DE10028539A1 - Verfahren zum Betreiben einer Brennkraftmaschine - Google Patents

Verfahren zum Betreiben einer Brennkraftmaschine

Info

Publication number
DE10028539A1
DE10028539A1 DE10028539A DE10028539A DE10028539A1 DE 10028539 A1 DE10028539 A1 DE 10028539A1 DE 10028539 A DE10028539 A DE 10028539A DE 10028539 A DE10028539 A DE 10028539A DE 10028539 A1 DE10028539 A1 DE 10028539A1
Authority
DE
Germany
Prior art keywords
fuel
tank ventilation
internal combustion
combustion engine
ventilation valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE10028539A
Other languages
English (en)
Inventor
Gholamabas Esteghlal
Georg Mallebrein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE10028539A priority Critical patent/DE10028539A1/de
Priority to CNB018108938A priority patent/CN1270073C/zh
Priority to US10/297,365 priority patent/US6814062B2/en
Priority to RU2002135068/06A priority patent/RU2002135068A/ru
Priority to PCT/DE2001/001837 priority patent/WO2001094771A1/de
Priority to EP01944928A priority patent/EP1292764B1/de
Priority to KR1020027016572A priority patent/KR20030036213A/ko
Priority to DE50109298T priority patent/DE50109298D1/de
Priority to JP2002502297A priority patent/JP2003536016A/ja
Priority to MXPA02012059A priority patent/MXPA02012059A/es
Publication of DE10028539A1 publication Critical patent/DE10028539A1/de
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

Es wird eine Brennkraftmaschine (1) insbesondere für ein Kraftfahrzeug beschrieben, bei der Kraftstoff in mindestens zwei Betriebsarten in einen Brennraum (4) eingespritzt werden kann, und bei der ein Luft/Kraftstoff-Gemisch über ein Tankentlüftungsventil (17) fließen und dem Brennraum zugeführt werden kann. Durch ein Steuergerät (18) kann eine spezifische Soll-Kraftstoffrate des über das Tankentlüftungsventil (17) fließenden Luft/Kraftstoff-Gemisches ermittelt werden.

