the mercury low-pressure lamps at 185 nm and especially at 254 nm. Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but their radiation over you distribute a larger wavelength range. The new excimer lasers have provided some new wavelengths for basic photochemical experiments. for cost reasons for an industrial process probably only suitable in exceptional cases.
In der eingangs genannten EP-Patentanmeldung oder auch in dem Konferenzdruck "Neue UV- und VUV Excimerstrahler" von U. Kogelschatz und B. Eliasson, verteilt an der 10. Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photochemie, in Würzburg (BRD) 18.-20. November 1987, wird ein neuer Excimerstrahler beschrieben. Dieser neue Strahlertyp basiert auf der Grundlage, dass man Excimerstrahlung auch in stillen elektrischen Entladungen erzeugen kann, einem Entladungstyp, der in der Ozonerzeugung grosstechnisch eingesetzt wird. In den nur kurzzeitig (< 1 Mikrosekunde) vorhandenen Stromfilamenten dieser Entladung werden durch Elektronenstoss Edelgasatome angeregt, die zu angeregten Molekülkomplexen (Excimeren) weiterreagieren. Diese Excimere leben nur einige 100 Nanosekunden und geben beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung ab.In the EP patent application mentioned at the beginning or in the conference paper "New UV and VUV excimer emitters" by U. Kogelschatz and B. Eliasson, distributed at the 10th lecture conference of the Society of German Chemists, Photochemistry Group, in Würzburg (FRG) 18. -20. November 1987, a new excimer radiator is described. This new type of emitter is based on the fact that excimer radiation can also be generated in silent electrical discharges, a type of discharge that is used on a large scale in ozone generation. In the current filaments of this discharge, which exist only for a short time (<1 microsecond), noble gas atoms are excited by electron impact, which react further to excited molecular complexes (excimers). These excimers only live for a few 100 nanoseconds and release their binding energy in the form of UV radiation when they decay.
Der Aufbau eines derartigen Excimerstrahlers entspricht bis hin zur Stromversorgung weitgehend dem eines klassichen Ozonerzeugers, mit dem wesentlichen Unterschied, dass mindestens eine der den Entladungsraum begrenzenden Elektroden und/oder Dielektrikumsschichten für die erzeugte Strahlung durchlässig ist.The construction of such an excimer radiator, up to the power supply, largely corresponds to that of a conventional ozone generator, with the essential difference that at least one of the electrodes and / or dielectric layers delimiting the discharge space is transparent to the radiation generated.
Die genannten Hochleistungsstrahler zeichnen sich durch hohe Effizienz, wirtschaftlichen Aufbau aus und ermöglichen die Schaffung grosser Flächenstrahler, mit der Einschränkung, dass grossflächige Flachstrahler einen eher grossen technischen Aufwand erfordern. Bei Rundstrahlern hingegen wird ein nicht unbeachtlicher Anteil der Strahlung durch Schattenwirkung der Innenelektrode nicht ausgenützt.The high-performance radiators mentioned are characterized by high efficiency, economical structure and enable the creation of large area radiators, with the restriction that large-area flat radiators require a rather large technical effort. In the case of omnidirectional radiators, on the other hand, a not inconsiderable proportion of the radiation due to the shadow effect of the inner electrode is not used.
Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Hochleistungsstrahler, insbesondere für UV- oder VUV-Strahlung, zu schaffen, der sich insbesondere durch hohe Effizienz auszeichnet, wirtschaftlich zu fertigen ist, den Aufbau sehr grosser Flächenstrahler ermöglicht und bei dem die Schattenwirkung der Innenelektrode(n) auf ein Minimum reduziert ist.Starting from the prior art, the invention has for its object to provide a high-performance radiator, in particular for UV or VUV radiation, which is characterized in particular by high efficiency, is economical to manufacture, enables the construction of very large area radiators and in which the Shadow effect of the inner electrode (s) is reduced to a minimum.
Zur Lösung dieser Aufgabe bei einem Hochleistungsstrahler der eingangs genannten Gattung ist erfindungsgemäss vorgesehen, dass das zweite Dielektrikum ein innerhalb des ersten rohrförmigen Dielektrikums angeordneter Stab aus dielektrischem Material ist, in dessen Innerem ein elektrischer Leiter eingelegt oder eingebettet ist, welcher Leiter die zweite Elektrode bildet.To solve this problem in a high-power radiator of the type mentioned at the outset, it is provided according to the invention that the second dielectric is a rod made of dielectric material which is arranged within the first tubular dielectric and in the interior of which an electrical conductor is inserted or embedded, which conductor forms the second electrode.
Vorzugsweise ist der Aussendurchmesser des vorzugsweise aus Quarzglas bestehenden Stabes fünf bis zehn mal kleiner als der Innendurchmesser des äusseren Rohres.The outer diameter of the rod, which is preferably made of quartz glass, is preferably five to ten times smaller than the inner diameter of the outer tube.
In vielen Fällen möchte man die Strahlung vorzugsweise in eine Richtung auskoppeln, z.B. um eine Oberfläche zu bestrahlen. Die ideale Entladungsgeometrie für diesen Zweck ist ein auf der Rückseite verspiegelter Flachstrahler (z.B. gemäss der EP-A-0254 111). Die Herstellung flacher Quarzzellen ist mit grossem technischen Aufwand und entsprechend hohen Kosten verbunden. Man kann auf einfache Weise eine Vorzugsrichtung der Abstrahlung erreichen, wenn man die Entladung ungleichmässig im Entladungsspalt verteilt, was man am einfachsten durch eine exzentrische Anordnung des Dielektrikumsstabes erreichen kann. Dadurch erreicht man, dass die elektrische Entladung überwiegend auf der Seite erfolgt, auf der die optische Strahlung ausgekoppelt werden soll.In many cases, the radiation should preferably be coupled out in one direction, for example in order to irradiate a surface. The ideal discharge geometry for this purpose is a flat radiator mirrored on the back (for example according to EP-A-0254 111). The production of flat quartz cells is associated with great technical effort and correspondingly high costs. One can easily achieve a preferred direction of the radiation if the discharge is distributed unevenly in the discharge gap, which can be achieved most simply by an eccentric arrangement of the dielectric rod. It is thereby achieved that the electrical discharge takes place predominantly on the side on which the optical radiation is to be coupled out.
Anstelle von auf dem ganzen Umfang des äusseren Dielektrikumsrohres aufgebrachter Aussenelektroden genügt eine teilweise Bedampfung oder Beschichtung auf der Rückseite, wobei die Schicht gleichzeitig als Elektrode und Reflektor dient. Als Material, das sich sowohl gut aufdampfen lässt, als auch eine hohe UV-Reflexion besitzt, bietet sich Aluminium an, das mit einer geeigneten Schutzschicht versehen ist (eloxiert,MgF₂-Beschichtung).Instead of external electrodes applied over the entire circumference of the outer dielectric tube, partial vapor deposition or coating on the rear side is sufficient, the layer simultaneously serving as an electrode and reflector. Aluminum, which is provided with a suitable protective layer (anodized, MgF₂ coating), is a suitable material that is both easy to vaporize and has a high UV reflection.
Man kann leicht mehrere solcher exzentrischen Strahler zu Blöcken kombinieren, die zur Bestrahlung grosser Flächen geeignet sind. Die (halbzylindrischen) Aussparungen im Aluminiumblock dienen gleichzeitig als Halterung für die Quarz-Entladungsröhren, als (Erd-)Elektrode und als Reflektor. Es können beliebig viele dieser Entladungsrohren parallel- geschaltet werden, indem man die Innenlektroden an eine gemeinsame Wechselspannungsquelle legt. Für spezielle Anwendungen kann man Röhren mit verschiedener Gasfüllung und damit verschiedene (UV-)Wellenlängen kombinieren. Die beschriebenen Alublöcke müssen nicht unbedingt ebene Oberflächen haben. Man kann sich auch zylindrische Anordnungen vorstellen, bei denen die Aussparungen zur Aufnahme der Entladungsröhren entweder aussen oder innen angebracht sind.You can easily combine several such eccentric emitters into blocks that are suitable for irradiating large areas. The (semi-cylindrical) recesses in the aluminum block also serve as a holder for the quartz discharge tubes, as an (earth) electrode and as a reflector. Any number of these discharge tubes can be connected in parallel by placing the internal electrodes on a common AC voltage source. For special applications you can combine tubes with different gas filling and therefore different (UV) wavelengths. The aluminum blocks described do not necessarily have to have flat surfaces. One can also imagine cylindrical arrangements in which the recesses for receiving the discharge tubes are either outside or inside.
Bei höheren Leistungen ist es möglich, die Aluminiumblöcke zu kühlen, z.B. indem man zusätzliche Kühlkanäle vorsieht. Auch die einzelnen Gasentladungsröhren kann man zusätzlich kühlen, wenn man z.B. die Innenelektrode als Kühlkanal ausbildet.At higher outputs it is possible to cool the aluminum blocks, e.g. by providing additional cooling channels. The individual gas discharge tubes can also be cooled if, for example, forms the inner electrode as a cooling channel.
Bei der UV-Behandlung von Oberflächen und der Aushärtung von UV-Farben und UV-Lacken ist es in bestimmten Fällen von Vorteil, nicht in Luft zu arbeiten. Es gibt mindestens zwei Gründe, die eine UV-Behandlung unter Ausschluss von Luft angezeigt erscheinen lassen. Der erste Grund liegt vor, wenn die Strahlung so kurzwellig ist, dass sie von Luft absorbiert und damit abgeschwächt wird (Wellenlängen < 190 nm). Diese Strahlung führt zur Sauerstoffspaltung und damit zur unerwünschten Ozonbildung. Der zweite Grund liegt vor, wenn die beabsichtigte photochemische Wirkung der UV-Strahlung durch die Anwesenheit von Sauerstoff behindert wird (oxygen inhibition). Dieser Fall tritt z.B. bei der Photovernetzung (UV-Polymerisation, UV-Trockung) von Lacken und Farben auf. Diese Vorgänge sind an sich bekannt und beispielsweise im Buch "U.V.and E.B. Curing Formulation for Printing Ink, Coatings and Paints", herausgegeben 1988 von SITA-Technology, 203 Gardiner House, Broomhill Road, London SW18, Seiten 89 - 91, beschrieben. In diesen Fällen ist erfindungsgemäss vorgesehen, Mittel zur Spülung des Behandlungsraums mit einem inerten UV-transparenten Gas wie z.B. Stickstoff oder Argon vorzusehen. Insbesondere bei Konfigurationen, bei denen die erste Elektrode gemäss Anspruch 5 aus einem mit Rillen versehenen Metallblock ausgebildet ist, lässt sich eine derartige Spülung ohne grossen technischen Aufwand verwirklichen, z.B. durch zusätzliche von einer Inertgasquelle gespeiste und gegen den Entladungsraum offene Kanäle. Das durch besagte Kanäle geleitete Inertgas kann darüber hinaus zur Kühlung des Strahlers herangezogen werden, so dass bei manchen Anwendungen auf separate Kühlkanäle verzichtet werden kann.When treating UV surfaces and curing UV inks and varnishes, it is advantageous in certain cases not to work in air. There are at least two reasons why UV treatment in the absence of air is indicated. The first reason is when the radiation is so short-wave that it is absorbed by air and thus weakened (wavelengths <190 nm). This radiation leads to the splitting of oxygen and thus to the undesirable Ozone formation. The second reason is when the intended photochemical effect of UV radiation is hindered by the presence of oxygen (oxygen inhibition). This occurs, for example, in the photo crosslinking (UV polymerization, UV drying) of paints and inks. These processes are known per se and are described, for example, in the book "UVand EB Curing Formulation for Printing Ink, Coatings and Paints", published in 1988 by SITA-Technology, 203 Gardiner House, Broomhill Road, London SW18, pages 89-91. In these cases, it is provided according to the invention to provide means for purging the treatment room with an inert UV-transparent gas such as nitrogen or argon. In particular in configurations in which the first electrode is formed from a grooved metal block, such a flushing can be implemented without great technical effort, for example by means of additional channels fed by an inert gas source and open to the discharge space. The inert gas passed through said channels can also be used to cool the radiator, so that separate cooling channels can be dispensed with in some applications.
In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt; darin zeigt
- Fig.1
- Ein erstes Ausführungsbeispiel eines Zylinderstrahlers mit konzentrischer Anordnung des inneren Dielektrikumsstabes im Querschnitt;
- Fig.2
- eine Abwandlung des Strahlers nach Fig.1 ,mit einer exzentrischen Anordnung des inneren Dielektrikums;
- Fig. 3
- eine Ausführungsform eines Zylinderstrahlers mit konzentrischer Anordnung des inneren Dielektrikums und einer Aussenelektrode in Form einer Beschichtung, die sich nur über einen Teil des Umfangs des äusseren Dielektrikumsrohres erstreckt, wobei die Beschichtung gleichzeitig als Reflektor dient;
- Fig.4
- eine Ausführungsform eines Zylinderstrahlers analog Fig. 3 jedoch mit exzentrischer Anordnung des inneren Dielektrikums und einer Beschichtung, die sich nur über einen Teil des Umfanges des äusseren Dielektrikumsrohres erstreckt, welche Beschichtung gleichzeitig als Aussenelektrode und als Reflektor dient;
- Fig.5
- die Zusammenfassung mehrerer Strahler nach Fig.3 zu einem Flächenstrahler;
- Fig. 6
- die Zusammenfassung mehrerer Strahler nach Fig.4 zu einem Flächenstrahler;
- Fig.7
- eine Abwandlung von Fig. 5 in Gestalt eines aus einer Vielzahl Strahlern gemäss Fig.3 zusammengesetzten grossflächigen Zylinderstrahlers.
- Fig. 8
- eine Abwandlung von Fig. 6 in Gestalt eines aus einer Vielzahl von Strahlern gemäss Fig.4 zusammengestzten grossflächigen Zylinderstrahlers;
- Fig. 9
- eine Weiterbildung des Strahlers nach Fig.5 mit Mitteln zur Zufuhr eines Inertagases in den Behandlungsraum;
- Fig.10
- eine Weiterbildung des Strahlers nach Fig.6 mit Mitteln zur Zufuhr eines Inertgases in den Behandlungsraum.
- Fig. 1
- A first embodiment of a cylinder radiator with a concentric arrangement of the inner dielectric rod in cross section;
- Fig. 2
- a modification of the radiator according to Figure 1, with an eccentric arrangement of the inner dielectric;
- Fig. 3
- an embodiment of a cylinder radiator with a concentric arrangement of the inner dielectric and an outer electrode in the form of a coating which extends only over part of the circumference of the outer dielectric tube, the coating simultaneously serving as a reflector;
- Fig. 4
- an embodiment of a cylinder emitter analogous to Figure 3 but with an eccentric arrangement of the inner dielectric and a coating that extends only over part of the circumference of the outer dielectric tube, which coating serves as an outer electrode and a reflector at the same time.
- Fig. 5
- the combination of several emitters according to Figure 3 into a surface emitter;
- Fig. 6
- the combination of several emitters according to Figure 4 to a surface emitter;
- Fig. 7
- a modification of FIG. 5 in the form of a large-area cylinder radiator composed of a plurality of radiators according to FIG.
- Fig. 8
- 6 shows a modification of FIG. 6 in the form of a large-area cylinder radiator composed of a plurality of radiators according to FIG. 4;
- Fig. 9
- a development of the radiator according to Figure 5 with means for supplying an inert gas into the treatment room;
- Fig. 10
- a development of the radiator according to Figure 6 with means for supplying an inert gas into the treatment room.
In Fig.1 ist ein Quarzrohr 1 mit einer Wandstärke von etwa 0,5 bis 1,5 mm und einem Aussendurchmesser von etwa 20 bis 30 mm mit einer Aussenelektrode 2 in Form eines Drahtnetzes versehen. Konzentrisch im Quarzrohr 1 ist ein zweites Quarzrohr 3 angeordnet mit einem wesentlich kleineren Aussendurchmesser als der Innendurchmesser des Quarzrohres 1, typisch 3 bis 5 mm Aussendurchmesser.
In das innere Quarzrohr 3 ist ein Draht 4 eingeschoben. Dieser bildet die Innenelektrode des Strahlers, das Drahtnetz 2 die Aussenelektrode des Strahlers.
Das äussere Quarzrohr 1 ist an beiden Enden verschlossen. Der Raum zwischen den beiden Rohren 1 und 3, der Entladungsraum 5, ist mit einem unter Entladungsbedingungen Strahlung aussendendem Gas/Gasgemisch gefüllt. Die beiden Elektroden 2,4 sind mit den beiden Polen einer Wechselstromquelle 6 verbunden. Die Wechselstromquelle entspricht grundsätzlich jenen, wie sie zur Anspeisung von Ozonerzeugern verwendet werden. Typisch liefert sie eine einstellbare Wechselspannung in der Grössenordnung von mehreren 100 Volt bis 20000 Volt bei Frequenzen im Bereich des technischen Wechselstroms bis hin zu einigen 1000 kHz - abhängig von der Elektrodengeometrie, Druck im Entladungsraum und Zusammensetzung des Füllgases.1, a
A
The
Das Füllgas ist, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-Gemisch, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases, vorzugsweise Ar, He, Ne, als Puffergas.The fill gas is e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz/Substanzgemisch gemäss nachfolgender Tabelle Verwendung finden:
Daneben kommen eine ganze Reihe weiterer Füllgase in Frage:
- Ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit einem Gas bzw. Dampf aus F₂, J₂, Br₂, Cl₂ oder eine Verbindung die in der Entladung ein oder mehrere Atome F, J, Br oder Cl abspaltet;
- ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit O₂ oder einer Verbindung, die in der Entladung ein oder mehrere 0-Atome abspaltet;
- ein Edelgas (Ar, He, Kr, Ne, Xe) mit Hg.
- A noble gas (Ar, He, Kr, Ne, Xe) or Hg with a gas or vapor from F₂, J₂, Br₂, Cl₂ or a compound that splits off one or more atoms F, J, Br or Cl in the discharge;
- a noble gas (Ar, He, Kr, Ne, Xe) or Hg with O₂ or a compound that splits off one or more 0 atoms in the discharge;
- an inert gas (Ar, He, Kr, Ne, Xe) with Hg.
In der sich bildenden stillen elektrischen Entladung (silent discharge) kann die Elektronenenergieverteilung durch Dicke der Dielektrika und deren Eigenschaften Druck und/oder Temperatur im Entladungsraum optimal eingestellt werden.In the silent discharge that forms, the electron energy distribution can be optimally adjusted by the thickness of the dielectrics and their properties, pressure and / or temperature in the discharge space.
Bei Anliegen einer Wechselspannung zwischen den Elektroden 2, 4 bildet sich eine Vielzahl von Entladungskanälen (Teilentladungen) im Entladungsraum 5 aus. Diese treten mit den Atomen/Molekülen des Füllgases in Wechselwirkung, was schlussendlich zur UV oder VUV-Strahlung führt.When an alternating voltage is applied between the
Anstelle von Quarzröhrchen 3 mit eingelegtem Draht können auch Quarzstäbe, in die ein Metalldraht eingeschmolzen ist, verwendet werden. Auch Metallstäbe, die mit einem Dielektrikum überzogen sind, führen zum Erfolg.Instead of
Anstelle eines Drahtnetzes 2 kann auch eine perforierte Metallfolie oder ein UV-transparenter, elektrisch leitfähiger Belag benutzt werden.Instead of a
Will man mit einfachen Mitteln eine Vorzugsrichtung der Abstrahlung erzielen, verteilt man die Entladung ungleichmässig im Entladungsraum. Am einfachsten kann dies durch exzentrische Anordnung des inneren Dielektrikumsrohres 3 im äusseren Rohr 1 erfolgen, wie dies in Fig. 2 beispielsweise veranschaulicht ist.If you want to achieve a preferred direction of radiation with simple means, the discharge is distributed unevenly in the discharge space. The easiest way to do this is by eccentrically arranging the
In Fig.2 ist das innere Quarzrohr 3 ausserhalb des Zentrums nahe der Innenwand des Rohres 1 angeordnet. Im Grenzfall kann sogar das Rohr 3 am Rohr 1 anliegen und dort linienförmig oder punktuell mit der Innenwand verklebt sein.In Figure 2, the
Die exzentrische Anordnung des inneren Quarzrohres und damit der inneren Elektrode 4 hat keinen entscheidenden Einfluss auf die Qualität der Entladung. Bei knapp eingestellter Spitzenspannung zündet nur ein schmaler Bereich in unmittelbarer Nähe des Quarzrohres 3. Durch Erhöhung der Spannung kann man nach und nach die Entladungszone vergrössern, bis der ganze Entladungsraum 5 mit leuchtendem Plasma gefüllt ist.The eccentric arrangement of the inner quartz tube and thus the
Statt einer auf den gesamten Aussenumfang des äusseren Dielektrikumsrohres 1 aufgebrachten Elektrode 2 (Fig. 2) genügt auch eine teilweise Beschichtung der äusseren Oberfläche des Rohres 1, wie es in Fig.3 veranschaulicht ist. Die sich über etwa die Hälfte des Aussenumfangs des Rohres 1 erstreckende Beschichtung 7 ist gleichzeitig Aussenelektrode und Reflektor. Entsprechend Fig.2 ist auch hier eine exzentrische Anordnung des inneren Quarzrohres 3 möglich, wobei die Beschichtung 7 sich nur symmetrisch über den dem inneren Quarzrohr 3 zugewandten Aussenwandabschnitt erstreckt. Diese Schicht 7 ist gleichzeitig Aussenelektrode und Reflektor. Als Material, das sich sowohl gut aufdampfen lässt, als auch eine hohe UV-Reflexion besitzt, bietet sich insbesondere Aluminium an.Instead of an electrode 2 (FIG. 2) applied to the entire outer circumference of the outer dielectric tube 1 (FIG. 2) is sufficient also a partial coating of the outer surface of the
In Fig.5 ist veranschaulicht, auf welche Weise eine Vielzahl von konzentrischen Strahlern gemäss Fig.3 zu einem Flächenstrahler zusammengefasst werden können. Fig.6 zeigt eine entsprechende Anordnung mit exzentrisch angeordneten inneren Quarzrohren 3 nach Fig.4. Ein Aluminiumkörper 8 ist zu diesem Zweck mit einer Vielzahl paralleler Rillen 9 mit kreisrundem Querschnitt versehen, die um mehr als einen Aussenrohrdurchmesser voneinander beabstandet sind. Die Rillen 9 sind den äusseren Quarzrohren 1 angepasst und durch Polieren oder dergleichen so behandelt, dass sie gut reflektieren. Zusätzlichen Bohrungen 10, die in Richtung der Rohre 1 verlaufen, dienen der Kühlung der Strahler.FIG. 5 illustrates the manner in which a multiplicity of concentric radiators according to FIG. 3 can be combined to form a surface radiator. 6 shows a corresponding arrangement with eccentrically arranged
Die Wechselstromquelle 6 führt mit ihrem einen Pol an den Aluminiumkörper 8, die Innenelektroden 4 der Strahler sind parallelgeschaltet und mit dem anderen Pol der Quelle 6 verbunden.The
Analog zu den Beschichtungen 7 der Fig.3 bzw. Fig.4 dienen im Fall der Fig.5 und 6 die Rillenwände sowohl als Aussenelektrode als auch als Reflektoren.Analogously to the
Für spezielle Anwendungen kann man Einzelstrahler mit verschiedenen Gasfüllungen und damit verschiedenen (UV-)Wellenlängen kombinieren.For special applications, single emitters can be combined with different gas fillings and thus different (UV) wavelengths.
Die Aluminiumkörper 8 müssen nicht unbedingt ebene Oberflächen haben. Z.B. veranschaulichen Fig.7 und 8 eine Variante mit einem hohlzylindrischen Aluminiumkörper 8a mit regelmässig über seinen Innenumfang verteilten achsparallelen Rillen 9 in die jeweils ein Strahlerelement nach Fig.3 bzw. Fig.4 eingelegt ist.The
Der Strahler nach Fig.9 entspricht grundsätzlich demjenigen nach Fig.5. mit zusatzlichen in Längsrichtung des Metallblocks 8 verlaufenden Kanälen 11. Diese Kanäle stehen mit dem Behandlungsraum 12 über eine Vielzahl von Bohrungen oder Schlitzen 13 im Metallblock 8 in Verbindung, und zwar über den vergleichweise schmalen, durch unvermeidliche Fertigungstoleranzen der Quarzrohre 1 bedingten Spalt zwischen den äusseren Quarzrohren 1 und den Rillen 9 im Metallblock 8 in Verbindung. Die Kanäle 11 sind an eine nicht dargestellte Inertgasquelle, z.B. Stickstoff- oder Argonquelle angeschlossen. Von den Kanälen 11 gelangt das unter Druck stehende Inertgas auf dem beschriebenen Wege in den Behandlungsraum 12. Dieser Behandlungsraum wird einerseits durch Schenkel 14 am Metallblock 8 und durch das zu bestrahlende Substrat 15 begrenzt. Er füllt sich in kurzer Zeit mit Inertgas. Je nach Grösse des Spaltes 16 zwischen dem Substrat 15 und den Enden der Schenkel 14 entweicht dabei eine gewisse Leckgasmenge, welche aber durch die Inertgasquelle nachgeliefert wirde. Auf diese Weise werden die eingangs beschriebenen Wechselwirkungen zwischen der in den Entladungsräumen 5 erzeugten UV-Strahlung und dem Luftsauerstoff zuverlässig vermieden.The radiator according to Fig. 9 basically corresponds to that according to Fig. 5. with
In Fig.10 ist eine weitere Möglichkeit der Inertgaszufuhr zum Behandlungsraum 12 veranschaulicht. Der Strahler entspricht dabei weitgehend demjenigen nach Fig.6. Zusätzlich sind jedoch zwischen benachbarten Quarzrohren 5 in Längsrichtung des Metallblocks 8 verlaufende Kanäle 11 vorgesehen, welche über Bohrungen oder Schlitze 13 unmittelbar mit dem Behandlungsraum 12 verbunden sind. Ansonsten entspricht Aufbau und Wirkungsweise denjenigen nach Fig.9.A further possibility of supplying inert gas to the
Es versteht sich von selbst, dass auch die Zylinderstrahler nach den Figuren 7 und 8 mit Mitteln zur Zufuhr von Inertgas in den Behandlungsraum (dort das Innere des Rohres 8a) versehen werden können, ohne den den die Erfindung gesteckten Rahmen zu verlassen.It goes without saying that the cylinder emitters according to FIGS. 7 and 8 can also be provided with means for supplying inert gas to the treatment room (there the inside of the tube 8a) without leaving the scope of the invention.
Claims (10)
- A high power emitter in particular for ultraviolet light, with a discharge chamber (5) filled with a filling gas emitting radiation under discharge conditions, the walls of which chamber are formed by a first tubular dielectric (1) and a second dielectric (3) penetrable by radiation, which on its surfaces facing away from the discharge chamber (5) is provided with first electrodes (2,7) and second electrode (4), with an alternating current source (6) connected to the first and second electrodes to store the discharge, characterised in that the second dielectric is a rod (3) of dielectric material arranged inside the first tubular dielectric (1), in the interior of which an electric conductor (4) is placed or embedded, which conductor forms the second electrode.
- A high power emitter according to Claim 1, characterised in that the external diameter of the rod (3) is five to ten times smaller than the internal diameter of the first tubular dielectric (1).
- A high power emitter according to Claim 1 or 2, characterised in that the rod (3) of dielectric material is arranged eccentrically in the first tubular dielectric (1).
- A high power emitter according to Claim 3, characterised in that the first electrode (7) covers the outer wall of the first dielectric (1) only in the section which is associated with the second dielectric (3) and constructed as a reflector.
- A high power emitter according to Claim 4, characterised in that the first electrode and the reflector are constructed as material recesses, preferably grooves (9), in a metal body (8).
- A high power emitter according to Claim 5, characterised in that in the metal body (8) cooling bores (10) are provided, which do not intersect the material recesses (9).
- A high power emitter according to Claim 5, characterised in that the cross-section of the material recesses (9) is matched to the external diameter of the first dielectric (1) and the recess walls are constructed as UV reflectors.
- A high power emitter according to one of Claims 5 to 7, characterised in that means (11,13) are provided for the supply of inert gas into the chamber (12) outside the first tubular dielectric (1).
- A high power emitter according to Claim 8, characterised in that in the metal body (8,8a) channels (11) are provided, which communicate directly or indirectly with the processing chamber (12), through which channels (11) an inert gas, preferably nitrogen or argon, is able to be supplied.
- A high power emitter according to Claim 9, characterised in that the channels (11) are arranged in each case between adjacent dielectric tubes (1) and communicate via bores or slits (13) with the processing chamber (12).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT90103082T ATE98050T1 (en) | 1989-02-27 | 1990-02-17 | HIGH-PERFORMANCE RADIATOR. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH720/89A CH677292A5 (en) | 1989-02-27 | 1989-02-27 | |
CH720/89 | 1989-02-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0385205A1 EP0385205A1 (en) | 1990-09-05 |
EP0385205B1 true EP0385205B1 (en) | 1993-12-01 |
Family
ID=4193615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90103082A Expired - Lifetime EP0385205B1 (en) | 1989-02-27 | 1990-02-17 | High-power radiation device |
Country Status (6)
Country | Link |
---|---|
US (1) | US5013959A (en) |
EP (1) | EP0385205B1 (en) |
JP (1) | JP2823637B2 (en) |
AT (1) | ATE98050T1 (en) |
CH (1) | CH677292A5 (en) |
DE (1) | DE59003641D1 (en) |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4010190A1 (en) * | 1990-03-30 | 1991-10-02 | Asea Brown Boveri | RADIATION DEVICE |
CH680099A5 (en) * | 1990-05-22 | 1992-06-15 | Asea Brown Boveri | |
EP0482230B1 (en) * | 1990-10-22 | 1995-06-21 | Heraeus Noblelight GmbH | High power radiation device |
EP0489184B1 (en) * | 1990-12-03 | 1996-02-28 | Heraeus Noblelight GmbH | High power radiation device |
US5220236A (en) * | 1991-02-01 | 1993-06-15 | Hughes Aircraft Company | Geometry enhanced optical output for rf excited fluorescent lights |
CA2059209C (en) * | 1991-02-01 | 1997-05-27 | William J. Council | Rf fluorescent lighting |
DE59105798D1 (en) * | 1991-04-15 | 1995-07-27 | Heraeus Noblelight Gmbh | Irradiation facility. |
DE59104972D1 (en) * | 1991-06-01 | 1995-04-20 | Heraeus Noblelight Gmbh | Irradiation device with a high-performance lamp. |
DE69210113T2 (en) * | 1991-07-01 | 1996-11-21 | Philips Patentverwaltung | High pressure glow discharge lamp |
DE4140497C2 (en) * | 1991-12-09 | 1996-05-02 | Heraeus Noblelight Gmbh | High-power radiation |
DE4222130C2 (en) * | 1992-07-06 | 1995-12-14 | Heraeus Noblelight Gmbh | High-power radiation |
DE4235743A1 (en) * | 1992-10-23 | 1994-04-28 | Heraeus Noblelight Gmbh | High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically |
US5384515A (en) * | 1992-11-02 | 1995-01-24 | Hughes Aircraft Company | Shrouded pin electrode structure for RF excited gas discharge light sources |
US5334913A (en) * | 1993-01-13 | 1994-08-02 | Fusion Systems Corporation | Microwave powered lamp having a non-conductive reflector within the microwave cavity |
US6211383B1 (en) | 1993-08-05 | 2001-04-03 | Kimberly-Clark Worldwide, Inc. | Nohr-McDonald elimination reaction |
US6017471A (en) | 1993-08-05 | 2000-01-25 | Kimberly-Clark Worldwide, Inc. | Colorants and colorant modifiers |
US5643356A (en) | 1993-08-05 | 1997-07-01 | Kimberly-Clark Corporation | Ink for ink jet printers |
US5721287A (en) | 1993-08-05 | 1998-02-24 | Kimberly-Clark Worldwide, Inc. | Method of mutating a colorant by irradiation |
US5773182A (en) | 1993-08-05 | 1998-06-30 | Kimberly-Clark Worldwide, Inc. | Method of light stabilizing a colorant |
US6017661A (en) | 1994-11-09 | 2000-01-25 | Kimberly-Clark Corporation | Temporary marking using photoerasable colorants |
US5733693A (en) | 1993-08-05 | 1998-03-31 | Kimberly-Clark Worldwide, Inc. | Method for improving the readability of data processing forms |
US5681380A (en) | 1995-06-05 | 1997-10-28 | Kimberly-Clark Worldwide, Inc. | Ink for ink jet printers |
US5645964A (en) | 1993-08-05 | 1997-07-08 | Kimberly-Clark Corporation | Digital information recording media and method of using same |
US5865471A (en) | 1993-08-05 | 1999-02-02 | Kimberly-Clark Worldwide, Inc. | Photo-erasable data processing forms |
CA2120838A1 (en) | 1993-08-05 | 1995-02-06 | Ronald Sinclair Nohr | Solid colored composition mutable by ultraviolet radiation |
US5914564A (en) * | 1994-04-07 | 1999-06-22 | The Regents Of The University Of California | RF driven sulfur lamp having driving electrodes which face each other |
US5739175A (en) | 1995-06-05 | 1998-04-14 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition containing an arylketoalkene wavelength-specific sensitizer |
US6242057B1 (en) | 1994-06-30 | 2001-06-05 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition and applications therefor |
US5685754A (en) | 1994-06-30 | 1997-11-11 | Kimberly-Clark Corporation | Method of generating a reactive species and polymer coating applications therefor |
US6071979A (en) | 1994-06-30 | 2000-06-06 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition method of generating a reactive species and applications therefor |
DE4430300C1 (en) * | 1994-08-26 | 1995-12-21 | Abb Research Ltd | Excimer emitters and their use |
US6008268A (en) | 1994-10-21 | 1999-12-28 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition, method of generating a reactive species, and applications therefor |
US5811199A (en) | 1995-06-05 | 1998-09-22 | Kimberly-Clark Worldwide, Inc. | Adhesive compositions containing a photoreactor composition |
US5849411A (en) | 1995-06-05 | 1998-12-15 | Kimberly-Clark Worldwide, Inc. | Polymer film, nonwoven web and fibers containing a photoreactor composition |
RU2170943C2 (en) | 1995-06-05 | 2001-07-20 | Кимберли-Кларк Уорлдвайд, Инк. | Recent precolors |
US5747550A (en) | 1995-06-05 | 1998-05-05 | Kimberly-Clark Worldwide, Inc. | Method of generating a reactive species and polymerizing an unsaturated polymerizable material |
US5798015A (en) | 1995-06-05 | 1998-08-25 | Kimberly-Clark Worldwide, Inc. | Method of laminating a structure with adhesive containing a photoreactor composition |
US5786132A (en) | 1995-06-05 | 1998-07-28 | Kimberly-Clark Corporation | Pre-dyes, mutable dye compositions, and methods of developing a color |
JP2000506550A (en) | 1995-06-28 | 2000-05-30 | キンバリー クラーク ワールドワイド インコーポレイテッド | New colorants and colorant modifiers |
US5855655A (en) | 1996-03-29 | 1999-01-05 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
CA2210480A1 (en) | 1995-11-28 | 1997-06-05 | Kimberly-Clark Worldwide, Inc. | Improved colorant stabilizers |
US6099628A (en) | 1996-03-29 | 2000-08-08 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5782963A (en) | 1996-03-29 | 1998-07-21 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5891229A (en) | 1996-03-29 | 1999-04-06 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5998921A (en) * | 1997-03-21 | 1999-12-07 | Stanley Electric Co., Ltd. | Fluorescent lamp with coil shaped internal electrode |
US5834784A (en) * | 1997-05-02 | 1998-11-10 | Triton Thalassic Technologies, Inc. | Lamp for generating high power ultraviolet radiation |
JPH1125921A (en) * | 1997-07-04 | 1999-01-29 | Stanley Electric Co Ltd | Fluorescent lamp |
US6524379B2 (en) | 1997-08-15 | 2003-02-25 | Kimberly-Clark Worldwide, Inc. | Colorants, colorant stabilizers, ink compositions, and improved methods of making the same |
US5945790A (en) * | 1997-11-17 | 1999-08-31 | Schaefer; Raymond B. | Surface discharge lamp |
US6015759A (en) * | 1997-12-08 | 2000-01-18 | Quester Technology, Inc. | Surface modification of semiconductors using electromagnetic radiation |
CA2224699A1 (en) | 1997-12-12 | 1999-06-12 | Resonance Ltd. | Hollow electrode electrodeless lamp |
US6049086A (en) * | 1998-02-12 | 2000-04-11 | Quester Technology, Inc. | Large area silent discharge excitation radiator |
KR20010042176A (en) * | 1998-03-24 | 2001-05-25 | 알프레드 엘. 미첼슨 | External electrode driven discharge lamp |
BR9906513A (en) | 1998-06-03 | 2001-10-30 | Kimberly Clark Co | New photoinitiators and applications for the same |
EP1062285A2 (en) | 1998-06-03 | 2000-12-27 | Kimberly-Clark Worldwide, Inc. | Neonanoplasts and microemulsion technology for inks and ink jet printing |
US6228157B1 (en) | 1998-07-20 | 2001-05-08 | Ronald S. Nohr | Ink jet ink compositions |
DE69930948T2 (en) | 1998-09-28 | 2006-09-07 | Kimberly-Clark Worldwide, Inc., Neenah | CHELATE WITH CHINOIDS GROUPS AS PHOTOINITIATORS |
DE19844921A1 (en) * | 1998-09-30 | 2000-04-13 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Flat lighting device has optical system that influences spatial light distribution of light to be coupled into plate to have at least one maximum in defined angular range wrt. optical axis |
ATE238393T1 (en) | 1999-01-19 | 2003-05-15 | Kimberly Clark Co | DYES, DYE STABILIZERS, INK COMPOSITIONS AND METHOD FOR THE PRODUCTION THEREOF |
US6331056B1 (en) | 1999-02-25 | 2001-12-18 | Kimberly-Clark Worldwide, Inc. | Printing apparatus and applications therefor |
US6294698B1 (en) | 1999-04-16 | 2001-09-25 | Kimberly-Clark Worldwide, Inc. | Photoinitiators and applications therefor |
US6368395B1 (en) | 1999-05-24 | 2002-04-09 | Kimberly-Clark Worldwide, Inc. | Subphthalocyanine colorants, ink compositions, and method of making the same |
US6201355B1 (en) | 1999-11-08 | 2001-03-13 | Triton Thalassic Technologies, Inc. | Lamp for generating high power ultraviolet radiation |
DE10145648B4 (en) * | 2001-09-15 | 2006-08-24 | Arccure Technologies Gmbh | Irradiation device with variable spectrum |
US6891334B2 (en) * | 2001-09-19 | 2005-05-10 | Matsushita Electric Industrial Co., Ltd. | Light source device and liquid crystal display employing the same |
TW558732B (en) | 2001-09-19 | 2003-10-21 | Matsushita Electric Ind Co Ltd | Light source apparatus and liquid crystal display apparatus using the same |
US6806648B2 (en) * | 2001-11-22 | 2004-10-19 | Matsushita Electric Industrial Co., Ltd. | Light source device and liquid crystal display device |
US6906461B2 (en) * | 2001-12-28 | 2005-06-14 | Matsushita Electric Industrial Co., Ltd. | Light source device with inner and outer electrodes and liquid crystal display device |
JP3889987B2 (en) * | 2002-04-19 | 2007-03-07 | パナソニック フォト・ライティング 株式会社 | Discharge lamp device and backlight |
US20040136885A1 (en) * | 2003-01-09 | 2004-07-15 | Hogarth Derek J. | Apparatus and method for generating ozone |
US7029637B2 (en) * | 2003-01-09 | 2006-04-18 | H203, Inc. | Apparatus for ozone production, employing line and grooved electrodes |
DE10336088A1 (en) * | 2003-08-06 | 2005-03-03 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | UV lamp with tubular discharge vessel |
US8154216B2 (en) * | 2005-10-04 | 2012-04-10 | Topanga Technologies, Inc. | External resonator/cavity electrode-less plasma lamp and method of exciting with radio-frequency energy |
US8102123B2 (en) | 2005-10-04 | 2012-01-24 | Topanga Technologies, Inc. | External resonator electrode-less plasma lamp and method of exciting with radio-frequency energy |
US8258687B2 (en) * | 2006-03-28 | 2012-09-04 | Topanga Technologies, Inc. | Coaxial waveguide electrodeless lamp |
US8022377B2 (en) * | 2008-04-22 | 2011-09-20 | Applied Materials, Inc. | Method and apparatus for excimer curing |
JP2011522381A (en) * | 2008-05-30 | 2011-07-28 | コロラド ステート ユニバーシティ リサーチ ファンデーション | Plasma-based chemical source apparatus and method of use thereof |
US8125333B2 (en) * | 2008-06-04 | 2012-02-28 | Triton Thalassic Technologies, Inc. | Methods, systems and apparatus for monochromatic UV light sterilization |
JP5271762B2 (en) * | 2009-03-13 | 2013-08-21 | 株式会社オーク製作所 | Discharge lamp |
TW201202008A (en) * | 2010-07-12 | 2012-01-16 | Hon Hai Prec Ind Co Ltd | Device and method for making optical film |
DE102010043215A1 (en) * | 2010-11-02 | 2012-05-03 | Osram Ag | Spotlight with base for the irradiation of surfaces |
CN103318203B (en) * | 2012-10-12 | 2015-09-23 | 北京航空航天大学 | With the Lightweight composite-material carriage structure of the aerodynamic force aerotrain of imitative wing |
DE102012219064A1 (en) | 2012-10-19 | 2014-04-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UV light source with combined ionization and formation of excimers |
US9117636B2 (en) | 2013-02-11 | 2015-08-25 | Colorado State University Research Foundation | Plasma catalyst chemical reaction apparatus |
US9269544B2 (en) | 2013-02-11 | 2016-02-23 | Colorado State University Research Foundation | System and method for treatment of biofilms |
US9532826B2 (en) | 2013-03-06 | 2017-01-03 | Covidien Lp | System and method for sinus surgery |
US9555145B2 (en) | 2013-03-13 | 2017-01-31 | Covidien Lp | System and method for biofilm remediation |
US10237962B2 (en) | 2014-02-26 | 2019-03-19 | Covidien Lp | Variable frequency excitation plasma device for thermal and non-thermal tissue effects |
US9722550B2 (en) | 2014-04-22 | 2017-08-01 | Hoon Ahn | Power amplifying radiator (PAR) |
US10524849B2 (en) | 2016-08-02 | 2020-01-07 | Covidien Lp | System and method for catheter-based plasma coagulation |
WO2020041403A1 (en) * | 2018-08-22 | 2020-02-27 | Georgia Tech Research Corporation | Flexible sensing interface systems and methods |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4038577A (en) * | 1969-04-28 | 1977-07-26 | Owens-Illinois, Inc. | Gas discharge display device having offset electrodes |
FR2109228A5 (en) * | 1970-10-07 | 1972-05-26 | Mcb | |
US3828277A (en) * | 1971-12-27 | 1974-08-06 | Us Army | Integral capacitor lateral discharge laser |
JPS5732564A (en) * | 1980-08-04 | 1982-02-22 | Toshiba Corp | High-frequency flat electric-discharge lamp |
JPS5763756A (en) * | 1980-09-12 | 1982-04-17 | Chow Shing Cheung | Discharge lamp |
JPS599849A (en) * | 1982-07-09 | 1984-01-19 | Okaya Denki Sangyo Kk | High frequency discharge lamp |
CH670171A5 (en) * | 1986-07-22 | 1989-05-12 | Bbc Brown Boveri & Cie |
-
1989
- 1989-02-27 CH CH720/89A patent/CH677292A5/de not_active IP Right Cessation
-
1990
- 1990-02-17 AT AT90103082T patent/ATE98050T1/en not_active IP Right Cessation
- 1990-02-17 DE DE90103082T patent/DE59003641D1/en not_active Expired - Fee Related
- 1990-02-17 EP EP90103082A patent/EP0385205B1/en not_active Expired - Lifetime
- 1990-02-27 JP JP2044687A patent/JP2823637B2/en not_active Expired - Fee Related
- 1990-02-27 US US07/485,544 patent/US5013959A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE59003641D1 (en) | 1994-01-13 |
US5013959A (en) | 1991-05-07 |
JPH03201358A (en) | 1991-09-03 |
CH677292A5 (en) | 1991-04-30 |
JP2823637B2 (en) | 1998-11-11 |
EP0385205A1 (en) | 1990-09-05 |
ATE98050T1 (en) | 1993-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0385205B1 (en) | High-power radiation device | |
EP0458140B1 (en) | High power radiator | |
EP0389980B1 (en) | High power radiation device | |
EP0578953B1 (en) | High power emitting device | |
DE4140497C2 (en) | High-power radiation | |
EP0371304B1 (en) | High-power radiation device | |
DE19636965B4 (en) | Electrical radiation source and radiation system with this radiation source | |
EP0449018A2 (en) | Irradiation device | |
EP0363832B1 (en) | Radiating device having a high output | |
EP0509110B1 (en) | Irradation device | |
DE69501196T3 (en) | Light source device with a dielectric limited discharge lamp | |
DE69230895T2 (en) | Discharge lamp and process for its manufacture | |
EP0482230B1 (en) | High power radiation device | |
CH670171A5 (en) | ||
EP0517929B1 (en) | Irradiation device with a high power radiator | |
EP0489184B1 (en) | High power radiation device | |
DE4010809A1 (en) | High power esp. ultraviolet emitter - with electrode arrangement providing high efficiency | |
DE2502649A1 (en) | IMPROVED ELECTRODE STRUCTURE FOR HIGH CURRENT, LOW PRESSURE DISCHARGE DEVICES | |
DE4022279A1 (en) | Irradiating non-electrolytes from gas - filled discharge chamber by applying high potential electric source to electrodes using cylindrical electrode connected by dielectric layer | |
EP0393449A1 (en) | Fluorescent lamp | |
DE102005007370B3 (en) | Ultraviolet light source for e.g. ultraviolet microscopy, has dielectric arranged between two electrodes, where one electrode includes tip directed to another electrode, such that shortest distance is defined between electrodes | |
DE4235743A1 (en) | High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically | |
DE4203345A1 (en) | High performance emitter, esp. for UV light - comprises discharge chamber filled with gas, and metallic outer electrodes coated with UV-transparent layer | |
DE2354341C3 (en) | Gas laser | |
DE3035702C2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19910225 |
|
17Q | First examination report despatched |
Effective date: 19930514 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HERAEUS NOBLELIGHT GMBH |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 98050 Country of ref document: AT Date of ref document: 19931215 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19931215 |
|
REF | Corresponds to: |
Ref document number: 59003641 Country of ref document: DE Date of ref document: 19940113 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19951228 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19960205 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19960207 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19960208 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19960229 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19960304 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19960312 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19970217 Ref country code: AT Effective date: 19970217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19970228 Ref country code: CH Effective date: 19970228 Ref country code: BE Effective date: 19970228 |
|
BERE | Be: lapsed |
Owner name: HERAEUS NOBLELIGHT G.M.B.H. Effective date: 19970228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19970901 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19970217 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19971030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19971101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050217 |