EP0385205B1 - Dispositif de radiation à haute puissance - Google Patents
Dispositif de radiation à haute puissance Download PDFInfo
- Publication number
- EP0385205B1 EP0385205B1 EP90103082A EP90103082A EP0385205B1 EP 0385205 B1 EP0385205 B1 EP 0385205B1 EP 90103082 A EP90103082 A EP 90103082A EP 90103082 A EP90103082 A EP 90103082A EP 0385205 B1 EP0385205 B1 EP 0385205B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dielectric
- high power
- power emitter
- emitter according
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 23
- 239000003989 dielectric material Substances 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 229910052786 argon Inorganic materials 0.000 claims description 14
- 239000011261 inert gas Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- 239000010453 quartz Substances 0.000 description 20
- 238000000576 coating method Methods 0.000 description 11
- 229910052743 krypton Inorganic materials 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 229910052724 xenon Inorganic materials 0.000 description 9
- 229910052734 helium Inorganic materials 0.000 description 8
- 229910052754 neon Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 229910052756 noble gas Inorganic materials 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000000976 ink Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001227 electron beam curing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
- H01J65/04—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
- H01J65/042—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
- H01J65/046—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
Definitions
- the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by a first tubular and a second radiation-permeable dielectric, which has first and second electrodes on its surfaces facing away from the discharge space is provided with an AC power source connected to the first and second electrodes for feeding the discharge.
- the invention relates to a state of the art, such as that derived from EP-A 054 111, US patent application 07/076 926 or EP patent application 88113393.3 from 08/22/1988 or US patent application 07 / 260,869 from October 21, 1988.
- UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
- the classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the mercury low-pressure lamps at 185 nm and especially at 254 nm.
- Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but their radiation over you distribute a larger wavelength range.
- the new excimer lasers have provided some new wavelengths for basic photochemical experiments. for cost reasons for an industrial process probably only suitable in exceptional cases.
- the high-performance radiators mentioned are characterized by high efficiency, economical structure and enable the creation of large area radiators, with the restriction that large-area flat radiators require a rather large technical effort.
- omnidirectional radiators on the other hand, a not inconsiderable proportion of the radiation due to the shadow effect of the inner electrode is not used.
- the invention has for its object to provide a high-performance radiator, in particular for UV or VUV radiation, which is characterized in particular by high efficiency, is economical to manufacture, enables the construction of very large area radiators and in which the Shadow effect of the inner electrode (s) is reduced to a minimum.
- the second dielectric is a rod made of dielectric material which is arranged within the first tubular dielectric and in the interior of which an electrical conductor is inserted or embedded, which conductor forms the second electrode.
- the outer diameter of the rod which is preferably made of quartz glass, is preferably five to ten times smaller than the inner diameter of the outer tube.
- the radiation should preferably be coupled out in one direction, for example in order to irradiate a surface.
- the ideal discharge geometry for this purpose is a flat radiator mirrored on the back (for example according to EP-A-0254 111).
- the production of flat quartz cells is associated with great technical effort and correspondingly high costs.
- One can easily achieve a preferred direction of the radiation if the discharge is distributed unevenly in the discharge gap, which can be achieved most simply by an eccentric arrangement of the dielectric rod. It is thereby achieved that the electrical discharge takes place predominantly on the side on which the optical radiation is to be coupled out.
- the layer simultaneously serving as an electrode and reflector is sufficient, the layer simultaneously serving as an electrode and reflector.
- Aluminum which is provided with a suitable protective layer (anodized, MgF2 coating), is a suitable material that is both easy to vaporize and has a high UV reflection.
- the (semi-cylindrical) recesses in the aluminum block also serve as a holder for the quartz discharge tubes, as an (earth) electrode and as a reflector. Any number of these discharge tubes can be connected in parallel by placing the internal electrodes on a common AC voltage source. For special applications you can combine tubes with different gas filling and therefore different (UV) wavelengths.
- the aluminum blocks described do not necessarily have to have flat surfaces. One can also imagine cylindrical arrangements in which the recesses for receiving the discharge tubes are either outside or inside.
- the individual gas discharge tubes can also be cooled if, for example, forms the inner electrode as a cooling channel.