Description

Stand der Technik
Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs, bei dem Kraftstoff in mindestens zwei Betriebsarten in einen Brennraum eingespritzt wird, und bei dem ein Luft/Kraftstoff-Gemisch über ein Tankentlüftungsventil fließt und dem Brennraum zugeführt wird. Die Erfindung betrifft ebenfalls eine entsprechende Brennkraftmaschine sowie ein Steuergerät für eine derartige Brennkraftmaschine.
Ein derartiges Verfahren, eine derartige Brennkraftmaschine und ein derartiges Steuergerät sind bspw. von einer sog. Benzin-Direkteinspritzung bekannt. Dort wird Kraftstoff in einem Homogenbetrieb während der Ansaugphase oder in einem Schichtbetrieb während der Verdichtungsphase in den Brennraum der Brennkraftmaschine eingespritzt. Der Homogenbetrieb ist vorzugsweise für den Volllastbetrieb der Brennkraftmaschine vorgesehen, während der Schichtbetrieb für den Leerlauf- und Teillastbetrieb geeignet ist. Der Schichtbetrieb zeichnet sich u. a. durch einen Motorbetrieb mit Luftüberschuss, also durch einen Magerbetrieb aus. In Abhängigkeit von Betriebsgrößen der Brennkraftmaschine wird bei einer derartigen Direkteinspritzung zwischen den genannten Betriebsarten umgeschaltet.
Als Betriebsarten der Brennkraftmaschine werden auch der Homogenbetrieb mit Lambda gleich Eins, ein magerer Homogenbetrieb bzw. homogener Magerbetrieb und gegebenenfalls noch weitere Betriebsweisen der Brennkraftmaschine verstanden.
Weiterhin ist bei derartigen Brennkraftmaschinen bekannt, eine Tankentlüftung vorzusehen, mit der ein Luft/Kraftstoff-Gemisch aus dem Kraftstofftank der Brennkraftmaschine über ein Tankentlüftungsventil zu dem Brennraum der Brennkraftmaschine geführt werden kann. Mit Hilfe der Tankentlüftung kann verhindert werden, dass unverbrannter Kraftstoff in die Atmosphäre abgegeben wird.
Die vorgenannte Tankentlüftung muss in die gesamte Steuerung und/oder Regelung der Brennkraftmaschine eingegliedert werden. Hierzu ist es insbesondere erforderlich, das Tankentlüftungsventil derart anzusteuern, dass einerseits eine möglichst maximale Entlüftung des Kraftstofftanks erreicht wird, dass dies aber andererseits keinerlei negativen Einfluss auf die Schadstoffentwicklung oder das von dem Fahrer des Kraftfahrzeugs erwünschte Drehmoment hat.
Aufgabe und Vorteile der Erfindung
Aufgabe der Erfindung ist es, ein Verfahren zum Betreiben einer Brennkraftmaschine zu schaffen, mit dem eine optimale Tankentlüftung erreichbar ist.
Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass eine spezifische Soll-Kraftstoffrate des über das Tankentlüftungsventil fließenden Luft/Kraftstoff-Gemisches ermittelt wird. Bei einer Brennkraftmaschine sowie bei einem Steuergerät für eine derartige Brennkraftmaschine wird die genannte Aufgabe erfindungsgemäß entsprechend gelöst.
Mit der spezifischen Soll-Kraftstoffrate des über das Tankentlüftungsventil fließenden Luft/Kraftstoff-Gemisches wird eine Größe zur Verfügung gestellt, mit der das jeweils aktuelle Lambda der Brennkraftmaschine bei der Steuerung und/oder Regelung der Tankentlüftung berücksichtigt werden kann. Die Tankentlüftung kann damit nicht nur bei einem Lambda von 1 eingesetzt werden, sondern bei jeglichem Luft/Kraftstoff-Verhältnis der Brennkraftmaschine. Damit ist der Einsatz der Tankentlüftung auch bei einer direkteinspritzenden Brennkraftmaschine, bei der Lambda auch ungleich 1 sein kann, möglich. Auf der Grundlage dieser spezifischen Soll-Kraftstoffrate wird dann die Tankentlüftung, insbesondere die Ansteuerung des Tankentlüftungsventils vorgenommen.
Hierzu ist es besonders vorteilhaft, wenn die spezifische Soll-Kraftstoffrate auf einen Soll-Kraftstoffanteil des über das Tankentlüftungsventil fließenden Luft/Kraftstoff- Gemisches geregelt wird. Der genannte Soll-Kraftstoffanteil kann dabei insbesondere aus einem Kennfeld entnommen werden, das von Betriebsgrößen der Brennkraftmaschine abhängig ist. Die spezifische Soll-Kraftstoffrate kann mit einem Faktor gewichtet werden, der die Beladung eines Aktivkohlefilters darstellt, das in dem Kraftstofftank der Brennkraftmaschine enthalten ist.
Weiterhin ist es besonders vorteilhaft, wenn die spezifische Soll-Kraftstoffrate von einem Integrator erzeugt wird, wenn die spezifische Soll-Kraftstoffrate mit dem Soll-Kraftstoffanteil verglichen wird, und wenn das Vergleichsergebnis dem Integrator zurückgeführt wird. Damit wird letztlich das Vergleichsergebnis durch den Integrator ausgeregelt. Es ensteht somit eine Regelung der spezifischen Soll-Kraftstoffrate auf den Soll- Kraftstoffanteil. Wie bereits erwähnt wurde, ist die spezifische Soll-Kraftstoffrate und damit die gesamte, vorstehend beschriebene Regelung bei jeglichen Luft/Kraftstoff-Verhältnissen der Brennkraftmaschine einsetzbar. Die genannte Regelung ist damit nicht auf ein Lambda gleich 1 beschränkt.
Bei einer vorteilhaften Weiterbildung der Erfindung wird ein Soll-Durchflussfaktor des über das Tankentlüftungsventil fließenden Luft/Kraftstoff-Gemisches erzeugt und gedämpft. Der Soll-Durchflussfaktor repräsentiert in etwa den Quotienten aus Soll-Durchfluss und maximalem Durchfluss. Mit diesem Soll-Durchflussfaktor kann letztlich das Tankentlüftungsventil angesteuert werden. Durch die Dämpfung des Soll-Durchflussfaktors wird erreicht, dass dieser Faktor sich in positiver Richtung nicht sprungartig verändern kann. Damit wird erreicht, dass das Tankentlüftungsventil nur verzögert geöffnet werden kann. Auf diese Weise wird eine insgesamt genaue Steuerung und/oder Regelung der Brennkraftmaschine gewährleistet.
Besonders vorteilhaft ist es, wenn der Soll- Durchflussfaktor von einem positiv rückgekoppelten Integrator erzeugt wird, und wenn der Soll-Durchflussfaktor von einem maximalen Durchflussfaktor begrenzt wird. Dieser maximale Durchflussfaktor kann insbesondere aus der spezifischen Soll-Kraftstoffrate ermittelt werden. Auf diese Weise wird erreicht, dass der Soll-Durchflussfaktor nur verzögert aufgesteuert, jedoch sprungartig abgesteuert werden kann. Damit wird ein sprungartiges Öffnen des Tankentlüftungsventils verhindert, wobei gleichzeitig jedoch ein sprungartiges Schließen des Tankentlüftungsventils möglich ist.
Bei einer weiteren vorteilhaften Weiterbildung der Erfindung wird ein Soll-Massenstrom über das Tankentlüftungsventil erzeugt und gedämpft. Damit wird wiederum erreicht, dass der Soll-Massenstrom sich zumindest in positiver Richtung nicht sprungartig verändern kann. Damit werden positive Sprünge im Rahmen der Steuerung und/oder Regelung der gesamten Brennkraftmaschine sicher vermieden.
Besonders vorteilhaft ist es, wenn der Soll- Durchflussfaktor in einen maximalen Massenstrom über das Tankentlüftungsventil umgewandelt wird, wenn der Soll- Massenstrom von einem positiv rückgekoppelten Integrator erzeugt wird, und wenn der Soll-Massenstrom von dem maximalen Massenstrom begrenzt wird. Damit wird einerseits erreicht, dass der Soll-Massenstrom nur verzögert aufgesteuert werden kann. Andererseits ist es jedoch möglich, dass der Soll-Massenstrom sprungartig vermindert und damit abgesteuert werden kann.
Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Verfahrens in der Form eines Computerprogramms, das für das Steuergerät der Brennkraftmaschine vorgesehen ist. Das Computerprogramm ist auf einem Computer des Steuergeräts ablauffähig und zur Ausführung des erfindungsgemäßen Verfahrens geeignet. In diesem Fall wird also die Erfindung durch das Computerprogramm realisiert, so dass dieses Computerprogramm in gleicher Weise die Erfindung darstellt wie das Verfahren, zu dessen Ausführung das Computerprogramm geeignet ist. Das Computerprogramm kann auf einem Flash-Memory abgespeichert werden. Als Computer kann ein Mikroprozessor vorgesehen sein.
Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in der Zeichnung.
Ausführungsbeispiele der Erfindung
Fig. 1 zeigt ein schematisches Blockschaltbild eines Ausführungsbeispiels einer erfindungsgemäßen Brennkraftmaschine, und
Fig. 2 zeigt ein schematisches Blockschaltbild eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens zum Betreiben der Brennkraftmaschine der Fig. 1.
In der Fig. 1 ist eine Brennkraftmaschine 1 eines Kraftfahrzeugs dargestellt, bei der ein Kolben 2 in einem Zylinder 3 hin- und herbewegbar ist. Der Zylinder 3 ist mit einem Brennraum 4 versehen, der unter anderem durch den Kolben 2, ein Einlassventil 5 und ein Auslassventil 6 begrenzt ist. Mit dem Einlassventil 5 ist ein Ansaugrohr 7 und mit dem Auslassventil 6 ist ein Abgasrohr 8 gekoppelt.
Im Bereich des Einlassventils 5 und des Auslassventils 6 ragen ein Einspritzventil 9 und eine Zündkerze 10 in den Brennraum 4. Über das Einspritzventil 9 kann Kraftstoff in den Brennraum 4 eingespritzt werden. Mit der Zündkerze 10 kann der Kraftstoff in dem Brennraum 4 entzündet werden.
In dem Ansaugrohr 7 ist eine drehbare Drosselklappe 11 untergebracht, über die dem Ansaugrohr 7 Luft zuführbar ist. Die Menge der zugeführten Luft ist abhängig von der Winkelstellung der Drosselklappe 11. In dem Abgasrohr 8 ist ein Katalysator 12 untergebracht, der der Reinigung der durch die Verbrennung des Kraftstoffs entstehenden Abgase dient.
Von einem Aktivkohlefilter 14 eines Kraftstofftanks 15 führt eine Tankentlüftungsleitung 16 zu dem Ansaugrohr 7. In der Tankentlüftungsleitung 16 ist ein Tankentlüftungsventil 17 untergebracht, mit dem die Menge des dem Ansaugrohr 7 zugeführten Luft/Kraftstoff-Gemisches einstellbar ist. Das Aktivkohlefilter 14, die Tankentlüftungsleitung 16 und das Tankentlüftungsventil 17 bilden eine sogenannte Tankentlüftung.
Der Kolben 2 wird durch die Verbrennung des Kraftstoffs in dem Brennraum 4 in eine Hin- und Herbewegung versetzt, die auf eine nicht-dargestellte Kurbelwelle übertragen wird und auf diese ein Drehmoment ausübt.
Ein Steuergerät 18 ist von Eingangssignalen 19 beaufschlagt, die mittels Sensoren gemessene Betriebsgrößen der Brennkraftmaschine 1 darstellen. Beispielsweise ist das Steuergerät 18 mit einem Luftmassensensor, einem Lambda- Sensor, einem Drehzahlsensor und dergleichen verbunden. Des Weiteren ist das Steuergerät 18 mit einem Fahrpedalsensor verbunden, der ein Signal erzeugt, das die Stellung eines von einem Fahrer betätigbaren Fahrpedals und damit das angeforderte Drehmoment angibt. Das Steuergerät 18 erzeugt Ausgangssignale 20, mit denen über Aktoren bzw. Steller das Verhalten der Brennkraftmaschine 1 beeinflusst werden kann. Beispielsweise ist das Steuergerät 18 mit dem Einspritzventil 9, der Zündkerze 10 und der Drosselklappe 11 und dergleichen verbunden und erzeugt die zu deren Ansteuerung erforderlichen Signale.
Unter anderem ist das Steuergerät 18 dazu vorgesehen, die Betriebsgrößen der Brennkraftmaschine 1 zu steuern und/oder zu regeln. Beispielsweise wird die von dem Einspritzventil 9 in den Brennraum 4 eingespritzte Kraftstoffmasse von dem Steuergerät 18 insbesondere im Hinblick auf einen geringen Kraftstoffverbrauch und/oder eine geringe Schadstoffentwicklung gesteuert und/oder geregelt. Zu diesem Zweck ist das Steuergerät 18 mit einem Mikroprozessor versehen, der in einem Speichermedium, insbesondere in einem Flash-Memory ein Programm abgespeichert hat, das dazu geeignet ist, die genannte Steuerung und/oder Regelung durchzuführen.
Die Brennkraftmaschine 1 der Fig. 1 kann in einer Mehrzahl von Betriebsarten betrieben werden. So ist es möglich, die Brennkraftmaschine 1 in einem Homogenbetrieb, einem Schichtbetrieb, einem homogenen Magerbetrieb, einem Schichtbetrieb mit homogener Grundladung und dergleichen zu betreiben.
Im Homogenbetrieb wird der Kraftstoff während der Ansaugphase von dem Einspritzventil 9 direkt in den Brennraum 4 der Brennkraftmaschine 1 eingespritzt. Der Kraftstoff wird dadurch bis zur Zündung noch weitgehend verwirbelt, so dass im Brennraum 4 ein im Wesentlichen homogenes Kraftstoff/Luft-Gemisch entsteht. Das zu erzeugende Moment wird dabei im Wesentlichen über die Stellung der Drosselklappe 11 von dem Steuergerät 18 eingestellt. Im Homogenbetrieb werden die Betriebsgrößen der Brennkraftmaschine 1 derart gesteuert und/oder geregelt, dass Lambda gleich Eins ist. Der Homogenbetrieb wird insbesondere bei Vollast angewendet.
Der homogene Magerbetrieb entspricht weitgehend dem Homogenbetrieb, es wird jedoch das Lambda auf einen Wert größer Eins eingestellt.
Im Schichtbetrieb wird der Kraftstoff während der Verdichtungsphase von dem Einspritzventil 9 direkt in den Brennraum 4 der Brennkraftmaschine 1 eingespritzt. Damit ist bei der Zündung durch die Zündkerze 10 kein homogenes Gemisch im Brennraum 4 vorhanden, sondern eine Kraftstoffschichtung. Die Drosselklappe 11 kann, abgesehen von Anforderungen z. B. der Tankentlüftung, vollständig geöffnet und die Brennkraftmaschine 1 damit entdrosselt betrieben werden. Das zu erzeugende Moment wird im Schichtbetrieb weitgehend über die Kraftstoffmasse eingestellt. Mit dem Schichtbetrieb kann die Brennkraftmaschine 1 insbesondere im Leerlauf und bei Teillast betrieben werden.
Zwischen den genannten Betriebsarten der Brennkraftmaschine 1 kann in Abhängigkeit von Betriebsgrößen der Brennkraftmaschine 1 hin- und her- bzw. umgeschaltet werden. Derartige Umschaltungen werden von dem Steuergerät 18 durchgeführt. Hierzu ist in dem Steuergerät 18 ein Betriebsartenkennfeld vorhanden, in dem für jeden Betriebspunkt der Brennkraftmaschine 1 eine zugehörige Betriebsart abgespeichert ist.
Die vorstehend beschriebene Tankentlüftung muss in die gesamte Steuerung und/oder Regelung der Brennkraftmaschine 1 mit einbezogen werden. Dabei sind eine Mehrzahl von Parametern der Tankentlüftung zu berücksichtigen, wie bspw. die Beladung des Aktivkohlefilters 14 mit Kohlenwasserstoffen, die Stellung des Tankentlüftungsventils 17, der momentane Betriebszustand der Brennkraftmaschine 1, insbesondere die momentane Betriebsart derselben, das von dem Fahrer angeforderte und von der Brennkraftmaschine 1 abzugebende Drehmoment, u. dgl. Für diese Einbeziehung der Tankentlüftung ist es erforderlich, einen Soll-Durchflussfaktor ftevflos über das Tankentlüftungsventil 17 sowie einen Soll-Massenstrom mstesoll über das Tankentlüftungsventil 17 zu ermitteln.
An Hand der Fig. 2 wird nachfolgend ein Verfahren erläutert, mit dem der genannte Soll-Durchflussfaktor ftevflos und der genannte Soll-Massenstrom mstesoll ermittelt werden können.
Zu diesem Zweck ist in der Fig. 2 ein Integrator 20 vorgesehen, dessen Ausgangssignal eine spezifische Soll- Kraftstoffrate fkastes der Tankentlüftung darstellt. Diese spezifische Soll-Kraftstoffrate fkastes wird mit der Beladung ftead des Aktivkohlefilters 14 multiplikativ verknüpft. Das Ergebnis dieser Multiplikation wird mit einem Soll-Kraftstoffanteil fkates der Tankentlüftung verglichen. Dieser Soll-Kraftstoffanteil fkates wird von einem Block 22 ermittelt und stellt denjenigen erwünschten Kraftstoffanteil dar, der von der Tankentlüftung geliefert werden soll.
Das Ergebnis des vorgenannten Vergleichs kann ggf. noch zu Korrektur- oder Anpassungszwecken mit einem Faktor verknüpft werden, der von einem Block 23 geliefert wird. Das daraus resultierende Signal wird dann dem Integrator 21 als Eingangssignal zugeführt. Letztlich liegt also am Integrator 21 das vorgenannte Vergleichsergebnis in ggf. gewichteter Form an.
Von einem Block 24 wird ein Maximalwert fkastex für die spezifische Kraftstoffrate der Tankentlüftung erzeugt und an den Integrator 21 weitergegeben. Durch diesen Maximalwert fkastex wird das Ausgangssignal des Integrators 21, also die spezifische Soll-Kraftstoffrate fkastes der Tankentlüftung begrenzt.
Der Integrator 21 mit der zugehörigen Rückkoppelschleife stellt einen Regelkreis dar, mit dem die spezifische Soll- Kraftstoffrate fkastes auf den Soll-Kraftstoffanteil fkates der Tankentlüftung geregelt wird. Der Integrator 21 dieses Regelkreises wird dabei auf den Maximalwert fkastex der spezifischen Kraftstoffrate für die Tankentlüftung begrenzt.
Das Ausgangssignal des vorgenannten Regelkreises, also die spezifische Soll-Kraftstoffrate fkastes, wird in einen maximalen Durchflussfaktor ftevflox über das Tankentlüftungsventil 17 umgerechnet. Zu diesem Zweck wird zuerst die spezifische Soll-Kraftstoffrate fkastes durch den Lambda-Sollwert lamsbg dividiert. Die sich daraus ergebende Soll-Spülrate ftefsoll wird mit dem gesamten Massenstrom mssgin im Ansaugrohr 7 multipliziert. Der sich daraus ergebende Massenstrom wird schließlich durch denjenigen Massenstrom msteo dividiert, der bei offenem Tankentlüftungsventil 17 vorhanden ist. Das Ergebnis dieser Schritte ist der bereits genannte Maximalwert für den Durchflussfaktor ftevflox über das Tankentlüftungsventil 17.
