EP0482230B1 - High power radiation device - Google Patents

High power radiation device Download PDF

Info

Publication number
EP0482230B1
EP0482230B1 EP90120261A EP90120261A EP0482230B1 EP 0482230 B1 EP0482230 B1 EP 0482230B1 EP 90120261 A EP90120261 A EP 90120261A EP 90120261 A EP90120261 A EP 90120261A EP 0482230 B1 EP0482230 B1 EP 0482230B1
Authority
EP
European Patent Office
Prior art keywords
tube
high power
tubes
power emitter
emitter according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90120261A
Other languages
German (de)
French (fr)
Other versions
EP0482230A1 (en
Inventor
Christoph Von Arx
Stefan Stutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Priority to DE59009300T priority Critical patent/DE59009300D1/en
Priority to EP90120261A priority patent/EP0482230B1/en
Priority to US07/770,408 priority patent/US5283498A/en
Priority to JP3273631A priority patent/JPH04264349A/en
Publication of EP0482230A1 publication Critical patent/EP0482230A1/en
Application granted granted Critical
Publication of EP0482230B1 publication Critical patent/EP0482230B1/en
Priority to JP1996004374U priority patent/JP2580266Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, with electrodes which are connected in pairs to one or more high-voltage sources, dielectric material lying between two electrodes at different potential adjoins the discharge space.
  • the invention relates to a state of the art, such as that derived from EP-A-0 363 832 or EP-A-0 385 205.
  • UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
  • the classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the mercury low-pressure lamps at 185 nm and especially at 254 nm.
  • Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but distribute their radiation over a larger wavelength range.
  • the new excimer lasers have provided some new wavelengths for basic photochemical experiments. These are currently for cost reasons for an industrial process probably only suitable in exceptional cases.
  • the object of the invention is to create a high-performance radiator, in particular for UV or VUV light, which, owing to its modular structure, can be produced economically and also enables the construction of very large area radiators.
  • the discharge space is bounded on the outside by a tube which is transparent to the radiation generated and in which tube spaced apart from one another and from the transparent tube are arranged with dielectric electrodes with internal electrodes.
  • the manufacture of the high-power radiator according to the invention is simplified and less expensive than in the known radiators.
  • the limiting glass / quartz material there are no very high demands, since the limiting walls only have to be transparent to the useful radiation and are not stressed by the discharge. This leads to a longer lamp life.
  • the gap width and its tolerances are also far less critical.
  • very large area radiators can now be realized, which can be made very thin. Because practically the entire length of the discharge space contributes to emission, the UV yield is very high. There are no transmission losses from an electrode grid or a partially permeable layer.
  • the dielectrics can be optimized for the UV radiation to be generated because they do not have to be transparent to the UV light, which means that particularly high efficiencies can be expected for special applications.
  • Such applications with growing economic importance include e.g. use as a strong UV lamp for pre-ionization purposes of other discharges, e.g. Lasers, treatment of surfaces with UV exposure, chemical processes such as the preparation of new chemicals or surfaces and coating processes such as UV-assisted CVD or plasma CVD (Chemical Vapor Deposition), Photo-CVD, in which a substrate to be treated with a suitable filling gas is as dense as possible is brought to a UV light source.
  • dielectric tubes 6 with internal electrodes 7 are arranged in a quartz tube 1 with the broad sides 2, 3 and the narrow sides 4, 5.
  • the dielectric tubes 6 are from each other and also from the Walls of the quartz tube 1 spaced.
  • the dielectric tubes 6 are, for example, quartz tubes, the inner end 8 of which is melted, ie closed (see FIG. 2).
  • the inner electrode 7 is a metal rod which is inserted into the quartz tube. Instead, a metal rod or metal wire covered with dielectric material can also be used.
  • the two narrow sides 4, 5 and one of the broad sides 3 of the quartz tube 1 are each provided with an aluminum layer 9 on the outside. The three coatings can - but need not - be electrically insulated from one another.
  • the aluminum layer 9 is preferably vapor-deposited, flame-sprayed, plasma-sprayed or sputtered and serves as a reflector.
  • the quartz tube 1 is closed on both ends by plates 10, 11 made of insulating material. These plates are glued to the end faces, for example, or, in the case of quartz or glass plates, are fused to said end walls.
  • the plates 10, 11 are provided with openings 12, in which the dielectric tubes 6 are alternately inserted from both sides of the quartz tube 1 and fastened and sealed therein.
  • the dielectric tubes are melted or glued at the ends opposite the installation points.
  • the dielectric tubes 6 are held at the free end 8 in tubular support elements 13 into which these ends 8 are immersed.
  • additional supports 14 can also be provided in the center of the tube (see FIG. 6).
  • the interior of the quartz tube 1 can be evacuated via a filler neck 15 and then filled with a filler gas.
  • the radiator is electrically supplied from an alternating current source 16 in such a way that adjacent inner electrodes 7 are connected to the alternating current source 16 in alternation. As later (based on 9) is explained in more detail, several AC sources can also be used.
  • the discharges 17 then form in the space between two adjacent dielectric tubes 6.
  • the AC power source 16 basically corresponds to those used for feeding ozone generators. Typically, it delivers an adjustable AC voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few MHz - depending on the electrode geometry, pressure in the discharge space and composition of the filling gas.
  • the inside of the quartz tube 1 is filled with a filling gas which emits radiation under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
  • a filling gas which emits radiation under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
  • the electron energy distribution can be optimally adjusted by the wall thickness of the dielectric tubes 6 and their dielectric properties, distance between the dielectric tubes 6, pressure and / or temperature of the filling gas.
  • the metallic reflector layers 9 can be on the narrow sides of the quartz tube 1 can also be used as external electrodes.
  • the electrical contact can be made using stranded strips 18 or resilient contact strips.
  • discharges 17a also form between the outermost dielectric tubes 6 and the narrow sides 4, 5 of the quartz tube 1.
  • FIG. 4 shows the feeding of a radiator according to FIG. 3 with a power supply device with a balanced output.
  • the full output voltage of the alternating current source 16 lies between adjacent inner electrodes 7, while half the output voltage lies between the inner electrodes 7 of the outer dielectric tubes 6 and the outer electrodes 9. Accordingly, the distance between the dielectric tubes 6 is also larger than the distance between the two outer dielectric tubes 6 from the narrow sides 4, 5 of the quartz tube 1.
  • the quartz tube 1 can be converted into a correspondingly dimensioned metal profile 19 with a U-shaped cross section, for example made of aluminum or copper, with, e.g. Coolant bores 20 extending in the longitudinal direction of the profile are inserted.
  • a resilient metallic contact strip 21 is inserted between the legs of the U-profile and the narrow sides 4, 5 of the quartz tube 1 and extends over the entire length of the tube.
  • the layer 9 also for fixing the quartz tube 1 in the space between the legs of the metal profile 19.
  • an intermediate layer of thermally conductive paste 30 can be provided between the profile base and the quartz tube 1 in order to improve the heat transfer.
  • the electrical feed takes place analogously to FIG. 4, ie the metal profile 19 is at earth potential. Of course, the electrical feed can also take place as illustrated in FIG. 2 or 3.
  • quartz tubes 1 instead of an odd number of quartz tubes 1, even numbered variants can also be provided for configurations according to FIGS. 2, 3 and 4.
  • two or more layers can be provided, as is illustrated in FIG.
  • the dielectric tubes 6 of one layer are offset from the dielectric tubes of the adjacent layer by half a tube spacing.
  • the dielectric tubes 6 of each layer are connected in parallel and connected to the two poles of the AC power source 16.
  • the discharge channels run obliquely through the discharge space from one position to the next.
  • the invention offers the possibility of embedding several individual radiators, for example according to FIG. 1 or FIG. 3, in a common cooling element, as is illustrated in FIG. 9.
  • an aluminum or copper profile 19a is provided with, in the example case 3, channels with a U-shaped cross section running in the longitudinal direction of the profile. 5, quartz tubes 1 are inserted into these channels, the structure of which was described in detail in connection with FIGS. 1, 3 or 5.
  • the electrical feed can take place analogously to the previous exemplary embodiments. Deviating from this, it is illustrated in FIG. 9 that the individual radiators are connected to separate AC sources 16a, 16b, 16c a are connected. This measure will be necessary if a single source is not sufficient to supply a plurality of radiators.
  • the previous embodiments of the invention all relate to quartz tubes with a rectangular cross section. It is within the scope of the invention to arrange the dielectric tubes 6 in the intermediate space 22 between two quartz tubes 23, 24 arranged coaxially one inside the other.
  • the internal electrodes 7 are alternately connected to the two connections of the alternating current source 16 analogously to FIG. 2 or 3, analogously to FIG. 1 the internal electrodes 7 of the first group of internal electrodes 7 are connected to one another on one end face, the internal electrodes 7 of the other group to the other end face of the tubes 23, 24 are brought together. Analogously to FIG. 2, the interior 22 is closed on both end faces of the quartz tubes 23, 24 with an annular cover 25, which is also a holder for the dielectric tubes 6.
  • an aluminum layer 9 serving as a reflector must be provided on the inner surface of the inner quartz tube 23 or on the outer surface of the outer quartz tube 24.
  • an omnidirectional radiator for example by passing coolant through the interior 26 of the inner quartz tube 23, or by filling this interior 26 with a heat sink (not shown).
  • coolant can either be flushed around the outer jacket of the outer quartz tube 24, or an independent heat sink can be placed over the outer quartz tube 24.
  • the one to be irradiated Material 31 is guided over a drum 32.
  • the cooling element 19b made of a good heat-conducting metal, for example copper or aluminum, consists of a tube section adapted to the drum 32 with cooling bores 20 running in the longitudinal direction of the tube.
  • the inner wall of the tube section has open channels 33 with a rectangular cross section, into which quartz profiles according to FIG Fig.3 are inserted and fastened therein.
  • the electrical feed takes place analogously to the previous exemplary embodiments.
  • electrodes with almost any cross section can also be used in all embodiments.
  • the inner electrodes 7 are hollow electrodes.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Lasers (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Description

Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüllten Entladungsraum, mit Elektroden, die paarweise an eine oder mehrere Hochspannungsquellen angeschlossen sind, wobei zwischen zwei auf unterschiedlichem Potential liegenden Elektroden dielektrisches Material liegt, das an den Entladungsraum angrenzt.
Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er sich etwa aus der EP-A-0 363 832 oder EP-A-0 385 205.
The invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, with electrodes which are connected in pairs to one or more high-voltage sources, dielectric material lying between two electrodes at different potential adjoins the discharge space.
The invention relates to a state of the art, such as that derived from EP-A-0 363 832 or EP-A-0 385 205.

Technologischer Hintergrund und Stand der TechnikTechnological background and state of the art

Der industrielle Einsatz photochemischer Verfahren hängt stark von der der Verfügbarkeit geeigneter UV-Quellen ab. Die klassischen UV-Strahler liefern niedrige bis mittlere UV-Intensitäten bei einigen diskreten Wellenlängen, wie z.B. die Quecksilber-Niederdrucklampen bei 185 nm und insbesondere bei 254 nm. Wirklich hohe UV-Leistungen erhält man nur aus Hochdrucklampen (Xe, Hg), die dann aber ihre Strahlung über einen grösseren Wellenlängenbereich verteilen. Die neuen Excimer-Laser haben einige neue Wellenlängen für photochemische Grundlagenexperimente bereitgestellt. Diese sind z.Zt. aus Kostengründen für einen industriellen Prozess wohl nur in Ausnahmefällen geeignet.The industrial use of photochemical processes depends heavily on the availability of suitable UV sources. The classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the mercury low-pressure lamps at 185 nm and especially at 254 nm. Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but distribute their radiation over a larger wavelength range. The new excimer lasers have provided some new wavelengths for basic photochemical experiments. These are currently for cost reasons for an industrial process probably only suitable in exceptional cases.

In der eingangs genannten EP-Patentanmeldung oder auch in dem Konferenzdruck "Neue UV- und VUV-Excimerstrahler" von U.Kogelschatz und B.Eliasson, verteilt an der 10.Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photochemie, in Würzburg (BRD) 18.- 20.November 1987, wird ein neuer Excimerstrahler beschrieben. Dieser neue Strahlertyp basiert auf der Grundlage, dass man Excimerstrahlung auch in stillen elektrischen Entladungen erzeugen kann, einem Entladungstyp, der in der Ozonerzeugung grosstechnisch eingesetzt wird. In den nur kurzzeitig (< 1 Mikrosekunde) vorhandenen Stromfilamenten dieser Entladung werden durch Elektronenstösse Edelgasatome angeregt, die zu angeregten Molekülkomplexen (Excimeren) weiterreagieren. Diese Excimere leben nur einigen 100 Nanosekunden und geben beim Zerfall ihre Bindungsenergie in Form von Strahlung ab, deren Wellenlängenbereich je nach Zusammensetzung des Füllgases im UV-A, UV-B, UV-C oder auch im sichtbaren Spektralbereich liegen kann.In the EP patent application mentioned at the beginning or in the conference paper "New UV and VUV excimer emitters" by U.Kogelschatz and B.Eliasson, distributed at the 10th lecture conference of the Society of German Chemists, Photochemistry Group, in Würzburg (FRG) 18 - November 20, 1987, a new excimer emitter is described. This new type of emitter is based on the fact that excimer radiation can also be generated in silent electrical discharges, a type of discharge that is used on a large scale in ozone generation. In the current filaments of this discharge, which exist only for a short time (<1 microsecond), noble gas atoms are excited by electron surges, which react further to excited molecular complexes (excimers). These excimers only live for a few 100 nanoseconds and release their binding energy in the form of radiation upon decay, the wavelength range of which, depending on the composition of the filler gas, can be in UV-A, UV-B, UV-C or in the visible spectral range.

In der jüngsten Vergangenheit hat die Nachfrage nach derartigen Hochleistungsstrahlern zugenommen, weil die besonderen Eigenschaften des Strahlers viele neue Anwendungsgebiete in der chemischen und physikalischen Verfahrenstechnik, im grafischen Gewerbe, für Beschichtungen etc. eröffnet haben. Es besteht daher ein grosses Bedürfnis nach wirtschaftlichen, möglichst modular aufgebauten und betriebssicheren UV-Strahlern.In the recent past, the demand for such high-performance lamps has increased because the special properties of the lamps have opened up many new fields of application in chemical and physical process engineering, in the graphics industry, for coatings, etc. There is therefore a great need for economical, operationally reliable UV lamps that are constructed as modularly as possible.

Darstellung der ErfindungPresentation of the invention

Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Hochleistungsstrahler, insbesondere für UV- oder VUV-Licht, zu schaffen, der aufgrund seines modularen Aufbaus wirtschaftlich zu fertigen ist und den Aufbau auch sehr grosser Flächenstrahler ermöglicht.On the basis of the prior art, the object of the invention is to create a high-performance radiator, in particular for UV or VUV light, which, owing to its modular structure, can be produced economically and also enables the construction of very large area radiators.

Zur Lösung dieser Aufgabe bei einem Hochleistungsstrahler der eingangs genannten Gattung ist erfindungsgemäss vorgesehen, dass der Entladungsraum nach aussen von einem für die erzeugte Strahlung transparenten Rohr begrenzt ist, in welchem Rohr voneinander und vom transparenten Rohr distanzierte Dielektrikumsrohre mit Innenelektroden angeordnet sind.To achieve this object in a high-power radiator of the type mentioned at the outset, it is provided according to the invention that the discharge space is bounded on the outside by a tube which is transparent to the radiation generated and in which tube spaced apart from one another and from the transparent tube are arranged with dielectric electrodes with internal electrodes.

Bei Anliegen einer genügend hohen Wechselspannung bildet sich eine Vielzahl von Teilentladungen von einer Elektrode durch das Dielektrikum und den angrenzenden Entladungsraum und wieder in das Dielektrikum hinein zur benachbarten Elektrode aus. Diese Entladungen strahlen das verwendbare UV-Licht ab, das dann durch die Rohrwand oder Rohrwände dringt. Im Gegensatz zu den bekannten Konfigurationen wird hier die gesamte Ausdehnung der Entladungskanäle zur Strahlungserzeugung ausgenutzt.When a sufficiently high AC voltage is present, a large number of partial discharges form from one electrode through the dielectric and the adjacent discharge space and back into the dielectric to the adjacent electrode. These discharges emit the usable UV light, which then penetrates through the tube wall or tube walls. In contrast to the known configurations, the entire expansion of the discharge channels is used to generate radiation.

Die Herstellung des erfindungsgemässen Hochleistungsstrahlers ist vereinfacht und kostengünstiger als bei den bekannten Strahlern. Man kann z.B. handelsübliche Quarzrohrproflle verwenden, die es in vielen Dimensionen gibt. Auch für das begrenzende Glas/Quarz-Material sind keine sehr hohen Ansprüche zu stellen, da die begrenzenden Wände lediglich für die Nutzstrahlung transparent sein müssen und nicht durch die Entladung beansprucht werden. Dies führt zu einer höheren Lebensdauer des Strahlers. Auch ist die Spaltweite und deren Toleranzen weit weniger kritisch. Insbesondere lassen sich nunmehr wegen der geringeren Anforderungen bezüglich Toleranzen sehr grosse Flächenstrahler realisieren, die sehr dünn ausgeführt werden können. Weil praktisch die gesamte Länge des Entladungsraum zu Emission beiträgt, ist die UV-Ausbeute sehr hoch. Transmissionsverluste eines Elektrodengitters oder einer teildurchlässigen Schicht liegen nicht vor.The manufacture of the high-power radiator according to the invention is simplified and less expensive than in the known radiators. For example, you can use standard quartz tube profiles that are available in many dimensions. Also for the limiting glass / quartz material, there are no very high demands, since the limiting walls only have to be transparent to the useful radiation and are not stressed by the discharge. This leads to a longer lamp life. The gap width and its tolerances are also far less critical. In particular, because of the lower requirements with regard to tolerances, very large area radiators can now be realized, which can be made very thin. Because practically the entire length of the discharge space contributes to emission, the UV yield is very high. There are no transmission losses from an electrode grid or a partially permeable layer.

Im Gegensatz zum Bekannten können bei der erfindungsgemässen Anordnung die Dielektrika für die zu erzeugende UV-Strahlung optimiert werden, weil sie für das UV-Licht nicht transparent sein müssen, was für besondere Anwendungen besonders hohe Wirkungsgrade erwarten lässt. Zu solchen Anwendungen mit wachsender wirtschaftlicher Bedeutung zählen z.B. der Einsatz als starker UV-Strahler für Vorionisierungszwecke anderer Entladungen, z.B. Laser, Behandlung von Oberflächen mit UV-Belichtung, chemische Prozesse wie Präparation neuer Chemikalien oder Oberflächen und Beschichtungsverfahren wie UV-unterstütztes CVD oder Plasma-CVD (Chemical Vapor Deposition), Photo-CVD, bei denen ein zu behandelndes Substrat bei geeignetem Füllgas möglichst dicht an eine UV-Lichtquelle gebracht wird.In contrast to the known, in the arrangement according to the invention the dielectrics can be optimized for the UV radiation to be generated because they do not have to be transparent to the UV light, which means that particularly high efficiencies can be expected for special applications. Such applications with growing economic importance include e.g. use as a strong UV lamp for pre-ionization purposes of other discharges, e.g. Lasers, treatment of surfaces with UV exposure, chemical processes such as the preparation of new chemicals or surfaces and coating processes such as UV-assisted CVD or plasma CVD (Chemical Vapor Deposition), Photo-CVD, in which a substrate to be treated with a suitable filling gas is as dense as possible is brought to a UV light source.

Die Erfindung wird nachstehend anhand von Ausführungsbeispielen näher erläutert.The invention is explained in more detail below on the basis of exemplary embodiments.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt; darin zeigt

Fig. 1
Ein erstes Ausführungsbeispiel eines Flächenstrahlers mit einseitiger Abstrahlung im Querschnitt;
Fig. 2
einen Längsschnitt durch den Flächenstrahler nach Fig.1 längs deren Linie AA mit einer schematischen Darstellung der elektrischen Anspeisung;
Fig. 3
eine erste Abwandlung des Flächenstrahlers nach Fig.1 und 2 mit Aussenelektroden, die auf den Schmalseiten des äusseren Rohres angeordnet sind, und einer elektrischen Speisung mit einseitig geerdeter Spannungsquelle;
Fig. 4
eine zweite Abwandlung des Flächenstrahlers nach Fig.1 und 2 mit Aussenelektroden, die auf den Schmalseiten des äusseren Rohres angeordnet sind, und einer erdsymmetrischen elektrischen Speisung;
Fig. 5
einen Flächenstrahler gemäss Fig.1 und 2 mit externer Kühlung;
Fig.6
eine Möglichkeit zur Abstützung der Dielektrikumsrohre bei langgestreckten Strahlern;
Fig.7
eine Alternative zu den bisherigen Konfigurationen mit mehr als einer Lage Dielektrikumsrohre im Innern eines Quarzrohrs;
Fig.8
ein Ausführungsbeispiel der Erfindung in Form eines Zylinderstrahlers, zum Teil im Querschnitt, zum Teil in Stirnansicht;
Fig.9
eine Abwandlung der Ausführungsform gemäss Fig.5 mit mehreren Strahlern in einem gemeinsamen Kühlelement;
Fig.10
eine Abwandlung der Ausführungsform gemäss FIg.9 mit mehrerer Strahlern auf der Innenseite eines gekrümmten Kühlelements.
In the drawing, embodiments of the invention are shown schematically; in it shows
Fig. 1
A first embodiment of a surface radiator with one-sided radiation in cross section;
Fig. 2
a longitudinal section through the surface radiator according to Figure 1 along the line AA with a schematic representation of the electrical feed;
Fig. 3
a first modification of the surface radiator according to Fig. 1 and 2 with outer electrodes, which are arranged on the narrow sides of the outer tube, and an electrical supply with a voltage source grounded at one end;
Fig. 4
a second modification of the surface radiator according to Figures 1 and 2 with outer electrodes, which are arranged on the narrow sides of the outer tube, and an earth-symmetrical electrical supply;
Fig. 5
a surface heater according to Figures 1 and 2 with external cooling;
Fig. 6
a possibility of supporting the dielectric tubes in the case of elongated radiators;
Fig. 7
an alternative to the previous configurations with more than one layer of dielectric tubes inside a quartz tube;
Fig. 8
an embodiment of the invention in the form of a cylinder radiator, partly in cross section, partly in end view;
Fig. 9
a modification of the embodiment according to Figure 5 with several radiators in a common cooling element;
Fig. 10
a modification of the embodiment according to FIg.9 with several radiators on the inside of a curved cooling element.

Detaillierte Beschreibung der ErfindungDetailed description of the invention

Bei dem Flächenstrahler nach Fig.1 und 2 sind in einem Quarzrohr 1 mit den Breitseiten 2, 3 und den Schmalseiten 4, 5 Dielektrikumsrohre 6 mit Innenelektroden 7 angeordnet. Die Dielektrikumsrohre 6 sind voneinander und auch von den Wänden des Quarzrohrs 1 beabstandet. Die Dielektrikumsrohre 6 sind beispielsweise Quarzröhrchen, deren inneres Ende 8 abgeschmolzen, d.h. verschlossen ist (vgl. Fig.2). Die Innenelektrode 7 ist ein Metallstab, der in das Quarzröhrchen eingeschoben ist. Statt dessen kann auch ein von dielektrischem Material umhüllter Metallstab oder Metalldraht verwendet werden.
Die beiden Schmalseiten 4,5 und eine der Breitseiten 3 des Quarzrohrs 1 sind aussen je mit einer Aluminiumschicht 9 versehen. Die drei Beschichtungen können - müssen aber nicht - elektrisch voneinander isoliert sein. Die Aluminiumschicht 9 ist vorzugsweise aufgedampft, flammgespritzt, plasmagespritzt oder gesputtert und dient als Reflektor.
1 and 2, dielectric tubes 6 with internal electrodes 7 are arranged in a quartz tube 1 with the broad sides 2, 3 and the narrow sides 4, 5. The dielectric tubes 6 are from each other and also from the Walls of the quartz tube 1 spaced. The dielectric tubes 6 are, for example, quartz tubes, the inner end 8 of which is melted, ie closed (see FIG. 2). The inner electrode 7 is a metal rod which is inserted into the quartz tube. Instead, a metal rod or metal wire covered with dielectric material can also be used.
The two narrow sides 4, 5 and one of the broad sides 3 of the quartz tube 1 are each provided with an aluminum layer 9 on the outside. The three coatings can - but need not - be electrically insulated from one another. The aluminum layer 9 is preferably vapor-deposited, flame-sprayed, plasma-sprayed or sputtered and serves as a reflector.

Wie aus Fig.2 zu erkennen ist, ist das Quarzrohr 1 an seinen beiden Stirnseiten durch Platten 10, 11 aus Isoliermaterial verschlossen. Diese Platten sind beispielsweise auf die Stirnseiten aufgeklebt oder im Falle von Quarz- oder Glasplatten mit den besagten Stirnwänden verschmolzen. Die Platten 10, 11 sind mit Durchbrüchen 12 versehen, in welchen wechselweise die Dielektrikumsrohre 6 von beiden Seiten des Quarzrohrs 1 eingeschoben und darin befestigt und versiegelt sind. An den den Einbaustellen gegenüberliegenden Enden sind die Dielektrikumsrohre abgeschmolzen oder verklebt. Bei langgestreckten Strahlern sind die Dielektrikumsrohre 6 am freien Ende 8 in rohrförmigen Stützelementen 13 gehalten, in welche diese Enden 8 eintauchen. Optional können auch in Rohrmitte zusätzliche Stützen 14 vorgesehen sein (vgl. Fig.6). Ueber einen Füllstutzen 15 kann der Innenraum des Quarzrohrs 1 evakuiert und dann mit einem Füllgas gefüllt werden.As can be seen from FIG. 2, the quartz tube 1 is closed on both ends by plates 10, 11 made of insulating material. These plates are glued to the end faces, for example, or, in the case of quartz or glass plates, are fused to said end walls. The plates 10, 11 are provided with openings 12, in which the dielectric tubes 6 are alternately inserted from both sides of the quartz tube 1 and fastened and sealed therein. The dielectric tubes are melted or glued at the ends opposite the installation points. In the case of elongated radiators, the dielectric tubes 6 are held at the free end 8 in tubular support elements 13 into which these ends 8 are immersed. Optionally, additional supports 14 can also be provided in the center of the tube (see FIG. 6). The interior of the quartz tube 1 can be evacuated via a filler neck 15 and then filled with a filler gas.

Wie aus Fig.2 ersichtlich ist, erfolgt die elektrische Anspeisung des Strahlers aus einer Wechselstromquelle 16 derart, dass abwechselnd benachbarte Innenelektroden 7 an die Wechselstromquelle 16 angeschlossen sind. Wie später (anhand der Fig.9) noch näher erläutert wird, können auch mehrere Wechselstromquellen eingesetzt werden. Die Entladungen 17 bilden sich dann im Zwischenraum zwischen je zwei benachbarten Dielektrikumsrohren 6 aus.As can be seen from FIG. 2, the radiator is electrically supplied from an alternating current source 16 in such a way that adjacent inner electrodes 7 are connected to the alternating current source 16 in alternation. As later (based on 9) is explained in more detail, several AC sources can also be used. The discharges 17 then form in the space between two adjacent dielectric tubes 6.

Die Wechselstromquelle 16 entspricht grundsätzlich jenen, wie sie zur Anspeisung von Ozonerzeugern verwendet werden. Typisch liefert sie eine einstellbare Wechselspannung in der Grössenordnung von mehreren 100 Volt bis 20000 Volt bei Frequenzen im Bereich des technischen Wechselstroms bis hin zu einigen MHz - abhängig von der Elektrodengeometrie, Druck im Entladungsraum und Zusammensetzung des Füllgases.The AC power source 16 basically corresponds to those used for feeding ozone generators. Typically, it delivers an adjustable AC voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few MHz - depending on the electrode geometry, pressure in the discharge space and composition of the filling gas.

Das Innere des Quarzrohrs 1 ist mit einem unter Entladungsbedingungen Strahlung aussendenden Füllgas gefüllt, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-Gemisch, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases, vorzugsweise Ar, He, Ne, als Puffergas.The inside of the quartz tube 1 is filled with a filling gas which emits radiation under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.

Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz/Substanzgemisch gemäss nachfolgender Tabelle Verwendung finden:

Figure imgb0001
Figure imgb0002
Depending on the desired spectral composition of the radiation, a substance / substance mixture according to the following table can be used:
Figure imgb0001
Figure imgb0002

Daneben kommen eine ganze Reihe weiterer Füllgase in Frage:

  • Ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit einem Gas bzw. Dampf aus F₂, J₂, Br₂, Cl₂ oder eine Verbindung, die in der Entladung ein oder mehrere Atome F, J, Br oder Cl abspaltet;
  • ein Edelgas (Ar, He, Kr, Nr, Xe) oder Hg mit O₂ oder einer Verbindung, die in der Entladung ein oder mehrere O-Atome abspaltet;
  • ein Edelgas (Ar, He, Kr, Ne, Xe) mit Hg.
In addition, a whole series of other filling gases are possible:
  • A noble gas (Ar, He, Kr, Ne, Xe) or Hg with a gas or vapor from F₂, J₂, Br₂, Cl₂ or a compound that splits off one or more atoms F, J, Br or Cl in the discharge;
  • a noble gas (Ar, He, Kr, Nr, Xe) or Hg with O₂ or a compound that releases one or more O atoms in the discharge;
  • an inert gas (Ar, He, Kr, Ne, Xe) with Hg.

In der sich bildenden elektrischen Teilentladung (micro discharge) kann die Elektronenenergieverteilung durch Wandstärke der Dielektrikumsrohre 6 und deren dielektrische Eigenschaften, Abstand zwischen den Dielektrikumsrohren 6, Druck und/oder Temperatur des Füllgases optimal eingestellt werden.In the electrical partial discharge (micro discharge) that is formed, the electron energy distribution can be optimally adjusted by the wall thickness of the dielectric tubes 6 and their dielectric properties, distance between the dielectric tubes 6, pressure and / or temperature of the filling gas.

Bei Anliegen einer Spannung zwischen je zwei benachbarten Elektroden 7 bildet sich eine Vielzahl von Entladungskanälen 17 aus, welche das UV-Licht abstrahlen, das dann durch die transparente Breitseite 2 des Quarzrohrs 1 nach aussen dringt.
Breitseiten 2, 3.
When a voltage is applied between two adjacent electrodes 7, a plurality of discharge channels 17 are formed, which emit the UV light, which then penetrates outward through the transparent broad side 2 of the quartz tube 1.
Broad sides 2, 3.

Wie in Fig.3 veranschaulicht ist, können die metallischen Reflektorschichten 9 auf den Schmalseiten des Quarzrohrs 1 auch als Aussenelektroden verwendet werden. Die elektrische Kontaktierung kann dabei durch Litzenbänder 18 oder federnde Kontaktstreifen erfolgen. Hierbei ist es zweckmässig, eine ungeradzahlige Anzahl Dielektrikumsrohre 6 vorzusehen, damit beide Aussenelektroden auf dem selben Potential, im Beispielsfall auf Erdpotential zu liegen kommen. Dann bilden sich auch Entladungen 17a zwischen den äussersten Dielektrikumsrohren 6 und den Schmalseiten 4, 5 des Quarzrohrs 1 aus.As illustrated in FIG. 3, the metallic reflector layers 9 can be on the narrow sides of the quartz tube 1 can also be used as external electrodes. The electrical contact can be made using stranded strips 18 or resilient contact strips. In this case, it is expedient to provide an odd number of dielectric tubes 6 so that both outer electrodes come to the same potential, in the example case to ground potential. Then discharges 17a also form between the outermost dielectric tubes 6 and the narrow sides 4, 5 of the quartz tube 1.

Weil bei Stromversorgungseinrichtungen mit erdsymmetrischem Ausgang die Isolationsbeanspruchungen der dabei verwendeten Bauteile geringer ist als bei solchen mit einseitiger Versorgung, sind derartige Einrichtungen wirtschaftlicher. In der Fig.4 ist die Anspeisung eines Strahlers nach Fig.3 mit einer Stromversorgungseinrichtung mit erdsymmetrischem Ausgang veranschaulicht. Zwischen benachbarten Innenelektroden 7 liegt jeweils die volle Ausgangsspannung der Wechselstromquelle 16, während zwischen den Innenelektroden 7 der äusseren Dielektrikumsrohre 6 und den Aussenelektroden 9 die halbe Ausgangsspannung liegt. Dementsprechend ist auch der Abstand zwischen den Dielektrikumsrohren 6 grösser als der Abstand der beiden äusseren Dielektrikumsrohre 6 von den Schmalseiten 4, 5 des Quarzrohrs 1 bemessen.Because the insulation stresses of the components used in the case of power supply devices with an earth-symmetrical output are lower than those with one-sided supply, such devices are more economical. 4 shows the feeding of a radiator according to FIG. 3 with a power supply device with a balanced output. The full output voltage of the alternating current source 16 lies between adjacent inner electrodes 7, while half the output voltage lies between the inner electrodes 7 of the outer dielectric tubes 6 and the outer electrodes 9. Accordingly, the distance between the dielectric tubes 6 is also larger than the distance between the two outer dielectric tubes 6 from the narrow sides 4, 5 of the quartz tube 1.

Hochleistungsstrahler der beschriebenen Art können aufgrund ihrer neuen Geometrie sehr einfach gekühlt werden. Wie Fig.5 veranschaulicht, kann das Quarzrohr 1 in ein entsprechend bemessenes Metallprofil 19 mit U-förmigem Querschnitt, beispielsweise aus Aluminium oder Kupfer, mit darin enthaltenen, z.B. in Profillängsrichtung verlaufenden Kühlmittelbohrungen 20 eingelegt werden.High-performance lamps of the type described can be cooled very easily due to their new geometry. As illustrated in FIG. 5, the quartz tube 1 can be converted into a correspondingly dimensioned metal profile 19 with a U-shaped cross section, for example made of aluminum or copper, with, e.g. Coolant bores 20 extending in the longitudinal direction of the profile are inserted.

Zwischen den Schenkeln des U-Profils und den Schmalseiten 4,5 des Quarzrohrs 1 ist ein federnder metallischer Kontaktstreifen 21 eingelegt, der sich über die gesamte Rohrlänge erstreckt. Er dient neben der elektrischen Kontaktierung der Schicht 9 auch zum Festlegen des Quarzrohres 1 im Raum zwischen den Schenkeln des Metallprofils 19. Gegebenenfalls kann eine Zwischenlage aus wärmeleitender Paste 30 zwischen dem Profilgrund und dem Quarzrohr 1 vorgesehen werden, um den Wärmeübergang zu verbessern. Die elektrische Anspeisung erfolgt analog Fig.4, d.h. das Metallprofil 19 liegt auf Erdpotential. Selbstverständlich kann die elektrische Anspeisung auch so erfolgen, wie sie in Fig.2 oder 3 veranschaulicht ist.A resilient metallic contact strip 21 is inserted between the legs of the U-profile and the narrow sides 4, 5 of the quartz tube 1 and extends over the entire length of the tube. In addition to electrical contacting, it is used the layer 9 also for fixing the quartz tube 1 in the space between the legs of the metal profile 19. If necessary, an intermediate layer of thermally conductive paste 30 can be provided between the profile base and the quartz tube 1 in order to improve the heat transfer. The electrical feed takes place analogously to FIG. 4, ie the metal profile 19 is at earth potential. Of course, the electrical feed can also take place as illustrated in FIG. 2 or 3.

Die vorstehend beschriebenen Ausführungsformen der Erfindung weisen eine Reihe von Vorteilen auf, die nachfolgend zusammengefasst sind:

  • Es können handelsübliche, in vielen Dimensionen erhältliche Quarzprofile für die Quarzrohre 1 eingesetzt werden, welche sich durch hohe mechanische Belastbarkeit auszeichnen;
  • einfache Erweiterung bestehender Bestrahlungseinrichtungen durch die mit der Erfindung mögliche modulare Bauweise;
  • die (auf Hochspannungspotential liegenden) Elektroden samt ihrer Anschlussarmaturen lassen sich mit einfachen Mitteln berührungssicher gestalten;
  • der Einsatz von Stromversorgungseinrichtungen mit erdsymmetrischer Ausgangsspannung ermöglicht wirtschaftliche Speisung;
  • der Einsatz meherer voneinander unabhängiger Stromversorgungseinheiten ist möglich;
  • ein Drahtnetz, Drahtgitter oder eine transparente äussere Elektrode entfällt, wodurch die Reinigung des Strahlers, z.B. beim Einsatz im grafischen Gewerbe, erleichtert ist;
  • die Quarzpartien des Strahlers, welche für die Transmission des UV-Lichts verantwortlich sind, werden nicht durch den Entladungsangriff belastet;
  • die Aluminiumbedampfung macht einen Grossteil der entstehenden Strahlung nutzbar;
  • die ganze Einrichtung einschliesslich Kühlung kann extrem flach und in ihrer Flächenausdehnung nahezu beliebig gross gestaltet werden und ist daher für sehr viele technische Anwendungen geeignet.
The embodiments of the invention described above have a number of advantages, which are summarized below:
  • Commercial quartz profiles which are available in many dimensions can be used for the quartz tubes 1 and are distinguished by high mechanical strength;
  • simple expansion of existing radiation devices through the modular construction possible with the invention;
  • the electrodes (which are at high voltage potential) and their connection fittings can be designed so that they are safe to touch with simple means;
  • the use of power supply devices with earth-symmetrical output voltage enables economical supply;
  • the use of several independent power supply units is possible;
  • a wire mesh, wire mesh or a transparent outer electrode is omitted, which makes cleaning the spotlight easier, for example when used in the graphic arts industry;
  • the quartz parts of the radiator, which are responsible for the transmission of UV light, are not burdened by the discharge attack;
  • Aluminum vapor deposition makes most of the radiation available usable;
  • the entire facility, including cooling, can be designed to be extremely flat and almost any size in terms of its surface area and is therefore suitable for a large number of technical applications.

Ohne den durch die Erfindung gesteckten Rahmen zu verlassen, sind eine Fülle von Modifikationen des vorstehend beschriebenen UV-Hochleistungsstrahlers möglich, auf die nachstehend eingegangen werden soll.Without departing from the scope of the invention, a multitude of modifications of the UV high-power lamp described above are possible, which will be discussed below.

So können statt einer ungeradzahligen Anzahl von Quarzrohren 1 für Konfigurationen gemäss Fig.2, 3 und 4 auch geradzahlige Varianten vorgesehen sein.
Anstelle nur einer einzigen Lage von Dielektrikumsrohren 6 in einem Quarzrohr 1 können zwei oder mehr Lagen vorgesehen sein, wie es in Fig.7 verdeutlicht ist. Die Dielektrikumsrohre 6 der einen Lage sind gegenüber den Dielektrikumsrohren der benachbarten Lage um einen halben Rohrabstand versetzt. Die Dielektrikumsrohre 6 jeder Lage sind parallelgeschaltet und an die beiden Pole der Wechselstromquelle 16 angeschlossen. Die Entladungskanäle verlaufen schräg durch den Entladungsraum von einer Lage zur nächsten.
Instead of an odd number of quartz tubes 1, even numbered variants can also be provided for configurations according to FIGS. 2, 3 and 4.
Instead of only a single layer of dielectric tubes 6 in a quartz tube 1, two or more layers can be provided, as is illustrated in FIG. The dielectric tubes 6 of one layer are offset from the dielectric tubes of the adjacent layer by half a tube spacing. The dielectric tubes 6 of each layer are connected in parallel and connected to the two poles of the AC power source 16. The discharge channels run obliquely through the discharge space from one position to the next.

Ferner bietet die Erfindung die Möglichkeit, meherer Einzelstrahler, z.B. gemäss Fig.1 oder Fig.3 in einem gemeinsamen Kühlement einzubetten, wie es in Fig.9 verdeutlicht ist. Dort ist ein Aluminium- oder Kupferprofil 19a mit im Beispielsfall 3 in Profillängsrichtung verlaufenden Kanälen mit U-förmigem Querschnitt versehen. In diese Kanäle sind analog Fig.5 Quarzrohre 1 eingelegt, deren Aufbau im Zusammenhang mit Fig.1, 3 oder 5 ausführlich beschrieben wurde. Die elektrische Anspeisung kann analog den bisherigen Ausführungsbeispielen erfolgen. Abweichend hiervon ist in Fig.9 veranschaulicht, dass die einzelnen Strahler an separate Wechselstromquellen 16a, 16b, 16c a angeschlossen sind. Diese Massnahme wird dann von nöten sein, wenn eine einzige Quelle nicht zur Speisung einer Mehrzahl von Strahlern ausreicht.Furthermore, the invention offers the possibility of embedding several individual radiators, for example according to FIG. 1 or FIG. 3, in a common cooling element, as is illustrated in FIG. 9. There, an aluminum or copper profile 19a is provided with, in the example case 3, channels with a U-shaped cross section running in the longitudinal direction of the profile. 5, quartz tubes 1 are inserted into these channels, the structure of which was described in detail in connection with FIGS. 1, 3 or 5. The electrical feed can take place analogously to the previous exemplary embodiments. Deviating from this, it is illustrated in FIG. 9 that the individual radiators are connected to separate AC sources 16a, 16b, 16c a are connected. This measure will be necessary if a single source is not sufficient to supply a plurality of radiators.

Die bisherigen Ausführungsformen der Erfindung bezogen sich allesamt auf Quarzrohre mit rechteckförmigen Querschnitt. Es liegt im Rahmen der Erfindung, die Dielektrikumsrohre 6 im Zwischenraum 22 zwischen zwei koaxial ineinander angeordneten Quarzrohre 23, 24 anzuordnen. Die Innenelektroden 7 sind analog Fig.2 oder 3 abwechselnd mit den beiden Anschlüssen der Wechselstromquelle 16 verbunden, wobei analog Fig.1 die Innenelektroden 7 der ersten Gruppe von Innenelektroden 7 an der einen Stirnfläche untereinander verbunden sind, die Innenelektroden 7 der anderen Gruppe an der anderen Stirnfläche der Rohre 23, 24 zusammengeführt sind. Analog Fig.2 ist der Innenraum 22 an beiden Stirnflächen der Quarzrohre 23, 24 mit je einem ringförmigen Deckel 25 verschlossen, der gleichzeitig auch Halterung für die Dielektrikumsrohre 6 ist.The previous embodiments of the invention all relate to quartz tubes with a rectangular cross section. It is within the scope of the invention to arrange the dielectric tubes 6 in the intermediate space 22 between two quartz tubes 23, 24 arranged coaxially one inside the other. The internal electrodes 7 are alternately connected to the two connections of the alternating current source 16 analogously to FIG. 2 or 3, analogously to FIG. 1 the internal electrodes 7 of the first group of internal electrodes 7 are connected to one another on one end face, the internal electrodes 7 of the other group to the other end face of the tubes 23, 24 are brought together. Analogously to FIG. 2, the interior 22 is closed on both end faces of the quartz tubes 23, 24 with an annular cover 25, which is also a holder for the dielectric tubes 6.

Je nachdem, ob man die Einrichtung als Aussen- oder Innenstrahler konzipiert, ist auf der Innenfläche des inneren Quarzrohres 23 bzw. auf der Aussenfläche des äusseren Quarzrohres 24 eine als Reflektor dienende Aluminiumschicht 9 vorzusehen. In Anlehnung an Fig.5 besteht auch bei einem Rundstrahler nach Fig.8 die Möglichkeit zur forcierten Kühlung des Strahlers, z.B. durch Hindurchleiten von Kühlmittel durch den Innenraum 26 des inneren Quarzrohres 23, oder durch Ausfüllen dieses Innenraums 26 mit einem Kühlkörper (nicht dargestellt). Bei einem Innenstrahler kann entweder der Aussenmantel des äusseren Quarzrohres 24 von Kühlmittel umspült werden, oder es kann ein eigenständiger Kühlkörper über das äussere Quarzrohr 24 gestülpt sein. Vorteilhaft ist dabei eine Anordnung, wie sie in Fig.10 am Beispiel einer Bestrahlungseinrichtung für banförmige Materialien wie Folien- oder Papierbahnen, dargestellt ist. Das zu bestrahlende Material 31 wird über eine Trommel 32 geführt. Das Kühlelement 19b aus einem gut wärmeleitenden Metall, z.B. Kupfer oder Aluminium, besteht aus einem der Trommel 32 angepasstem Rohrabschnitt mit in Rohrlängsrichtung verlaufenden Kühlbohrungen 20. Die Innenwandung des Rohrabschnitts weist offene Kanäle 33 mit rechteckförmigem Querschnitt auf, in welche Quarzprofile gemäss Fig.1 oder Fig.3 eingelegt und darin befestigt sind. Die elektrische Anspeisung erfolgt analog den bisherigen Ausführungsbeispielen.Depending on whether the device is designed as an external or internal radiator, an aluminum layer 9 serving as a reflector must be provided on the inner surface of the inner quartz tube 23 or on the outer surface of the outer quartz tube 24. 5, there is also the possibility of forced cooling of the radiator in the case of an omnidirectional radiator according to FIG. 8, for example by passing coolant through the interior 26 of the inner quartz tube 23, or by filling this interior 26 with a heat sink (not shown). . In the case of an internal radiator, coolant can either be flushed around the outer jacket of the outer quartz tube 24, or an independent heat sink can be placed over the outer quartz tube 24. An arrangement such as that illustrated in FIG. 10 using the example of an irradiation device for ban-shaped materials such as film or paper webs is advantageous. The one to be irradiated Material 31 is guided over a drum 32. The cooling element 19b made of a good heat-conducting metal, for example copper or aluminum, consists of a tube section adapted to the drum 32 with cooling bores 20 running in the longitudinal direction of the tube. The inner wall of the tube section has open channels 33 with a rectangular cross section, into which quartz profiles according to FIG Fig.3 are inserted and fastened therein. The electrical feed takes place analogously to the previous exemplary embodiments.

Statt runder Dielektrikumsrohre 6 und Innenelektroden 7 können bei allen Ausführungsformen auch Elektroden mit nahezu beliebigem Querschnitt verwendet werden. Zur Verbesserung der Wärmeabfuhr aus dem Dielektrikum 6 ist es zudem möglich, die Innenelektroden 7 als Hohlelektroden auszuführen.Instead of round dielectric tubes 6 and internal electrodes 7, electrodes with almost any cross section can also be used in all embodiments. To improve the heat dissipation from the dielectric 6, it is also possible to design the inner electrodes 7 as hollow electrodes.

Claims (10)

  1. A high power emitter, in particular for ultraviolet light, with a discharge chamber, filled with a filling gas emitting radiation under discharge conditions, with electrodes (7) which are connected in pairs to one or more high voltage sources (16), in which dielectric material (6) lies between two electrodes (7) lying at different potential, which material adjoins the discharge chamber, characterised in that the discharge chamber is delimited by a tube (1;23;24) which is transparent, at least in sections, for the radiation which is produced, in which tube (1;23;24) dielectric tubes (6) with internal electrodes (7) are arranged, which dielectric tubes (6) are spaced apart from each other and from the transparent tube (1;23;24), and the silent electric discharge (17) is formed in the free space of the tube (1;23;24).
  2. A high power emitter according to Claim 1, characterised in that the tube is a quartz tube (1) with a rectangular cross-section and the internal electrodes (7) are arranged in a position in which adjacent internal electrodes (7) are connected in each case to the two poles of the high voltage source (16).
  3. A high power emitter according to Claim 1, characterised in that the tube is a quartz tube (1) with a rectangular cross-section and the internal electrodes (7) are arranged in several layers, in which all the internal electrodes (7) of each layer are connected in parallel and are connected in layers to the two poles of the high voltage source (16).
  4. A high power emitter according to Claim 1, characterised in that the discharge chamber is delimited by two tubes (23,24) lying coaxially one inside the other, and the dielectric tubes (6) are arranged in the annular space (25) between the said tubes.
  5. A high power emitter according to Claim 2 or 3, characterised in that the tube (1) or the tubes (23,24) are closed at both ends by means of plates (10,11) or covers (25), which plates or covers serve as carriers for the dielectric tubes (6).
  6. A high power emitter according to one of Claims 1 to 5, characterised in that the free ends (8) of the dielectric tubes (6) are supported on the plate (10,11;25) lying opposite the mounting by means of support elements (13) and/or are supported in the central tube section by means of additional supports (14).
  7. A high power emitter according to one of Claims 1 to 3 or 5 or 6, characterised in that three of the four tube walls (3,4,5) of the tube (1) are provided with an outer reflecting layer (9), preferably an aluminium layer deposited by evaporation.
  8. A high power emitter according to Claim 4, characterised in that either the inner surface of the inner tube (23) or the outer surface of the outer tube (24) is provided with an outer reflecting layer (9), preferably an aluminium layer deposited by evaporation.
  9. A high power emitter according to one of Claims 1 to 8, characterised in that for cooling, the tube (1) is partially surrounded by a cooling element (19;19a;19b) or is arranged in the latter.
  10. A high power emitter according to Claim 9, characterised in that in the case of a tube with a rectangular cross-section, in the cooling element (19;19a;19b) one or more open channels (33) are provided, into which the tube or tubes (1) are placed and are held therein.
EP90120261A 1990-10-22 1990-10-22 High power radiation device Expired - Lifetime EP0482230B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE59009300T DE59009300D1 (en) 1990-10-22 1990-10-22 High power radiator.
EP90120261A EP0482230B1 (en) 1990-10-22 1990-10-22 High power radiation device
US07/770,408 US5283498A (en) 1990-10-22 1991-10-03 High-power radiator
JP3273631A JPH04264349A (en) 1990-10-22 1991-10-22 High-output-beam generating apparatus
JP1996004374U JP2580266Y2 (en) 1990-10-22 1996-05-21 High power beam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90120261A EP0482230B1 (en) 1990-10-22 1990-10-22 High power radiation device

Publications (2)

Publication Number Publication Date
EP0482230A1 EP0482230A1 (en) 1992-04-29
EP0482230B1 true EP0482230B1 (en) 1995-06-21

Family

ID=8204642

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90120261A Expired - Lifetime EP0482230B1 (en) 1990-10-22 1990-10-22 High power radiation device

Country Status (4)

Country Link
US (1) US5283498A (en)
EP (1) EP0482230B1 (en)
JP (2) JPH04264349A (en)
DE (1) DE59009300D1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4235743A1 (en) * 1992-10-23 1994-04-28 Heraeus Noblelight Gmbh High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically
JP3025414B2 (en) * 1994-09-20 2000-03-27 ウシオ電機株式会社 Dielectric barrier discharge lamp device
CA2224699A1 (en) * 1997-12-12 1999-06-12 Resonance Ltd. Hollow electrode electrodeless lamp
JP3346291B2 (en) * 1998-07-31 2002-11-18 ウシオ電機株式会社 Dielectric barrier discharge lamp and irradiation device
JP3591393B2 (en) * 1999-11-02 2004-11-17 ウシオ電機株式会社 Dielectric barrier discharge lamp device
DE10005156A1 (en) * 2000-02-07 2001-08-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flat gas discharge lamp with spacers
US20020030437A1 (en) * 2000-09-13 2002-03-14 Nobuhiro Shimizu Light-emitting device and backlight for flat display
GB0025956D0 (en) * 2000-10-24 2000-12-13 Powell David J Improved method of measuring vacuum pressure in sealed vials
US7381976B2 (en) * 2001-03-13 2008-06-03 Triton Thalassic Technologies, Inc. Monochromatic fluid treatment systems
US6566817B2 (en) * 2001-09-24 2003-05-20 Osram Sylvania Inc. High intensity discharge lamp with only one electrode
JP4238643B2 (en) * 2003-06-09 2009-03-18 株式会社Ihi Electrode support structure for thin film forming equipment
US20060006804A1 (en) * 2004-07-06 2006-01-12 Lajos Reich Dielectric barrier discharge lamp
US7446477B2 (en) * 2004-07-06 2008-11-04 General Electric Company Dielectric barrier discharge lamp with electrodes in hexagonal arrangement
KR100775911B1 (en) * 2005-03-24 2007-11-15 한국기계연구원 High Temperature Plasma Generator
JP2008537286A (en) * 2005-03-30 2008-09-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Discharge lamp and backlight unit for backlighting a display device including such a discharge lamp
US20090039757A1 (en) * 2005-04-22 2009-02-12 Hiroyoshi Ohshima Excimer Lamp
KR20070010844A (en) * 2005-07-20 2007-01-24 삼성전자주식회사 Planar light source device and display device provided with the same
JP2011154906A (en) * 2010-01-27 2011-08-11 Panasonic Electric Works Co Ltd Light-emitting device
EP2717657A4 (en) * 2011-06-03 2014-11-12 Wacom Cvd device, and cvd film production method
DE102012017779A1 (en) * 2012-09-07 2014-03-13 Karlsruher Institut für Technologie Dielectric barrier discharge lamp
CN217822656U (en) * 2022-04-28 2022-11-15 朗升光电科技(广东)有限公司 Ultraviolet lamp tube

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599849A (en) * 1982-07-09 1984-01-19 Okaya Denki Sangyo Kk High frequency discharge lamp
CH670171A5 (en) * 1986-07-22 1989-05-12 Bbc Brown Boveri & Cie
CH675504A5 (en) * 1988-01-15 1990-09-28 Asea Brown Boveri
CH676168A5 (en) * 1988-10-10 1990-12-14 Asea Brown Boveri
CH677292A5 (en) * 1989-02-27 1991-04-30 Asea Brown Boveri
CH677557A5 (en) * 1989-03-29 1991-05-31 Asea Brown Boveri

Also Published As

Publication number Publication date
US5283498A (en) 1994-02-01
JP2580266Y2 (en) 1998-09-03
DE59009300D1 (en) 1995-07-27
EP0482230A1 (en) 1992-04-29
JPH04264349A (en) 1992-09-21
JPH081671U (en) 1996-12-17

Similar Documents

Publication Publication Date Title
EP0482230B1 (en) High power radiation device
EP0363832B1 (en) Radiating device having a high output
EP0389980B1 (en) High power radiation device
EP0458140B1 (en) High power radiator
EP0385205B1 (en) High-power radiation device
DE19636965B4 (en) Electrical radiation source and radiation system with this radiation source
EP0324953B1 (en) High power radiation source
EP0509110B1 (en) Irradation device
DE4140497C2 (en) High-power radiation
EP0517929B1 (en) Irradiation device with a high power radiator
EP0839436B1 (en) Method for operating a lighting system and suitable lighting system therefor
EP0254111B1 (en) Ultraviolett radiation device
DE69501196T3 (en) Light source device with a dielectric limited discharge lamp
EP0371304A1 (en) High-power radiation device
DE4010190A1 (en) RADIATION DEVICE
EP0489184B1 (en) High power radiation device
DE4010809A1 (en) High power esp. ultraviolet emitter - with electrode arrangement providing high efficiency
EP0901687B1 (en) Flat light emitter
DE2529005B2 (en) Low pressure gas discharge lamp
DE4022279A1 (en) Irradiating non-electrolytes from gas - filled discharge chamber by applying high potential electric source to electrodes using cylindrical electrode connected by dielectric layer
DE4203345A1 (en) High performance emitter, esp. for UV light - comprises discharge chamber filled with gas, and metallic outer electrodes coated with UV-transparent layer
DE4235743A1 (en) High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically
EP0515711A1 (en) High power radiator
DE3225327C2 (en)
EP2893551A1 (en) Dielectric barrier discharge lamp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19921016

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS NOBLELIGHT GMBH

17Q First examination report despatched

Effective date: 19941021

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950623

REF Corresponds to:

Ref document number: 59009300

Country of ref document: DE

Date of ref document: 19950727

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020918

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020925

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020926

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020930

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021009

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021017

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

BERE Be: lapsed

Owner name: *HERAEUS NOBLELIGHT G.M.B.H.

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031022

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051022