EP1292764B1 - Verfahren zum betreiben einer brennkraftmaschine - Google Patents

Verfahren zum betreiben einer brennkraftmaschine Download PDF

Info

Publication number
EP1292764B1
EP1292764B1 EP01944928A EP01944928A EP1292764B1 EP 1292764 B1 EP1292764 B1 EP 1292764B1 EP 01944928 A EP01944928 A EP 01944928A EP 01944928 A EP01944928 A EP 01944928A EP 1292764 B1 EP1292764 B1 EP 1292764B1
Authority
EP
European Patent Office
Prior art keywords
fuel
internal combustion
combustion engine
integrator
venting valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01944928A
Other languages
English (en)
French (fr)
Other versions
EP1292764A1 (de
Inventor
Gholamabas Esteghlal
Georg Mallebrein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1292764A1 publication Critical patent/EP1292764A1/de
Application granted granted Critical
Publication of EP1292764B1 publication Critical patent/EP1292764B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Definitions

  • the invention relates to a method for operating an internal combustion engine, in particular a motor vehicle according to the preamble of claim 1.
  • the invention also relates to a corresponding control device for such an internal combustion engine.
  • Such a method such an internal combustion engine and such a control unit are, for example, from a so-called. Gasoline direct injection known.
  • fuel is injected in a homogeneous operation during the intake phase or in a shift operation during the compression phase in the combustion chamber of the internal combustion engine.
  • the homogeneous operation is preferably provided for the full-load operation of the internal combustion engine, while the stratified operation is suitable for idling and part-load operation.
  • the shift operation is characterized inter alia by a motor operation with excess air, ie by a lean operation.
  • switching is made between the aforementioned operating modes in the case of such a direct injection.
  • a tank ventilation with which an air / fuel mixture from the fuel tank of the internal combustion engine can be performed via a tank vent valve to the combustion chamber of the internal combustion engine.
  • the tank vent can be used to prevent unburned fuel from being released into the atmosphere.
  • the aforementioned tank ventilation must be incorporated into the entire control and / or regulation of the internal combustion engine.
  • the object of the invention is to provide a method for operating an internal combustion engine, with which an optimal tank ventilation can be achieved.
  • the tank ventilation can thus be used not only at a lambda of 1, but at any air / fuel ratio of the internal combustion engine.
  • the use of the tank ventilation is also possible in a direct-injection internal combustion engine in which Lambda can also be unequal to 1.
  • the tank ventilation in particular the control of the tank ventilation valve is made.
  • the specific target fuel rate is controlled to a desired fuel fraction of the air / fuel mixture flowing through the tank vent valve.
  • the said desired fuel fraction can be taken in particular from a map which is dependent on operating variables of the internal combustion engine.
  • the specific target fuel rate may be weighted by a factor representing the load of an activated carbon filter contained in the fuel tank of the internal combustion engine.
  • the specific target fuel rate is generated by an integrator when the specific target fuel rate is compared with the desired fuel fraction and when the comparison result is returned to the integrator. This ultimately corrects the comparison result by the integrator.
  • the specific target fuel rate and thus the entire regulation described above can be used for any air / fuel ratio of the internal combustion engine.
  • the said regulation is thus not limited to a lambda equal to 1.
  • a desired flow factor of the air flowing through the tank venting air / fuel mixture is generated and damped.
  • the nominal flow factor roughly represents the quotient of set flow and maximum flow.
  • the tank venting valve can be controlled with this target flow factor. By damping the target flow factor, it is achieved that this factor can not change abruptly in the positive direction. This ensures that the tank vent valve can be opened only delayed. In this way, an overall accurate control and / or regulation of the internal combustion engine is ensured.
  • the desired flow factor is generated by a positive feedback integrator, and if the target flow factor is limited by a maximum flow factor.
  • This maximum flow factor can be determined in particular from the specific target fuel rate. In this way it is achieved that the desired flow factor can only be controlled delayed, but can be abruptly deactivated. This prevents a sudden opening of the tank venting valve, but at the same time a sudden closing of the tank venting valve is possible.
  • Invention is generated and damped a desired mass flow through the tank vent valve. This in turn ensures that the desired mass flow can not change abruptly, at least in the positive direction. This positive jumps in the context of control and / or regulation of the entire internal combustion engine can be safely avoided.
  • the desired flow factor is converted into a maximum mass flow via the tank ventilation valve, if the desired mass flow is generated by a positive feedback integrator, and if the desired mass flow is limited by the maximum mass flow. This ensures on the one hand that the desired mass flow can be controlled only delayed. On the other hand, it is possible that the desired mass flow can be suddenly reduced and thus deactivated.
  • the method according to the invention in the form of a computer program which is provided for the control unit of the internal combustion engine.
  • the computer program can run on a computer of the control unit and is suitable for carrying out the method according to the invention.
  • the invention is realized by the computer program, so that this computer program in the same way represents the invention as the method to whose execution the computer program is suitable.
  • the computer program can be stored on a flash memory.
  • a microprocessor may be provided.
  • FIG. 1 shows an internal combustion engine 1 of a motor vehicle is shown, in which a piston 2 in a cylinder 3 back and forth.
  • the cylinder 3 is provided with a combustion chamber 4 which is delimited inter alia by the piston 2, an inlet valve 5 and an outlet valve 6.
  • an intake valve 5 With the intake valve 5, an intake pipe 7 and with the exhaust valve 6, an exhaust pipe 8 is coupled.
  • an injection valve 9 and a spark plug 10 protrude into the combustion chamber 4. Via the injection valve 9, fuel can be injected into the combustion chamber 4. With the spark plug 10, the fuel in the combustion chamber 4 can be ignited.
  • a rotatable throttle valve 11 is housed, via which the intake pipe 7 air can be supplied.
  • the amount of air supplied depends on the Angular position of the throttle valve 11.
  • a catalyst 12 is housed, which serves to purify the exhaust gases resulting from the combustion of the fuel.
  • a tank vent line 16 leads to the intake pipe 7.
  • a tank vent valve 17 is housed, with which the amount of the intake pipe 7 supplied air / fuel mixture is adjustable.
  • the activated carbon filter 14, the tank vent line 16 and the tank vent valve 17 form a so-called tank vent.
  • the piston 2 is set by the combustion of the fuel in the combustion chamber 4 in a reciprocating motion, which is transmitted to a non-illustrated crankshaft and exerts on this torque.
  • a control unit 18 is acted upon by input signals 19, which represent operating variables of the internal combustion engine 1 measured by means of sensors.
  • the controller 18 is connected to an air mass sensor, a lambda sensor, a speed sensor, and the like.
  • the controller 18 is connected to an accelerator pedal sensor which generates a signal indicative of the position of a driver-operable accelerator pedal and thus the requested torque.
  • the control unit 18 generates output signals 20 with which the behavior of the internal combustion engine 1 can be influenced via actuators or actuators.
  • the controller 18 is connected to the injection valve 9, the spark plug 10 and the throttle valve 11 and the like, and generates the signals required for driving them.
  • the controller 18 is provided to the Operating variables of the internal combustion engine 1 to control and / or to regulate.
  • the fuel mass injected by the injection valve 9 into the combustion chamber 4 is controlled and / or regulated by the control unit 18, in particular with regard to low fuel consumption and / or low pollutant development.
  • the control unit 18 is provided with a microprocessor which has stored in a storage medium, in particular in a flash memory, a program which is adapted to perform said control and / or regulation.
  • the internal combustion engine 1 of Figure 1 can be operated in a plurality of modes. Thus, it is possible to operate the internal combustion engine 1 in a homogeneous operation, a stratified operation, a homogeneous lean operation, a stratified operation with homogeneous basic charge and the like.
  • homogenous operation the fuel is injected during the intake phase of the injection valve 9 directly into the combustion chamber 4 of the internal combustion engine 1.
  • the fuel is thereby largely swirled until ignition, so that a substantially homogeneous fuel / air mixture is formed in the combustion chamber 4.
  • the torque to be generated is set essentially by the position of the throttle valve 11 by the control unit 18.
  • the operating variables of the internal combustion engine 1 are controlled and / or regulated such that lambda is equal to one. Homogenous operation is used in particular at full load.
  • the homogeneous lean operation largely corresponds to the homogeneous operation, but the lambda is set to a value greater than one.
  • the fuel is injected during the compression phase of the injection valve 9 directly into the combustion chamber 4 of the internal combustion engine 1.
  • the throttle valve 11 may, except for requirements e.g. the tank ventilation, fully open and the internal combustion engine 1 are operated so that throttled.
  • the torque to be generated is largely set in shift operation via the fuel mass. With the shift operation, the internal combustion engine 1 can be operated in particular at idle and at partial load.
  • the tank ventilation described above must be included in the entire control and / or regulation of the internal combustion engine 1.
  • a plurality of parameters of the tank ventilation are to be considered, such as the loading of the activated carbon filter 14 with hydrocarbons, the position of the tank vent valve 17, the current operating state of the internal combustion engine 1, in particular the current operating mode of the same, requested by the driver and the internal combustion engine 1 to be delivered torque, and the like.
  • an integrator 20 is provided in the figure 2, the output signal represents a specific target fuel rate fkastes the tank ventilation.
  • This specific target fuel rate fkastes is multiplicatively linked to the loading ftead of the activated carbon filter 14.
  • the result of this multiplication is compared with a desired fuel fraction fkates the tank ventilation.
  • This desired fuel fraction fkates is determined by a block 22 and represents that desired fuel fraction to be supplied by the tank vent.
  • the result of the aforementioned comparison may possibly still be linked to a factor supplied by a block 23 for correction or adaptation purposes.
  • the resulting signal is then supplied to the integrator 21 as an input signal.
  • the integrator 21 the aforementioned comparison result in possibly weighted form.
  • a maximum value fkastex for the specific fuel rate of the tank ventilation is generated and forwarded to the integrator 21.
  • the output signal of the integrator 21 so the specific target fuel rate fkastes the tank ventilation is limited.
  • the integrator 21 with the associated feedback loop represents a control loop with which the specific target fuel rate fkastes on the target fuel content fkates the tank ventilation is regulated.
  • the integrator 21 of this control loop is limited to the maximum value fkastex the specific fuel rate for the tank ventilation.
  • the output signal of the aforementioned control circuit ie the specific target fuel rate fkastes
  • a maximum flow factor ftevflox via the tank venting valve 17.
  • the specific target fuel rate fkastes is divided by the lambda desired value lamsbg.
  • the resulting desired purge rate ftefsoll is multiplied by the total mass flow mssgin in the intake pipe 7.
  • the resulting mass flow is finally divided by the mass flow msteo present with the tank vent valve 17 open.
  • the result of these steps is the already mentioned maximum value for the flow factor ftevflox via the tank-venting valve 17.
  • the maximum value ftevflox for the flow factor via the tank venting valve 17 is supplied to an integrator 25 and limits its output signal.
  • This output signal of the integrator 25 is the desired flow factor ftevflos via the tank ventilation valve 17.
  • This desired flow factor ftevflos is fed back to the input of the integrator 25.
  • multiplication by a correction or other factor generated by block 26 may occur.
  • a further link with operating variables of the internal combustion engine takes place in a block 27.
  • the desired flow factor generated by the integrator 25 ftevflos is multiply linked to the mass flow msteo that is present when the tank vent valve 17 is open.
  • the result of this multiplication represents a maximum mass flow mstemx via the tank venting valve 17. This maximum mass flow mstemx is fed to a further integrator 28 as the maximum value.
  • the integrator 28 generates as an output signal the desired mass flow mstesoll over the tank vent valve 17. This target mass flow mstesoll is fed back to the input of the integrator 28.
  • the desired mass flow is mulitplikativ mstesoll with a factor, this factor is generated by a block 29.
  • further operating variables of the internal combustion engine 1 it is possible for further operating variables of the internal combustion engine 1 to be taken into account in the feedback loop by means of a block 30.
  • the output signal of the integrator 28, that is, the desired mass flow mstesoll is limited to the maximum value mstemx the mass flow through the tank vent valve 17.
  • the two integrators 25 and 28 are positively fed back via their respective feedback loops. This means that both integrators 25, 28 always have the tendency to increase their output signal.
  • the slope of such an increase of the respective output signal depends on the feedback loop, and there in particular on influencing the feedback signal. The said slope can thus be adjusted to desired values via the blocks 26, 27 and via the blocks 29, 30.
  • both integrators 25, 28 are each limited by a maximum value. This means that Output of the two integrators 25, 28 on the one hand always increases, on the other hand, however, is always limited by the respective applied maximum value.
  • the two integrators 25, 28 together with their feedback loops act as attenuators.
  • the output signals of the two integrators 25, 28 can change in the direction of larger values, wherein - as stated - the slope of this change can be adjusted, but on the other hand the output signals of these two integrators 25, 28 are limited by the respective maximum values, so that a reduction of the maximum values immediately and immediately also leads to a reduction of the respective output signal of the associated integrator 25, 28.
  • the output signal of the integrator 25 is the desired flow factor ftevflos for the tank-venting valve 17.
  • the tank-venting valve 17 With this desired flow-rate factor ftevflox, the tank-venting valve 17 is ultimately activated. This means that the tank-venting valve 17 can not be opened abruptly, but that when the tank-venting valve 17 is opened towards a greater flow, the said speed limit is present. At the same time, however, it is possible to close the tank-venting valve 17 instantaneously and thus abruptly. As has been explained, attacks at one such closing of the tank vent valve 17 no speed limit.
  • the output signal of the integrator 28 is the setpoint mass flow mstesoll via the tank venting valve 17.
  • This setpoint mass flow mstesoll can not change so abruptly. Instead, the control of the desired mass flow mstesoll can only be done with the aforementioned speed limit. Conversely, it is possible,worthn the desired mass flow mstesoll abruptly and thus without delay. Here no speed limit intervenes.
  • a regulation of the specific desired fuel rate is therefore performed by the first integrator 21.
  • a damped desired flow factor ftevflos is derived with the aid of the second integrator 25.
  • a damped desired mass flow mtsoll is finally determined with the aid of the third integrator 28. This entire process is usable for any lambda.
  • the air-fuel ratio is taken into account via the desired Lambda lamsbg in the described method.

Abstract

Es wird eine Brennkraftmaschine (1) insbesondere für ein Kraftfahrzeug beschrieben, bei der Kraftstoff in mindestens zwei Betriebsarten in einen Brennraum (4) eingespritzt werden kann, und bei der ein Luft/Kraftstoff-Gemisch über ein Tankentlüftungsventil (17) fließen und dem Brennraum (4) zugeführt werden kann. Durch ein Steuergerät (18) kann eine spezifische Soll-Kraftstoffrate des über das Tankentlüftungsventil (17) fließenden Luft/Kraftstoff-Gemisches ermittelt werden.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs nach dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft ebenfalls ein entsprechendes Steuergerät für eine derartige Brennkraftmaschine.
  • Ein derartiges Verfahren, eine derartige Brennkraftmaschine und ein derartiges Steuergerät sind bspw. von einer sog. Benzin-Direkteinspritzung bekannt. Dort wird Kraftstoff in einem Homogenbetrieb während der Ansaugphase oder in einem Schichtbetrieb während der Verdichtungsphase in den Brennraum der Brennkraftmaschine eingespritzt. Der Homogenbetrieb ist vorzugsweise für den Volllastbetrieb der Brennkraftmaschine vorgesehen, während der Schichtbetrieb für den Leerlauf- und Teillastbetrieb geeignet ist. Der Schichtbetrieb zeichnet sich u.a. durch einen Motorbetrieb mit Luftüberschuss, also durch einen Magerbetrieb aus. In Abhängigkeit von Betriebsgrößen der Brennkraftmaschine wird bei einer derartigen Direkteinspritzung zwischen den genannten Betriebsarten umgeschaltet.
  • Als Betriebsarten der Brennkraftmaschine werden auch der Homogenbetrieb mit Lambda gleich Eins, ein magerer Homogenbetrieb bzw. homogener Magerbetrieb und gegebenenfalls noch weitere Betriebsweisen der Brennkraftmaschine verstanden.
  • Weiterhin ist bei derartigen Brennkraftmaschinen bekannt, eine Tankentlüftung vorzusehen, mit der ein Luft/Kraftstoff-Gemisch aus dem Kraftstofftank der Brennkraftmaschine über ein Tankentlüftungsventil zu dem Brennraum der Brennkraftmaschine geführt werden kann. Mit Hilfe der Tankentlüftung kann verhindert werden, dass unverbrannter Kraftstoff in die Atmosphäre abgegeben wird.
  • Die vorgenannte Tankentlüftung muss in die gesamte Steuerung und/oder Regelung der Brennkraftmaschine eingegliedert werden. Hierzu ist es insbesondere erforderlich, das Tankentlüftungsventil derart anzusteuern, dass einerseits eine möglichst maximale Entlüftung des Kraftstofftanks erreicht wird, dass dies aber andererseits keinerlei negativen Einfluss auf die Schadstoffentwicklung oder das von dem Fahrer des Kraftfahrzeugs erwünschte Drehmoment hat.
  • Weiterer Stand der Technik ist aus der EP 1 106 815 A1 bekannt.
  • Aufgabe und Vorteile der Erfindung
  • Aufgabe der Erfindung ist es, ein Verfahren zum Betreiben einer Brennkraftmaschine zu schaffen, mit dem eine optimale Tankentlüftung erreichbar ist.
  • Diese Aufgabe wird erfindungsgemäß durch ein Verfahren nach dem Anspruch 1 gelöst. Bei einem Steuergerät für eine Brennkraftmaschine wird die genannte Aufgabe erfindungsgemäß entsprechend gelöst.
  • Mit der spezifischen Soll-Kraftstoffrate des über das Tankentlüftungsventil fließenden Luft/Kraftstoff-Gemisches wird eine Größe zur Verfügung gestellt, mit der das jeweils aktuelle Lambda der Brennkraftmaschine bei der Steuerung und/oder Regelung der Tankentlüftung berücksichtigt werden kann. Die Tankentlüftung kann damit nicht nur bei einem Lambda von 1 eingesetzt werden, sondern bei jeglichem Luft/Kraftstoff-Verhältnis der Brennkraftmaschine. Damit ist der Einsatz der Tankentlüftung auch bei einer direkteinspritzenden Brennkraftmaschine, bei der Lambda auch ungleich 1 sein kann, möglich. Auf der Grundlage dieser spezifischen Soll-Kraftstoffrate wird dann die Tankentlüftung, insbesondere die Ansteuerung des Tankentlüftungsventils vorgenommen.
  • Die spezifische soll-Kraftstoffrate wird auf einen Soll-Kraftstoffanteil des über das Tankentlüftungsventil fließenden Luft/Kraftstoff-Gemisches geregelt. Der genannte Soll-Kraftstoffanteil kann dabei insbesondere aus einem Kennfeld entnommen werden, das von Betriebsgrößen der Brennkraftmaschine abhängig ist. Die spezifische Soll-Kraftstoffrate kann mit einem Faktor gewichtet werden, der die Beladung eines Aktivkohlefilters darstellt, das in dem Kraftstofftank der Brennkraftmaschine enthalten ist.
  • Die spezifische Soll-Kraftstoffrate wird von einem Integrator erzeugt, wenn die spezifische Soll-Kraftstoffrate mit dem Soll-Kraftstoffanteil verglichen wird, und wenn das Vergleichsergebnis dem Integrator zurückgeführt wird. Damit wird letztlich das Vergleichsergebnis durch den Integrator ausgeregelt. Es ensteht somit eine Regelung der spezifischen Soll-Kraftstoffrate auf den Soll-Kraftstoffanteil. Wie bereits erwähnt wurde, ist die spezifische Soll-Kraftstoffrate und damit die gesamte, vorstehend beschriebene Regelung bei jeglichen Luft/Kraftstoff-Verhältnissen der Brennkraftmaschine einsetzbar. Die genannte Regelung ist damit nicht auf ein Lambda gleich 1 beschränkt.
  • Bei einer vorteilhaften Weiterbildung der Erfindung wird ein Soll-Durchflussfaktor des über das Tankentlüftungsventil fließenden Luft/Kraftstoff-Gemisches erzeugt und gedämpft. Der Soll-Durchflussfaktor repräsentiert in etwa den Quotienten aus Soll-Durchfluss und maximalem Durchfluss. Mit diesem Soll-Durchflussfaktor kann letztlich das Tankentlüftungsventil angesteuert werden. Durch die Dämpfung des Soll-Durchflussfaktors wird erreicht, dass dieser Faktor sich in positiver Richtung nicht sprungartig verändern kann. Damit wird erreicht, dass das Tankentlüftungsventil nur verzögert geöffnet werden kann. Auf diese Weise wird eine insgesamt genaue Steuerung und/oder Regelung der Brennkraftmaschine gewährleistet.
  • Besonders vorteilhaft ist es, wenn der Soll-Durchflussfaktor von einem positiv rückgekoppelten Integrator erzeugt wird, und wenn der Soll-Durchflussfaktor von einem maximalen Durchflussfaktor begrenzt wird. Dieser maximale Durchflussfaktor kann insbesondere aus der spezifischen Soll-Kraftstoffrate ermittelt werden. Auf diese Weise wird erreicht, dass der Soll-Durchflussfaktor nur verzögert aufgesteuert, jedoch sprungartig abgesteuert werden kann. Damit wird ein sprungartiges Öffnen des Tankentlüftungsventils verhindert, wobei gleichzeitig jedoch ein sprungartiges Schließen des Tankentlüftungsventils möglich ist.
  • Bei einer weiteren vorteilhaften Weiterbildung der Erfindung wird ein Soll-Massenstrom über das Tankentlüftungsventil erzeugt und gedämpft. Damit wird wiederum erreicht, dass der Soll-Massenstrom sich zumindest in positiver Richtung nicht sprungartig verändern kann. Damit werden positive Sprünge im Rahmen der Steuerung und/oder Regelung der gesamten Brennkraftmaschine sicher vermieden.
  • Besonders vorteilhaft ist es, wenn der Soll-Durchflussfaktor in einen maximalen Massenstrom über das Tankentlüftungsventil umgewandelt wird, wenn der Soll-Massenstrom von einem positiv rückgekoppelten Integrator erzeugt wird, und wenn der Soll-Massenstrom von dem maximalen Massenstrom begrenzt wird. Damit wird einerseits erreicht, dass der Soll-Massenstrom nur verzögert aufgesteuert werden kann. Andererseits ist es jedoch möglich, dass der Soll-Massenstrom sprungartig vermindert und damit abgesteuert werden kann.
  • Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Verfahrens in der Form eines Computerprogramms, das für das Steuergerät der Brennkraftmaschine vorgesehen ist. Das Computerprogramm ist auf einem Computer des Steuergeräts ablauffähig und zur Ausführung des erfindungsgemäßen Verfahrens geeignet. In diesem Fall wird also die Erfindung durch das Computerprogramm realisiert, so dass dieses Computerprogramm in gleicher Weise die Erfindung darstellt wie das Verfahren, zu dessen Ausführung das Computerprogramm geeignet ist. Das Computerprogramm kann auf einem Flash-Memory abgespeichert werden. Als Computer kann ein Mikroprozessor vorgesehen sein.
  • Weitere Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind.
  • Ausführungsbeispiele der Erfindung
  • Figur 1
    zeigt ein schematisches Blockschaltbild eines Ausführungsbeispiels einer erfindungsgemäßen Brennkraftmaschine, und
    Figur 2
    zeigt ein schematisches Blockschaltbild eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens zum Betreiben der Brennkraftmaschine der Figur 1.
  • In der Figur 1 ist eine Brennkraftmaschine 1 eines Kraftfahrzeugs dargestellt, bei der ein Kolben 2 in einem Zylinder 3 hin- und herbewegbar ist. Der Zylinder 3 ist mit einem Brennraum 4 versehen, der unter anderem durch den Kolben 2, ein Einlassventil 5 und ein Auslassventil 6 begrenzt ist. Mit dem Einlassventil 5 ist ein Ansaugrohr 7 und mit dem Auslassventil 6 ist ein Abgasrohr 8 gekoppelt.
  • Im Bereich des Einlassventils 5 und des Auslassventils 6 ragen ein Einspritzventil 9 und eine Zündkerze 10 in den Brennraum 4. Über das Einspritzventil 9 kann Kraftstoff in den Brennraum 4 eingespritzt werden. Mit der Zündkerze 10 kann der Kraftstoff in dem Brennraum 4 entzündet werden.
  • In dem Ansaugrohr 7 ist eine drehbare Drosselklappe 11 untergebracht, über die dem Ansaugrohr 7 Luft zuführbar ist. Die Menge der zugeführten Luft ist abhängig von der Winkelstellung der Drosselklappe 11. In dem Abgasrohr 8 ist ein Katalysator 12 untergebracht, der der Reinigung der durch die Verbrennung des Kraftstoffs entstehenden Abgase dient.
  • Von einem Aktivkohlefilter 14 eines Kraftstofftanks 15 führt eine Tankentlüftungsleitung 16 zu dem Ansaugrohr 7. In der Tankentlüftungsleitung 16 ist ein Tankentlüftungsventil 17 untergebracht, mit dem die Menge des dem Ansaugrohr 7 zugeführten Luft/Kraftstoff-Gemisches einstellbar ist. Das Aktivkohlefilter 14, die Tankentlüftungsleitung 16 und das Tankentlüftungsventil 17 bilden eine sogenannte Tankentlüftung.
  • Der Kolben 2 wird durch die Verbrennung des Kraftstoffs in dem Brennraum 4 in eine Hin- und Herbewegung versetzt, die auf eine nicht-dargestellte Kurbelwelle übertragen wird und auf diese ein Drehmoment ausübt.
  • Ein Steuergerät 18 ist von Eingangssignalen 19 beaufschlagt, die mittels Sensoren gemessene Betriebsgrößen der Brennkraftmaschine 1 darstellen. Beispielsweise ist das Steuergerät 18 mit einem Luftmassensensor, einem Lambda-Sensor, einem Drehzahlsensor und dergleichen verbunden. Des Weiteren ist das Steuergerät 18 mit einem Fahrpedalsensor verbunden, der ein Signal erzeugt, das die Stellung eines von einem Fahrer betätigbaren Fahrpedals und damit das angeforderte Drehmoment angibt. Das Steuergerät 18 erzeugt Ausgangssignale 20, mit denen über Aktoren bzw. Steller das Verhalten der Brennkraftmaschine 1 beeinflusst werden kann. Beispielsweise ist das Steuergerät 18 mit dem Einspritzventil 9, der Zündkerze 10 und der Drosselklappe 11 und dergleichen verbunden und erzeugt die zu deren Ansteuerung erforderlichen Signale.
  • Unter anderem ist das Steuergerät 18 dazu vorgesehen, die Betriebsgrößen der Brennkraftmaschine 1 zu steuern und/oder zu regeln. Beispielsweise wird die von dem Einspritzventil 9 in den Brennraum 4 eingespritzte Kraftstoffmasse von dem Steuergerät 18 insbesondere im Hinblick auf einen geringen Kraftstoffverbrauch und/oder eine geringe Schadstoffentwicklung gesteuert und/oder geregelt. Zu diesem Zweck ist das Steuergerät 18 mit einem Mikroprozessor versehen, der in einem Speichermedium, insbesondere in einem Flash-Memory ein Programm abgespeichert hat, das dazu geeignet ist, die genannte Steuerung und/oder Regelung durchzuführen.
  • Die Brennkraftmaschine 1 der Figur 1 kann in einer Mehrzahl von Betriebsarten betrieben werden. So ist es möglich, die Brennkraftmaschine 1 in einem Homogenbetrieb, einem Schichtbetrieb, einem homogenen Magerbetrieb, einem Schichtbetrieb mit homogener Grundladung und dergleichen zu betreiben.
  • Im Homogenbetrieb wird der Kraftstoff während der Ansaugphase von dem Einspritzventil 9 direkt in den Brennraum 4 der Brennkraftmaschine 1 eingespritzt. Der Kraftstoff wird dadurch bis zur Zündung noch weitgehend verwirbelt, so dass im Brennraum 4 ein im Wesentlichen homogenes Kraftstoff/Luft-Gemisch entsteht. Das zu erzeugende Moment wird dabei im Wesentlichen über die Stellung der Drosselklappe 11 von dem Steuergerät 18 eingestellt. Im Homogenbetrieb werden die Betriebsgrößen der Brennkraftmaschine 1 derart gesteuert und/oder geregelt, dass Lambda gleich Eins ist. Der Homogenbetrieb wird insbesondere bei Vollast angewendet.
  • Der homogene Magerbetrieb entspricht weitgehend dem Homogenbetrieb, es wird jedoch das Lambda auf einen Wert größer Eins eingestellt.
  • Im Schichtbetrieb wird der Kraftstoff während der Verdichtungsphase von dem Einspritzventil 9 direkt in den Brennraum 4 der Brennkraftmaschine 1 eingespritzt. Damit ist bei der Zündung durch die Zündkerze 10 kein homogenes Gemisch im Brennraum 4 vorhanden, sondern eine Kraftstoffschichtung. Die Drosselklappe 11 kann, abgesehen von Anforderungen z.B. der Tankentlüftung, vollständig geöffnet und die Brennkraftmaschine 1 damit entdrosselt betrieben werden. Das zu erzeugende Moment wird im Schichtbetrieb weitgehend über die Kraftstoffmasse eingestellt. Mit dem Schichtbetrieb kann die Brennkraftmaschine 1 insbesondere im Leerlauf und bei Teillast betrieben werden.
  • Zwischen den genannten Betriebsarten der Brennkraftmaschine 1 kann in Abhängigkeit von Betriebsgrößen der Brennkraftmaschine 1 hin- und her- bzw. umgeschaltet werden. Derartige Umschaltungen werden von dem Steuergerät 18 durchgeführt. Hierzu ist in dem Steuergerät 18 ein Betriebsartenkennfeld vorhanden, in dem für jeden Betriebspunkt der Brennkraftmaschine 1 eine zugehörige Betriebsart abgespeichert ist.
  • Die vorstehend beschriebene Tankentlüftung muss in die gesamte Steuerung und/oder Regelung der Brennkraftmaschine 1 mit einbezogen werden. Dabei sind eine Mehrzahl von Parametern der Tankentlüftung zu berücksichtigen, wie bspw. die Beladung des Aktivkohlefilters 14 mit Kohlenwasserstoffen, die Stellung des Tankentlüftungsventils 17, der momentane Betriebszustand der Brennkraftmaschine 1, insbesondere die momentane Betriebsart derselben, das von dem Fahrer angeforderte und von der Brennkraftmaschine 1 abzugebende Drehmoment, u.dgl. Für diese Einbeziehung der Tankentlüftung ist es erforderlich, einen Soll-Durchflussfaktor ftevflos über das Tankentlüftungsventil 17 sowie einen Soll-Massenstrom mstesoll über das Tankentlüftungsventil 17 zu ermitteln.
  • An Hand der Figur 2 wird nachfolgend ein Verfahren erläutert, mit dem der genannte Soll-Durchflussfaktor ftevflos und der genannte Soll-Massenstrom mstesoll ermittelt werden können.
  • Zu diesem Zweck ist in der Figur 2 ein Integrator 20 vorgesehen, dessen Ausgangssignal eine spezifische Soll-Kraftstoffrate fkastes der Tankentlüftung darstellt. Diese spezifische Soll-Kraftstoffrate fkastes wird mit der Beladung ftead des Aktivkohlefilters 14 multiplikativ verknüpft. Das Ergebnis dieser Multiplikation wird mit einem Soll-Kraftstoffanteil fkates der Tankentlüftung verglichen. Dieser Soll-Kraftstoffanteil fkates wird von einem Block 22 ermittelt und stellt denjenigen erwünschten Kraftstoffanteil dar, der von der Tankentlüftung geliefert werden soll.
  • Das Ergebnis des vorgenannten Vergleichs kann ggf. noch zu Korrektur- oder Anpassungszwecken mit einem Faktor verknüpft werden, der von einem Block 23 geliefert wird. Das daraus resultierende Signal wird dann dem Integrator 21 als Eingangssignal zugeführt. Letztlich liegt also am Integrator 21 das vorgenannte Vergleichsergebnis in ggf. gewichteter Form an.
  • Von einem Block 24 wird ein Maximalwert fkastex für die spezifische Kraftstoffrate der Tankentlüftung erzeugt und an den Integrator 21 weitergegeben. Durch diesen Maximalwert fkastex wird das Ausgangssignal des Integrators 21, also die spezifische Soll-Kraftstoffrate fkastes der Tankentlüftung begrenzt.
  • Der Integrator 21 mit der zugehörigen Rückkoppelschleife stellt einen Regelkreis dar, mit dem die spezifische Soll-Kraftstoffrate fkastes auf den Soll-Kraftstoffanteil fkates der Tankentlüftung geregelt wird. Der Integrator 21 dieses Regelkreises wird dabei auf den Maximalwert fkastex der spezifischen Kraftstoffrate für die Tankentlüftung begrenzt.
  • Das Ausgangssignal des vorgenannten Regelkreises, also die spezifische Soll-Kraftstoffrate fkastes, wird in einen maximalen Durchflussfaktor ftevflox über das Tankentlüftungsventil 17 umgerechnet. Zu diesem Zweck wird zuerst die spezifische Soll-Kraftstoffrate fkastes durch den Lambda-Sollwert lamsbg dividiert. Die sich daraus ergebende Soll-Spülrate ftefsoll wird mit dem gesamten Massenstrom mssgin im Ansaugrohr 7 multipliziert. Der sich daraus ergebende Massenstrom wird schließlich durch denjenigen Massenstrom msteo dividiert, der bei offenem Tankentlüftungsventil 17 vorhanden ist. Das Ergebnis dieser Schritte ist der bereits genannte Maximalwert für den Durchflussfaktor ftevflox über das Tankentlüftungsventil 17.
  • Der Maximalwert ftevflox für den Durchflussfaktor über das Tankentlüftungsventil 17 wird einem Integrator 25 zugeführt und begrenzt dessen Ausgangssignal. Bei diesem Ausgangssignal des Integrators 25 handelt es sich um den Soll-Durchflussfaktor ftevflos über das Tankentlüftungsventil 17. Dieser Soll-Durchflussfaktor ftevflos ist auf den Eingang des Integrators 25 zurückgekoppelt. In dieser Rückkoppelschleife kann eine Multiplikation mit einem Korrektur- oder sonstigem Faktor erfolgen, der von einem Block 26 erzeugt wird. Weiterhin ist es möglich, dass in der Rückkoppelschleife eine weitere Verknüpfung mit Betriebsgrößen der Brennkraftmaschine in einen Block 27 erfolgt.
  • Der von dem Integrator 25 erzeugte Soll-Durchflussfaktor ftevflos wird mit demjenigen Massenstrom msteo multiplikativ verknüpft, der bei offenem Tankentlüftungsventil 17 vorhanden ist. Das Ergebnis dieser Multiplikation stellt einen maximalen Massenstrom mstemx über das Tankentlüftungsventil 17 dar. Dieser maximale Massenstrom mstemx ist einem weiteren Integrator 28 als Maximalwert zugeführt.
  • Der Integrator 28 erzeugt als Ausgangssignal den Soll-Massenstrom mstesoll über das Tankentlüftungsventil 17. Dieser Soll-Massenstrom mstesoll ist auf den Eingang des Integrators 28 zurückgekoppelt. Dabei ist es möglich, dass der Soll-Massenstrom mstesoll mit einem Faktor mulitplikativ verknüpft wird, wobei dieser Faktor von einem Block 29 erzeugt wird. Weiterhin ist es möglich, dass in der Rückkoppelschleife weitere Betriebsgrößen der Brennkraftmaschine 1 mittels eines Blocks 30 Berücksichtigung finden.
  • Das Ausgangssignal des Integrators 28, also der Soll-Massenstrom mstesoll wird dabei auf den Maximalwert mstemx des Massenstroms über das Tankentlüftungsventil 17 begrenzt.
  • Die beiden Integratoren 25 und 28 sind über ihre jeweiligen Rückkoppelschleifen positiv zurückgekoppelt. Dies bedeutet, dass beide Integratoren 25, 28 immer die Tendenz haben, ihr Ausgangssignal zu vergrößern. Die Steigung einer derartigen Erhöhung des jeweiligen Ausgangssignals hängt dabei von der Rückkoppelschleife, und dort insbesondere von Einflussnahmen auf das Rückkoppelsignal ab. Die genannte Steigung kann somit über die Blöcke 26, 27 sowie über die Blöcke 29, 30 auf gewünschte Werte eingestellt werden.
  • Gleichzeitig werden beide Integratoren 25, 28 jeweils durch einen Maximalwert begrenzt. Dies bedeutet, dass das Ausgangssignal der beiden Integratoren 25, 28 einerseits immer anwächst, andererseits jedoch von dem jeweils anliegenden Maximalwert immer begrenzt wird.
  • Daraus ergibt sich, dass die beiden Integratoren 25, 28 zusammen mit ihren Rückkoppelschleifen als Dämpfungsglieder wirken. Die Ausgangssignale der beiden Integratoren 25, 28 können einerseits sich in Richtung zu größeren Werten verändern, wobei - wie gesagt - die Steigung dieser Veränderung eingestellt werden kann, andererseits werden die Ausgangssignale dieser beiden Integratoren 25, 28 jedoch durch die jeweiligen Maximalwerte begrenzt, so dass eine Verminderung der Maximalwerte sofort und unmittelbar auch zu einer Verminderung des jeweiligen Ausgangssignals des zugehörigen Integrators 25, 28 führt.
  • Dies bedeutet mit anderen Worten, dass die Ausgangssignale der beiden Integratoren 25, 28 bei der Aufsteuerung hin zu größeren Werten mit einer Begrenzung der Aufsteuergeschwindigkeit versehen sind, bei der Absteuerung hin zu kleineren Werten jedoch eine derartige Geschwindigkeitsbegrenzung nicht vorhanden ist, so dass die Absteuerung unverzögert durchgreift.
  • Wie erwähnt, handelt es sich bei dem Ausgangssignal des Integrators 25 um den Soll-Durchflussfaktor ftevflos für das Tankentlüftungsventil 17. Mit diesem Soll-Durchflussfaktor ftevflox wird letztlich das Tankentlüftungsventil 17 angesteuert. Dies bedeutet, dass das Tankentlüftungsventil 17 nicht sprungartig geöffnet werden kann, sondern dass bei einem Öffnen des Tankentlüftungsventils 17 hin zu einem größeren Durchfluss die genannte Geschwindigkeitsbegrenzung vorhanden ist. Gleichzeitig ist es jedoch möglich, das Tankentlüftungsventil 17 unverzögert und damit sprungartig zu schließen. Wie erläutert wurde, greift bei einem derartigen Schließen des Tankentlüftungsventil 17 keine Geschwindigkeitsbegrenzung ein.
  • Wie ebenfalls bereits erläutert wurde, handelt es sich bei dem Ausgangssignal des Integrators 28 um den Soll-Massenstrom mstesoll über das Tankentlüftungsventil 17. Dieser Soll-Massenstrom mstesoll kann sich damit nicht sprungartig verändern. Stattdessen kann die Aufsteuerung des Soll-Massenstroms mstesoll nur mit der bereits genannten Geschwindigkeitsbegrenzung erfolgen. Umgekehrt ist es jedoch möglich, den Soll-Massenstrom mstesoll sprungartig und damit unverzögert abzusteuern. Hier greift keine Geschwindigkeitsbegrenzung ein.
  • Zusammengefasst wird damit von dem ersten Integrator 21 eine Regelung der spezifischen Soll-Kraftstoffrate fkastes durchgeführt. Aus der spezifischen Soll-Kraftstoffrate fkastes wird mit Hilfe des zweiten Integrators 25 ein gedämpfter Soll-Durchflussfaktor ftevflos abgeleitet. Aus dem Soll-Durchflussfaktor ftevflos wird schließlich mit Hilfe des dritten Integrators 28 ein gedämpfter Soll-Massenstrom mstesoll ermittelt. Dieses gesamte Verfahren ist dabei für jegliches Lambda verwendbar. Das Luft-Kraftstoffverhältnis wird über das Soll-Lambda lamsbg bei dem beschriebenen Verfahren berücksichtigt.

Claims (11)

  1. Verfahren zum Betreiben einer Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs, bei dem Kraftstoff in mindestens zwei Betriebsarten in einen Brennraum (4) eingespritzt wird, und bei dem ein Luft/Kraftstoff-Gemisch über ein Tankentlüftungsventil (17) fließt und dem Brennraum (4) zugeführt wird, dadurch gekennzeichnet, dass von einem Integrator (21) ein Ausgangssignal erzeugt wird, das eine spezifische Soll-Kraftstoffrate (fkastes) des über das Tankentlüftungsventil (17) fließenden Luft/Kraftstoff-Gemisches darstellt, mit der das jeweils aktuelle Lambda der Brennkraftmaschine (1) berücksichtigt wird, dass ein Soll-Kraftstoffanteil (fkates) des über das Tankentlüftungsventil (17) fließenden Luft/Kraftstoff-Gemisches ermittelt wird, der denjenigen erwünschten Kraftstoffanteil darstellt, der über das Tankentlüftungsventil (17) geliefert werden soll, dass die spezifische Soll-Kraftstoffrate (fkastes) mit dem Soll-Kraftstoffanteil (fkates) verglichen wird, dass das Vergleichsergebnis dem Integrator (21) zugeführt wird, und dass die spezifische Soll-Kraftstoffrate (fkastes) damit auf den Soll-Kraftstoffanteil (fkates) des über das Tankentlüftungsventil (17) fließenden Luft/Kraftstoff-Gemisches geregelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die spezifische Soll-Kraftstoffrate (fkastes) von einem Integrator (25) erzeugt wird, dass die spezifische Soll-Kraftstoffrate (fkastes) mit dem Soll-Kraftstoffanteil (fkates) verglichen wird, und dass das Vergleichsergebnis dem Integrator (25) zurückgeführt wird.
  3. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die spezifische Soll-Kraftstoffrate (fkastes) auf einen Maximalwert (fkastex) für die spezifische Kraftstoffrate begrenzt wird.
  4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die spezifische Soll-Kraftstoffrate (fkastes) in einen maximalen Durchflussfaktor (ftevflox) des über das Tankentlüftungsventil (17) fließenden Luft/Kraftstoffgemisches umgewandelt wird.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein Soll-Durchflussfaktor (ftevflos) des über das Tankentlüftungsventil (17) fließenden Luft/Kraftstoffgemisches erzeugt und gedämpft wird.
  6. Verfahren nach Anspruch 4 und 5, dadurch gekennzeichnet, dass der Soll-Durchflussfaktor (ftevflos) von einem positiv rückgekoppelten Integrator (25) erzeugt wird, und dass der Soll-Durchflussfaktor (ftevflos) von dem maximalen Durchflussfaktor (ftevflox) begrenzt wird.
  7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein Soll-Massenstrom (mstesoll) über das Tankentlüftungsventil (17) erzeugt und gedämpft wird.
  8. Verfahren nach Anspruch 6 und 7, dadurch gekennzeichnet, dass der Soll-Durchflussfaktor (ftevflos) in einen maximalen Massenstrom (mstemx) über das Tankentlüftungsventil (17) umgewandelt wird, dass der Soll-Massenstrom (mstesoll) von einem positiv rückgekoppelten Integrator (28) erzeugt wird, und dass der Soll-Massenstrom (mstesoll) von dem maximalen Massenstrom (mstemx) begrenzt wird.
  9. Computerprogramm, dadurch gekennzeichnet, dass es zur Anwendung des Verfahrens nach einem der Ansprüche 1 bis 8 programmiert ist.
  10. Computerprogramm nach Anspruch 9, dadurch gekennzeichnet, dass es auf einem Speicher abgespeichert ist, insbesondere auf einem Flash-Memory.
  11. Steuergerät (18) für eine Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs, dadurch gekennzeichnet, dass es zur Anwendung des Verfahrens nach einem der Ansprüche 1 bis 8 hergerichtet ist.
EP01944928A 2000-06-08 2001-05-15 Verfahren zum betreiben einer brennkraftmaschine Expired - Lifetime EP1292764B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10028539A DE10028539A1 (de) 2000-06-08 2000-06-08 Verfahren zum Betreiben einer Brennkraftmaschine
DE10028539 2000-06-08
PCT/DE2001/001837 WO2001094771A1 (de) 2000-06-08 2001-05-15 Verfahren zum betreiben einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1292764A1 EP1292764A1 (de) 2003-03-19
EP1292764B1 true EP1292764B1 (de) 2006-03-22

Family

ID=7645209

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01944928A Expired - Lifetime EP1292764B1 (de) 2000-06-08 2001-05-15 Verfahren zum betreiben einer brennkraftmaschine

Country Status (9)

Country Link
US (1) US6814062B2 (de)
EP (1) EP1292764B1 (de)
JP (1) JP2003536016A (de)
KR (1) KR20030036213A (de)
CN (1) CN1270073C (de)
DE (2) DE10028539A1 (de)
MX (1) MXPA02012059A (de)
RU (1) RU2002135068A (de)
WO (1) WO2001094771A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7743606B2 (en) * 2004-11-18 2010-06-29 Honeywell International Inc. Exhaust catalyst system
US7182075B2 (en) * 2004-12-07 2007-02-27 Honeywell International Inc. EGR system
US7165399B2 (en) * 2004-12-29 2007-01-23 Honeywell International Inc. Method and system for using a measure of fueling rate in the air side control of an engine
US7467614B2 (en) 2004-12-29 2008-12-23 Honeywell International Inc. Pedal position and/or pedal change rate for use in control of an engine
US7752840B2 (en) * 2005-03-24 2010-07-13 Honeywell International Inc. Engine exhaust heat exchanger
US7469177B2 (en) * 2005-06-17 2008-12-23 Honeywell International Inc. Distributed control architecture for powertrains
US7389773B2 (en) 2005-08-18 2008-06-24 Honeywell International Inc. Emissions sensors for fuel control in engines
US7765792B2 (en) 2005-10-21 2010-08-03 Honeywell International Inc. System for particulate matter sensor signal processing
US7357125B2 (en) * 2005-10-26 2008-04-15 Honeywell International Inc. Exhaust gas recirculation system
US7415389B2 (en) * 2005-12-29 2008-08-19 Honeywell International Inc. Calibration of engine control systems
DE102007008119B4 (de) * 2007-02-19 2008-11-13 Continental Automotive Gmbh Verfahren zum Steuern einer Brennkraftmaschine und Brennkraftmaschine
US8060290B2 (en) 2008-07-17 2011-11-15 Honeywell International Inc. Configurable automotive controller
DE102008043976A1 (de) * 2008-11-21 2010-05-27 Robert Bosch Gmbh Gaszufuhrmodul
US7941265B2 (en) * 2009-01-28 2011-05-10 GM Global Technology Operations LLC Individual cylinder fuel mass correction factor for high drivability index (HIDI) fuel
US8620461B2 (en) 2009-09-24 2013-12-31 Honeywell International, Inc. Method and system for updating tuning parameters of a controller
US8504175B2 (en) 2010-06-02 2013-08-06 Honeywell International Inc. Using model predictive control to optimize variable trajectories and system control
US9677493B2 (en) 2011-09-19 2017-06-13 Honeywell Spol, S.R.O. Coordinated engine and emissions control system
US20130111905A1 (en) 2011-11-04 2013-05-09 Honeywell Spol. S.R.O. Integrated optimization and control of an engine and aftertreatment system
US9650934B2 (en) 2011-11-04 2017-05-16 Honeywell spol.s.r.o. Engine and aftertreatment optimization system
EP3051367B1 (de) 2015-01-28 2020-11-25 Honeywell spol s.r.o. Ansatz und system zur handhabung von einschränkungen für gemessene störungen mit unsicherer vorschau
EP3056706A1 (de) 2015-02-16 2016-08-17 Honeywell International Inc. Ansatz zur nachbehandlungssystemmodellierung und modellidentifizierung
EP3091212A1 (de) 2015-05-06 2016-11-09 Honeywell International Inc. Identifikationsansatz für verbrennungsmotor-mittelwertmodelle
EP3734375B1 (de) 2015-07-31 2023-04-05 Garrett Transportation I Inc. Quadratischer programmlöser für mpc mit variabler anordnung
US10272779B2 (en) 2015-08-05 2019-04-30 Garrett Transportation I Inc. System and approach for dynamic vehicle speed optimization
US10415492B2 (en) 2016-01-29 2019-09-17 Garrett Transportation I Inc. Engine system with inferential sensor
US10124750B2 (en) 2016-04-26 2018-11-13 Honeywell International Inc. Vehicle security module system
US10036338B2 (en) 2016-04-26 2018-07-31 Honeywell International Inc. Condition-based powertrain control system
US11199120B2 (en) 2016-11-29 2021-12-14 Garrett Transportation I, Inc. Inferential flow sensor
US11057213B2 (en) 2017-10-13 2021-07-06 Garrett Transportation I, Inc. Authentication system for electronic control unit on a bus

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813220C2 (de) * 1988-04-20 1997-03-20 Bosch Gmbh Robert Verfahren und Einrichtung zum Stellen eines Tankentlüftungsventiles
DE59000761D1 (de) * 1990-04-12 1993-02-25 Siemens Ag Tankentlueftungssystem.
JPH04292542A (ja) * 1991-03-19 1992-10-16 Honda Motor Co Ltd 内燃エンジンに吸入される混合気の成分測定装置および内燃エンジンの空燃比制御装置
JPH04309816A (ja) * 1991-04-08 1992-11-02 Nippondenso Co Ltd 燃料蒸発ガスの流量検出装置
JP3089687B2 (ja) * 1991-04-12 2000-09-18 株式会社デンソー 燃料蒸発ガス状態検出装置
JPH0533733A (ja) * 1991-05-20 1993-02-09 Honda Motor Co Ltd 内燃エンジンの蒸発燃料制御装置
US5390644A (en) * 1991-12-27 1995-02-21 Nippondenso Co., Ltd. Method for producing fuel/air mixture for combustion engine
US5476081A (en) * 1993-06-14 1995-12-19 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling air-fuel ratio of air-fuel mixture to an engine having an evaporated fuel purge system
US5553595A (en) * 1994-03-30 1996-09-10 Mazda Motor Corporation Fuel system with fuel vapor estimating feature
DE19509310C2 (de) * 1995-03-15 2001-02-08 Iav Motor Gmbh Verfahren und Einrichtung zur Entlastung des Absorptionsspeichers einer Tankentlüftung bei Verbrennungsmotoren
JP3287228B2 (ja) * 1996-08-09 2002-06-04 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
JP3385919B2 (ja) * 1997-07-10 2003-03-10 日産自動車株式会社 内燃機関の蒸発燃料パージ処理制御装置
US6438945B1 (en) * 1998-08-10 2002-08-27 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of an engine
DE19844086A1 (de) * 1998-09-25 1999-11-18 Siemens Ag Einrichtung zum Steuern einer Brennkraftmaschine
DE19849256A1 (de) * 1998-10-26 2000-04-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Diagnose einer Abgasrückführung eines Verbrennungsprozesses
US6237328B1 (en) * 1999-08-02 2001-05-29 Ford Global Technologies, Inc. Engine control with a fuel vapor purge system

Also Published As

Publication number Publication date
EP1292764A1 (de) 2003-03-19
WO2001094771A1 (de) 2001-12-13
JP2003536016A (ja) 2003-12-02
US6814062B2 (en) 2004-11-09
RU2002135068A (ru) 2004-08-20
KR20030036213A (ko) 2003-05-09
DE10028539A1 (de) 2001-12-20
US20030145837A1 (en) 2003-08-07
MXPA02012059A (es) 2004-03-16
CN1436281A (zh) 2003-08-13
CN1270073C (zh) 2006-08-16
DE50109298D1 (de) 2006-05-11

Similar Documents

Publication Publication Date Title
EP1292764B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE4343353C2 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE19951096C2 (de) Motorregelsystem für einen mittels Abgasturbolader aufgeladenen Dieselmotor
DE10137851B4 (de) Kraftstoffeinspritzregelsystem für einen direkt einspritzenden Motor
EP1066458B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE19813381A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19928825C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Steuergerät für eine Brennkraftmaschine sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
EP1206635B1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1099051B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE19928824C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10033946B4 (de) Kraftstoffeinspritzsteuersystem für eine Brennkraftmaschine mit Direkteinspritzung
DE19913407A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1204814A1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE10305878B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Steuer- und/oder Regelgerät für eine Brennkraftmaschine, Computerprogramm und elektrisches Speichermedium einer Brennkraftmaschine
EP1081363B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1099052B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE19952526A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10029858A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1300574A2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine beim Wechsel zwischen zwei Betriebsarten
EP0985089B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
EP1192347B1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1184557B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine eines Kraftfahrzeugs
EP1436496B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE19908726A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19925788A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030108

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20050418

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50109298

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060519

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060531

Year of fee payment: 6

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061227

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120723

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109298

Country of ref document: DE

Effective date: 20131203