Der Maximalwert ftevflox für den Durchflussfaktor über das Tankentlüftungsventil 17 wird einem Integrator 25 zugeführt und begrenzt dessen Ausgangssignal. Bei diesem Ausgangssignal des Integrators 25 handelt es sich um den Soll-Durchflussfaktor ftevflos über das Tankentlüftungsventil 17. Dieser Soll-Durchflussfaktor ftevflos ist auf den Eingang des Integrators 25 zurückgekoppelt. In dieser Rückkoppelschleife kann eine Multiplikation mit einem Korrektur- oder sonstigem Faktor erfolgen, der von einem Block 26 erzeugt wird. Weiterhin ist es möglich, dass in der Rückkoppelschleife eine weitere Verknüpfung mit Betriebsgrößen der Brennkraftmaschine in einen Block 27 erfolgt.
Der von dem Integrator 25 erzeugte Soll-Durchflussfaktor ftevflos wird mit demjenigen Massenstrom msteo multiplikativ verknüpft, der bei offenem Tankentlüftungsventil 17 vorhanden ist. Das Ergebnis dieser Multiplikation stellt einen maximalen Massenstrom mstemx über das Tankentlüftungsventil 17 dar. Dieser maximale Massenstrom mstemx ist einem weiteren Integrator 28 als Maximalwert zugeführt.
Der Integrator 28 erzeugt als Ausgangssignal den Soll- Massenstrom mstesoll über das Tankentlüftungsventil 17. Dieser Soll-Massenstrom mstesoll ist auf den Eingang des Integrators 28 zurückgekoppelt. Dabei ist es möglich, dass der Soll-Massenstrom mstesoll mit einem Faktor mulitplikativ verknüpft wird, wobei dieser Faktor von einem Block 29 erzeugt wird. Weiterhin ist es möglich, dass in der Rückkoppelschleife weitere Betriebsgrößen der Brennkraftmaschine 1 mittels eines Blocks 30 Berücksichtigung finden.
Das Ausgangssignal des Integrators 28, also der Soll- Massenstrom mstesoll wird dabei auf den Maximalwert mstemx des Massenstroms über das Tankentlüftungsventil 17 begrenzt.
Die beiden Integratoren 25 und 28 sind über ihre jeweiligen Rückkoppelschleifen positiv zurückgekoppelt. Dies bedeutet, dass beide Integratoren 25, 28 immer die Tendenz haben, ihr Ausgangssignal zu vergrößern. Die Steigung einer derartigen Erhöhung des jeweiligen Ausgangssignals hängt dabei von der Rückkoppelschleife, und dort insbesondere von Einflussnahmen auf das Rückkoppelsignal ab. Die genannte Steigung kann somit über die Blöcke 26, 27 sowie über die Blöcke 29, 30 auf gewünschte Werte eingestellt werden.
Gleichzeitig werden beide Integratoren 25, 28 jeweils durch einen Maximalwert begrenzt. Dies bedeutet, dass das Ausgangssignal der beiden Integratoren 25, 28 einerseits immer anwächst, andererseits jedoch von dem jeweils anliegenden Maximalwert immer begrenzt wird.
Daraus ergibt sich, dass die beiden Integratoren 25, 28 zusammen mit ihren Rückkoppelschleifen als Dämpfungsglieder wirken. Die Ausgangssignale der beiden Integratoren 25, 28 können einerseits sich in Richtung zu größeren Werten verändern, wobei - wie gesagt - die Steigung dieser Veränderung eingestellt werden kann, andererseits werden die Ausgangssignale dieser beiden Integratoren 25, 28 jedoch durch die jeweiligen Maximalwerte begrenzt, so dass eine Verminderung der Maximalwerte sofort und unmittelbar auch zu einer Verminderung des jeweiligen Ausgangssignals des zugehörigen Integrators 25, 28 führt.
Dies bedeutet mit anderen Worten, dass die Ausgangssignale der beiden Integratoren 25, 28 bei der Aufsteuerung hin zu größeren Werten mit einer Begrenzung der Aufsteuergeschwindigkeit versehen sind, bei der Absteuerung hin zu kleineren Werten jedoch eine derartige Geschwindigkeitsbegrenzung nicht vorhanden ist, so dass die Absteuerung unverzögert durchgreift.
Wie erwähnt, handelt es sich bei dem Ausgangssignal des Integrators 25 um den Soll-Durchflussfaktor ftevflos für das Tankentlüftungsventil 17. Mit diesem Soll- Durchflussfaktor ftevflox wird letztlich das Tankentlüftungsventil 17 angesteuert. Dies bedeutet, dass das Tankentlüftungsventil 17 nicht sprungartig geöffnet werden kann, sondern dass bei einem Öffnen des Tankentlüftungsventils 17 hin zu einem größeren Durchfluss die genannte Geschwindigkeitsbegrenzung vorhanden ist. Gleichzeitig ist es jedoch möglich, das Tankentlüftungsventil 17 unverzögert und damit sprungartig zu schließen. Wie erläutert wurde, greift bei einem derartigen Schließen des Tankentlüftungsventil 17 keine Geschwindigkeitsbegrenzung ein.
Wie ebenfalls bereits erläutert wurde, handelt es sich bei dem Ausgangssignal des Integrators 28 um den Soll- Massenstrom mstesoll über das Tankentlüftungsventil 17. Dieser Soll-Massenstrom mstesoll kann sich damit nicht sprungartig verändern. Stattdessen kann die Aufsteuerung des Soll-Massenstroms mstesoll nur mit der bereits genannten Geschwindigkeitsbegrenzung erfolgen. Umgekehrt ist es jedoch möglich, den Soll-Massenstrom mstesoll sprungartig und damit unverzögert abzusteuern. Hier greift keine Geschwindigkeitsbegrenzung ein.
Zusammengefasst wird damit von dem ersten Integrator 21 eine Regelung der spezifischen Soll-Kraftstoffrate fkastes durchgeführt. Aus der spezifischen Soll-Kraftstoffrate fkastes wird mit Hilfe des zweiten Integrators 25 ein gedämpfter Soll-Durchflussfaktor ftevflos abgeleitet. Aus dem Soll-Durchflussfaktor ftevflos wird schließlich mit Hilfe des dritten Integrators 28 ein gedämpfter Soll- Massenstrom mstesoll ermittelt. Dieses gesamte Verfahren ist dabei für jegliches Lambda verwendbar. Das Luft- Kraftstoffverhältnis wird über das Soll-Lambda lamsbg bei dem beschriebenen Verfahren berücksichtigt.

Claims (13)

1. Verfahren zum Betreiben einer Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs, bei dem Kraftstoff in mindestens zwei Betriebsarten in einen Brennraum (4) eingespritzt wird, und bei dem ein Luft/Kraftstoff-Gemisch über ein Tankentlüftungsventil (17) fließt und dem Brennraum (4) zugeführt wird, dadurch gekennzeichnet, dass eine spezifische Soll-Kraftstoffrate (fkastes) des über das Tankentlüftungsventil (17) fließenden Luft/Kraftstoff- Gemisches ermittelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die spezifische Soll-Kraftstoffrate (fkastes) auf einen Soll-Kraftstoffanteil (fkates) des über das Tankentlüftungsventil (17) fließenden Luft/Kraftstoff- Gemisches geregelt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die spezifische Soll-Kraftstoffrate (fkastes) von einem Integrator (25) erzeugt wird, dass die spezifische Soll- Kraftstoffrate (fkastes) mit dem Soll-Kraftstoffanteil (fkates) verglichen wird, und dass das Vergleichsergebnis dem Integrator (25) zurückgeführt wird.
4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die spezifische Soll-Kraftstoffrate (fkastes) auf einen Maximalwert (fkastex) für die spezifische Kraftstoffrate begrenzt wird.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die spezifische Soll-Kraftstoffrate (fkastes) in einen maximalen Durchflußfaktor (ftevflox) des über das Tankentlüftungsventil (17) fließenden Luft/Kraftstoffgemisches umgewandelt wird.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein Soll-Durchflußfaktor (ftevflos) des über das Tankentlüftungsventil (17) fließenden Luft/Kraftstoffgemisches erzeugt und gedämpft wird.
7. Verfahren nach Anspruch 5 und 6, dadurch gekennzeichnet, dass der Soll-Durchflußfaktor (ftevflos) von einem positiv rückgekoppelten Integrator (25) erzeugt wird, und dass der Soll-Durchflußfaktor (ftevflos) von dem maximalen Durchflußfaktor (ftevflox) begrenzt wird.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein Soll-Massenstrom (mstesoll) über das Tankentlüftungsventil (17) erzeugt und gedämpft wird.
9. Verfahren nach Anspruch 7 und 8, dadurch gekennzeichnet, dass der Soll-Durchflußfaktor (ftevflos) in einen maximalen Massenstrom (mstemx) über das Tankentlüftungsventil (17) umgewandelt wird, dass der Soll-Massenstrom (mstesoll) von einem positiv rückgekoppelten Integrator (28) erzeugt wird, und dass der Soll-Massenstrom (mstesoll) von dem maximalen Massenstrom (mstemx) begrenzt wird.
10. Computerprogramm, dadurch gekennzeichnet, dass es zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9 geeignet ist, wenn es auf einem Computer ausgeführt wird.
11. Computerprogramm nach Anspruch 10, dadurch gekennzeichnet, dass es auf einem Speicher abgespeichert ist, insbesondere auf einem Flash-Memory.
12. Steuergerät (18) für eine Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs, wobei Kraftstoff in mindestens zwei Betriebsarten in einen Brennraum (4) eingespritzt werden kann, und wobei ein Luft/Kraftstoff- Gemisch über ein Tankentlüftungsventil (17) fließen und dem Brennraum (4) zugeführt werden kann, dadurch gekennzeichnet, dass durch das Steuergerät (18) eine spezifische Soll-Kraftstoffrate (fkastes) des über das Tankentlüftungsvenitl (17) fließenden Luft/Kraftstoff- Gemisches ermittelt werden kann.
13. Brennkraftmaschine (1) insbesondere für ein Kraftfahrzeug, wobei Kraftstoff in mindestens zwei Betriebsarten in einen Brennraum (4) eingespritzt werden kann, und wobei ein Luft/Kraftstoff-Gemisch über ein Tankentlüftungsventil (17) fließen und dem Brennraum (4) zugeführt werden kann, dadurch gekennzeichnet, dass durch ein Steuergerät (18) eine spezifische Soll-Kraftstoffrate (fkastes) des über das Tankentlüftungsvenitl (17) fließenden Luft/Kraftstoff-Gemisches ermittelt werden kann.
DE10028539A 2000-06-08 2000-06-08 Verfahren zum Betreiben einer Brennkraftmaschine Ceased DE10028539A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE10028539A DE10028539A1 (de) 2000-06-08 2000-06-08 Verfahren zum Betreiben einer Brennkraftmaschine
CNB018108938A CN1270073C (zh) 2000-06-08 2001-05-15 内燃机的工作方法和控制装置
US10/297,365 US6814062B2 (en) 2000-06-08 2001-05-15 Method for operating an internal combustion engine
RU2002135068/06A RU2002135068A (ru) 2000-06-08 2001-05-15 Способ управления работой двигателя внутреннего сгорания
PCT/DE2001/001837 WO2001094771A1 (de) 2000-06-08 2001-05-15 Verfahren zum betreiben einer brennkraftmaschine
EP01944928A EP1292764B1 (de) 2000-06-08 2001-05-15 Verfahren zum betreiben einer brennkraftmaschine
KR1020027016572A KR20030036213A (ko) 2000-06-08 2001-05-15 내연 기관 작동 방법
DE50109298T DE50109298D1 (de) 2000-06-08 2001-05-15 Verfahren zum betreiben einer brennkraftmaschine
JP2002502297A JP2003536016A (ja) 2000-06-08 2001-05-15 内燃機関の運転方法
MXPA02012059A MXPA02012059A (es) 2000-06-08 2001-05-15 Procedimiento para el funcionamiento de una maquina de combustion interna.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10028539A DE10028539A1 (de) 2000-06-08 2000-06-08 Verfahren zum Betreiben einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
DE10028539A1 true DE10028539A1 (de) 2001-12-20

Family

ID=7645209

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10028539A Ceased DE10028539A1 (de) 2000-06-08 2000-06-08 Verfahren zum Betreiben einer Brennkraftmaschine
DE50109298T Expired - Lifetime DE50109298D1 (de) 2000-06-08 2001-05-15 Verfahren zum betreiben einer brennkraftmaschine

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50109298T Expired - Lifetime DE50109298D1 (de) 2000-06-08 2001-05-15 Verfahren zum betreiben einer brennkraftmaschine

Country Status (9)

Country Link
US (1) US6814062B2 (de)
EP (1) EP1292764B1 (de)
JP (1) JP2003536016A (de)
KR (1) KR20030036213A (de)
CN (1) CN1270073C (de)
DE (2) DE10028539A1 (de)
MX (1) MXPA02012059A (de)
RU (1) RU2002135068A (de)
WO (1) WO2001094771A1 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7743606B2 (en) * 2004-11-18 2010-06-29 Honeywell International Inc. Exhaust catalyst system
US7182075B2 (en) * 2004-12-07 2007-02-27 Honeywell International Inc. EGR system
US7165399B2 (en) * 2004-12-29 2007-01-23 Honeywell International Inc. Method and system for using a measure of fueling rate in the air side control of an engine
US7467614B2 (en) 2004-12-29 2008-12-23 Honeywell International Inc. Pedal position and/or pedal change rate for use in control of an engine
US7752840B2 (en) * 2005-03-24 2010-07-13 Honeywell International Inc. Engine exhaust heat exchanger
US7469177B2 (en) * 2005-06-17 2008-12-23 Honeywell International Inc. Distributed control architecture for powertrains
US7389773B2 (en) 2005-08-18 2008-06-24 Honeywell International Inc. Emissions sensors for fuel control in engines
US7765792B2 (en) 2005-10-21 2010-08-03 Honeywell International Inc. System for particulate matter sensor signal processing
US7357125B2 (en) * 2005-10-26 2008-04-15 Honeywell International Inc. Exhaust gas recirculation system
US7415389B2 (en) * 2005-12-29 2008-08-19 Honeywell International Inc. Calibration of engine control systems
DE102007008119B4 (de) * 2007-02-19 2008-11-13 Continental Automotive Gmbh Verfahren zum Steuern einer Brennkraftmaschine und Brennkraftmaschine
US8060290B2 (en) 2008-07-17 2011-11-15 Honeywell International Inc. Configurable automotive controller
DE102008043976A1 (de) * 2008-11-21 2010-05-27 Robert Bosch Gmbh Gaszufuhrmodul
US7941265B2 (en) * 2009-01-28 2011-05-10 GM Global Technology Operations LLC Individual cylinder fuel mass correction factor for high drivability index (HIDI) fuel
US8620461B2 (en) 2009-09-24 2013-12-31 Honeywell International, Inc. Method and system for updating tuning parameters of a controller
US8504175B2 (en) 2010-06-02 2013-08-06 Honeywell International Inc. Using model predictive control to optimize variable trajectories and system control
US9677493B2 (en) 2011-09-19 2017-06-13 Honeywell Spol, S.R.O. Coordinated engine and emissions control system
US20130111905A1 (en) 2011-11-04 2013-05-09 Honeywell Spol. S.R.O. Integrated optimization and control of an engine and aftertreatment system
US9650934B2 (en) 2011-11-04 2017-05-16 Honeywell spol.s.r.o. Engine and aftertreatment optimization system
EP3051367B1 (de) 2015-01-28 2020-11-25 Honeywell spol s.r.o. Ansatz und system zur handhabung von einschränkungen für gemessene störungen mit unsicherer vorschau
EP3056706A1 (de) 2015-02-16 2016-08-17 Honeywell International Inc. Ansatz zur nachbehandlungssystemmodellierung und modellidentifizierung
EP3091212A1 (de) 2015-05-06 2016-11-09 Honeywell International Inc. Identifikationsansatz für verbrennungsmotor-mittelwertmodelle
EP3734375B1 (de) 2015-07-31 2023-04-05 Garrett Transportation I Inc. Quadratischer programmlöser für mpc mit variabler anordnung
US10272779B2 (en) 2015-08-05 2019-04-30 Garrett Transportation I Inc. System and approach for dynamic vehicle speed optimization
US10415492B2 (en) 2016-01-29 2019-09-17 Garrett Transportation I Inc. Engine system with inferential sensor
US10036338B2 (en) 2016-04-26 2018-07-31 Honeywell International Inc. Condition-based powertrain control system
US10124750B2 (en) 2016-04-26 2018-11-13 Honeywell International Inc. Vehicle security module system
EP3548729B1 (de) 2016-11-29 2023-02-22 Garrett Transportation I Inc. Inferenzflusssensor
US11057213B2 (en) 2017-10-13 2021-07-06 Garrett Transportation I, Inc. Authentication system for electronic control unit on a bus
US12085216B2 (en) 2022-02-17 2024-09-10 Arctic Cat Inc. Multi-use fuel filler tube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511781A1 (de) * 1994-03-30 1995-10-05 Mazda Motor Kraftstoffsystem mit Kraftstoff-Abschätzung
DE19509310A1 (de) * 1995-03-15 1996-09-19 Iav Motor Gmbh Verfahren und Einrichtung zur Entlastung des Absorptionsspeichers einer Tankentlüftung bei Verbrennungsmotoren
DE19844086A1 (de) * 1998-09-25 1999-11-18 Siemens Ag Einrichtung zum Steuern einer Brennkraftmaschine
DE19849256A1 (de) * 1998-10-26 2000-04-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Diagnose einer Abgasrückführung eines Verbrennungsprozesses

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813220C2 (de) 1988-04-20 1997-03-20 Bosch Gmbh Robert Verfahren und Einrichtung zum Stellen eines Tankentlüftungsventiles
EP0451313B1 (de) * 1990-04-12 1993-01-13 Siemens Aktiengesellschaft Tankentlüftungssystem
JPH04292542A (ja) * 1991-03-19 1992-10-16 Honda Motor Co Ltd 内燃エンジンに吸入される混合気の成分測定装置および内燃エンジンの空燃比制御装置
JPH04309816A (ja) * 1991-04-08 1992-11-02 Nippondenso Co Ltd 燃料蒸発ガスの流量検出装置
JP3089687B2 (ja) * 1991-04-12 2000-09-18 株式会社デンソー 燃料蒸発ガス状態検出装置
JPH0533733A (ja) * 1991-05-20 1993-02-09 Honda Motor Co Ltd 内燃エンジンの蒸発燃料制御装置
US5390644A (en) * 1991-12-27 1995-02-21 Nippondenso Co., Ltd. Method for producing fuel/air mixture for combustion engine
US5476081A (en) * 1993-06-14 1995-12-19 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling air-fuel ratio of air-fuel mixture to an engine having an evaporated fuel purge system
JP3287228B2 (ja) 1996-08-09 2002-06-04 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
JP3385919B2 (ja) 1997-07-10 2003-03-10 日産自動車株式会社 内燃機関の蒸発燃料パージ処理制御装置
KR100423348B1 (ko) 1998-08-10 2004-03-18 도요다 지도샤 가부시끼가이샤 내연기관의 증발연료 처리장치
US6237328B1 (en) * 1999-08-02 2001-05-29 Ford Global Technologies, Inc. Engine control with a fuel vapor purge system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511781A1 (de) * 1994-03-30 1995-10-05 Mazda Motor Kraftstoffsystem mit Kraftstoff-Abschätzung
DE19509310A1 (de) * 1995-03-15 1996-09-19 Iav Motor Gmbh Verfahren und Einrichtung zur Entlastung des Absorptionsspeichers einer Tankentlüftung bei Verbrennungsmotoren
DE19844086A1 (de) * 1998-09-25 1999-11-18 Siemens Ag Einrichtung zum Steuern einer Brennkraftmaschine
DE19849256A1 (de) * 1998-10-26 2000-04-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Diagnose einer Abgasrückführung eines Verbrennungsprozesses

Also Published As

Publication number Publication date
EP1292764A1 (de) 2003-03-19
CN1270073C (zh) 2006-08-16
US20030145837A1 (en) 2003-08-07
MXPA02012059A (es) 2004-03-16
KR20030036213A (ko) 2003-05-09
WO2001094771A1 (de) 2001-12-13
EP1292764B1 (de) 2006-03-22
DE50109298D1 (de) 2006-05-11
CN1436281A (zh) 2003-08-13
RU2002135068A (ru) 2004-08-20
US6814062B2 (en) 2004-11-09
JP2003536016A (ja) 2003-12-02

Similar Documents

Publication Publication Date Title
EP1292764B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE10239397B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
WO2000026524A1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE19942270A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19928825C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Steuergerät für eine Brennkraftmaschine sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE19813381A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP1206635B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE19928824C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10001458A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19913407A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1099051B1 (de) Verfahren zum betreiben einer brennkraftmaschine
WO2001009490A1 (de) Verfahren zum betreiben einer brennkraftmaschine
WO2002001056A1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
EP1300574A2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine beim Wechsel zwischen zwei Betriebsarten
DE10029858A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19941528A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1436496B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE19925788A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1192347B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE19908726A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19840706B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19813379A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19850107A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19954207C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19828774A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection