EP0191170B1 - Dispositif de dégazage de réservoir de carburant - Google Patents

Dispositif de dégazage de réservoir de carburant Download PDF

Info

Publication number
EP0191170B1
EP0191170B1 EP19850115458 EP85115458A EP0191170B1 EP 0191170 B1 EP0191170 B1 EP 0191170B1 EP 19850115458 EP19850115458 EP 19850115458 EP 85115458 A EP85115458 A EP 85115458A EP 0191170 B1 EP0191170 B1 EP 0191170B1
Authority
EP
European Patent Office
Prior art keywords
control
duty ratio
tank ventilation
mixture
mean value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19850115458
Other languages
German (de)
English (en)
Other versions
EP0191170A1 (fr
EP0191170B2 (fr
Inventor
Helmut Ing. Grad. Breitkreutz
Albrecht Dipl.-Ing. Clement
Dieter Dipl.-Ing. Mayer
Claus Dipl.-Ing. Ruppmann
Dieter Dipl.-Ing. Walz
Ernst Dipl.-Ing. Wild
Martin Dr. Zechnall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6260813&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0191170(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0191170A1 publication Critical patent/EP0191170A1/fr
Application granted granted Critical
Publication of EP0191170B1 publication Critical patent/EP0191170B1/fr
Publication of EP0191170B2 publication Critical patent/EP0191170B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1491Replacing of the control value by a mean value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Definitions

  • the invention relates to a device according to the preamble of claim 1.
  • ⁇ probes detecting the composition of the exhaust gas are used to control tank ventilation valves in such a way that that such a valve is continuously opened or closed depending on the signal of the k-probe.
  • the tank ventilation valve is arranged between an intermediate store and the inlet of the internal combustion engine and is electrically controlled; a corresponding, but pneumatically controlled tank vent valve is also known from DE-A-2 612 300.
  • tank ventilation device which parallelly converts the output signal of the X-probe, which is converted into a clock pulse sequence and which is originally fed to the solenoid of a control nozzle in the carburetor, in order to ensure a stoichiometric mixture used to switch off the tank ventilation or to keep it to minimum values when either a minimum or a maximum fuel is added via the carburetor.
  • the additional tank ventilation should lead to an undesirable over-greasing of the mixture; in normal operation, the additional fuel quantities coming from the tank ventilation remain without a major influence and are ultimately also compensated for, approximately indirectly via the reaction of the 1-probe, in their effect on the mixture composition, albeit with a time delay and possibly out of phase.
  • the intermediate storage container containing the activated carbon filter is able to store fuel vapors up to a certain maximum amount, the filter being flushed during engine operation by the vacuum developed by the internal combustion engine in the intake tract, for which purpose the filter has an opening to the outside air. Therefore, if you only allow the buffer to be flushed under certain operating conditions, an additional fuel-air mixture that can be traced back to this tank ventilation results, which, as a mixture that has not been measured or cannot be measured with reasonable effort, results in the fuel metering signal that is normally produced very precisely with a high degree of computation a fuel injection system the duration of the injection control command t; - and falsifies the resulting amount of fuel supplied to the internal combustion engine.
  • Such an additional amount of fuel which in particular also influences the driving behavior under certain conditions, which in extreme cases can consist of almost 100% air or 100% fuel vapor as a tank ventilation mixture, is also not acceptable if the influence of this disturbance variable is directly influenced by pneumatic actuators obtains the intake manifold pressure developed by the internal combustion engine or completely excludes the supply of the tank ventilation mixture by means of an electronic on / off control for particularly sensitive operating conditions, such as idling.
  • the invention is therefore based on the object to provide a device which in terms of its proportions or its amounts, the tank ventilation mixture, which cannot be predetermined, can be supplied to the intake tract of the respective internal combustion engine in such a way that, on the one hand, there is an effective ventilation of the intermediate storage unit, but on the other hand no disturbing influence on the fuel metering device operating under the control of a 1 regulation the internal combustion engine results.
  • the invention solves this problem with the characterizing features of claim 1 and has the decisive advantage that the tank ventilation influence is removed from the area of arbitrary connections and is deliberately fine-tuned to the respective internal combustion engine behavior with continuous change of the maximum quantity to be supplied, the tank ventilation depending on in internal combustion engines already existing A control of the operating mixture is controlled and regulated so that negative influences neither on driving behavior nor on the basic control of the fuel supply are possible.
  • the control of the tank ventilation in the sense of a pre-control from a load-speed characteristic map is of particular advantage, this pre-control then being made even more dependent on the 2nd control factor.
  • tank ventilation valve in the tank ventilation line between the filter and the suction tract is controlled periodically by the assigned control unit, the period resulting from the change between opening and closing the valve and a variation of this ratio of opening time to closing time (which corresponds to the duty cycle of the tank ventilation control) appropriate adjustment of the tank ventilation mixture amount can be achieved.
  • tank ventilation can also be incorporated and implemented in the overall behavior of the internal combustion engine over a wide range, depending on the ⁇ control factor.
  • FIG. 1 shows a highly schematic diagram of the basic principle of tank ventilation with a tank ventilation valve with a continuously changeable opening cross section and electronic control unit
  • FIG. 2 shows the approximately linear course of the characteristic of the tank ventilation valve over the duty cycle of the control pulse sequence
  • FIG. 3 shows a tank ventilation map for pre-controlling the duty cycle of the Control pulse sequence for the tank ventilation valve via load and speed
  • Fig. 4 shows the characteristic curve of the mean value of the lambda control factor for lambda control-dependent control of the tank ventilation
  • Fig. 1 shows a highly schematic diagram of the basic principle of tank ventilation with a tank ventilation valve with a continuously changeable opening cross section and electronic control unit
  • FIG. 2 shows the approximately linear course of the characteristic of the tank ventilation valve over the duty cycle of the control pulse sequence
  • FIG. 3 shows a tank ventilation map for pre-controlling the duty cycle of the Control pulse sequence for the tank ventilation valve via load and speed
  • Fig. 4 shows the characteristic curve of the mean value of the lambda control factor for lambda control-dependent
  • FIG. 6 the characteristic curve course of the duty cycle of the control pulse sequence, the tank ventilation and the mean value of the lambda control factor over the time at pilot control About the tank ventilation map and additional limit control
  • Fig. 7 schematically shows the block diagram of the tank ventilation with pilot control map and optional additional intervention of a lambda control-dependent control and a limit control.
  • FIG. 1 shows a fuel tank or tank 10 which is ventilated and ventilated exclusively via an activated carbon filter located in a temporary storage tank 11, the fuel evaporating from the tank being stored in the activated carbon filter up to a limited maximum amount.
  • This stored fuel is then sucked into the engine while the internal combustion engine is running - only the intake area 12 with the throttle valve 12a is shown in FIG. 1.
  • the metering of the fuel extracted from the area of the tank ventilation or of the fuel air mixture formed there, the proportions of which cannot be determined, takes place via a special tank ventilation valve 13 such that in all operating states of the system there is no impairment of driving behavior and exhaust gas behavior and no impairment of the control circuits involved in the fuel metering and adaptive systems occurs.
  • the control of the tank ventilation valve 13 takes place on its magnetic part 13a by a control device 14, this one Control pulse sequence outputs with a variable duty cycle TV, whereby a suitable variation of the opening cross section of the tank ventilation system 13 can be set.
  • the characteristic curve of the tank ventilation valve 13 between the minimum throughput Qmin and Qmax over the pulse duty factor can be approximately linear, possibly also exponential, which can be included in the calculation.
  • the following information relates to specific numerical data of a suitable tank ventilation valve with a passage cross-section that can be changed continuously depending on the duty cycle of the control pulse sequence.
  • a first embodiment which is also of independent importance from other, possibly supplementary and supportive control and regulation options for tank ventilation, includes the control of the tank ventilation valve via a tank ventilation map or pilot control map, which is dependent on the load (shown as pilot control Injection pulse t L here a fuel injection system) and the speed n via 4x4 support points with the possibility of interpolation each outputs quantized duty cycle variables and feeds, for example, a multiplier 15 for the tank ventilation valve control.
  • pilot control map is denoted by 16 and shown in FIG. 3 as a diagram, the map being designed such that the percentage enrichment of the combustion mixture supplied to the internal combustion engine is the same in all areas for a given TE mixture .
  • the duty cycle of the control pulse sequence for the tank ventilation valve can be quantized continuously or in steps of, for example, 10% each in the range between 0 and 100%.
  • the control of the further processing point 15 from the pilot control map 16 is shown via a switch S1, which is useful so that in certain operating states (idling, overrun cut-off) the tank ventilation can be completely prevented, if necessary, or also to do without to allow the pilot control map control to take effect other control and regulating methods to be explained below.
  • the lambda control circuit for generating the fuel metering signal of the internal combustion engine 17, in this case a spark-ignition internal combustion engine (Otto engine) with injection, in a multiplier stage 18, starting from the output signal of a load sensor (not shown),
  • a load sensor for example, an air flow meter, and a speed sensor generates a load signal, namely an injection time duration signal t L and is fed to a further, downstream multiplier stage 19, ultimately for the control of the injection valve or valves.
  • a correction factor F R is applied to the injection time period at the multiplier 19, which is generated as a lambda correction factor behind a comparator 20 from the actual lambda value generated by the lambda probe 21 and a lambda setpoint from a lambda controller 22.
  • this lambda correction factor F R which is present anyway on the basis of the lambda control loop, is used in order to make possible a lambda control-dependent control of the tank ventilation as well.
  • the averaged value F R of the lambda correction factor generated via an interposed low-pass filter 23 is used and also reaches the multiplication point 15 for the TE valve control via a characteristic curve block 24.
  • the characteristic curve of the tank ventilation change or influence above the mean value of the lambda control is again shown separately in FIG. 4 and comprises four support points with interpolation, the basic function being such that an increasing enrichment of the tank ventilation mixture (TE mixture) over the mean value F R of the lambda correction factor is recognized, since it shifts to lower values, and the tank ventilation is closed accordingly by correspondingly changing the duty cycle of the control pulse sequence for the tank ventilation valve.
  • the block diagram of FIG. 7 also contains a second possible variant for characteristic curve mean value control, which can be used as an alternative to this and comprises limit value regulation of the mean value of the lambda correction factor.
  • a further comparison point 25 is provided, to which a limit value F RGW of the mean value of the lambda correction factor is supplied, together with the actual value mean value F R of the correction factor.
  • the comparison result is sent to a comparator 26, which decides whether the mean value F R of the correction factor is above or below the predetermined limit value; depending on the result, a downstream integrator 27 is driven as an I controller for limit value control with appropriate polarity, the output signal of which is then likewise fed to the multiplication point 15.
  • FIG. 5 The diagrams on the left-hand side of FIG. 5 show the states that result from the pilot control map 16 with pure control; assume that the duty cycle of the controller is at 0.25 due to the speeds and load values; occurs at a predetermined time t (see diagram b) of FIG. 5) a sudden increase in the fuel content in the TE mixture (illustrated by three different curves (1); (2); (3)), then the reacts Control via the pilot control map thereon not at all and the lambda correction factor F R only shifts accordingly in the direction of a lean mixture as a result of the “fuel cloud” (theoretical jump function) in the TE mixture (see c) of FIG. 5), ie the regulator is emaciated.
  • the enrichment which is now brought about by the tank venting shifts the mean value F R beyond the limit value GW, which occurs at time t 2 .
  • the pulse duty factor of the actuation pulse sequence is then (increasingly) closed via the I controller 27, that is to say it decreases until the time t 3 the mean value F R has returned to above the limit value; From this point in time, the pulse duty factor increases again in accordance with the adjustment of the I-controller 27, whereby multiple oscillations, as shown at c) in FIG. 6, can also result around the limit value GW until the cloud formation has subsided at the time t 4 and mean F R and duty cycle return to the previous values.
  • the time constant of the I controller 27 for the tank ventilation must be greater than the time constant of the known 1 controller of the lambda control for the fuel metering or the calculation of the fuel injection pulses, one for the entire speed / load range constant time constant is sufficient for the tank ventilation. Furthermore, a maximum limitation I TEmax should be provided for the I controller and the quantization of the I controller should be about four times finer than the output quantization for the pulse duty factor.
  • the overall function of the tank ventilation in accordance with the block diagram of FIG. 7 can therefore look like the two following formulas alternatively indicate and the alternatively provided additional control options occur via the mean value of the lambda control or the limit value control in addition to the map control:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Claims (8)

1. Dispositif pour désaérer un réservoir de carburant pour des moteurs à combustion interne ou des équipements analogues, avec un réservoir intermédiaire captant les vapeurs de carburant qui se forment, notamment un réservoir de filtration à charbon actif, et avec des moyens pour délivrer de façon contrôlée le mélange de désaération du réservoir de carburant, (mélange TE) au moteur à combustion interne en fonction des conditions de fonctionnement sélectionnées, comprenant au moins le signal de sortie d'une sonde λ, par modification continue de la section transversale de l'orifice de passage d'une soupape de désaération du réservoir de carburant, commandée électriquement entre le réservoir intermédiaire et le moteur à combustion interne, dispositif caractérisé en ce qu'en complément de la régulation en fonction du signal de la sonde λ, la section transversale de l'orifice de passage de la soupape (13) de désaération du réservoir de carburant est déterminée de façon contrôlée par l'intermédiaire d'un champ caractéristique de précommande en fonction de la charge (tL), et de la vitesse de rotation (n), entre des valeurs prédéfinies (0 % - -100 %; TVTEminl, TVTEmin2, TVTEmax).
2. Dispositif selon la revendication 1, caractérisé en ce que la soupape (13) de désaération du réservoir de carburant, revêtant la forme d'une soupape électromagnétique, notamment à électro-aimant de levage, est commandée par un circuit de commande (14) au moyen d'une succession d'impulsions de commande synchronisée dont le taux d'impulsion (TVTE) est susceptible d'être modifié pour modifier la section transversale de l'orifice de passage.
3. Dispositif selon la revendication 1, caractérisé en ce que le champ caractéristique de précommande (KVTE) comprend au moins 4 x 4 points d'appui avec possibilité d'interpolation, et est conçu de façon que l'enrichissement en pourcentage du mélange de combustion, pour un mélange TE donné, a la même valeur sur toute l'étendue du champ.
4. Dispositif selon la revendication 2, caractérisé en ce que la régulation en fonction du signal de la sonde λ, du taux d'impulsion (TVTE) le long d'une courbe caractéristique de valeur moyenne du facteur de régulation λ (FR) s'effectue de sorte qu'un enrichissement du mélange TE est détecté par l'intermédiaire de la valeur moyenne du facteur de régulation (fR) et que la soupape de désaération du réservoir de carburant est en conséquence fermée par une réduction correspondante du taux d'impulsion.
5. Dispositif selon la revendication 4, caractérisé en ce que, en variante par rapport à la commande en fonction de courbes caractéristiques par l'intermédiaire de la valeur moyenne, l'adaptation de base reste inchangée par la désaération du réservoir de carburant.
6. Dispositif selon une des revendications 1 à 4, caractérisé en ce qu'il est prévu un bloc de précommande (16) à champ caractéristique, contenant des valeurs de taux d'impulsion pour la succession d'impulsions de commande de la soupape de désaération du réservoir de carburant, qui délivre des valeurs du taux d'impulsion, prédéfinies en fonction de la charge (tL) et de la vitesse de rotation (n) et les transmet à un point d'attaque, notamment un étage démultiplication (15) (figure 7).
7. Dispositif selon la revendication 6, caractérisé en ce qu'au point d'attaque (étage de multiplication 15) est appliqué un autre signal de sortie d'un bloc de courbes caractéristiques (24), qui établit des valeurs du taux d'impulsion définies en fonction de l'évolution de la valeur moyenne (FR) du facteur de réglage, pour l'exploitation exclusive, ou en combinaison avec les données du champ caractéristique de précommande.
8. Dispositif selon la revendication 6 ou 7, caractérisé en ce qu'il est prévu un point de comparaison (25), auquel sont appliqués une valeur limite (GW) de la valeur limite du facteur de réglage (FR), ainsi que ce facteur, avec un comparateur (26) branché à la suite pour déterminer le signe, et un intégrateur (27) qui, selon un réglage continu avec une constante prédéfinie, fournit un taux d'impulsion se modifiant pour la succession d'impulsions de commande et l'applique à l'étage de multiplication (15), de façon qu'en variante au réglage en fonction des courbes caractéristiques, il s'opère une régulation de valeurlimite du taux d'impulsion (TVTE) de la succession d'impulsions de commande, auquel cas, lors du dépassement d'une valeur- limite prédéfinie (FRGW), par la valeur-limite du facteur de réglage À (FR), le taux d'impulsion (TVTE) est modifié dans le sens d'une réduction de la section transversale de l'orifice, et, lors d'une régression, dans le sens d'une augmentation de la section transversale de l'orifice (figure 6).
EP85115458A 1985-01-26 1985-12-05 Dispositif de dégazage de réservoir de carburant Expired - Lifetime EP0191170B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3502573A DE3502573C3 (de) 1985-01-26 1985-01-26 Vorrichtung zur Entlüftung von Kraftstofftanks
DE3502573 1985-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP88106880.3 Division-Into 1988-04-29

Publications (3)

Publication Number Publication Date
EP0191170A1 EP0191170A1 (fr) 1986-08-20
EP0191170B1 true EP0191170B1 (fr) 1989-03-29
EP0191170B2 EP0191170B2 (fr) 1995-08-16

Family

ID=6260813

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19880106880 Expired - Lifetime EP0288090B1 (fr) 1985-01-26 1985-12-05 Dispositif de dégazage de réservoir de carburant
EP85115458A Expired - Lifetime EP0191170B2 (fr) 1985-01-26 1985-12-05 Dispositif de dégazage de réservoir de carburant

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19880106880 Expired - Lifetime EP0288090B1 (fr) 1985-01-26 1985-12-05 Dispositif de dégazage de réservoir de carburant

Country Status (4)

Country Link
US (1) US4683861A (fr)
EP (2) EP0288090B1 (fr)
JP (3) JPH0759917B2 (fr)
DE (3) DE3502573C3 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2607192A1 (fr) * 1986-11-22 1988-05-27 Bosch Gmbh Robert Procede et installation pour compenser l'erreur de degazage du reservoir dans le cas d'un systeme d'alimentation en carburant a education adaptative dite egalement autodidactique
WO1989010472A1 (fr) * 1988-04-20 1989-11-02 Robert Bosch Gmbh Procede et dispositif pour le reglage d'une soupape de degazage d'un reservoir
WO1990000225A1 (fr) * 1988-07-01 1990-01-11 Robert Bosch Gmbh Procede et dispositif adaptatifs d'aeration de reservoirs a regulation de lambda
WO1990001628A1 (fr) * 1988-08-04 1990-02-22 Robert Bosch Gmbh Systeme de stereoregulation lambda
EP0482239A1 (fr) * 1990-10-24 1992-04-29 Siemens Aktiengesellschaft Système d'injection pour un moteur à combustion
US5125385A (en) * 1990-04-12 1992-06-30 Siemens Aktiengesellschaft Tank ventilation system and method for operating the same
WO1992016734A2 (fr) * 1991-03-22 1992-10-01 Robert Bosch Gmbh Procede et dispositif pour la ventilation de reservoirs
US5438967A (en) * 1992-10-21 1995-08-08 Toyota Jidosha Kabushiki Kaisha Internal combustion device
EP1136683A2 (fr) 2000-03-23 2001-09-26 Adam Opel Ag Système d'alimentation en carburant pour moteur à combustion interne

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355357A (ja) * 1986-08-22 1988-03-09 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH0718390B2 (ja) * 1986-09-26 1995-03-06 日産自動車株式会社 燃料蒸発ガスのパ−ジ量制御装置
JPH0726598B2 (ja) * 1988-02-18 1995-03-29 トヨタ自動車株式会社 内燃機関の空燃比制御装置
US5482024A (en) * 1989-06-06 1996-01-09 Elliott; Robert H. Combustion enhancer
NL8902897A (nl) * 1989-11-23 1991-06-17 Tno Zuiveren van lucht.
DE4025544A1 (de) * 1990-03-30 1991-10-02 Bosch Gmbh Robert Tankentlueftungsanlage fuer ein kraftfahrzeug und verfahren zum ueberpruefen deren funktionstuechtigkeit
DE4030948C1 (en) * 1990-09-29 1991-10-17 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Monitoring removal of petrol vapour from IC engine fuel tank - detecting change in fuel-air mixt. composition during selected working conditions
JP3173661B2 (ja) * 1990-12-28 2001-06-04 本田技研工業株式会社 内燃エンジンの蒸発燃料制御装置
DE4108856C2 (de) * 1991-03-19 1994-12-22 Bosch Gmbh Robert Tankentlüftungsanlage sowie Verfahren und Vorrichtung zum Überprüfen der Dichtheit derselben
DE4122975A1 (de) * 1991-07-11 1993-01-14 Bosch Gmbh Robert Tankentlueftungsanlage fuer ein kraftfahrzeug sowie verfahren und vorrichtung zum ueberpruefen von deren funktionsfaehigkeit
US5263460A (en) * 1992-04-30 1993-11-23 Chrysler Corporation Duty cycle purge control system
JP3378304B2 (ja) * 1992-08-06 2003-02-17 マツダ株式会社 エンジンの空燃比制御装置
DE4319772A1 (de) * 1993-06-15 1994-12-22 Bosch Gmbh Robert Verfahren und Vorrichtung zum Steuern einer Tankentlüftungsanlage
US5529047A (en) * 1994-02-21 1996-06-25 Nippondenso Co., Ltd. Air-fuel ratio system for an internal combustion engine
JP3689126B2 (ja) * 1994-03-18 2005-08-31 本田技研工業株式会社 内燃機関の蒸発燃料制御装置
FR2722247B1 (fr) * 1994-07-05 1996-08-30 Renault Procede de commande d'un moteur a combustion interne a recyclage de gaz de purge de l'event du reservoir
DE4430971A1 (de) 1994-08-31 1996-03-07 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur Zufuhr von Kraftstoffdampf in ein Saugrohr einer Brennkraftmaschine in Kraftfahrzeugen
DE19610169B4 (de) * 1996-03-15 2007-08-02 Robert Bosch Gmbh Verfahren zur Adaption der Verzugszeit eines elektromagnetischen Tankentlüftungsventils
JP3880655B2 (ja) * 1996-05-31 2007-02-14 本田技研工業株式会社 内燃機関の蒸発燃料制御装置
JP3890576B2 (ja) * 1997-04-02 2007-03-07 株式会社デンソー 内燃機関の空燃比制御装置
JP3707221B2 (ja) * 1997-12-02 2005-10-19 スズキ株式会社 内燃機関の空燃比制御装置
JPH11280567A (ja) * 1998-03-30 1999-10-12 Toyota Motor Corp 希薄燃焼内燃機関の蒸発燃料濃度検出装置及びその応用装置
JP3861446B2 (ja) * 1998-03-30 2006-12-20 トヨタ自動車株式会社 希薄燃焼内燃機関の蒸発燃料濃度検出装置及びその応用装置
JP4233694B2 (ja) * 1999-07-26 2009-03-04 本田技研工業株式会社 内燃機関の蒸発燃料放出防止装置
DE10037511C1 (de) * 2000-08-01 2002-01-03 Siemens Ag Verfahren zur Diagnose der Verstellvorrichtung einer Drallklappe
DE10043862A1 (de) 2000-09-04 2002-03-14 Bosch Gmbh Robert Verfahren zur Steuerung der Regenerierung eines Kraftstoffdampfzwischenspeichers bei Verbrennungsmotoren
DE10043698A1 (de) 2000-09-04 2002-03-14 Bosch Gmbh Robert Verfahrenzur Bildung der Verzugszeit eines elektromagnetischen Tankentlüftungsventils
DE10335902B4 (de) * 2003-08-06 2015-12-31 Robert Bosch Gmbh Verfahren zur Tankentlüftung bei einer Brennkraftmaschine
DE102006002717B3 (de) * 2006-01-19 2007-05-24 Siemens Ag Verfahren und Vorrichtung zum Ansteuern eines Ventils eines Kraftstoffdampf-Rückhaltesystems
US9200600B1 (en) * 2006-05-15 2015-12-01 Brunswick Corporation Method for controlling a fuel system of a marine propulsion engine
WO2008081992A1 (fr) * 2006-12-28 2008-07-10 Toyota Jidosha Kabushiki Kaisha Dispositif de commande pour moteur à combustion interne
DE102007013993B4 (de) * 2007-03-23 2011-12-22 Continental Automotive Gmbh Steuerverfahren für eine Brennkraftmaschine
DE102007039830A1 (de) * 2007-08-23 2009-02-26 Robert Bosch Gmbh Ventilkontrolle bei Betankung von Drucktanks
DE102007046489B3 (de) 2007-09-28 2009-05-07 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102007046481B3 (de) * 2007-09-28 2009-04-09 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
US7950375B2 (en) * 2008-06-11 2011-05-31 GM Global Technology Operations LLC Noise minimization for evaporative canister ventilation valve cleaning
US9527718B2 (en) * 2013-10-10 2016-12-27 Ford Global Technologies, Llc Refueling systems and methods for mixed liquid and gaseous fuel
US9388775B2 (en) 2014-04-24 2016-07-12 Ford Global Technologies, Llc Systems and methods for refueling canister system
US9644552B2 (en) 2014-06-24 2017-05-09 Ford Global Technologies, Llc System and methods for refueling a vehicle
FR3042230A1 (fr) * 2015-10-13 2017-04-14 Continental Automotive France Reduction du bruit d'une vanne d'isolation d'un reservoir de carburant d'un vehicule automotive.
JP2020133503A (ja) * 2019-02-20 2020-08-31 愛三工業株式会社 蒸発燃料処理装置
US20220256778A1 (en) * 2021-02-12 2022-08-18 Carlos T. Santiago System and method for portable self-contained greenhouse

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690307A (en) * 1970-08-13 1972-09-12 Physics Int Co Vapor venting and purging system for engines
JPS51110130A (en) * 1975-03-25 1976-09-29 Nissan Motor Nainenkikanno taikiosenboshisochi
US4013054A (en) * 1975-05-07 1977-03-22 General Motors Corporation Fuel vapor disposal means with closed control of air fuel ratio
US4130095A (en) * 1977-07-12 1978-12-19 General Motors Corporation Fuel control system with calibration learning capability for motor vehicle internal combustion engine
JPS5458111A (en) * 1977-10-19 1979-05-10 Hitachi Ltd Engine controller
JPS5851394Y2 (ja) * 1979-04-19 1983-11-22 本田技研工業株式会社 タンク内圧制御装置
US4275697A (en) * 1980-07-07 1981-06-30 General Motors Corporation Closed loop air-fuel ratio control system
JPS5741443A (en) * 1980-08-26 1982-03-08 Toyo Denso Co Ltd Emission controlling apparatus for internal combustion engine
JPS5762955A (en) * 1980-08-28 1982-04-16 Honda Motor Co Ltd Device employed in internal combustion engine for preventing escape of vaporized fuel
DE3039436C3 (de) * 1980-10-18 1997-12-04 Bosch Gmbh Robert Regeleinrichtung für ein Kraftstoffzumeßsystem einer Brennkraftmaschine
JPS6055810B2 (ja) * 1980-11-25 1985-12-06 日本ビクター株式会社 光学的低域フイルタの製造方法
JPS57129247A (en) * 1981-02-04 1982-08-11 Hitachi Ltd Preventive device for fuel evaporation and dispersion
JPS57165644A (en) * 1981-04-07 1982-10-12 Nippon Denso Co Ltd Control method of air-fuel ratio
JPS5882040A (ja) * 1981-11-11 1983-05-17 Hitachi Ltd 空燃比制御装置
JPS58110853A (ja) * 1981-12-25 1983-07-01 Honda Motor Co Ltd 過給機付内燃機関における蒸発燃料制御装置
JPS58191361U (ja) * 1982-06-16 1983-12-19 日産自動車株式会社 燃料蒸発ガス回収装置
JPS59213941A (ja) * 1983-05-19 1984-12-03 Fuji Heavy Ind Ltd 燃料蒸発ガス排出抑止装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2607192A1 (fr) * 1986-11-22 1988-05-27 Bosch Gmbh Robert Procede et installation pour compenser l'erreur de degazage du reservoir dans le cas d'un systeme d'alimentation en carburant a education adaptative dite egalement autodidactique
WO1989010472A1 (fr) * 1988-04-20 1989-11-02 Robert Bosch Gmbh Procede et dispositif pour le reglage d'une soupape de degazage d'un reservoir
WO1990000225A1 (fr) * 1988-07-01 1990-01-11 Robert Bosch Gmbh Procede et dispositif adaptatifs d'aeration de reservoirs a regulation de lambda
WO1990001628A1 (fr) * 1988-08-04 1990-02-22 Robert Bosch Gmbh Systeme de stereoregulation lambda
US5125385A (en) * 1990-04-12 1992-06-30 Siemens Aktiengesellschaft Tank ventilation system and method for operating the same
EP0482239A1 (fr) * 1990-10-24 1992-04-29 Siemens Aktiengesellschaft Système d'injection pour un moteur à combustion
WO1992016734A2 (fr) * 1991-03-22 1992-10-01 Robert Bosch Gmbh Procede et dispositif pour la ventilation de reservoirs
WO1992016734A3 (fr) * 1991-03-22 1992-11-12 Bosch Gmbh Robert Procede et dispositif pour la ventilation de reservoirs
US5372117A (en) * 1991-03-22 1994-12-13 Robert Bosch Gmbh Method and arrangement for venting a tank
US5438967A (en) * 1992-10-21 1995-08-08 Toyota Jidosha Kabushiki Kaisha Internal combustion device
EP1136683A2 (fr) 2000-03-23 2001-09-26 Adam Opel Ag Système d'alimentation en carburant pour moteur à combustion interne

Also Published As

Publication number Publication date
US4683861A (en) 1987-08-04
EP0191170A1 (fr) 1986-08-20
JPH1068359A (ja) 1998-03-10
JP2694123B2 (ja) 1997-12-24
EP0288090A2 (fr) 1988-10-26
DE3502573A1 (de) 1986-07-31
DE3569143D1 (en) 1989-05-03
JPH0759917B2 (ja) 1995-06-28
JPH07293361A (ja) 1995-11-07
EP0191170B2 (fr) 1995-08-16
EP0288090A3 (en) 1989-01-04
EP0288090B1 (fr) 1991-09-25
DE3502573C2 (de) 1994-03-03
DE3502573C3 (de) 2002-04-25
DE3584257D1 (de) 1991-10-31
JP2945882B2 (ja) 1999-09-06
JPS61175260A (ja) 1986-08-06

Similar Documents

Publication Publication Date Title
EP0191170B1 (fr) Dispositif de dégazage de réservoir de carburant
DE2803750C2 (fr)
DE3423144C2 (de) Verfahren zum Steuern der Zufuhr von Kraftstoff zu einer Brennkraftmaschine bei Beschleunigung
EP0152604B1 (fr) Méthode de commande et de régulation des paramètres de fonctionnement d'un moteur à C.I.
DE69218538T2 (de) Steuerungssystem für Verbrennungsmotoren
DE2633617C2 (de) Verfahren und Vorrichtung zur Bestimmung von Einstellgrößen bei einer Brennkraftmaschine, insbesondere der Dauer von Kraftstoffeinspritzimpulsen, des Zündwinkels, der Abgasrückführrate
DE4140527C2 (de) Regelvorrichtung für das Luft/Brennstoff-Verhältnis für einen Verbrennungsmotor
DE3714151A1 (de) Steuereinrichtung fuer die drosselklappe eines verbrennungsmotors
EP0154710A1 (fr) Dispositif pour la commande des paramètres de fontionnement d'un moteur à C.I.
DE3217287A1 (de) Auspuffgasrueckfuehrungs-steuersystem fuer brennkraftmaschinen
DE10028539A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10137587A1 (de) Motordrehzahl-/Fahrzeuggeschwindigkeitsregelung für fremdgezündete Motoren mit Direkteinspritzung
DE10225448A1 (de) Verfahren und Vorrichtung zur Steuerung der Brennkraftmaschine eines Fahrzeugs
DE4319772A1 (de) Verfahren und Vorrichtung zum Steuern einer Tankentlüftungsanlage
DE3322820C2 (fr)
DE19610169B4 (de) Verfahren zur Adaption der Verzugszeit eines elektromagnetischen Tankentlüftungsventils
EP0205916B1 (fr) Procédé de commande et/ou de régulation des caractéristiques de fonctionnement d'un moteur à combustion
DE4417802A1 (de) Motorleistung-Regeleinrichtung
DE10018209A1 (de) Verfahren und Vorrichtung zur Durchflusssteuerung insbesondere von Kraftstoffdämpfen in Tankentlüfungsanlagen von Kraftfahrzeugen
DE4322270B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4322319A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE3317938C2 (fr)
DE3321920A1 (de) Kraftstoffzufuehrungs-steuersystem fuer brennkraftmaschinen mit einer gemischabmagerungs-funktion im niedriglast-bereich der brennkraftmaschinen und verfahren zum elektronischen steuern von kraftstoffbemessungsmitteln
EP0150437B1 (fr) Système de dosage du mélange air-carburant pour moteur à combustion
EP1134390B1 (fr) Méthode et dispositif pour la commande d'un moteur à combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19870219

17Q First examination report despatched

Effective date: 19870626

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 88106880 EINGEREICHT AM 29.04.88.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3569143

Country of ref document: DE

Date of ref document: 19890503

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19891222

ITTA It: last paid annual fee
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19950816

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT

ET3 Fr: translation filed ** decision concerning opposition
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19950816

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011227

Year of fee payment: 17

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021202

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021213

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031205

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO