EP0254111A1 - UV-Strahler - Google Patents

UV-Strahler Download PDF

Info

Publication number
EP0254111A1
EP0254111A1 EP87109674A EP87109674A EP0254111A1 EP 0254111 A1 EP0254111 A1 EP 0254111A1 EP 87109674 A EP87109674 A EP 87109674A EP 87109674 A EP87109674 A EP 87109674A EP 0254111 A1 EP0254111 A1 EP 0254111A1
Authority
EP
European Patent Office
Prior art keywords
electrode
radiator according
dielectric
power radiator
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87109674A
Other languages
English (en)
French (fr)
Other versions
EP0254111B1 (de
Inventor
Baldur Dr. Eliasson
Peter Dr. Erni
Michael. Dr Hirth
Ulrich Dr. Kogelschatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0254111A1 publication Critical patent/EP0254111A1/de
Application granted granted Critical
Publication of EP0254111B1 publication Critical patent/EP0254111B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel

Definitions

  • the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas, the walls of which are formed on the one hand by a dielectric which is provided with first electrodes on its surface facing away from the discharge space, and on the other hand by second electrodes or likewise are formed by a dielectric, which is provided on its surface facing away from the discharge space with second electrodes, with an alternating current source connected to the first and second electrodes for supplying the discharge and means for directing the radiation generated by the silent electrical discharge into an external space.
  • the invention relates to a state of the art, such as that found in the publication "Vacuum-ultraviolet lamps with a barrier discharge in inert gases" by GA Volkova, NN Kirillova, EN Pavlovskaya and AV Yakovleva in the SU magazine Zhurnal Prikladnoi Spektoskopii 41 (1984) No. 4, 691-695, published in an English translation by Plenum Publishing Corporation 1985, Doc. No. 0021-9037 / 84 / 4104-1194 $ 08.50, pp. 1194 ff.
  • high-performance lamps especially high-performance UV lamps, e.g. Disinfection, curing of paints and synthetic resins, flue gas cleaning, destruction and synthesis of special chemical compounds.
  • the wavelength of the emitter will have to be matched very precisely to the intended process.
  • the best-known UV lamp is probably the mercury lamp, which emits UV radiation with wavelengths of 254 nm and 185 nm with high efficiency.
  • a low-pressure glow discharge burns in a noble gas-mercury vapor mixture in these lamps.
  • This radiator consists of a tube made of dielectric material with a rectangular cross section. Two opposite tube walls are provided with flat electrodes in the form of metal foils, which are connected to a pulse generator. The tube is closed at both ends and filled with an inert gas (argon, krypton or xenon). Such filling gases form so-called excimers when an electrical discharge is ignited under certain conditions.
  • An excimer is a molecule that is formed from an excited atom and an atom in the ground state. e.g. Ar + Ar * ⁇ Ar
  • the UV light generated in a first embodiment reaches the outside through an end window in the dielectric tube.
  • the broad sides of the tube are provided with metal foils which form the electrodes.
  • the tube is provided with recesses, over which special windows are glued, through which the radiation can escape.
  • the efficiency that can be achieved with the known radiator is of the order of 1%, which is far below the theoretical value of around 50% because the filling gas heats up inadmissibly.
  • Another inadequacy of the known radiator can be seen in the fact that its light exit window has only a comparatively small area for reasons of stability.
  • the object of the invention is to create a high-performance radiator, in particular of ultraviolet light, which has a significantly higher degree of efficiency, can be operated with higher electrical power densities and whose light exit surface is not subject to the restrictions mentioned.
  • this object is achieved in that, in the case of a high-power radiator of the generic type, both the dielectric and the first electrodes for the said Radiation are permeable and at least the second electrodes are cooled.
  • the geometry of the high-performance lamp can be adapted to the process in which it is used within wide limits. In addition to large, flat spotlights, cylindrical ones that radiate inwards or outwards are also possible.
  • the discharges can be operated at high pressure (0.1 - 10 bar). With this design, electrical power densities of 1 - 50 KW / m2 can be realized. Since the electron energy in the discharge can be largely optimized, the efficiency of such radiators is very high, even if one excites resonance lines of suitable atoms.
  • the wavelength of the radiation can be set by the type of fill gas, e.g.
  • the advantage of these emitters is the areal radiation of large radiation outputs with high efficiency. Almost all of the radiation is concentrated in one or a few wavelength ranges. It is important in all cases that the radiation can escape through one of the electrodes.
  • This problem can be solved with transparent, electrically conductive layers or else by using a fine-mesh wire network or applied conductor tracks as electrodes, which on the one hand ensure the current supply to the dielectric, but on the other hand are largely transparent to the radiation.
  • a transparent electrolyte for example H20, can be used as a further electrode, which is particularly advantageous for the irradiation of water / waste water, since in this way the radiation generated is directly in irradiating liquid arrives and this liquid also serves as a coolant.
  • a metal electrode 1 which is in contact on one side with a cooling medium 2, for example water.
  • a plate 4 made of dielectric material is arranged, spaced apart by electrically insulating spacers 3, which are distributed over a certain area.
  • a UV high-performance lamp it consists, for example, of quartz or sapphire, which is transparent to the UV radiation. Materials such as magnesium fluoride and calcium fluoride are also suitable for very short-wave radiation.
  • Dielectric 4 and metal electrode 1 delimit a discharge space 5 with a typical gap width between 1 and 10 mm.
  • a wire mesh there can also be a transparent, electrically conductive layer, the layer of indium or tin oxide being used for visible light, a gold layer 50-100 angstroms thick for visible and UV light, and especially a thin layer of alkali metals in UV can.
  • An AC power source 7 is connected between the metal electrode 1 and the counter electrode (wire mesh 6).
  • alternating current source 7 those can generally be used which have long been used in connection with ozone generators.
  • the discharge space 5 is laterally closed in the usual way, was evacuated before closing and was filled with an inert gas or a substance that forms excimers under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, optionally using an additional further noble gas (Ar, He, Ne) as a buffer gas.
  • an inert gas or a substance that forms excimers under discharge conditions e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, optionally using an additional further noble gas (Ar, He, Ne) as a buffer gas.
  • the electron energy distribution can be optimally adjusted by varying the gap width of the discharge space, pressure and / or temperature (via the intensity of the cooling).
  • a metal tube 8, a tube 9 made of dielectric material and an outer metal tube 10 are arranged coaxially one inside the other. Coolant or a gaseous coolant is passed through the interior 11 of the metal tube.
  • the annular gap 12 between the tubes 8 and 9 forms the discharge space.
  • the dielectric tube 9 a quartz tube in the example
  • the outer metal tube spaced from it by a further annular gap 13 is the liquid to be irradiated, in the example water, which forms the other electrode due to its electrolytic property.
  • the AC power source 7 is therefore connected to the two metal tubes 8 and 10.
  • This arrangement has the advantage that the radiation can act directly on the water, the water also serves as a coolant, and a separate electrode on the outer surface of the dielectric tube 9 is therefore unnecessary.
  • one of the electrodes mentioned in connection with FIG. 1 can be used (transparent electrically conductive layer, wire mesh) can be applied to the outer surface of the dielectric tube 9.
  • a quartz tube 9 provided with a transparent, electrically conductive inner electrode 14 is arranged coaxially in a metal tube 8.
  • An annular discharge gap 12 extends between the two tubes 8, 9.
  • the metal tube 8 is formed to form an annular cooling gap 15 through which a coolant, e.g. Water that can be passed through is surrounded by an outer tube 10.
  • the AC power source 7 is connected between the inner electrode 14 and the metal tube 8.
  • the substance to be irradiated is guided through the interior 16 of the dielectric tube 9 and, if suitable, simultaneously serves as a coolant.
  • an electrolyte e.g. Use water as an electrode.
  • the individual tubes are spaced or fixed relative to one another by means of spacing elements, such as are used in ozone technology.
  • FIG. 4 The basic structure of such a high-power radiator is shown in FIG. 4. There are the same with Fig. 1 parts with the same reference numerals.
  • the basic difference between FIGS. 1 and 4 consists in the interposition of a second dielectric 17 between the discharge space 5 and the metallic electrode 1.
  • the metallic electrode 1 is cooled by a cooling medium 2; the radiation leaves the discharge space 5 through the dielectric 4 which is permeable to the radiation and the wire mesh 6 serving as the second electrode.
  • FIG. 5 A practical implementation of such a high-power radiator is illustrated schematically in FIG. 5.
  • a double-walled quartz tube 18, consisting of an inner tube 19 and an outer tube 20, is surrounded on the outside by a wire mesh 6, which serves as the first electrode.
  • the second electrode is designed as a metal layer 21 on the inner wall of the inner tube 19.
  • the AC power source 7 is connected to these two electrodes.
  • the annular space between the inner and outer tube serves as a discharge space 5. This is sealed off from the outer space by melting the filler neck.
  • the radiator is cooled by passing a coolant through the interior of the inner tube 19, a tube 23 being inserted into the inner tube 19 to guide the coolant, leaving an annular space 24 between the inner tube 19 and the tube 23.
  • the direction of flow of the coolant is shown by arrows.
  • the hermetically sealed radiator according to FIG. 5 can also be operated as an internal radiator analogous to FIG. 3 if the cooling is fitted on the outside and the UV-permeable electrode on the inside.
  • the high-power radiators according to FIGS. 4 and 5 can also be modified in a variety of ways without departing from the scope of the invention:
  • the metallic electrode 1 can be dispensed with if the cooling medium is an elec trolyte, which also serves as an electrode.
  • the wire mesh 6 can also be replaced by an electrically conductive, radiation-permeable layer.
  • the wire mesh 6 can be replaced by such a layer.
  • the metal layer 21 is formed as a layer which is transparent to the radiation, e.g. from indium or tin oxide, the radiation can be applied directly to the cooling medium, e.g. Water. If the coolant itself is an electrolyte, this can take over the function of the electrode 21.
  • each volume element in the discharge gap will emit its radiation in the entire solid angle 4 ⁇ . If one only wants to use the radiation that emerges from the UV-permeable electrode 6, the usable radiation can be practically doubled if the counter electrode 21 is made of a material that reflects UV radiation well (e.g. aluminum). 5, the inner electrode could be aluminum vapor deposition.
  • Thin (0.1-1 ⁇ m) layers of alkali metals are also suitable for the UV-permeable, electrically conductive electrode 6.
  • the alkali metals lithium, potassium, rubidium, cesium in the ultraviolet spectral range have a high transparency with little reflection. Alloys (eg 25% sodium / 75% potassium) are also suitable. Since the alkali metals react with air (sometimes very violently), they must be provided with a UV-permeable protective layer (eg Mg F2) after application in a vacuum.
  • a UV-permeable protective layer eg Mg F2

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

Der Hochleistungsstrahler besteht aus einem durch eine einseitig gekühlte Metallelektrode (8) und ein Dielektrikum (9) begrenzten und mit einem Edelgas oder Gasgemisch gefüllten Entladungsraum (12), wobei sowohl das Dielektrikum (9) als auch die auf der dem Entladungsraum (12) abgewandte Oberfläche des Dielektrikums liegende andere Elektrode für die durch stille elektrische Entladungen erzeugte Strahlung transparent sind. Auf diese Weise wird ein grossflächiger UV-Strahler mit hohem Wirkungsgrad geschaffen, der mit hohen elektrischen Leistungsdichten bis hin zu 50 KW/m² aktiver Elektrodenoberfläche betrieben werden kann.

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit Füllgas gefüllten Entladungsraum, dessen Wandungen zum einen durch ein Dielektrikum gebildet sind, welches auf seiner dem Ent­ladungsraum abgewandten Oberfläche mit ersten Elektroden versehen ist, zum anderen aus zweiten Elektroden oder gleich­falls durch ein Dielektrikum gebildet sind, welches auf seiner dem Entladungsraum abgewandten Oberfläche mit zweiten Elek­troden versehen ist, mit einer an die ersten und zweiten Elektroden angeschlossenen Wechselstromquelle zur Speisung der Entladung sowie Mitteln zur Leitung der durch stille elektrische Entladung erzeugten Strahlung in einen Aussenraum.
  • Die Erfindung nimmt dabei Bezug auf einen Stand der Tech­nik, wie er sich beispielsweise aus der Veröffentlichung "Vacuum-ultraviolet lamps with a barrier discharge in inert gases" von G.A. Volkova, N.N. Kirillova, E.N. Pavlovskaya and A.V. Yakovleva in der SU-Zeitschrift Zhurnal Prikladnoi Spektroskopii 41 (1984) No. 4, 691-695, veröffentlicht in einer englischsprachigen Uebersetzung der Plenum Publishing Corporation 1985, Dok. Nr. 0021-9037/84/4104-1194 $ 08.50, S. 1194 ff., ergibt.
  • Stand der Technik
  • Für Hochleistungsstrahler, insbesondere Hochleistungs-UV-­Strahler, gibt es diverse Anwendungen wie z.B. Entkeimung, Aushärten von Lacken und Kunstharzen, Rauchgasreinigung, Zerstörung und Synthese spezieller chemischer Verbindungen. Im allgemeinen wird die Wellenlänge des Strahlers sehr genau auf den beabsichtigten Prozess abgestimmt sein müssen. Der bekannteste UV-Strahler ist vermutlich der Quecksilberstrahler, der UV-Strahlung der Wellenlänge 254 nm und 185 nm mit hohem Wirkungsgrad abstrahlt. In diesen Strahlern brennt eine Nieder­druck-Glimmentladung in einem Edelgas-Quecksilberdampf-Gemisch.
  • In der eingangs genannten Veröffentlichung "Vakuum ultra­violet lamps ..." wird eine auf dem Prinzip der stillen elek­trischen Entladung basierende UV-Strahlenquelle beschrieben. Dieser Strahler besteht aus einem Rohr aus dielektrischem Material mit Rechteckquerschnitt. Zwei gegenüberliegende Rohrwände sind mit flächenhaften Elektroden in Form von Metall­folien versehen, die an einen Impulsgenerator angeschlossen sind. Das Rohr ist an beiden Enden verschlossen und mit einem Edelgas (Argon, Krypton oder Xenon) gefüllt. Derartige Füllgase bilden beim Zünden einer elektrischen Entladung unter bestimm­ten Bedingungen sogenannte Excimere. Ein Excimer ist ein Molekül, das aus einem angeregten Atom und einem Atom im Grundzustand gebildet wird.

        z.B. Ar + Ar* → Ar
    Figure imgb0001
  • Es ist bekannt, dass die Umwandlung von Elektronenenergie in UV-Strahlung mit diesen Excimeren sehr effizient erfolgt. Bis zu 50 % der Elektronenenergie kann in UV-Strahlung um­gewandelt werden, wobei die angeregten Komplexe nur einige Nanosekunden leben und beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung abgehen. Wellenlängenbereiche:
    Figure imgb0002
  • Bei dem bekannten Strahler gelangt das erzeugte UV-Licht bei einer ersten Ausführung über ein stirnseitiges Fenster im dielektrischen Rohr in den Aussenraum. Bei einer zweiten Ausführungsform sind die Breitseiten des Rohres mit Metall­folien versehen, welche die Elektroden bilden. An den Schmal­seiten ist das Rohr mit Ausnehmungen versehen, über welche spezielle Fenster geklebt sind, durch welche die Strahlung austreten kann.
  • Der mit dem bekannten Strahler erreichbare Wirkungsgrad liegt in der Grössenordnung von 1 %, also weit unter dem theore­tischen Wert von um 50 %, weil sich das Füllgas unzulässig aufheizt. Eine weitere Unzulänglichkeit des bekannten Strahlers ist darin zu sehen, dass sein Lichtaustrittsfenster aus Stabili­tätsgründen nur eine vergleichsweise kleine Fläche aufweist.
  • Kurze Beschreibung der Erfindung
  • Ausgehend vom Bekannten liegt der Erfindung die Aufgabe zu­grunde, einen Hochleistungsstrahler, insbesondere von ultra­violettem Licht zu schaffen, der einen wesentlich grösseren Wirkungsgrad aufweist, mit höheren elektrischen Leistungs­dichten betrieben werden kann und dessen Lichtaustrittsfläche den genannten Beschränkungen nicht unterliegt.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass bei einem gattungsgemässen Hochleistungsstrahler sowohl das Dielektrikum als auch die ersten Elektroden für die besagte Strahlung durchlässig sind und zumindest die zweiten Elektroden gekühlt sind.
  • Auf diese Weise ist ein Hochleistungsstrahler geschaffen, der mit grossen elektrischen Leistungsdichten und hohem Wir­kungsgrad betrieben werden kann. Die Geometrie des Hochlei­stungsstrahlers ist in weiten Grenzen dem Prozess anpassbar, in welchem er eingesetzt wird. So sind neben grossflächigen ebenen Strahlern auch zylindrische, die nach innen oder nach aussen strahlen, möglich. Die Entladungen können bei hohem Druck (0.1 - 10 bar) betrieben werden. Mit dieser Bauweise lassen sich elektrische Leistungsdichten von 1 - 50 KW/m² realisieren. Da die Elektronenenergie in der Entladung weit­gehend optimiert werden kann, liegt der Wirkungsgrad solcher Strahler sehr hoch, auch dann, wenn man Resonanzlinien geeig­neter Atome anregt. Die Wellenlänge der Strahlung lässt sich durch die Art des Füllgases einstellen z.B. Quecksilber (185 nm, 254 nm), Stickstoff (337-415 nm), Selen (196, 204, 206 nm), Xenon (119, 130, 147 nm), Krypton (124 nm). Wie bei anderen Gasentladungen empfiehlt sich auch die Mischung ver­schiedener Gasarten.
  • Der Vorteil dieser Strahler liegt in der flächenhaften Ab­strahlung grosser Strahlungsleistungen mit hohem Wirkungsgrad. Fast die gesamte Strahlung ist auf einen oder wenige Wellen­längenbereiche konzentriert. Wichtig ist in allen Fällen, dass die Strahlung durch eine der Elektroden austreten kann. Dieses Problem ist lösbar mit transparenten, elektrisch lei­tenden Schichten oder aber auch, indem man ein feinmaschiges Drahtnetz oder aufgebrachte Leiterbahnen als Elektrode benützt, die einerseits die Stromzufuhr zum Dielektrikum gewährleisten, andererseits für die Strahlung aber weitgehend transparent sind. Auch kann ein transparenter Elektrolyt, z.B. H₂0, als weitere Elektrode verwendet werden, was insbesondere für die Bestrahlung von Wasser/Abwasser vorteilhaft ist, da auf diese Weise die erzeugte Strahlung unmittelbar in die zu bestrahlende Flüssigkeit gelangt und diese Flüssigkeit gleich­zeitig als Kühlmittel dient.
  • Kurze Beschreibung der Zeichnungen
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt, und zwar zeigt
    • Fig. 1 ein Ausführungsbeispiel der Erfindung in Gestalt eines ebenen Flächenstrahlers im Schnitt
    • Fig. 2 einen zylindrischen nach aussen abstrahlenden Strahler, der in einen Bestrahlungsbehälter für durchströmende Flüssigkeiten oder Gase integriert ist im Schnitt
    • Fig. 3 einen zylindrischen nach innen abstrahlenden Strahler für photochemische Reaktionen
    • Fig. 4 eine Abwandlung des Strahlers nach Fig. 1 mit einem beidseits durch ein Dielektrikum begrenzten Enladungs­raum
    • Fig. 5 ein Ausführungsbeispiel eines Strahlers in Gestalt eines doppelwandigen Quarzrohrs.
    Ausführliche Beschreibung der Erfindung
  • Der Hochleistungsstrahler nach Fig. 1 umfasst eine Metall­elektrode 1, die auf ihrer einen Seite mit einem Kühlmedium 2, z.B. Wasser, in Kontakt steht. Auf der anderen Seite der Metallelektrode 1 ist - distanziert durch elektrisch iso­lierende Distanzstücke 3, die punktuell über Fläche verteilt sind - eine Platte 4 aus dielektrischem Material angeordnet. Sie besteht für einen UV-Hochleistungsstrahler z.B. aus Quarz oder Saphir, das für die UV-Strahlung durchlässig ist. Für sehr kurzwellige Strahlungen kommen auch Materialien, wie z.B. Magnesiumfluorid und Calziumfluorid in Frage. Für Strah­ler, welche Strahlung im sichtbaren Bereich des Lichtes lie­ fern sollen, ist das Dielektrikum Glas. Dielektrikum 4 und Metallelektrode 1 begrenzen einen Entladungsraum 5 mit einer typischen Spaltweite zwischen 1 und 10 mm. Auf der dem Ent­ladungsraum 5 abgewandten Oberfläche der dielektrischen Platte 4 ist ein feines Drahtnetz 6 aufgebracht, von dem nur die Kett- oder Schussfäden in Fig. 1 sichtbar sind. Anstelle eines Drahtnetzes kann auch eine transparente elektrisch leitende Schicht vorhanden sein, wobei für sichtbares Licht die Schicht aus Indium- oder Zinnoxid, für sichtbares und UV-Licht eine 50 - 100 Angström dicke Goldschicht und speziell im UV auch eine dünne Schicht aus Alkalimetallen verwendet werden kann. Eine Wechselstromquelle 7 ist zwischen die Me­tallelektrode 1 und die Gegenelektrode (Drahtnetz 6) geschaltet.
  • Als Wechselstromquelle 7 können generell solche verwendet werden, wie sie im Zusammenhang mit Ozonerzeugern seit langem eingesetzt werden.
  • Der Entladungsraum 5 ist seitlich in üblicher Weise geschlos­sen, wurde vor dem Verschliessen evakuiert und mit einem inerten Gas, oder einer bei Entladungsbedingungen Excimere bildenden Substanz, z.B. Quecksilber, Edelgas, Edelgas-Me­talldampf-Gemisch, Edelgas-Halogen-Gemisch, gefüllt, gegebenen­falls unter Verwendung eines zusätzlichen weiteren Edelgases (Ar, He, Ne) als Puffergas.
  • Je nach gewünschter spektraler Zusammensetzung der Strah­lung kann dabei eine Substanz gemäss nachfolgender Tabelle Verwendung finden:
    Figure imgb0003
  • In der sich bildenden stillen Entladung (dielectric barrier discharge) kann die Elektronenenergieverteilung durch Variation der Spaltweite des Entladungsraumes, Druck und/oder Temperatur (über die Intensität der Kühlung) optimal eingestellt werden.
  • Beim Ausführungsbeispiel nach Fig. 2 sind ein Metallrohr 8, ein von diesem distanziertes Rohr 9 aus dielektrischem Material und ein äusseres Metallrohr 10 koaxial ineinander angeordnet. Durch den Innenraum 11 des Metallrohres wird Kühlflüssigkeit oder ein gasförmiges Kühlmittel geleitet. Der Ringspalt 12 zwischen den Rohren 8 und 9 bildet den Entladungsraum. Zwischen dem dielektrischen Rohr 9 (im Beispielsfall ein Quarzrohr) und dem von diesem durch einen weiteren Ringspalt 13 distan­zierten äusseren Metallrohr befindet sich die zu bestrahlende Flüssigkeit, im Beispielsfall Wasser, das aufgrund seiner elektrolytischen Eigenschaft die andere Elektrode bildet. Die Wechselstromquelle 7 ist demzufolge an die beiden Me­tallrohre 8 und 10 angeschlossen.
  • Diese Anordnung hat den Vorteil, dass die Strahlung unmittelbar auf das Wasser einwirken kann, das Wasser gleichzeitig als Kühlmittel dient, und damit eine separate Elektrode auf der äusseren Oberfläche des dielektrischen Rohres 9 entbehrlich ist.
  • Ist die zu bestrahlende Flüssigkeit kein Elektrolyt, so kann eine der im Zusammenhang mit Fig. 1 genannten Elektroden (transparente elektrisch leitende Schicht, Drahtnetz) auf die äussere Oberfläche des dielektrischen Rohres 9 aufgebracht sein.
  • Im Ausführungsbeispiel nach Fig. 3 ist ein mit einer trans­parenten elektrisch leitenden Innenelektrode 14 versehenes Quarzrohr 9 koaxial in einem Metallrohr 8 angeordnet. Zwischen beiden Rohren 8, 9 erstreckt sich ein ringförmiger Entla­dungsspalt 12. Das Metallrohr 8 ist unter Bildung eines ring­förmigen Kühlspaltes 15, durch den ein Kühlmittel, z.B. Wasser, hindurchleitbar ist, von einem äusseren Rohr 10 umgeben. Die Wechselstromquelle 7 ist zwischen die Innenelektrode 14 und das Metallrohr 8 geschaltet.
  • Wie im Falle der Fig. 2 wird durch den Innenraum 16 des dielek­trischen Rohres 9 die zu bestrahlende Substanz geführt und dient - sofern geeignet - gleichzeitig als Kühlmittel.
  • Auch bei der Anordnung nach Fig. 3 kann neben festen, auf dem Rohrinneren angebrachten Innenelektroden 14 (Schichten, Drahtnetz) ein Elektrolyt, z.B. Wasser als Elektrode Verwendung finden.
  • Sowohl bei Aussenstrahlern gemäss Fig. 2 als auch bei Innen­strahlern nach Fig. 3 erfolgt die Distanzierung bzw. relative Fixierung der einzelnen Rohre gegeneinander durch Distanzie­rungselemente, wie sie in der Ozontechnik verwendet werden.
  • Experimente haben gezeigt, dass es vorteilhaft sein kann, bei bestimmten Füllgasen hermetisch abgeschlossene Entla­dungsgeometrien, z.B. abgeschmolzene Quarz- oder Glasbehälter, zu verwenden. In einer solchen Konfiguration kommt das Füll­gas nicht mehr mit einer metallischen Elektrode in Berührung, die Entladung ist allseits von Dielektrika begrenzt. Der prinzipielle Aufbau eines derartigen Hochleistungsstrah­lers geht aus Fig. 4 hervor. Dort sind die mit Fig. 1 gleich­ wirkenden Teile mit denselben Bezugszeichen versehen. Der prinzipielle Unterschied zwischen Fig. 1 und Fig. 4 besteht in der Zwischenschaltung eines zweiten Dielektrikums 17 zwischen Entladungsraum 5 und metallischer Elektrode 1. Wie im Falle der Fig. 1 ist die metallische Elektrode 1 durch ein Kühl­medium 2 gekühlt; die Strahlung verlässt den Entladungsraum 5 durch das für die Strahlung durchlässige Dielektrikum 4 und das als zweite Elektrode dienende Drahtnetz 6.
  • Eine praktische Realisierung eines derartigen Hochleistungs­strahlers ist in Fig. 5 schematisch veranschaulicht. Ein doppelwandiges Quarzrohr 18, bestehend aus einem Innenrohr 19 und einem Aussenrohr 20 ist aussen von einem Drahtnetz 6 umgeben, das als erste Elektrode dient. Die zweite Elektrode ist als Metallschicht 21 an der Innenwandung des Innenrohrs 19 ausgeführt. Die Wechselstromquelle 7 ist an diese beiden Elektroden angeschlossen. Der Ringraum zwischen Innen- und Aussenrohr dient als Entladungsraum 5. Dieser ist durch Ab­schmelzen des Füllstutzens hermetisch gegenüber dem Aussenraum abgeschlossen. Die Kühlung des Strahlers erfolgt durch Hin­durchleiten eines Kühlmittels durch den Innenraum des Innen­rohrs 19, wobei zur Kühlmittelführung ein Rohr 23 in das Innenrohr 19 unter Belassung eines Ringraums 24 zwischen Innenrohr 19 und Rohr 23 eingesetzt ist. Die Strömungsrichtung des Kühlmittels ist durch Pfeile verdeutlicht. Auch der her­metisch abgeschlossene Strahler nach Fig. 5 lässt sich als Innenstrahler analog Fig. 3 betreiben, wenn man die Kühlung aussen anbringt und die UV-durchlässige Elektrode innen.
  • Im Lichte der Ausführungen zu den in den Figuren 1 bis 3 beschriebenen Anordnungen versteht es sich von selbst, dass auch die Hochleistungsstrahler gemäss Fig. 4 und 5 in mannig­faltiger Weise abgewandelt werden können, ohne den Rahmen der Erfindung zu verlassen:
    So kann bei der Ausführung nach Fig. 4 auf die metallische Elektrode 1 verzichtet werden, wenn das Kühlmedium ein Elek­ trolyt ist, der gleichzeitig als Elektrode dient. Auch kann das Drahtnetz 6 durch eine elektrisch leitfähige, für die Strahlung durchlässige Schicht ersetzt werden.
  • Auch im Falle der Fig. 5 kann das Drahtnetz 6 durch eine derartige Schicht ersetzt werden. Bildet man die Metallschicht 21 als für die Strahlung durchlässige Schicht, z.B. aus Indium- ­oder Zinnoxid, aus, so kann die Strahlung unmittelbar auf das Kühlmedium, z.B. Wasser, einwirken. Ist das Kühlmittel selbst ein Elektrolyt, so kann dieses die Funktion der Elek­trode 21 übernehmen.
  • Bei den vorgeschlagenen inkohärenten Strahlern wird jedes Volumenelement im Entladungsspalt seine Strahlung in den ganzen Raumwinkel 4π abstrahlen. Will man nur die Strahlung ausnutzen, die aus der UV-durchlässigen Elektrode 6 austritt, kann man die nutzbare Strahlung praktisch verdoppeln, wenn die Gegenelektrode 21 aus einem Material ist, das UV-Strahlung gut reflektiert (z.B. Aluminium). Bei der Anordnung der Fig. 5 könnte die innere Elektrode eine Aluminiumbedampfung sein.
  • Für die UV-durchlässige elektrisch leitfähige Elektrode 6 bieten sich auch dünne (0.1-1µm) Schichten aus Alkalimetallen an. Wie bekannt ist, weisen die Alkalimetalle Lithium, Kalium, Rubidium, Cäsium im ultravioletten Spektralbereich eine hohe Transparenz bei geringer Reflexion auf. Auch Legierungen (z.B. 25 % Natrium / 75 % Kalium) bieten sich an. Da die Alkali-Metalle mit Luft (z.T. sehr heftig) reagieren, muss man sie nach der Aufbringung im Vakuum mit einer UV-durch­lässigen Schutzschicht (z.B. Mg F₂) versehen.
  • BEZEICHNUNGSLISTE
    • 1 Metallelektrode
    • 2 Kühlmedium
    • 3 Distanzstücke
    • 4 dielektrische Platte
    • 5 Entladungsraum
    • 6 Drahtnetz
    • 7 Wechselstromquelle
    • 8 Metallrohr
    • 9 dielektrisches Rohr
    • 10,10ʹ äusseres Metallrohr
    • 11 Innenraum von 8
    • 12 Ringspalt zwischen 8 und 9
    • 13 Ringspalt zwischen 9 und 10
    • 14 Innenelektrode
    • 15 Kühlspalt
    • 16 Innenraum von 9
    • 17 Dielektrikum
    • 18 doppelwandiges Quarzrohr
    • 19 Innenrohr
    • 20 Aussenrohr
    • 21 Metallschicht
    • 22 Füllstutzen
    • 23 Kühlmittelführungsrohr
    • 24 Ringraum zwischen 19 und 23

Claims (17)

1. Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit Füllgas gefüllten Entladungsraum (5), dessen Wandungen zum einen durch ein Dielektrikum (4) gebildet sind, welches auf seiner dem Entladungsraum abgewandten Oberfläche mit ersten Elektroden (6; 14) ver­sehen ist, zum anderen aus zweiten Elektroden (1; 10, 21) oder gleichfalls durch ein Dielektrikum (17; 19) gebildet sind, welches auf seiner dem Entladungsraum (5) abgewandten Oberfläche mit zweiten Elektroden (1; 21) versehen ist, mit einer an die ersten und zweiten Elektroden angeschlos­senen Wechselstromquelle (7) zur Speisung der Entladung sowie Mitteln zur Leitung der durch stille elektrische Entladung erzeugten Strahlung in einen Aussenraum, da­durch gekennzeichnet, dass sowohl das Dielektrikum (4; 18) als auch die ersten Elektroden (6) für die besagte Strahlung durchlässig sind.
2. Hochleistungsstrahler nach Anspruch 1, dadurch gekenn­zeichnet, dass die erste Elektrode eine transparente elek­trisch leitende Schicht (14), vorzugsweise aus Indium- ­oder Zinnoxid oder einer dünnen Schicht aus Alkalimetall oder aus Gold besteht.
3. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeichnet, dass die erste Elektrode ein Drahtnetz (6) ist.
4. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Elektrode (1; 10; 21) eine UV-Licht reflek­tierende Schicht, vorzugsweise Aluminiumschicht ist.
5. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeichnet, dass das Füllmedium ein unter Entladungsbedingungen Excimere bildendes Edelgas oder Edelgasgemisch ist.
6. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeich­net, dass das Füllmedium Quecksilber, Stickstoff, Selen, Deuterium oder ein Gemisch dieser Substanzen allein oder mit einem Edelgas ist.
7. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeich­net, dass zumindest die zweite Metallelektrode (1) und das Dielektrikum (4) plattenförmig ausgebildet sind und die zweite metallische Elektrode (1) von der dielektrischen Platte (4) mittels Distanzstücken (3) distanziert sind.
8. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeich­net, dass die zweite Metallelektrode (8) und das Dielek­trikum (9) rohrförmig ausgebildet sind und zwischen sich den Entladungsraum (12) bilden.
9. Hochleistungsstrahler nach Anspruch 8, dadurch gekennzeich­net, dass das dielektrische Rohr (9) das Metallrohr (8) konzentrisch umgibt und an seiner äusseren Oberfläche mit einer transparenten elektrisch leitenden Schicht ver­sehen ist oder unmittelbar an einen Elektrolyt angrenzt, welcher die erste Elektrode bildet.
10. Hochleistungsstrahler nach Anspruch 8, dadurch gekennzeich­net, dass das dielektrische Rohr (9) konzentrisch innerhalb des Metallrohres (8) angeordnet ist und die innere Ober­fläche des dielektrischen Rohres mit einer transparenten elektrisch leitenden Schicht (14) versehen ist oder an einen Elektrolyt angrenzt, welcher die erste Elektrode bildet.
11. Hochleistungsstrahler nach Anspruch 10, dadurch gekennzeich­net, dass das Metallrohr (8) unter Belassung eines Kühl­spaltes (15) von einem weiteren Rohr (10ʹ) umgeben, durch welchen Kühlspalt ein Kühlmittel hindurchleitbar ist.
12. Hochleistungsstrahler nach Anspruch 1, dadurch gekenn­zeichnet, dass der Entladungsraum (5) im wesentlichen durch zwei distanzierte Platten (4, 17) aus dielektri­schem Material gebildet ist, an welche sich nach aussen hin Elektroden (6, 1) anschliessen, wovon die eine (1) gekühlt ist.
13. Hochleistungsstrahler nach Anspruch 1, dadurch gekenn­zeichnet, dass der Entladungsraum (5) durch den Ringraum zweier Rohre (19, 20) aus dielektrischem Material gebildet ist, wobei zumindest eine der dem Entladungsraum (5) abgewandten Oberflächen der Rohre mit einer für die Strah­lung durchlässigen Elektrode (6) versehen ist und eine der beiden Elektroden (6, 21) gekühlt ist.
14. Hochleistungsstrahler nach Anspruch 13, dadurch gekenn­zeichent, dass die Innenfläche des inneren Rohres (19) mit einer Elektrode (21) versehen ist, dass in den Innen­raum des inneren Rohres (19) und von diesem distanziert ein Kühlmittelführungsrohr hineinragt, durch welches ein Kühlmittel zuführbar und durch den Ringraum (24) zwischen diesem und dem inneren Rohr (19) entlang der besagten Elektrode (21) abführbar ist.
15. Hochleistungsstrahler nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Füllmedium ein Edelgas/Ha­logen-Gemisch, vorzugsweise ein Ar/F-,Kr/F-,Xe/Cl-,Xe/J-Gemisch ist.
16. Hochleistungsstrahler nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass das Füllgas ein Puffergas in Form eines zusätzlichen Edelgases, vorzugsweise Ar, He oder Ne, enthält.
17. Hochleistungsstrahler nach einem der Ansprüche 1 bis 16, dadurch gekennzeichent, dass zumindest die ersten Elek­troden (1; 21) gekühlt, vorzugsweise flüssigkeitsgekühlt sind.
EP87109674A 1986-07-22 1987-07-06 UV-Strahler Expired - Lifetime EP0254111B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2924/86A CH670171A5 (de) 1986-07-22 1986-07-22
CH2924/86 1986-07-22

Publications (2)

Publication Number Publication Date
EP0254111A1 true EP0254111A1 (de) 1988-01-27
EP0254111B1 EP0254111B1 (de) 1992-01-02

Family

ID=4244683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87109674A Expired - Lifetime EP0254111B1 (de) 1986-07-22 1987-07-06 UV-Strahler

Country Status (5)

Country Link
US (1) US4837484A (de)
EP (1) EP0254111B1 (de)
CA (1) CA1288800C (de)
CH (1) CH670171A5 (de)
DE (1) DE3775647D1 (de)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4041884A1 (de) * 1990-12-27 1992-07-02 Abb Patent Gmbh Verfahren zur behandlung von oberflaechen
DE4113524A1 (de) * 1991-04-25 1992-10-29 Abb Patent Gmbh Verfahren zur behandlung von oberflaechen
DE4140497A1 (de) * 1991-12-09 1993-06-17 Asea Brown Boveri Hochleistungsstrahler
DE4208376A1 (de) * 1992-03-16 1993-09-23 Asea Brown Boveri Hochleistungsstrahler
DE4302465C1 (de) * 1993-01-29 1994-03-10 Fraunhofer Ges Forschung Vorrichtung zum Erzeugen einer dielektrisch behinderten Entladung
DE4235743A1 (de) * 1992-10-23 1994-04-28 Heraeus Noblelight Gmbh Hochleistungsstrahler
DE4238324A1 (de) * 1992-11-13 1994-05-19 Abb Research Ltd Verfahren und Einrichtung zur Entgiftung von schadstoffhaltigen Gasen
DE4242172A1 (de) * 1992-12-15 1994-06-16 Heraeus Noblelight Gmbh Verfahren zur Entkeimung
DE4243208A1 (de) * 1992-12-19 1994-06-23 Heraeus Noblelight Gmbh Verfahren zur Abwasserreinigung
WO1994013330A1 (de) * 1992-12-15 1994-06-23 Heraeus Noblelight Gmbh Flüssigkeitsentkeimung
DE4243210A1 (de) * 1992-12-19 1994-06-30 Heraeus Noblelight Gmbh Hochleistungsstrahler
DE4314510A1 (de) * 1993-05-03 1994-11-10 Abb Research Ltd Verfahren zur Erzeugung von Ozon
EP0642153A1 (de) * 1993-09-08 1995-03-08 Ushiodenki Kabushiki Kaisha Dielektrikumbegrenzte Entladungslampe
DE4342643A1 (de) * 1993-09-13 1995-03-16 Fraunhofer Ges Forschung Fotochemische Fixierung mit UV-Strahler
WO1995009256A1 (de) * 1993-09-27 1995-04-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Oberflächenbehandlung mit barrierenentladung
EP0661110A1 (de) * 1993-11-26 1995-07-05 Ushiodenki Kabushiki Kaisha Verfahren zur Oxidation der Oberflächen eines Gegenstandes
DE4415242A1 (de) * 1994-04-30 1995-11-02 Wissenschaftlich Tech Optikzen Quasi-kontinuierlich emittierender UV-Laser, insbesondere Excimer-Laser
DE4430300C1 (de) * 1994-08-26 1995-12-21 Abb Research Ltd Excimerstrahler und dessen Verwendung
EP0767484A1 (de) * 1995-10-02 1997-04-09 Ushiodenki Kabushiki Kaisha Entladungslampe mit dielektrischer Sperrschicht
EP0703602B1 (de) * 1994-09-20 1997-12-10 Ushiodenki Kabushiki Kaisha Lichtquellen-Vorrichtung mit einer Dielektrikumbegrenzter Entladungslampe
DE19627119A1 (de) * 1996-07-05 1998-01-15 Hassia Verpackung Ag Vorrichtung zum Entkeimen und/oder Sterilisieren von Packstoffbahnen
DE19708148A1 (de) * 1997-02-28 1998-09-03 Umex Ges Fuer Umweltberatung U Vorrichtung zur UV-Bestrahlung strömender Flüssigkeiten und Gase mit elektrodenloser Entladungslampe
DE19708149A1 (de) * 1997-02-28 1998-09-03 Umex Ges Fuer Umweltberatung U Vorrichtung zur UV-Bestrahlung von Flüssigkeiten und Gasen
EP0732727A3 (de) * 1995-02-04 1999-01-07 Balzers und Leybold Deutschland Holding Aktiengesellschaft Verwendung und Verfahren zur Behandlung von Oberflächen mittels einer dielektrisch behinderten Entladungsvorrichtung, die Plasmateilchen und/oder UV-Strahlung erzeugt
EP0782871A3 (de) * 1995-11-22 1999-03-10 Heraeus Noblelight GmbH Verfahren und Strahlungsanordnung zur Erzeugung von UV-Strahlen zur Körperbestrahlung sowie Verwendung
EP0818206A3 (de) * 1996-07-12 1999-07-21 Heraeus Noblelight GmbH Verfahren zum Desinfizieren und Reinigen von Kleinteilen und dafür geeignete Vorrichtung
WO1998040273A3 (en) * 1996-10-11 2000-09-14 Tetra Laval Holdings & Finance Method and apparatus for sterilizing packaging
DE19920693C1 (de) * 1999-05-05 2001-04-26 Inst Oberflaechenmodifizierung Offener UV/VUV-Excimerstrahler und Verfahren zur Oberflächenmodifizierung von Polymeren
DE10112900C1 (de) * 2001-03-15 2002-07-11 Heraeus Noblelight Gmbh Excimer-Strahler, insbesondere UV-Strahler
DE10235036A1 (de) * 2002-07-31 2004-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. UV-Lichtquelle
DE10260579A1 (de) * 2002-12-21 2004-07-08 Gesellschaft zur Förderung der Spektrochemie und angewandten Spektroskopie e.V. Verfahren zur Gasionisierung eines Analyten in einem Ionenbeweglichkeitsspektrometer sowie Ionenbeweglichkeitsspektrometer
WO2004059694A1 (fr) * 2002-12-25 2004-07-15 Zakrytoe Akzionernoe Obschestvo Nauchno-Proisvodstvenny Tsentr 'soliton-Ntt' Source de rayons ultraviolets a decharges gazeuses
WO2005102950A2 (de) * 2004-04-15 2005-11-03 Heraeus Quarzglas Gmbh & Co. Kg Quarzglas- bauteil für eine uv-strahlenquelle sowie verfahren für die herstellung und für die eignungsdiagnose
DE102004022859A1 (de) * 2004-05-06 2006-01-05 Kalle Gmbh Künstliche Nahrungsmittelhülle sowie Verfahren zu deren Herstellung
DE4305704B4 (de) * 1993-02-25 2006-02-16 Matter + Siegmann Ag Verfahren und Vorrichtung zur Untersuchung von in einem Gas befindlichen Partikeln
DE102005007370B3 (de) * 2005-02-17 2006-09-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kompakte UV-Lichtquelle
DE102007030915A1 (de) * 2007-07-03 2009-01-22 Cinogy Gmbh Vorrichtung zur Behandlung von Oberflächen mit einem mittels einer Elektrode über ein Feststoff-Dielektrikum durch eine dielektrische behinderte Gasentladung erzeugten Plasma
EP1839703B1 (de) * 2006-03-31 2011-05-25 Ushiodenki Kabushiki Kaisha Phototherapievorrichtung
WO2012059383A1 (de) * 2010-11-02 2012-05-10 Osram Ag Vorrichtung zum bestrahlen von oberflächen
EP3134351A1 (de) * 2014-04-24 2017-03-01 SICO Technology GmbH Vorrichtung zur photochemischen behandlung von verunreinigtem wasser
DE102018214715A1 (de) * 2018-08-30 2020-03-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Abbau von Schadstoffen in Wasser
DE102021108009A1 (de) 2021-03-30 2022-10-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Multi-Wellenlängen UV-Strahlungsquelle sowie UV-Sonde, insbesondere für die Fluoreszenzanalyse

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH675178A5 (de) * 1987-10-23 1990-08-31 Bbc Brown Boveri & Cie
CH675504A5 (de) * 1988-01-15 1990-09-28 Asea Brown Boveri
CH676168A5 (de) * 1988-10-10 1990-12-14 Asea Brown Boveri
CH677846A5 (de) * 1988-12-01 1991-06-28 Asea Brown Boveri
DE3901165A1 (de) * 1989-01-17 1990-08-02 Heidelberger Druckmasch Ag Einrichtung zum trocknen von farben auf papier
CH678128A5 (en) * 1989-01-26 1991-07-31 Asea Brown Boveri High power ultraviolet lamp with particle density control - heats and cools mercury reservoir connected to discharge space above dielectric covered wire counter electrode
CH677292A5 (de) * 1989-02-27 1991-04-30 Asea Brown Boveri
CH677557A5 (de) * 1989-03-29 1991-05-31 Asea Brown Boveri
US5118989A (en) * 1989-12-11 1992-06-02 Fusion Systems Corporation Surface discharge radiation source
US5225251A (en) * 1989-12-22 1993-07-06 Asea Brown Boveri Aktiengesellschaft Method for forming layers by UV radiation of aluminum nitride
DE3942472A1 (de) * 1989-12-22 1991-06-27 Asea Brown Boveri Beschichtungsverfahren
CH680246A5 (de) * 1990-04-24 1992-07-15 Asea Brown Boveri
CH680099A5 (de) * 1990-05-22 1992-06-15 Asea Brown Boveri
EP0482230B1 (de) * 1990-10-22 1995-06-21 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0489184B1 (de) * 1990-12-03 1996-02-28 Heraeus Noblelight GmbH Hochleistungsstrahler
US5220236A (en) * 1991-02-01 1993-06-15 Hughes Aircraft Company Geometry enhanced optical output for rf excited fluorescent lights
EP0504452B1 (de) * 1991-03-20 1995-06-28 Asea Brown Boveri Ag Verfahren und Einrichtung zur Aufladung von Partikeln
EP0509110B1 (de) 1991-04-15 1995-06-21 Heraeus Noblelight GmbH Bestrahlungseinrichtung
DE4113523A1 (de) * 1991-04-25 1992-10-29 Abb Patent Gmbh Verfahren zur behandlung von oberflaechen
EP0515711A1 (de) * 1991-05-27 1992-12-02 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0517929B1 (de) * 1991-06-01 1995-03-15 Heraeus Noblelight GmbH Bestrahlungseinrichtung mit einem Hochleistungsstrahler
EP0521553B1 (de) * 1991-07-01 1996-04-24 Koninklijke Philips Electronics N.V. Hochdrucksglimmentladungslampe
DE4222130C2 (de) * 1992-07-06 1995-12-14 Heraeus Noblelight Gmbh Hochleistungsstrahler
EP0607960B2 (de) * 1993-01-20 2001-05-16 Ushiodenki Kabushiki Kaisha Entladungslampe mit dielektrischer Sperrschicht
JP2775699B2 (ja) * 1994-09-20 1998-07-16 ウシオ電機株式会社 誘電体バリア放電ランプ
DE19636965B4 (de) * 1996-09-11 2004-07-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektrische Strahlungsquelle und Bestrahlungssystem mit dieser Strahlungsquelle
US6888041B1 (en) 1997-02-12 2005-05-03 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus
US6194821B1 (en) * 1997-02-12 2001-02-27 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus
US5945790A (en) * 1997-11-17 1999-08-31 Schaefer; Raymond B. Surface discharge lamp
US6015759A (en) * 1997-12-08 2000-01-18 Quester Technology, Inc. Surface modification of semiconductors using electromagnetic radiation
CA2224699A1 (en) * 1997-12-12 1999-06-12 Resonance Ltd. Hollow electrode electrodeless lamp
US6049086A (en) * 1998-02-12 2000-04-11 Quester Technology, Inc. Large area silent discharge excitation radiator
JP3346291B2 (ja) * 1998-07-31 2002-11-18 ウシオ電機株式会社 誘電体バリア放電ランプ、および照射装置
DE19922566B4 (de) * 1998-12-16 2004-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Erzeugung von Ultraviolettstrahlung
JP3264898B2 (ja) * 1999-02-25 2002-03-11 大村 智 液状、泥状物の殺菌用紫外線照射装置
FR2792774B1 (fr) 1999-04-26 2003-08-01 Joint Industrial Processors For Electronics Procede et dispositif de traitement d'un materiau par rayonnement electromagnetique et sous atmosphere controlee
US6133694A (en) * 1999-05-07 2000-10-17 Fusion Uv Systems, Inc. High-pressure lamp bulb having fill containing multiple excimer combinations
EP1158574B1 (de) * 1999-10-07 2010-07-21 Ushio Denki Kabushiki Kaisya Gerät zur erzeugung von ultravioletter strahlung
DE19957034B4 (de) 1999-11-26 2006-04-13 Heraeus Noblelight Gmbh Verfahren zur Behandlung von Oberflächen von Substraten und Vorrichtung
IES20000339A2 (en) * 2000-05-05 2001-11-14 G A Apollo Ltd Apparatus for irradiating material
AU2002219002A1 (en) * 2000-11-29 2002-06-11 Fraunhofer Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method and device for treating the surfaces of items
US20020067130A1 (en) * 2000-12-05 2002-06-06 Zoran Falkenstein Flat-panel, large-area, dielectric barrier discharge-driven V(UV) light source
US6759664B2 (en) * 2000-12-20 2004-07-06 Alcatel Ultraviolet curing system and bulb
US7381976B2 (en) 2001-03-13 2008-06-03 Triton Thalassic Technologies, Inc. Monochromatic fluid treatment systems
US6597003B2 (en) * 2001-07-12 2003-07-22 Axcelis Technologies, Inc. Tunable radiation source providing a VUV wavelength planar illumination pattern for processing semiconductor wafers
US6646256B2 (en) 2001-12-18 2003-11-11 Agilent Technologies, Inc. Atmospheric pressure photoionization source in mass spectrometry
US6559607B1 (en) 2002-01-14 2003-05-06 Fusion Uv Systems, Inc. Microwave-powered ultraviolet rotating lamp, and process of use thereof
US20030157000A1 (en) * 2002-02-15 2003-08-21 Kimberly-Clark Worldwide, Inc. Fluidized bed activated by excimer plasma and materials produced therefrom
DE50307658D1 (de) * 2002-04-29 2007-08-23 Fh Hildesheim Holzminden Goe Verfahren und vorrichtung zur behandlung der äusseren oberfläche eines metalldrahts, insbesondere als beschichtungsvorbehandlung
US7268355B2 (en) 2002-12-27 2007-09-11 Franek Olstowski Excimer UV fluorescence detection
US6971939B2 (en) * 2003-05-29 2005-12-06 Ushio America, Inc. Non-oxidizing electrode arrangement for excimer lamps
DE102004020398A1 (de) * 2004-04-23 2005-11-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielektrische Barriere-Entladungslampe mit Außenelektroden und Beleuchtungssystem mit dieser Lampe
US7196473B2 (en) * 2004-05-12 2007-03-27 General Electric Company Dielectric barrier discharge lamp
JP5054517B2 (ja) * 2004-07-09 2012-10-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 反射器を備えるuvc/vuv誘電体バリア放電ランプ
US7960705B2 (en) * 2005-12-21 2011-06-14 Trojan Technologies Excimer radiation lamp assembly, and source module and fluid treatment system containing same
WO2007071074A1 (en) * 2005-12-21 2007-06-28 Trojan Technologies Inc. Excimer radiation lamp assembly, and source module and fluid treatment system containing same
US20090274576A1 (en) * 2006-01-18 2009-11-05 Barry Ressler System and method for container sterilization using UV light source
EP2046687B1 (de) * 2006-07-13 2010-02-10 Philips Intellectual Property & Standards GmbH Flüssigkeitsverarbeitungssystem mit einem strahlungsquellenmodul und einem kühlmittel
DE112007003669A5 (de) * 2007-11-26 2011-01-13 Osram Gesellschaft mit beschränkter Haftung Dielektrische Barrieren-Entladungslampe in Doppelrohrkonfiguration
WO2009146432A1 (en) * 2008-05-30 2009-12-03 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
WO2009149020A1 (en) * 2008-06-04 2009-12-10 Triton Thalassic Technologies, Inc. Methods, systems and apparatus for monochromatic uv light sterilization
GB2474032B (en) * 2009-10-01 2016-07-27 Heraeus Noblelight Gmbh Flash lamp or gas discharge lamp with integrated reflector
US9493366B2 (en) 2010-06-04 2016-11-15 Access Business Group International Llc Inductively coupled dielectric barrier discharge lamp
TWI483285B (zh) 2012-11-05 2015-05-01 Ind Tech Res Inst 介電質屏障放電燈及其製作方法
US9269544B2 (en) 2013-02-11 2016-02-23 Colorado State University Research Foundation System and method for treatment of biofilms
US9117636B2 (en) 2013-02-11 2015-08-25 Colorado State University Research Foundation Plasma catalyst chemical reaction apparatus
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US10237962B2 (en) 2014-02-26 2019-03-19 Covidien Lp Variable frequency excitation plasma device for thermal and non-thermal tissue effects
WO2015163948A1 (en) 2014-04-22 2015-10-29 Hoon Ahn Power amplifying radiator (par)
US10524849B2 (en) 2016-08-02 2020-01-07 Covidien Lp System and method for catheter-based plasma coagulation
KR102116867B1 (ko) 2018-05-08 2020-05-29 주식회사 원익큐엔씨 임플란트 표면개질 처리장치
JP7132540B2 (ja) * 2018-06-13 2022-09-07 ウシオ電機株式会社 エキシマランプ
WO2023222178A1 (de) 2022-05-19 2023-11-23 IOT - Innovative Oberflächentechnologien GmbH Bestrahlungsgerät mit excimerstrahlern als uv-quelle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE739064A (de) * 1968-09-19 1970-03-18
GB2023980A (en) * 1978-06-07 1980-01-03 Bbc Brown Boveri & Cie Apparatus for sterilizing liquids

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769117A (en) * 1952-07-01 1956-10-30 Pirillo Santo Ozone producing device
US2943223A (en) * 1958-05-02 1960-06-28 Union Carbide Corp Silent electric discharge light source
DE6753632U (de) * 1968-09-19 1969-05-29 Philips Nv Niederdruckentladungslampe mit einer den entladungsraum unschliessenden wand, die u.a. aus einen traeger besteht.
DE2222454A1 (de) * 1972-05-08 1973-11-22 Patra Patent Treuhand Gekuehlte fuesse fuer hochleistungsentladungslampe
US3763806A (en) * 1972-10-16 1973-10-09 C & W Sewing Machine Separately retractable paired needles
FR2406606A1 (fr) * 1977-10-18 1979-05-18 Degremont Electrode pour appareil generateur d'ozone
US4179616A (en) * 1978-02-21 1979-12-18 Thetford Corporation Apparatus for sanitizing liquids with ultra-violet radiation and ozone
US4266166A (en) * 1979-11-09 1981-05-05 Gte Laboratories Incorporated Compact fluorescent light source having metallized electrodes
JPS5834560A (ja) * 1981-08-21 1983-03-01 周 成祥 放電灯ディスプレイ装置
US4427921A (en) * 1981-10-01 1984-01-24 Gte Laboratories Inc. Electrodeless ultraviolet light source
US4492898A (en) * 1982-07-26 1985-01-08 Gte Laboratories Incorporated Mercury-free discharge lamp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE739064A (de) * 1968-09-19 1970-03-18
GB2023980A (en) * 1978-06-07 1980-01-03 Bbc Brown Boveri & Cie Apparatus for sterilizing liquids

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED SPECTROSCOPY, Band 41, Nr. 4, Oktober 1984, Seiten 1194-1197, Plenum Publishing Corp., New York, US; G.A. VOLKOVA et al.: "Vacuum-ultraviolet lamps with a barrier discharge in inert gases" *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 219 (M-410)[1942], 6. September 1985; & JP-A-60 79 662 (IWASAKI DENKI K.K.) 07-05-1985 *

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4041884A1 (de) * 1990-12-27 1992-07-02 Abb Patent Gmbh Verfahren zur behandlung von oberflaechen
DE4113524A1 (de) * 1991-04-25 1992-10-29 Abb Patent Gmbh Verfahren zur behandlung von oberflaechen
DE4140497A1 (de) * 1991-12-09 1993-06-17 Asea Brown Boveri Hochleistungsstrahler
DE4208376A1 (de) * 1992-03-16 1993-09-23 Asea Brown Boveri Hochleistungsstrahler
DE4235743A1 (de) * 1992-10-23 1994-04-28 Heraeus Noblelight Gmbh Hochleistungsstrahler
DE4238324A1 (de) * 1992-11-13 1994-05-19 Abb Research Ltd Verfahren und Einrichtung zur Entgiftung von schadstoffhaltigen Gasen
WO1994013330A1 (de) * 1992-12-15 1994-06-23 Heraeus Noblelight Gmbh Flüssigkeitsentkeimung
DE4242172A1 (de) * 1992-12-15 1994-06-16 Heraeus Noblelight Gmbh Verfahren zur Entkeimung
WO1994013331A1 (de) * 1992-12-15 1994-06-23 Heraeus Noblelight Gmbh Verfahren zur entkeimung
WO1994015354A1 (de) * 1992-12-19 1994-07-07 Heraeus Noblelight Gmbh Hochleistungsstrahler
DE4243210A1 (de) * 1992-12-19 1994-06-30 Heraeus Noblelight Gmbh Hochleistungsstrahler
WO1994014711A1 (de) * 1992-12-19 1994-07-07 Heraeus Noblelight Gmbh Verfahren zur abwasserreinigung
DE4243208A1 (de) * 1992-12-19 1994-06-23 Heraeus Noblelight Gmbh Verfahren zur Abwasserreinigung
DE4302465C1 (de) * 1993-01-29 1994-03-10 Fraunhofer Ges Forschung Vorrichtung zum Erzeugen einer dielektrisch behinderten Entladung
DE4305704B4 (de) * 1993-02-25 2006-02-16 Matter + Siegmann Ag Verfahren und Vorrichtung zur Untersuchung von in einem Gas befindlichen Partikeln
DE4314510A1 (de) * 1993-05-03 1994-11-10 Abb Research Ltd Verfahren zur Erzeugung von Ozon
EP0721204A3 (de) * 1993-09-08 1996-11-06 Ushio Electric Inc Entladungslampe mit dieelektrischer Barriere
EP0642153A1 (de) * 1993-09-08 1995-03-08 Ushiodenki Kabushiki Kaisha Dielektrikumbegrenzte Entladungslampe
KR100238642B1 (ko) * 1993-09-08 2000-01-15 다나카 아키히로 유전체 배리어 방전램프
DE4342643A1 (de) * 1993-09-13 1995-03-16 Fraunhofer Ges Forschung Fotochemische Fixierung mit UV-Strahler
DE4342643C2 (de) * 1993-09-13 1999-04-29 Fraunhofer Ges Forschung Erwärmungsarme Fixierung mit Barrierenentladung in Tintenstrahldruckern
WO1995009256A1 (de) * 1993-09-27 1995-04-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Oberflächenbehandlung mit barrierenentladung
EP0661110A1 (de) * 1993-11-26 1995-07-05 Ushiodenki Kabushiki Kaisha Verfahren zur Oxidation der Oberflächen eines Gegenstandes
DE4415242A1 (de) * 1994-04-30 1995-11-02 Wissenschaftlich Tech Optikzen Quasi-kontinuierlich emittierender UV-Laser, insbesondere Excimer-Laser
DE4430300C1 (de) * 1994-08-26 1995-12-21 Abb Research Ltd Excimerstrahler und dessen Verwendung
EP0703602B1 (de) * 1994-09-20 1997-12-10 Ushiodenki Kabushiki Kaisha Lichtquellen-Vorrichtung mit einer Dielektrikumbegrenzter Entladungslampe
EP0732727A3 (de) * 1995-02-04 1999-01-07 Balzers und Leybold Deutschland Holding Aktiengesellschaft Verwendung und Verfahren zur Behandlung von Oberflächen mittels einer dielektrisch behinderten Entladungsvorrichtung, die Plasmateilchen und/oder UV-Strahlung erzeugt
EP0767484A1 (de) * 1995-10-02 1997-04-09 Ushiodenki Kabushiki Kaisha Entladungslampe mit dielektrischer Sperrschicht
EP0782871A3 (de) * 1995-11-22 1999-03-10 Heraeus Noblelight GmbH Verfahren und Strahlungsanordnung zur Erzeugung von UV-Strahlen zur Körperbestrahlung sowie Verwendung
US5955840A (en) * 1995-11-22 1999-09-21 Heraeus Noblelight Gmbh Method and apparatus to generate ultraviolet (UV) radiation, specifically for irradiation of the human body
DE19627119A1 (de) * 1996-07-05 1998-01-15 Hassia Verpackung Ag Vorrichtung zum Entkeimen und/oder Sterilisieren von Packstoffbahnen
EP0818206A3 (de) * 1996-07-12 1999-07-21 Heraeus Noblelight GmbH Verfahren zum Desinfizieren und Reinigen von Kleinteilen und dafür geeignete Vorrichtung
WO1998040273A3 (en) * 1996-10-11 2000-09-14 Tetra Laval Holdings & Finance Method and apparatus for sterilizing packaging
DE19708149A1 (de) * 1997-02-28 1998-09-03 Umex Ges Fuer Umweltberatung U Vorrichtung zur UV-Bestrahlung von Flüssigkeiten und Gasen
DE19708148A1 (de) * 1997-02-28 1998-09-03 Umex Ges Fuer Umweltberatung U Vorrichtung zur UV-Bestrahlung strömender Flüssigkeiten und Gase mit elektrodenloser Entladungslampe
DE19920693C1 (de) * 1999-05-05 2001-04-26 Inst Oberflaechenmodifizierung Offener UV/VUV-Excimerstrahler und Verfahren zur Oberflächenmodifizierung von Polymeren
DE10112900C1 (de) * 2001-03-15 2002-07-11 Heraeus Noblelight Gmbh Excimer-Strahler, insbesondere UV-Strahler
DE10235036A1 (de) * 2002-07-31 2004-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. UV-Lichtquelle
DE10260579A1 (de) * 2002-12-21 2004-07-08 Gesellschaft zur Förderung der Spektrochemie und angewandten Spektroskopie e.V. Verfahren zur Gasionisierung eines Analyten in einem Ionenbeweglichkeitsspektrometer sowie Ionenbeweglichkeitsspektrometer
WO2004059694A1 (fr) * 2002-12-25 2004-07-15 Zakrytoe Akzionernoe Obschestvo Nauchno-Proisvodstvenny Tsentr 'soliton-Ntt' Source de rayons ultraviolets a decharges gazeuses
WO2005102950A2 (de) * 2004-04-15 2005-11-03 Heraeus Quarzglas Gmbh & Co. Kg Quarzglas- bauteil für eine uv-strahlenquelle sowie verfahren für die herstellung und für die eignungsdiagnose
DE102004018887A1 (de) * 2004-04-15 2005-11-10 Heraeus Quarzglas Gmbh & Co. Kg Bauteil aus Quarzglas für eine UV-Strahlenquelle sowie Verfahren für die Herstellung und für die Eignungsdiagnose eines derartigen Quarzglas-Bauteils
DE102004018887B4 (de) * 2004-04-15 2009-04-16 Heraeus Quarzglas Gmbh & Co. Kg Verfahren für die Herstellung eines Bauteils aus Quarzglas zum Einsatz mit einer UV-Strahlenquelle und Verfahren für die Eignungsdiagnose eines derartigen Quarzglas-Bauteils
WO2005102950A3 (de) * 2004-04-15 2006-03-02 Heraeus Quarzglas Quarzglas- bauteil für eine uv-strahlenquelle sowie verfahren für die herstellung und für die eignungsdiagnose
DE102004022859A1 (de) * 2004-05-06 2006-01-05 Kalle Gmbh Künstliche Nahrungsmittelhülle sowie Verfahren zu deren Herstellung
DE102004022859B4 (de) * 2004-05-06 2006-04-13 Kalle Gmbh Künstliche Nahrungsmittelhülle sowie Verfahren zu deren Herstellung
DE102005007370B3 (de) * 2005-02-17 2006-09-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kompakte UV-Lichtquelle
EP1839703B1 (de) * 2006-03-31 2011-05-25 Ushiodenki Kabushiki Kaisha Phototherapievorrichtung
DE102007030915A1 (de) * 2007-07-03 2009-01-22 Cinogy Gmbh Vorrichtung zur Behandlung von Oberflächen mit einem mittels einer Elektrode über ein Feststoff-Dielektrikum durch eine dielektrische behinderte Gasentladung erzeugten Plasma
US8940229B2 (en) 2010-11-02 2015-01-27 Osram Ag Device for irradiating surfaces
CN103189075A (zh) * 2010-11-02 2013-07-03 欧司朗股份有限公司 用于表面辐照的装置
WO2012059383A1 (de) * 2010-11-02 2012-05-10 Osram Ag Vorrichtung zum bestrahlen von oberflächen
CN103189075B (zh) * 2010-11-02 2016-01-20 欧司朗股份有限公司 用于表面辐照的装置
EP3134351A1 (de) * 2014-04-24 2017-03-01 SICO Technology GmbH Vorrichtung zur photochemischen behandlung von verunreinigtem wasser
DE102018214715A1 (de) * 2018-08-30 2020-03-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Abbau von Schadstoffen in Wasser
DE102018214715B4 (de) 2018-08-30 2020-07-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Abbau von Schadstoffen in Wasser
DE102021108009A1 (de) 2021-03-30 2022-10-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Multi-Wellenlängen UV-Strahlungsquelle sowie UV-Sonde, insbesondere für die Fluoreszenzanalyse
DE102021108009B4 (de) 2021-03-30 2023-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Multi-Wellenlängen UV-Strahlungsquelle sowie UV-Sonde, insbesondere für die Fluoreszenzanalyse

Also Published As

Publication number Publication date
DE3775647D1 (de) 1992-02-13
CH670171A5 (de) 1989-05-12
EP0254111B1 (de) 1992-01-02
US4837484A (en) 1989-06-06
CA1288800C (en) 1991-09-10

Similar Documents

Publication Publication Date Title
EP0254111B1 (de) UV-Strahler
EP0312732B1 (de) Hochleistungsstrahler
EP0324953B1 (de) Hochleistungsstrahler
EP0458140B1 (de) Hochleistungsstrahler
DE4113241C2 (de) Gepulster Gasentladungslaser
EP0578953B1 (de) Hochleistungsstrahler
EP0371304B1 (de) Hochleistungsstrahler
DE69409677T3 (de) Entladungslampe mit dielektrischer Sperrschicht
CH677557A5 (de)
DE19731168A1 (de) Beleuchtungssystem
CH676168A5 (de)
DE19919169A1 (de) Vorrichtung zur Desinfektion von Wasser mit einer UV-C-Gasentladungslampe
DE4140497A1 (de) Hochleistungsstrahler
EP0482230B1 (de) Hochleistungsstrahler
EP0517929B1 (de) Bestrahlungseinrichtung mit einem Hochleistungsstrahler
EP2128888A2 (de) Quecksilberfreie Metallhalogenid-Hochdruckentladungslampe
DE4302465C1 (de) Vorrichtung zum Erzeugen einer dielektrisch behinderten Entladung
DE1639112A1 (de) Dampfentladungslampe fuer photochemische Zwecke
DE4235743A1 (de) Hochleistungsstrahler
DE4036122A1 (de) Koronaentladungs-lichtquellenzelle
DE4208376A1 (de) Hochleistungsstrahler
DE69104866T2 (de) Metalldampfentladungslampe.
DE2461568A1 (de) Dampfentladungslampe
EP0334355B1 (de) Wandstabilisierte Hochdruck-Entladungslampe
DE19613357A1 (de) Gepulste Lichtquelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19880627

17Q First examination report despatched

Effective date: 19890905

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3775647

Country of ref document: DE

Date of ref document: 19920213

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HERAEUS NOBLELIGHT GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;HERAEUS NOBLELIGHT GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: HERAEUS NOBLELIGHT GMBH TE KLEINOSTHEIM, BONDSREPU

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060714

Year of fee payment: 20

Ref country code: FR

Payment date: 20060714

Year of fee payment: 20

Ref country code: DE

Payment date: 20060714

Year of fee payment: 20

Ref country code: CH

Payment date: 20060714

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060822

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070706

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20070706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070705

BE20 Be: patent expired

Owner name: *HERAEUS NOBLELIGHT G.M.B.H.

Effective date: 20070706