- UV treatment in the absence of air is indicated.
- the first reason is when the radiation is so short-wave that it is absorbed by air and thus weakened (wavelengths ⁇ 190 nm). This radiation leads to the splitting of oxygen and thus to the undesirable Ozone formation.
- the second reason is when the intended photochemical effect of UV radiation is hindered by the presence of oxygen (oxygen inhibition). This occurs, for example, in the photo crosslinking (UV polymerization, UV drying) of paints and inks.
- a quartz tube 1 with a wall thickness of approximately 0.5 to 1.5 mm and an outer diameter of approximately 20 to 30 mm is provided with an outer electrode 2 in the form of a wire mesh.
- a second quartz tube 3 is arranged concentrically in the quartz tube 1 and has a substantially smaller outside diameter than the inside diameter of the quartz tube 1, typically 3 to 5 mm outside diameter.
- a wire 4 is inserted into the inner quartz tube 3. This forms the inner electrode of the radiator, the wire mesh 2 the outer electrode of the radiator.
- the outer quartz tube 1 is closed at both ends.
- the space between the two tubes 1 and 3, the discharge space 5, is filled with a gas / gas mixture which emits radiation under discharge conditions.
- the two electrodes 2, 4 are connected to the two poles of an alternating current source 6.
- the AC power source basically corresponds to those used to feed ozone generators. It typically delivers an adjustable AC voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few 1000 kHz - depending on the electrode geometry, pressure in the discharge space and composition of the filler gas.
- the fill gas is e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
- a substance / substance mixture according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm Argon + fluorine 180-200 nm Argon + chlorine 165-190 nm Argon + krypton + chlorine 165-190, 200-240 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124, 140-160 nm Krypton + fluorine 240 - 255 nm Krypton + chlorine 200-240 nm mercury 185, 254, 320-370, 390-420 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 340 - 360 nm, 400 - 550 nm Xenon + chlorine 300-320 nm
- the electron energy distribution can be optimally adjusted by the thickness of the dielectrics and their properties, pressure and / or temperature in the discharge space.
- quartz rods into which a metal wire is melted can also be used.
- Metal rods covered with a dielectric also lead to success.
- a perforated metal foil or a UV-transparent, electrically conductive covering can also be used.
- the discharge is distributed unevenly in the discharge space.
- the easiest way to do this is by eccentrically arranging the inner dielectric tube 3 in the outer tube 1, as is illustrated in FIG. 2, for example.
- the inner quartz tube 3 is arranged outside the center near the inner wall of the tube 1. In the limit case, the tube 3 can even rest against the tube 1 and be glued there linearly or at certain points to the inner wall.
- the eccentric arrangement of the inner quartz tube and thus the inner electrode 4 has no decisive influence on the quality of the discharge.
- the peak voltage is set just a small area in the immediate vicinity of the quartz tube 3 ignites.
- the discharge zone can be gradually enlarged until the entire discharge space 5 is filled with luminous plasma.
- an electrode 2 (FIG. 2) applied to the entire outer circumference of the outer dielectric tube 1 (FIG. 2) is sufficient also a partial coating of the outer surface of the tube 1, as illustrated in Figure 3.
- an eccentric arrangement of the inner quartz tube 3 is also possible here, the coating 7 only extending symmetrically over the outer wall section facing the inner quartz tube 3. This layer 7 is simultaneously the outer electrode and the reflector.
- Aluminum is particularly suitable as a material that is both easy to vaporize and has a high UV reflection.
- FIG. 5 illustrates the manner in which a multiplicity of concentric radiators according to FIG. 3 can be combined to form a surface radiator.
- 6 shows a corresponding arrangement with eccentrically arranged inner quartz tubes 3 according to FIG.
- an aluminum body 8 is provided with a plurality of parallel grooves 9 with a circular cross section, which are spaced apart from one another by more than one outer tube diameter.
- the grooves 9 are adapted to the outer quartz tubes 1 and treated by polishing or the like so that they reflect well. Additional bores 10, which run in the direction of the tubes 1, serve to cool the radiators.
- the AC source 6 leads with one pole to the aluminum body 8, the inner electrodes 4 of the radiators are connected in parallel and connected to the other pole of the source 6.
- the groove walls serve both as an outer electrode and as reflectors.
- single emitters can be combined with different gas fillings and thus different (UV) wavelengths.
- the aluminum bodies 8 do not necessarily have to have flat surfaces.
- E.g. 7 and 8 illustrate a variant with a hollow cylindrical aluminum body 8a with axially parallel grooves 9 regularly distributed over its inner circumference, in each of which a radiator element according to FIGS. 3 and 4 is inserted.
- the radiator according to Fig. 9 basically corresponds to that according to Fig. 5. with additional channels 11 running in the longitudinal direction of the metal block 8. These channels are connected to the treatment room 12 via a multiplicity of bores or slots 13 in the metal block 8, specifically via the comparatively narrow gap between the outer ones, which is caused by inevitable manufacturing tolerances of the quartz tubes 1 Quartz tubes 1 and the grooves 9 in the metal block 8 in connection.
- the channels 11 are connected to an inert gas source, not shown, e.g. Nitrogen or argon source connected.
- the pressurized inert gas reaches the treatment room 12 from the channels 11 in the manner described. This treatment room is delimited on the one hand by legs 14 on the metal block 8 and by the substrate 15 to be irradiated.
- FIG. 9 A further possibility of supplying inert gas to the treatment room 12 is illustrated in FIG.
- the emitter largely corresponds to that according to Fig. 6.
- Metal blocks 8 extending channels 11 are provided, which are connected directly to the treatment room 12 via bores or slots 13. Otherwise the structure and mode of operation correspond to those according to Fig. 9.
- the cylinder emitters according to FIGS. 7 and 8 can also be provided with means for supplying inert gas to the treatment room (there the inside of the tube 8a) without leaving the scope of the invention.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Claims (10)
- Dispositif de rayonnement de forte puissance, en particulier pour lumière ultraviolette, comportant un espace de décharge (5) qui est rempli d'un gaz de remplissage émettant un rayonnement sous des conditions de décharge et dont les parois sont formées par un premier diélectrique tubulaire (1) et par un second diélectrique (3) qui est transparent au rayonnement et qui, sur ses surfaces situées du côté opposé à l'espace de décharge (5), est muni d'une première (2, 7) et d'une seconde (4) électrodes, et comportant aussi une source de courant alternatif (6), reliée à la première et à la seconde électrodes, pour alimenter la décharge, dispositif caractérisé par le fait que le second diélectrique est un barreau (3) de matériau diélectrique qui est disposé à l'intérieur du premier délectrique tubulaire (1) et à l'intérieur duquel est inséré, enrobé, un conducteur électrique (4) qui forme la seconde électrode.
- Dispositif de rayonnement de forte puissance selon la revendication 1, caractérisé par le fait que le diamètre extérieur du barreau (3) est de cinq à dix fois plus petit que le diamètre intérieur du premier diélectrique tubulaire (1).
- Dispositif de rayonnement de forte puissance selon la revendication 1 ou 2, caractérisé par le fait que le barreau en matériau diélectrique est disposé excentriquement dans le premier diélectrique tubulaire (1).
- Dispositif de rayonnement de forte puissance selon la revendication 3, caractérisé par le fait que la première électrode (7) ne recouvre la paroi extérieure du premier diélectrique (1) que par la portion qui correspond au second diélectrique (3) et qui est conçue comme réflecteur.
- Dispositif de rayonnement de forte puissance selon la revendication 4, caractérisé par le fait que la première électrode et le réflecteur sont conçus sous forme d'évidements dans le matériau, de préférence sous forme de rainures (9), dans une pièce métallique (8).
- Dispositif de rayonnement de forte puissance selon la revendication 5, caractérisé par le fait que dans la pièce métallique (10) sont prévus des perçages de refroidissement (10) qui n'intersectent pas les évidements (9) dans le matériau.
- Dispositif de rayonnement de forte puissance selon la revendication 5, caractérisé par le fait que la section des évidements (9) dans le matériau est adaptée au diamètre extérieur du premier diélectrique (1) et que les parois des évidements sont conçues sous forme de réflecteurs UV.
- Dispositif de rayonnement de forte puissance selon l'une des revendications 5 à 7, caractérisé par le fait que des moyens (11,13) sont prévus pour amener du gaz inerte dans l'espace (12) en dehors du premier diélectrique tubulaire (1).
- Dispositif de rayonnement de forte puissance selon la revendication 8, caractérisé par le fait que dans la pièce métallique (8,8a) sont prévus des canaux (11) qui sont en liaison, directe ou indirecte, avec l'espace de traitement (12), canaux (11) par lesquels on peut amener un gaz inerte, de préférence de l'azote ou de l'argon.
- Dispositif de rayonnement de forte puissance selon la revendication 9, caractérisé par le fait que les canaux (11) sont chacun disposés entre les tubes de diélectrique voisins (1) et sont en liaison avec l'espace de traitement (12) par l'intermédiaire de perçages ou de fentes (13).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT90103082T ATE98050T1 (de) | 1989-02-27 | 1990-02-17 | Hochleistungsstrahler. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH720/89A CH677292A5 (fr) | 1989-02-27 | 1989-02-27 | |
CH720/89 | 1989-02-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0385205A1 EP0385205A1 (fr) | 1990-09-05 |
EP0385205B1 true EP0385205B1 (fr) | 1993-12-01 |
Family
ID=4193615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90103082A Expired - Lifetime EP0385205B1 (fr) | 1989-02-27 | 1990-02-17 | Dispositif de radiation à haute puissance |
Country Status (6)
Country | Link |
---|---|
US (1) | US5013959A (fr) |
EP (1) | EP0385205B1 (fr) |
JP (1) | JP2823637B2 (fr) |
AT (1) | ATE98050T1 (fr) |
CH (1) | CH677292A5 (fr) |
DE (1) | DE59003641D1 (fr) |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4010190A1 (de) * | 1990-03-30 | 1991-10-02 | Asea Brown Boveri | Bestrahlungseinrichtung |
CH680099A5 (fr) * | 1990-05-22 | 1992-06-15 | Asea Brown Boveri | |
EP0482230B1 (fr) * | 1990-10-22 | 1995-06-21 | Heraeus Noblelight GmbH | Dispositif de rayonnement à haute puissance |
EP0489184B1 (fr) * | 1990-12-03 | 1996-02-28 | Heraeus Noblelight GmbH | Dispositif de rayonnement à haute puissance |
US5220236A (en) * | 1991-02-01 | 1993-06-15 | Hughes Aircraft Company | Geometry enhanced optical output for rf excited fluorescent lights |
CA2059209C (fr) * | 1991-02-01 | 1997-05-27 | William J. Council | Systeme d'eclairage fluorescent rf |
DE59105798D1 (de) * | 1991-04-15 | 1995-07-27 | Heraeus Noblelight Gmbh | Bestrahlungseinrichtung. |
DE59104972D1 (de) * | 1991-06-01 | 1995-04-20 | Heraeus Noblelight Gmbh | Bestrahlungseinrichtung mit einem Hochleistungsstrahler. |
DE69210113T2 (de) * | 1991-07-01 | 1996-11-21 | Philips Patentverwaltung | Hochdrucksglimmentladungslampe |
DE4140497C2 (de) * | 1991-12-09 | 1996-05-02 | Heraeus Noblelight Gmbh | Hochleistungsstrahler |
DE4222130C2 (de) * | 1992-07-06 | 1995-12-14 | Heraeus Noblelight Gmbh | Hochleistungsstrahler |
DE4235743A1 (de) * | 1992-10-23 | 1994-04-28 | Heraeus Noblelight Gmbh | Hochleistungsstrahler |
US5384515A (en) * | 1992-11-02 | 1995-01-24 | Hughes Aircraft Company | Shrouded pin electrode structure for RF excited gas discharge light sources |
US5334913A (en) * | 1993-01-13 | 1994-08-02 | Fusion Systems Corporation | Microwave powered lamp having a non-conductive reflector within the microwave cavity |
US6211383B1 (en) | 1993-08-05 | 2001-04-03 | Kimberly-Clark Worldwide, Inc. | Nohr-McDonald elimination reaction |
US6017471A (en) | 1993-08-05 | 2000-01-25 | Kimberly-Clark Worldwide, Inc. | Colorants and colorant modifiers |
US5643356A (en) | 1993-08-05 | 1997-07-01 | Kimberly-Clark Corporation | Ink for ink jet printers |
US5721287A (en) | 1993-08-05 | 1998-02-24 | Kimberly-Clark Worldwide, Inc. | Method of mutating a colorant by irradiation |
US5773182A (en) | 1993-08-05 | 1998-06-30 | Kimberly-Clark Worldwide, Inc. | Method of light stabilizing a colorant |
US6017661A (en) | 1994-11-09 | 2000-01-25 | Kimberly-Clark Corporation | Temporary marking using photoerasable colorants |
US5733693A (en) | 1993-08-05 | 1998-03-31 | Kimberly-Clark Worldwide, Inc. | Method for improving the readability of data processing forms |
US5681380A (en) | 1995-06-05 | 1997-10-28 | Kimberly-Clark Worldwide, Inc. | Ink for ink jet printers |
US5645964A (en) | 1993-08-05 | 1997-07-08 | Kimberly-Clark Corporation | Digital information recording media and method of using same |
US5865471A (en) | 1993-08-05 | 1999-02-02 | Kimberly-Clark Worldwide, Inc. | Photo-erasable data processing forms |
CA2120838A1 (fr) | 1993-08-05 | 1995-02-06 | Ronald Sinclair Nohr | Substance a couleur en aplat variable a l'ultraviolet |
US5914564A (en) * | 1994-04-07 | 1999-06-22 | The Regents Of The University Of California | RF driven sulfur lamp having driving electrodes which face each other |
US5739175A (en) | 1995-06-05 | 1998-04-14 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition containing an arylketoalkene wavelength-specific sensitizer |
US6242057B1 (en) | 1994-06-30 | 2001-06-05 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition and applications therefor |
US5685754A (en) | 1994-06-30 | 1997-11-11 | Kimberly-Clark Corporation | Method of generating a reactive species and polymer coating applications therefor |
US6071979A (en) | 1994-06-30 | 2000-06-06 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition method of generating a reactive species and applications therefor |
DE4430300C1 (de) * | 1994-08-26 | 1995-12-21 | Abb Research Ltd | Excimerstrahler und dessen Verwendung |
US6008268A (en) | 1994-10-21 | 1999-12-28 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition, method of generating a reactive species, and applications therefor |
US5811199A (en) | 1995-06-05 | 1998-09-22 | Kimberly-Clark Worldwide, Inc. | Adhesive compositions containing a photoreactor composition |
US5849411A (en) | 1995-06-05 | 1998-12-15 | Kimberly-Clark Worldwide, Inc. | Polymer film, nonwoven web and fibers containing a photoreactor composition |
RU2170943C2 (ru) | 1995-06-05 | 2001-07-20 | Кимберли-Кларк Уорлдвайд, Инк. | Новые прекрасители |
US5747550A (en) | 1995-06-05 | 1998-05-05 | Kimberly-Clark Worldwide, Inc. | Method of generating a reactive species and polymerizing an unsaturated polymerizable material |
US5798015A (en) | 1995-06-05 | 1998-08-25 | Kimberly-Clark Worldwide, Inc. | Method of laminating a structure with adhesive containing a photoreactor composition |
US5786132A (en) | 1995-06-05 | 1998-07-28 | Kimberly-Clark Corporation | Pre-dyes, mutable dye compositions, and methods of developing a color |
JP2000506550A (ja) | 1995-06-28 | 2000-05-30 | キンバリー クラーク ワールドワイド インコーポレイテッド | 新規な着色剤および着色剤用改質剤 |
US5855655A (en) | 1996-03-29 | 1999-01-05 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
CA2210480A1 (fr) | 1995-11-28 | 1997-06-05 | Kimberly-Clark Worldwide, Inc. | Stabilisants ameliores pour colorants |
US6099628A (en) | 1996-03-29 | 2000-08-08 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5782963A (en) | 1996-03-29 | 1998-07-21 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5891229A (en) | 1996-03-29 | 1999-04-06 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5998921A (en) * | 1997-03-21 | 1999-12-07 | Stanley Electric Co., Ltd. | Fluorescent lamp with coil shaped internal electrode |
US5834784A (en) * | 1997-05-02 | 1998-11-10 | Triton Thalassic Technologies, Inc. | Lamp for generating high power ultraviolet radiation |
JPH1125921A (ja) * | 1997-07-04 | 1999-01-29 | Stanley Electric Co Ltd | 蛍光ランプ |
US6524379B2 (en) | 1997-08-15 | 2003-02-25 | Kimberly-Clark Worldwide, Inc. | Colorants, colorant stabilizers, ink compositions, and improved methods of making the same |
US5945790A (en) * | 1997-11-17 | 1999-08-31 | Schaefer; Raymond B. | Surface discharge lamp |
US6015759A (en) * | 1997-12-08 | 2000-01-18 | Quester Technology, Inc. | Surface modification of semiconductors using electromagnetic radiation |
CA2224699A1 (fr) | 1997-12-12 | 1999-06-12 | Resonance Ltd. | Electrode creuse pour lampe sans electrode |
US6049086A (en) * | 1998-02-12 | 2000-04-11 | Quester Technology, Inc. | Large area silent discharge excitation radiator |
KR20010042176A (ko) * | 1998-03-24 | 2001-05-25 | 알프레드 엘. 미첼슨 | 외부전극 구동형 방전램프 |
BR9906513A (pt) | 1998-06-03 | 2001-10-30 | Kimberly Clark Co | Fotoiniciadores novos e aplicações para osmesmos |
EP1062285A2 (fr) | 1998-06-03 | 2000-12-27 | Kimberly-Clark Worldwide, Inc. | Techniques recourant aux neonanoplastes et aux microemulsions relatives aux encres et a l'impression par jets d'encre |
US6228157B1 (en) | 1998-07-20 | 2001-05-08 | Ronald S. Nohr | Ink jet ink compositions |
DE69930948T2 (de) | 1998-09-28 | 2006-09-07 | Kimberly-Clark Worldwide, Inc., Neenah | Chelate mit chinoiden gruppen als photoinitiatoren |
DE19844921A1 (de) * | 1998-09-30 | 2000-04-13 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Flache Beleuchtungsvorrichtung |
ATE238393T1 (de) | 1999-01-19 | 2003-05-15 | Kimberly Clark Co | Farbstoffe, farbstoffstabilisatoren, tintenzusammensetzungen und verfahren zu deren herstellung |
US6331056B1 (en) | 1999-02-25 | 2001-12-18 | Kimberly-Clark Worldwide, Inc. | Printing apparatus and applications therefor |
US6294698B1 (en) | 1999-04-16 | 2001-09-25 | Kimberly-Clark Worldwide, Inc. | Photoinitiators and applications therefor |
US6368395B1 (en) | 1999-05-24 | 2002-04-09 | Kimberly-Clark Worldwide, Inc. | Subphthalocyanine colorants, ink compositions, and method of making the same |
US6201355B1 (en) | 1999-11-08 | 2001-03-13 | Triton Thalassic Technologies, Inc. | Lamp for generating high power ultraviolet radiation |
DE10145648B4 (de) * | 2001-09-15 | 2006-08-24 | Arccure Technologies Gmbh | Bestrahlungsvorrichtung mit veränderlichem Spektrum |
US6891334B2 (en) * | 2001-09-19 | 2005-05-10 | Matsushita Electric Industrial Co., Ltd. | Light source device and liquid crystal display employing the same |
TW558732B (en) | 2001-09-19 | 2003-10-21 | Matsushita Electric Ind Co Ltd | Light source apparatus and liquid crystal display apparatus using the same |
US6806648B2 (en) * | 2001-11-22 | 2004-10-19 | Matsushita Electric Industrial Co., Ltd. | Light source device and liquid crystal display device |
US6906461B2 (en) * | 2001-12-28 | 2005-06-14 | Matsushita Electric Industrial Co., Ltd. | Light source device with inner and outer electrodes and liquid crystal display device |
JP3889987B2 (ja) * | 2002-04-19 | 2007-03-07 | パナソニック フォト・ライティング 株式会社 | 放電灯装置及びバックライト |
US20040136885A1 (en) * | 2003-01-09 | 2004-07-15 | Hogarth Derek J. | Apparatus and method for generating ozone |
US7029637B2 (en) * | 2003-01-09 | 2006-04-18 | H203, Inc. | Apparatus for ozone production, employing line and grooved electrodes |
DE10336088A1 (de) * | 2003-08-06 | 2005-03-03 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | UV-Strahler mit rohrförmigem Entladungsgefäß |
US8154216B2 (en) * | 2005-10-04 | 2012-04-10 | Topanga Technologies, Inc. | External resonator/cavity electrode-less plasma lamp and method of exciting with radio-frequency energy |
US8102123B2 (en) | 2005-10-04 | 2012-01-24 | Topanga Technologies, Inc. | External resonator electrode-less plasma lamp and method of exciting with radio-frequency energy |
US8258687B2 (en) * | 2006-03-28 | 2012-09-04 | Topanga Technologies, Inc. | Coaxial waveguide electrodeless lamp |
US8022377B2 (en) * | 2008-04-22 | 2011-09-20 | Applied Materials, Inc. | Method and apparatus for excimer curing |
JP2011522381A (ja) * | 2008-05-30 | 2011-07-28 | コロラド ステート ユニバーシティ リサーチ ファンデーション | プラズマに基づく化学源装置およびその使用方法 |
US8125333B2 (en) * | 2008-06-04 | 2012-02-28 | Triton Thalassic Technologies, Inc. | Methods, systems and apparatus for monochromatic UV light sterilization |
JP5271762B2 (ja) * | 2009-03-13 | 2013-08-21 | 株式会社オーク製作所 | 放電ランプ |
TW201202008A (en) * | 2010-07-12 | 2012-01-16 | Hon Hai Prec Ind Co Ltd | Device and method for making optical film |
DE102010043215A1 (de) * | 2010-11-02 | 2012-05-03 | Osram Ag | Strahler mit Sockel für die Bestrahlung von Oberflächen |
CN103318203B (zh) * | 2012-10-12 | 2015-09-23 | 北京航空航天大学 | 带有仿机翼的空气动力悬浮列车的轻质复合材料车厢结构 |
DE102012219064A1 (de) | 2012-10-19 | 2014-04-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UV-Lichtquelle mit kombinierter Ionisation und Bildung von Excimern |
US9117636B2 (en) | 2013-02-11 | 2015-08-25 | Colorado State University Research Foundation | Plasma catalyst chemical reaction apparatus |
US9269544B2 (en) | 2013-02-11 | 2016-02-23 | Colorado State University Research Foundation | System and method for treatment of biofilms |
US9532826B2 (en) | 2013-03-06 | 2017-01-03 | Covidien Lp | System and method for sinus surgery |
US9555145B2 (en) | 2013-03-13 | 2017-01-31 | Covidien Lp | System and method for biofilm remediation |
US10237962B2 (en) | 2014-02-26 | 2019-03-19 | Covidien Lp | Variable frequency excitation plasma device for thermal and non-thermal tissue effects |
US9722550B2 (en) | 2014-04-22 | 2017-08-01 | Hoon Ahn | Power amplifying radiator (PAR) |
US10524849B2 (en) | 2016-08-02 | 2020-01-07 | Covidien Lp | System and method for catheter-based plasma coagulation |
WO2020041403A1 (fr) * | 2018-08-22 | 2020-02-27 | Georgia Tech Research Corporation | Systèmes et procédés d'interface de détection flexible |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4038577A (en) * | 1969-04-28 | 1977-07-26 | Owens-Illinois, Inc. | Gas discharge display device having offset electrodes |
FR2109228A5 (fr) * | 1970-10-07 | 1972-05-26 | Mcb | |
US3828277A (en) * | 1971-12-27 | 1974-08-06 | Us Army | Integral capacitor lateral discharge laser |
JPS5732564A (en) * | 1980-08-04 | 1982-02-22 | Toshiba Corp | High-frequency flat electric-discharge lamp |
JPS5763756A (en) * | 1980-09-12 | 1982-04-17 | Chow Shing Cheung | Discharge lamp |
JPS599849A (ja) * | 1982-07-09 | 1984-01-19 | Okaya Denki Sangyo Kk | 高周波放電ランプ |
CH670171A5 (fr) * | 1986-07-22 | 1989-05-12 | Bbc Brown Boveri & Cie |
-
1989
- 1989-02-27 CH CH720/89A patent/CH677292A5/de not_active IP Right Cessation
-
1990
- 1990-02-17 AT AT90103082T patent/ATE98050T1/de not_active IP Right Cessation
- 1990-02-17 DE DE90103082T patent/DE59003641D1/de not_active Expired - Fee Related
- 1990-02-17 EP EP90103082A patent/EP0385205B1/fr not_active Expired - Lifetime
- 1990-02-27 JP JP2044687A patent/JP2823637B2/ja not_active Expired - Fee Related
- 1990-02-27 US US07/485,544 patent/US5013959A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE59003641D1 (de) | 1994-01-13 |
US5013959A (en) | 1991-05-07 |
JPH03201358A (ja) | 1991-09-03 |
CH677292A5 (fr) | 1991-04-30 |
JP2823637B2 (ja) | 1998-11-11 |
EP0385205A1 (fr) | 1990-09-05 |
ATE98050T1 (de) | 1993-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0385205B1 (fr) | Dispositif de radiation à haute puissance | |
EP0458140B1 (fr) | Radiateur à haute puissance | |
EP0389980B1 (fr) | Dispositif de rayonnement à haute puissance | |
EP0578953B1 (fr) | Emetteur de rayonnement à haute puissance | |
DE4140497C2 (de) | Hochleistungsstrahler | |
EP0371304B1 (fr) | Dispositif de radiation à haute puissance | |
DE19636965B4 (de) | Elektrische Strahlungsquelle und Bestrahlungssystem mit dieser Strahlungsquelle | |
EP0449018A2 (fr) | Dispositif d'irradiation | |
EP0363832B1 (fr) | Dispositif de rayonnement à haute puissance | |
EP0509110B1 (fr) | Dispositif d'irradiation | |
DE69501196T3 (de) | Lichtquellen-Vorrichtung mit einer Dielektrikumbegrenzter Entladungslampe | |
DE69230895T2 (de) | Entladungslampe und Verfahren zu deren Herstellung | |
EP0482230B1 (fr) | Dispositif de rayonnement à haute puissance | |
CH670171A5 (fr) | ||
EP0517929B1 (fr) | Dispositif d'irradiation avec un radiateur à haute puissance | |
EP0489184B1 (fr) | Dispositif de rayonnement à haute puissance | |
DE4010809A1 (de) | Hochleistungsstrahler | |
DE2502649A1 (de) | Verbesserte elektrodenstruktur fuer hochstrom-niederdruck-entladungsvorrichtungen | |
DE4022279A1 (de) | Bestrahlungseinrichtung | |
EP0393449A1 (fr) | Lampe fluorescente | |
DE102005007370B3 (de) | Kompakte UV-Lichtquelle | |
DE4235743A1 (de) | Hochleistungsstrahler | |
DE4203345A1 (de) | Hochleistungsstrahler | |
DE2354341C3 (de) | Gaslaser | |
DE3035702C2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19910225 |
|
17Q | First examination report despatched |
Effective date: 19930514 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HERAEUS NOBLELIGHT GMBH |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 98050 Country of ref document: AT Date of ref document: 19931215 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19931215 |
|
REF | Corresponds to: |
Ref document number: 59003641 Country of ref document: DE Date of ref document: 19940113 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19951228 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19960205 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19960207 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19960208 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19960229 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19960304 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19960312 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19970217 Ref country code: AT Effective date: 19970217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19970228 Ref country code: CH Effective date: 19970228 Ref country code: BE Effective date: 19970228 |
|
BERE | Be: lapsed |
Owner name: HERAEUS NOBLELIGHT G.M.B.H. Effective date: 19970228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19970901 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19970217 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19971030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19971101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050217 |