EP1292764B1 - Method for operating an internal combustion engine - Google Patents
Method for operating an internal combustion engine Download PDFInfo
- Publication number
- EP1292764B1 EP1292764B1 EP01944928A EP01944928A EP1292764B1 EP 1292764 B1 EP1292764 B1 EP 1292764B1 EP 01944928 A EP01944928 A EP 01944928A EP 01944928 A EP01944928 A EP 01944928A EP 1292764 B1 EP1292764 B1 EP 1292764B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- internal combustion
- combustion engine
- integrator
- venting valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3023—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
- F02D41/3029—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/003—Adding fuel vapours, e.g. drawn from engine fuel reservoir
- F02D41/0032—Controlling the purging of the canister as a function of the engine operating conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/003—Adding fuel vapours, e.g. drawn from engine fuel reservoir
- F02D41/0032—Controlling the purging of the canister as a function of the engine operating conditions
- F02D41/004—Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1409—Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1432—Controller structures or design the system including a filter, e.g. a low pass or high pass filter
Definitions
- the invention relates to a method for operating an internal combustion engine, in particular a motor vehicle according to the preamble of claim 1.
- the invention also relates to a corresponding control device for such an internal combustion engine.
- Such a method such an internal combustion engine and such a control unit are, for example, from a so-called. Gasoline direct injection known.
- fuel is injected in a homogeneous operation during the intake phase or in a shift operation during the compression phase in the combustion chamber of the internal combustion engine.
- the homogeneous operation is preferably provided for the full-load operation of the internal combustion engine, while the stratified operation is suitable for idling and part-load operation.
- the shift operation is characterized inter alia by a motor operation with excess air, ie by a lean operation.
- switching is made between the aforementioned operating modes in the case of such a direct injection.
- a tank ventilation with which an air / fuel mixture from the fuel tank of the internal combustion engine can be performed via a tank vent valve to the combustion chamber of the internal combustion engine.
- the tank vent can be used to prevent unburned fuel from being released into the atmosphere.
- the aforementioned tank ventilation must be incorporated into the entire control and / or regulation of the internal combustion engine.
- the object of the invention is to provide a method for operating an internal combustion engine, with which an optimal tank ventilation can be achieved.
- the tank ventilation can thus be used not only at a lambda of 1, but at any air / fuel ratio of the internal combustion engine.
- the use of the tank ventilation is also possible in a direct-injection internal combustion engine in which Lambda can also be unequal to 1.
- the tank ventilation in particular the control of the tank ventilation valve is made.
- the specific target fuel rate is controlled to a desired fuel fraction of the air / fuel mixture flowing through the tank vent valve.
- the said desired fuel fraction can be taken in particular from a map which is dependent on operating variables of the internal combustion engine.
- the specific target fuel rate may be weighted by a factor representing the load of an activated carbon filter contained in the fuel tank of the internal combustion engine.
- the specific target fuel rate is generated by an integrator when the specific target fuel rate is compared with the desired fuel fraction and when the comparison result is returned to the integrator. This ultimately corrects the comparison result by the integrator.
- the specific target fuel rate and thus the entire regulation described above can be used for any air / fuel ratio of the internal combustion engine.
- the said regulation is thus not limited to a lambda equal to 1.
- a desired flow factor of the air flowing through the tank venting air / fuel mixture is generated and damped.
- the nominal flow factor roughly represents the quotient of set flow and maximum flow.
- the tank venting valve can be controlled with this target flow factor. By damping the target flow factor, it is achieved that this factor can not change abruptly in the positive direction. This ensures that the tank vent valve can be opened only delayed. In this way, an overall accurate control and / or regulation of the internal combustion engine is ensured.
- the desired flow factor is generated by a positive feedback integrator, and if the target flow factor is limited by a maximum flow factor.
- This maximum flow factor can be determined in particular from the specific target fuel rate. In this way it is achieved that the desired flow factor can only be controlled delayed, but can be abruptly deactivated. This prevents a sudden opening of the tank venting valve, but at the same time a sudden closing of the tank venting valve is possible.
- Invention is generated and damped a desired mass flow through the tank vent valve. This in turn ensures that the desired mass flow can not change abruptly, at least in the positive direction. This positive jumps in the context of control and / or regulation of the entire internal combustion engine can be safely avoided.
- the desired flow factor is converted into a maximum mass flow via the tank ventilation valve, if the desired mass flow is generated by a positive feedback integrator, and if the desired mass flow is limited by the maximum mass flow. This ensures on the one hand that the desired mass flow can be controlled only delayed. On the other hand, it is possible that the desired mass flow can be suddenly reduced and thus deactivated.
- the method according to the invention in the form of a computer program which is provided for the control unit of the internal combustion engine.
- the computer program can run on a computer of the control unit and is suitable for carrying out the method according to the invention.
- the invention is realized by the computer program, so that this computer program in the same way represents the invention as the method to whose execution the computer program is suitable.
- the computer program can be stored on a flash memory.
- a microprocessor may be provided.
- FIG. 1 shows an internal combustion engine 1 of a motor vehicle is shown, in which a piston 2 in a cylinder 3 back and forth.
- the cylinder 3 is provided with a combustion chamber 4 which is delimited inter alia by the piston 2, an inlet valve 5 and an outlet valve 6.
- an intake valve 5 With the intake valve 5, an intake pipe 7 and with the exhaust valve 6, an exhaust pipe 8 is coupled.
- an injection valve 9 and a spark plug 10 protrude into the combustion chamber 4. Via the injection valve 9, fuel can be injected into the combustion chamber 4. With the spark plug 10, the fuel in the combustion chamber 4 can be ignited.
- a rotatable throttle valve 11 is housed, via which the intake pipe 7 air can be supplied.
- the amount of air supplied depends on the Angular position of the throttle valve 11.
- a catalyst 12 is housed, which serves to purify the exhaust gases resulting from the combustion of the fuel.
- a tank vent line 16 leads to the intake pipe 7.
- a tank vent valve 17 is housed, with which the amount of the intake pipe 7 supplied air / fuel mixture is adjustable.
- the activated carbon filter 14, the tank vent line 16 and the tank vent valve 17 form a so-called tank vent.
- the piston 2 is set by the combustion of the fuel in the combustion chamber 4 in a reciprocating motion, which is transmitted to a non-illustrated crankshaft and exerts on this torque.
- a control unit 18 is acted upon by input signals 19, which represent operating variables of the internal combustion engine 1 measured by means of sensors.
- the controller 18 is connected to an air mass sensor, a lambda sensor, a speed sensor, and the like.
- the controller 18 is connected to an accelerator pedal sensor which generates a signal indicative of the position of a driver-operable accelerator pedal and thus the requested torque.
- the control unit 18 generates output signals 20 with which the behavior of the internal combustion engine 1 can be influenced via actuators or actuators.
- the controller 18 is connected to the injection valve 9, the spark plug 10 and the throttle valve 11 and the like, and generates the signals required for driving them.
- the controller 18 is provided to the Operating variables of the internal combustion engine 1 to control and / or to regulate.
- the fuel mass injected by the injection valve 9 into the combustion chamber 4 is controlled and / or regulated by the control unit 18, in particular with regard to low fuel consumption and / or low pollutant development.
- the control unit 18 is provided with a microprocessor which has stored in a storage medium, in particular in a flash memory, a program which is adapted to perform said control and / or regulation.
- the internal combustion engine 1 of Figure 1 can be operated in a plurality of modes. Thus, it is possible to operate the internal combustion engine 1 in a homogeneous operation, a stratified operation, a homogeneous lean operation, a stratified operation with homogeneous basic charge and the like.
- homogenous operation the fuel is injected during the intake phase of the injection valve 9 directly into the combustion chamber 4 of the internal combustion engine 1.
- the fuel is thereby largely swirled until ignition, so that a substantially homogeneous fuel / air mixture is formed in the combustion chamber 4.
- the torque to be generated is set essentially by the position of the throttle valve 11 by the control unit 18.
- the operating variables of the internal combustion engine 1 are controlled and / or regulated such that lambda is equal to one. Homogenous operation is used in particular at full load.
- the homogeneous lean operation largely corresponds to the homogeneous operation, but the lambda is set to a value greater than one.
- the fuel is injected during the compression phase of the injection valve 9 directly into the combustion chamber 4 of the internal combustion engine 1.
- the throttle valve 11 may, except for requirements e.g. the tank ventilation, fully open and the internal combustion engine 1 are operated so that throttled.
- the torque to be generated is largely set in shift operation via the fuel mass. With the shift operation, the internal combustion engine 1 can be operated in particular at idle and at partial load.
- the tank ventilation described above must be included in the entire control and / or regulation of the internal combustion engine 1.
- a plurality of parameters of the tank ventilation are to be considered, such as the loading of the activated carbon filter 14 with hydrocarbons, the position of the tank vent valve 17, the current operating state of the internal combustion engine 1, in particular the current operating mode of the same, requested by the driver and the internal combustion engine 1 to be delivered torque, and the like.
- an integrator 20 is provided in the figure 2, the output signal represents a specific target fuel rate fkastes the tank ventilation.
- This specific target fuel rate fkastes is multiplicatively linked to the loading ftead of the activated carbon filter 14.
- the result of this multiplication is compared with a desired fuel fraction fkates the tank ventilation.
- This desired fuel fraction fkates is determined by a block 22 and represents that desired fuel fraction to be supplied by the tank vent.
- the result of the aforementioned comparison may possibly still be linked to a factor supplied by a block 23 for correction or adaptation purposes.
- the resulting signal is then supplied to the integrator 21 as an input signal.
- the integrator 21 the aforementioned comparison result in possibly weighted form.
- a maximum value fkastex for the specific fuel rate of the tank ventilation is generated and forwarded to the integrator 21.
- the output signal of the integrator 21 so the specific target fuel rate fkastes the tank ventilation is limited.
- the integrator 21 with the associated feedback loop represents a control loop with which the specific target fuel rate fkastes on the target fuel content fkates the tank ventilation is regulated.
- the integrator 21 of this control loop is limited to the maximum value fkastex the specific fuel rate for the tank ventilation.
- the output signal of the aforementioned control circuit ie the specific target fuel rate fkastes
- a maximum flow factor ftevflox via the tank venting valve 17.
- the specific target fuel rate fkastes is divided by the lambda desired value lamsbg.
- the resulting desired purge rate ftefsoll is multiplied by the total mass flow mssgin in the intake pipe 7.
- the resulting mass flow is finally divided by the mass flow msteo present with the tank vent valve 17 open.
- the result of these steps is the already mentioned maximum value for the flow factor ftevflox via the tank-venting valve 17.
- the maximum value ftevflox for the flow factor via the tank venting valve 17 is supplied to an integrator 25 and limits its output signal.
- This output signal of the integrator 25 is the desired flow factor ftevflos via the tank ventilation valve 17.
- This desired flow factor ftevflos is fed back to the input of the integrator 25.
- multiplication by a correction or other factor generated by block 26 may occur.
- a further link with operating variables of the internal combustion engine takes place in a block 27.
- the desired flow factor generated by the integrator 25 ftevflos is multiply linked to the mass flow msteo that is present when the tank vent valve 17 is open.
- the result of this multiplication represents a maximum mass flow mstemx via the tank venting valve 17. This maximum mass flow mstemx is fed to a further integrator 28 as the maximum value.
- the integrator 28 generates as an output signal the desired mass flow mstesoll over the tank vent valve 17. This target mass flow mstesoll is fed back to the input of the integrator 28.
- the desired mass flow is mulitplikativ mstesoll with a factor, this factor is generated by a block 29.
- further operating variables of the internal combustion engine 1 it is possible for further operating variables of the internal combustion engine 1 to be taken into account in the feedback loop by means of a block 30.
- the output signal of the integrator 28, that is, the desired mass flow mstesoll is limited to the maximum value mstemx the mass flow through the tank vent valve 17.
- the two integrators 25 and 28 are positively fed back via their respective feedback loops. This means that both integrators 25, 28 always have the tendency to increase their output signal.
- the slope of such an increase of the respective output signal depends on the feedback loop, and there in particular on influencing the feedback signal. The said slope can thus be adjusted to desired values via the blocks 26, 27 and via the blocks 29, 30.
- both integrators 25, 28 are each limited by a maximum value. This means that Output of the two integrators 25, 28 on the one hand always increases, on the other hand, however, is always limited by the respective applied maximum value.
- the two integrators 25, 28 together with their feedback loops act as attenuators.
- the output signals of the two integrators 25, 28 can change in the direction of larger values, wherein - as stated - the slope of this change can be adjusted, but on the other hand the output signals of these two integrators 25, 28 are limited by the respective maximum values, so that a reduction of the maximum values immediately and immediately also leads to a reduction of the respective output signal of the associated integrator 25, 28.
- the output signal of the integrator 25 is the desired flow factor ftevflos for the tank-venting valve 17.
- the tank-venting valve 17 With this desired flow-rate factor ftevflox, the tank-venting valve 17 is ultimately activated. This means that the tank-venting valve 17 can not be opened abruptly, but that when the tank-venting valve 17 is opened towards a greater flow, the said speed limit is present. At the same time, however, it is possible to close the tank-venting valve 17 instantaneously and thus abruptly. As has been explained, attacks at one such closing of the tank vent valve 17 no speed limit.
- the output signal of the integrator 28 is the setpoint mass flow mstesoll via the tank venting valve 17.
- This setpoint mass flow mstesoll can not change so abruptly. Instead, the control of the desired mass flow mstesoll can only be done with the aforementioned speed limit. Conversely, it is possible,worthn the desired mass flow mstesoll abruptly and thus without delay. Here no speed limit intervenes.
- a regulation of the specific desired fuel rate is therefore performed by the first integrator 21.
- a damped desired flow factor ftevflos is derived with the aid of the second integrator 25.
- a damped desired mass flow mtsoll is finally determined with the aid of the third integrator 28. This entire process is usable for any lambda.
- the air-fuel ratio is taken into account via the desired Lambda lamsbg in the described method.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs nach dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft ebenfalls ein entsprechendes Steuergerät für eine derartige Brennkraftmaschine.The invention relates to a method for operating an internal combustion engine, in particular a motor vehicle according to the preamble of claim 1. The invention also relates to a corresponding control device for such an internal combustion engine.
Ein derartiges Verfahren, eine derartige Brennkraftmaschine und ein derartiges Steuergerät sind bspw. von einer sog. Benzin-Direkteinspritzung bekannt. Dort wird Kraftstoff in einem Homogenbetrieb während der Ansaugphase oder in einem Schichtbetrieb während der Verdichtungsphase in den Brennraum der Brennkraftmaschine eingespritzt. Der Homogenbetrieb ist vorzugsweise für den Volllastbetrieb der Brennkraftmaschine vorgesehen, während der Schichtbetrieb für den Leerlauf- und Teillastbetrieb geeignet ist. Der Schichtbetrieb zeichnet sich u.a. durch einen Motorbetrieb mit Luftüberschuss, also durch einen Magerbetrieb aus. In Abhängigkeit von Betriebsgrößen der Brennkraftmaschine wird bei einer derartigen Direkteinspritzung zwischen den genannten Betriebsarten umgeschaltet.Such a method, such an internal combustion engine and such a control unit are, for example, from a so-called. Gasoline direct injection known. There, fuel is injected in a homogeneous operation during the intake phase or in a shift operation during the compression phase in the combustion chamber of the internal combustion engine. The homogeneous operation is preferably provided for the full-load operation of the internal combustion engine, while the stratified operation is suitable for idling and part-load operation. The shift operation is characterized inter alia by a motor operation with excess air, ie by a lean operation. Depending on operating variables of the internal combustion engine, switching is made between the aforementioned operating modes in the case of such a direct injection.
Als Betriebsarten der Brennkraftmaschine werden auch der Homogenbetrieb mit Lambda gleich Eins, ein magerer Homogenbetrieb bzw. homogener Magerbetrieb und gegebenenfalls noch weitere Betriebsweisen der Brennkraftmaschine verstanden.As operating modes of the internal combustion engine and the homogeneous operation with lambda equal to one, a lean homogeneous operation or homogeneous lean operation and possibly further operations of the internal combustion engine to be understood.
Weiterhin ist bei derartigen Brennkraftmaschinen bekannt, eine Tankentlüftung vorzusehen, mit der ein Luft/Kraftstoff-Gemisch aus dem Kraftstofftank der Brennkraftmaschine über ein Tankentlüftungsventil zu dem Brennraum der Brennkraftmaschine geführt werden kann. Mit Hilfe der Tankentlüftung kann verhindert werden, dass unverbrannter Kraftstoff in die Atmosphäre abgegeben wird.Furthermore, in such internal combustion engines is known to provide a tank ventilation, with which an air / fuel mixture from the fuel tank of the internal combustion engine can be performed via a tank vent valve to the combustion chamber of the internal combustion engine. The tank vent can be used to prevent unburned fuel from being released into the atmosphere.
Die vorgenannte Tankentlüftung muss in die gesamte Steuerung und/oder Regelung der Brennkraftmaschine eingegliedert werden. Hierzu ist es insbesondere erforderlich, das Tankentlüftungsventil derart anzusteuern, dass einerseits eine möglichst maximale Entlüftung des Kraftstofftanks erreicht wird, dass dies aber andererseits keinerlei negativen Einfluss auf die Schadstoffentwicklung oder das von dem Fahrer des Kraftfahrzeugs erwünschte Drehmoment hat.The aforementioned tank ventilation must be incorporated into the entire control and / or regulation of the internal combustion engine. For this purpose, it is particularly necessary to control the tank vent valve such that on the one hand maximum possible ventilation of the fuel tank is achieved, but that on the other hand has no negative impact on the development of pollutants or desired by the driver of the motor vehicle torque.
Weiterer Stand der Technik ist aus der EP 1 106 815 A1 bekannt.Further prior art is known from EP 1 106 815 A1.
Aufgabe der Erfindung ist es, ein Verfahren zum Betreiben einer Brennkraftmaschine zu schaffen, mit dem eine optimale Tankentlüftung erreichbar ist.The object of the invention is to provide a method for operating an internal combustion engine, with which an optimal tank ventilation can be achieved.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren nach dem Anspruch 1 gelöst. Bei einem Steuergerät für eine Brennkraftmaschine wird die genannte Aufgabe erfindungsgemäß entsprechend gelöst.This object is achieved by a method according to claim 1. In a control device for an internal combustion engine the said object is achieved according to the invention accordingly.
Mit der spezifischen Soll-Kraftstoffrate des über das Tankentlüftungsventil fließenden Luft/Kraftstoff-Gemisches wird eine Größe zur Verfügung gestellt, mit der das jeweils aktuelle Lambda der Brennkraftmaschine bei der Steuerung und/oder Regelung der Tankentlüftung berücksichtigt werden kann. Die Tankentlüftung kann damit nicht nur bei einem Lambda von 1 eingesetzt werden, sondern bei jeglichem Luft/Kraftstoff-Verhältnis der Brennkraftmaschine. Damit ist der Einsatz der Tankentlüftung auch bei einer direkteinspritzenden Brennkraftmaschine, bei der Lambda auch ungleich 1 sein kann, möglich. Auf der Grundlage dieser spezifischen Soll-Kraftstoffrate wird dann die Tankentlüftung, insbesondere die Ansteuerung des Tankentlüftungsventils vorgenommen.With the specific target fuel rate of the air / fuel mixture flowing through the tank ventilation valve, a variable is made available with which the respective current lambda of the internal combustion engine can be taken into account in the control and / or regulation of the tank ventilation. The tank ventilation can thus be used not only at a lambda of 1, but at any air / fuel ratio of the internal combustion engine. Thus, the use of the tank ventilation is also possible in a direct-injection internal combustion engine in which Lambda can also be unequal to 1. On the basis of this specific target fuel rate then the tank ventilation, in particular the control of the tank ventilation valve is made.
Die spezifische soll-Kraftstoffrate wird auf einen Soll-Kraftstoffanteil des über das Tankentlüftungsventil fließenden Luft/Kraftstoff-Gemisches geregelt. Der genannte Soll-Kraftstoffanteil kann dabei insbesondere aus einem Kennfeld entnommen werden, das von Betriebsgrößen der Brennkraftmaschine abhängig ist. Die spezifische Soll-Kraftstoffrate kann mit einem Faktor gewichtet werden, der die Beladung eines Aktivkohlefilters darstellt, das in dem Kraftstofftank der Brennkraftmaschine enthalten ist.The specific target fuel rate is controlled to a desired fuel fraction of the air / fuel mixture flowing through the tank vent valve. The said desired fuel fraction can be taken in particular from a map which is dependent on operating variables of the internal combustion engine. The specific target fuel rate may be weighted by a factor representing the load of an activated carbon filter contained in the fuel tank of the internal combustion engine.
Die spezifische Soll-Kraftstoffrate wird von einem Integrator erzeugt, wenn die spezifische Soll-Kraftstoffrate mit dem Soll-Kraftstoffanteil verglichen wird, und wenn das Vergleichsergebnis dem Integrator zurückgeführt wird. Damit wird letztlich das Vergleichsergebnis durch den Integrator ausgeregelt. Es ensteht somit eine Regelung der spezifischen Soll-Kraftstoffrate auf den Soll-Kraftstoffanteil. Wie bereits erwähnt wurde, ist die spezifische Soll-Kraftstoffrate und damit die gesamte, vorstehend beschriebene Regelung bei jeglichen Luft/Kraftstoff-Verhältnissen der Brennkraftmaschine einsetzbar. Die genannte Regelung ist damit nicht auf ein Lambda gleich 1 beschränkt.The specific target fuel rate is generated by an integrator when the specific target fuel rate is compared with the desired fuel fraction and when the comparison result is returned to the integrator. This ultimately corrects the comparison result by the integrator. There is thus a regulation of specific target fuel rate on the target fuel fraction. As already mentioned, the specific target fuel rate and thus the entire regulation described above can be used for any air / fuel ratio of the internal combustion engine. The said regulation is thus not limited to a lambda equal to 1.
Bei einer vorteilhaften Weiterbildung der Erfindung wird ein Soll-Durchflussfaktor des über das Tankentlüftungsventil fließenden Luft/Kraftstoff-Gemisches erzeugt und gedämpft. Der Soll-Durchflussfaktor repräsentiert in etwa den Quotienten aus Soll-Durchfluss und maximalem Durchfluss. Mit diesem Soll-Durchflussfaktor kann letztlich das Tankentlüftungsventil angesteuert werden. Durch die Dämpfung des Soll-Durchflussfaktors wird erreicht, dass dieser Faktor sich in positiver Richtung nicht sprungartig verändern kann. Damit wird erreicht, dass das Tankentlüftungsventil nur verzögert geöffnet werden kann. Auf diese Weise wird eine insgesamt genaue Steuerung und/oder Regelung der Brennkraftmaschine gewährleistet.In an advantageous development of the invention, a desired flow factor of the air flowing through the tank venting air / fuel mixture is generated and damped. The nominal flow factor roughly represents the quotient of set flow and maximum flow. Ultimately, the tank venting valve can be controlled with this target flow factor. By damping the target flow factor, it is achieved that this factor can not change abruptly in the positive direction. This ensures that the tank vent valve can be opened only delayed. In this way, an overall accurate control and / or regulation of the internal combustion engine is ensured.
Besonders vorteilhaft ist es, wenn der Soll-Durchflussfaktor von einem positiv rückgekoppelten Integrator erzeugt wird, und wenn der Soll-Durchflussfaktor von einem maximalen Durchflussfaktor begrenzt wird. Dieser maximale Durchflussfaktor kann insbesondere aus der spezifischen Soll-Kraftstoffrate ermittelt werden. Auf diese Weise wird erreicht, dass der Soll-Durchflussfaktor nur verzögert aufgesteuert, jedoch sprungartig abgesteuert werden kann. Damit wird ein sprungartiges Öffnen des Tankentlüftungsventils verhindert, wobei gleichzeitig jedoch ein sprungartiges Schließen des Tankentlüftungsventils möglich ist.It is particularly advantageous if the desired flow factor is generated by a positive feedback integrator, and if the target flow factor is limited by a maximum flow factor. This maximum flow factor can be determined in particular from the specific target fuel rate. In this way it is achieved that the desired flow factor can only be controlled delayed, but can be abruptly deactivated. This prevents a sudden opening of the tank venting valve, but at the same time a sudden closing of the tank venting valve is possible.
Bei einer weiteren vorteilhaften Weiterbildung der Erfindung wird ein Soll-Massenstrom über das Tankentlüftungsventil erzeugt und gedämpft. Damit wird wiederum erreicht, dass der Soll-Massenstrom sich zumindest in positiver Richtung nicht sprungartig verändern kann. Damit werden positive Sprünge im Rahmen der Steuerung und/oder Regelung der gesamten Brennkraftmaschine sicher vermieden.In a further advantageous embodiment of Invention is generated and damped a desired mass flow through the tank vent valve. This in turn ensures that the desired mass flow can not change abruptly, at least in the positive direction. This positive jumps in the context of control and / or regulation of the entire internal combustion engine can be safely avoided.
Besonders vorteilhaft ist es, wenn der Soll-Durchflussfaktor in einen maximalen Massenstrom über das Tankentlüftungsventil umgewandelt wird, wenn der Soll-Massenstrom von einem positiv rückgekoppelten Integrator erzeugt wird, und wenn der Soll-Massenstrom von dem maximalen Massenstrom begrenzt wird. Damit wird einerseits erreicht, dass der Soll-Massenstrom nur verzögert aufgesteuert werden kann. Andererseits ist es jedoch möglich, dass der Soll-Massenstrom sprungartig vermindert und damit abgesteuert werden kann.It is particularly advantageous if the desired flow factor is converted into a maximum mass flow via the tank ventilation valve, if the desired mass flow is generated by a positive feedback integrator, and if the desired mass flow is limited by the maximum mass flow. This ensures on the one hand that the desired mass flow can be controlled only delayed. On the other hand, it is possible that the desired mass flow can be suddenly reduced and thus deactivated.
Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Verfahrens in der Form eines Computerprogramms, das für das Steuergerät der Brennkraftmaschine vorgesehen ist. Das Computerprogramm ist auf einem Computer des Steuergeräts ablauffähig und zur Ausführung des erfindungsgemäßen Verfahrens geeignet. In diesem Fall wird also die Erfindung durch das Computerprogramm realisiert, so dass dieses Computerprogramm in gleicher Weise die Erfindung darstellt wie das Verfahren, zu dessen Ausführung das Computerprogramm geeignet ist. Das Computerprogramm kann auf einem Flash-Memory abgespeichert werden. Als Computer kann ein Mikroprozessor vorgesehen sein.Of particular importance is the realization of the method according to the invention in the form of a computer program which is provided for the control unit of the internal combustion engine. The computer program can run on a computer of the control unit and is suitable for carrying out the method according to the invention. In this case, therefore, the invention is realized by the computer program, so that this computer program in the same way represents the invention as the method to whose execution the computer program is suitable. The computer program can be stored on a flash memory. As a computer, a microprocessor may be provided.
Weitere Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind.Other possible applications and advantages of the invention will become apparent from the following description of embodiments of the invention, in the figures the drawing are shown.
- Figur 1FIG. 1
- zeigt ein schematisches Blockschaltbild eines Ausführungsbeispiels einer erfindungsgemäßen Brennkraftmaschine, undshows a schematic block diagram of an embodiment of an internal combustion engine according to the invention, and
- Figur 2FIG. 2
- zeigt ein schematisches Blockschaltbild eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens zum Betreiben der Brennkraftmaschine der Figur 1.shows a schematic block diagram of an embodiment of a method according to the invention for operating the internal combustion engine of Figure 1.
In der Figur 1 ist eine Brennkraftmaschine 1 eines Kraftfahrzeugs dargestellt, bei der ein Kolben 2 in einem Zylinder 3 hin- und herbewegbar ist. Der Zylinder 3 ist mit einem Brennraum 4 versehen, der unter anderem durch den Kolben 2, ein Einlassventil 5 und ein Auslassventil 6 begrenzt ist. Mit dem Einlassventil 5 ist ein Ansaugrohr 7 und mit dem Auslassventil 6 ist ein Abgasrohr 8 gekoppelt.1 shows an internal combustion engine 1 of a motor vehicle is shown, in which a piston 2 in a cylinder 3 back and forth. The cylinder 3 is provided with a combustion chamber 4 which is delimited inter alia by the piston 2, an
Im Bereich des Einlassventils 5 und des Auslassventils 6 ragen ein Einspritzventil 9 und eine Zündkerze 10 in den Brennraum 4. Über das Einspritzventil 9 kann Kraftstoff in den Brennraum 4 eingespritzt werden. Mit der Zündkerze 10 kann der Kraftstoff in dem Brennraum 4 entzündet werden.In the region of the
In dem Ansaugrohr 7 ist eine drehbare Drosselklappe 11 untergebracht, über die dem Ansaugrohr 7 Luft zuführbar ist. Die Menge der zugeführten Luft ist abhängig von der Winkelstellung der Drosselklappe 11. In dem Abgasrohr 8 ist ein Katalysator 12 untergebracht, der der Reinigung der durch die Verbrennung des Kraftstoffs entstehenden Abgase dient.In the intake pipe 7, a
Von einem Aktivkohlefilter 14 eines Kraftstofftanks 15 führt eine Tankentlüftungsleitung 16 zu dem Ansaugrohr 7. In der Tankentlüftungsleitung 16 ist ein Tankentlüftungsventil 17 untergebracht, mit dem die Menge des dem Ansaugrohr 7 zugeführten Luft/Kraftstoff-Gemisches einstellbar ist. Das Aktivkohlefilter 14, die Tankentlüftungsleitung 16 und das Tankentlüftungsventil 17 bilden eine sogenannte Tankentlüftung.From a
Der Kolben 2 wird durch die Verbrennung des Kraftstoffs in dem Brennraum 4 in eine Hin- und Herbewegung versetzt, die auf eine nicht-dargestellte Kurbelwelle übertragen wird und auf diese ein Drehmoment ausübt.The piston 2 is set by the combustion of the fuel in the combustion chamber 4 in a reciprocating motion, which is transmitted to a non-illustrated crankshaft and exerts on this torque.
Ein Steuergerät 18 ist von Eingangssignalen 19 beaufschlagt, die mittels Sensoren gemessene Betriebsgrößen der Brennkraftmaschine 1 darstellen. Beispielsweise ist das Steuergerät 18 mit einem Luftmassensensor, einem Lambda-Sensor, einem Drehzahlsensor und dergleichen verbunden. Des Weiteren ist das Steuergerät 18 mit einem Fahrpedalsensor verbunden, der ein Signal erzeugt, das die Stellung eines von einem Fahrer betätigbaren Fahrpedals und damit das angeforderte Drehmoment angibt. Das Steuergerät 18 erzeugt Ausgangssignale 20, mit denen über Aktoren bzw. Steller das Verhalten der Brennkraftmaschine 1 beeinflusst werden kann. Beispielsweise ist das Steuergerät 18 mit dem Einspritzventil 9, der Zündkerze 10 und der Drosselklappe 11 und dergleichen verbunden und erzeugt die zu deren Ansteuerung erforderlichen Signale.A
Unter anderem ist das Steuergerät 18 dazu vorgesehen, die Betriebsgrößen der Brennkraftmaschine 1 zu steuern und/oder zu regeln. Beispielsweise wird die von dem Einspritzventil 9 in den Brennraum 4 eingespritzte Kraftstoffmasse von dem Steuergerät 18 insbesondere im Hinblick auf einen geringen Kraftstoffverbrauch und/oder eine geringe Schadstoffentwicklung gesteuert und/oder geregelt. Zu diesem Zweck ist das Steuergerät 18 mit einem Mikroprozessor versehen, der in einem Speichermedium, insbesondere in einem Flash-Memory ein Programm abgespeichert hat, das dazu geeignet ist, die genannte Steuerung und/oder Regelung durchzuführen.Among other things, the
Die Brennkraftmaschine 1 der Figur 1 kann in einer Mehrzahl von Betriebsarten betrieben werden. So ist es möglich, die Brennkraftmaschine 1 in einem Homogenbetrieb, einem Schichtbetrieb, einem homogenen Magerbetrieb, einem Schichtbetrieb mit homogener Grundladung und dergleichen zu betreiben.The internal combustion engine 1 of Figure 1 can be operated in a plurality of modes. Thus, it is possible to operate the internal combustion engine 1 in a homogeneous operation, a stratified operation, a homogeneous lean operation, a stratified operation with homogeneous basic charge and the like.
Im Homogenbetrieb wird der Kraftstoff während der Ansaugphase von dem Einspritzventil 9 direkt in den Brennraum 4 der Brennkraftmaschine 1 eingespritzt. Der Kraftstoff wird dadurch bis zur Zündung noch weitgehend verwirbelt, so dass im Brennraum 4 ein im Wesentlichen homogenes Kraftstoff/Luft-Gemisch entsteht. Das zu erzeugende Moment wird dabei im Wesentlichen über die Stellung der Drosselklappe 11 von dem Steuergerät 18 eingestellt. Im Homogenbetrieb werden die Betriebsgrößen der Brennkraftmaschine 1 derart gesteuert und/oder geregelt, dass Lambda gleich Eins ist. Der Homogenbetrieb wird insbesondere bei Vollast angewendet.In homogeneous operation, the fuel is injected during the intake phase of the injection valve 9 directly into the combustion chamber 4 of the internal combustion engine 1. The fuel is thereby largely swirled until ignition, so that a substantially homogeneous fuel / air mixture is formed in the combustion chamber 4. The torque to be generated is set essentially by the position of the
Der homogene Magerbetrieb entspricht weitgehend dem Homogenbetrieb, es wird jedoch das Lambda auf einen Wert größer Eins eingestellt.The homogeneous lean operation largely corresponds to the homogeneous operation, but the lambda is set to a value greater than one.
Im Schichtbetrieb wird der Kraftstoff während der Verdichtungsphase von dem Einspritzventil 9 direkt in den Brennraum 4 der Brennkraftmaschine 1 eingespritzt. Damit ist bei der Zündung durch die Zündkerze 10 kein homogenes Gemisch im Brennraum 4 vorhanden, sondern eine Kraftstoffschichtung. Die Drosselklappe 11 kann, abgesehen von Anforderungen z.B. der Tankentlüftung, vollständig geöffnet und die Brennkraftmaschine 1 damit entdrosselt betrieben werden. Das zu erzeugende Moment wird im Schichtbetrieb weitgehend über die Kraftstoffmasse eingestellt. Mit dem Schichtbetrieb kann die Brennkraftmaschine 1 insbesondere im Leerlauf und bei Teillast betrieben werden.In stratified operation, the fuel is injected during the compression phase of the injection valve 9 directly into the combustion chamber 4 of the internal combustion engine 1. Thus, in the ignition by the
Zwischen den genannten Betriebsarten der Brennkraftmaschine 1 kann in Abhängigkeit von Betriebsgrößen der Brennkraftmaschine 1 hin- und her- bzw. umgeschaltet werden. Derartige Umschaltungen werden von dem Steuergerät 18 durchgeführt. Hierzu ist in dem Steuergerät 18 ein Betriebsartenkennfeld vorhanden, in dem für jeden Betriebspunkt der Brennkraftmaschine 1 eine zugehörige Betriebsart abgespeichert ist.Between the above operating modes of the internal combustion engine 1 can be switched back and forth depending on operating variables of the internal combustion engine 1 and. Such switches are performed by the
Die vorstehend beschriebene Tankentlüftung muss in die gesamte Steuerung und/oder Regelung der Brennkraftmaschine 1 mit einbezogen werden. Dabei sind eine Mehrzahl von Parametern der Tankentlüftung zu berücksichtigen, wie bspw. die Beladung des Aktivkohlefilters 14 mit Kohlenwasserstoffen, die Stellung des Tankentlüftungsventils 17, der momentane Betriebszustand der Brennkraftmaschine 1, insbesondere die momentane Betriebsart derselben, das von dem Fahrer angeforderte und von der Brennkraftmaschine 1 abzugebende Drehmoment, u.dgl. Für diese Einbeziehung der Tankentlüftung ist es erforderlich, einen Soll-Durchflussfaktor ftevflos über das Tankentlüftungsventil 17 sowie einen Soll-Massenstrom mstesoll über das Tankentlüftungsventil 17 zu ermitteln.The tank ventilation described above must be included in the entire control and / or regulation of the internal combustion engine 1. In this case, a plurality of parameters of the tank ventilation are to be considered, such as the loading of the activated
An Hand der Figur 2 wird nachfolgend ein Verfahren erläutert, mit dem der genannte Soll-Durchflussfaktor ftevflos und der genannte Soll-Massenstrom mstesoll ermittelt werden können.A method is explained below with reference to FIG. 2, with which the stated desired flow factor ftevflos and the stated desired mass flow mstesoll can be determined.
Zu diesem Zweck ist in der Figur 2 ein Integrator 20 vorgesehen, dessen Ausgangssignal eine spezifische Soll-Kraftstoffrate fkastes der Tankentlüftung darstellt. Diese spezifische Soll-Kraftstoffrate fkastes wird mit der Beladung ftead des Aktivkohlefilters 14 multiplikativ verknüpft. Das Ergebnis dieser Multiplikation wird mit einem Soll-Kraftstoffanteil fkates der Tankentlüftung verglichen. Dieser Soll-Kraftstoffanteil fkates wird von einem Block 22 ermittelt und stellt denjenigen erwünschten Kraftstoffanteil dar, der von der Tankentlüftung geliefert werden soll.For this purpose, an
Das Ergebnis des vorgenannten Vergleichs kann ggf. noch zu Korrektur- oder Anpassungszwecken mit einem Faktor verknüpft werden, der von einem Block 23 geliefert wird. Das daraus resultierende Signal wird dann dem Integrator 21 als Eingangssignal zugeführt. Letztlich liegt also am Integrator 21 das vorgenannte Vergleichsergebnis in ggf. gewichteter Form an.The result of the aforementioned comparison may possibly still be linked to a factor supplied by a
Von einem Block 24 wird ein Maximalwert fkastex für die spezifische Kraftstoffrate der Tankentlüftung erzeugt und an den Integrator 21 weitergegeben. Durch diesen Maximalwert fkastex wird das Ausgangssignal des Integrators 21, also die spezifische Soll-Kraftstoffrate fkastes der Tankentlüftung begrenzt.From a
Der Integrator 21 mit der zugehörigen Rückkoppelschleife stellt einen Regelkreis dar, mit dem die spezifische Soll-Kraftstoffrate fkastes auf den Soll-Kraftstoffanteil fkates der Tankentlüftung geregelt wird. Der Integrator 21 dieses Regelkreises wird dabei auf den Maximalwert fkastex der spezifischen Kraftstoffrate für die Tankentlüftung begrenzt.The
Das Ausgangssignal des vorgenannten Regelkreises, also die spezifische Soll-Kraftstoffrate fkastes, wird in einen maximalen Durchflussfaktor ftevflox über das Tankentlüftungsventil 17 umgerechnet. Zu diesem Zweck wird zuerst die spezifische Soll-Kraftstoffrate fkastes durch den Lambda-Sollwert lamsbg dividiert. Die sich daraus ergebende Soll-Spülrate ftefsoll wird mit dem gesamten Massenstrom mssgin im Ansaugrohr 7 multipliziert. Der sich daraus ergebende Massenstrom wird schließlich durch denjenigen Massenstrom msteo dividiert, der bei offenem Tankentlüftungsventil 17 vorhanden ist. Das Ergebnis dieser Schritte ist der bereits genannte Maximalwert für den Durchflussfaktor ftevflox über das Tankentlüftungsventil 17.The output signal of the aforementioned control circuit, ie the specific target fuel rate fkastes, is converted into a maximum flow factor ftevflox via the
Der Maximalwert ftevflox für den Durchflussfaktor über das Tankentlüftungsventil 17 wird einem Integrator 25 zugeführt und begrenzt dessen Ausgangssignal. Bei diesem Ausgangssignal des Integrators 25 handelt es sich um den Soll-Durchflussfaktor ftevflos über das Tankentlüftungsventil 17. Dieser Soll-Durchflussfaktor ftevflos ist auf den Eingang des Integrators 25 zurückgekoppelt. In dieser Rückkoppelschleife kann eine Multiplikation mit einem Korrektur- oder sonstigem Faktor erfolgen, der von einem Block 26 erzeugt wird. Weiterhin ist es möglich, dass in der Rückkoppelschleife eine weitere Verknüpfung mit Betriebsgrößen der Brennkraftmaschine in einen Block 27 erfolgt.The maximum value ftevflox for the flow factor via the
Der von dem Integrator 25 erzeugte Soll-Durchflussfaktor ftevflos wird mit demjenigen Massenstrom msteo multiplikativ verknüpft, der bei offenem Tankentlüftungsventil 17 vorhanden ist. Das Ergebnis dieser Multiplikation stellt einen maximalen Massenstrom mstemx über das Tankentlüftungsventil 17 dar. Dieser maximale Massenstrom mstemx ist einem weiteren Integrator 28 als Maximalwert zugeführt.The desired flow factor generated by the
Der Integrator 28 erzeugt als Ausgangssignal den Soll-Massenstrom mstesoll über das Tankentlüftungsventil 17. Dieser Soll-Massenstrom mstesoll ist auf den Eingang des Integrators 28 zurückgekoppelt. Dabei ist es möglich, dass der Soll-Massenstrom mstesoll mit einem Faktor mulitplikativ verknüpft wird, wobei dieser Faktor von einem Block 29 erzeugt wird. Weiterhin ist es möglich, dass in der Rückkoppelschleife weitere Betriebsgrößen der Brennkraftmaschine 1 mittels eines Blocks 30 Berücksichtigung finden.The
Das Ausgangssignal des Integrators 28, also der Soll-Massenstrom mstesoll wird dabei auf den Maximalwert mstemx des Massenstroms über das Tankentlüftungsventil 17 begrenzt.The output signal of the
Die beiden Integratoren 25 und 28 sind über ihre jeweiligen Rückkoppelschleifen positiv zurückgekoppelt. Dies bedeutet, dass beide Integratoren 25, 28 immer die Tendenz haben, ihr Ausgangssignal zu vergrößern. Die Steigung einer derartigen Erhöhung des jeweiligen Ausgangssignals hängt dabei von der Rückkoppelschleife, und dort insbesondere von Einflussnahmen auf das Rückkoppelsignal ab. Die genannte Steigung kann somit über die Blöcke 26, 27 sowie über die Blöcke 29, 30 auf gewünschte Werte eingestellt werden.The two
Gleichzeitig werden beide Integratoren 25, 28 jeweils durch einen Maximalwert begrenzt. Dies bedeutet, dass das Ausgangssignal der beiden Integratoren 25, 28 einerseits immer anwächst, andererseits jedoch von dem jeweils anliegenden Maximalwert immer begrenzt wird.At the same time, both
Daraus ergibt sich, dass die beiden Integratoren 25, 28 zusammen mit ihren Rückkoppelschleifen als Dämpfungsglieder wirken. Die Ausgangssignale der beiden Integratoren 25, 28 können einerseits sich in Richtung zu größeren Werten verändern, wobei - wie gesagt - die Steigung dieser Veränderung eingestellt werden kann, andererseits werden die Ausgangssignale dieser beiden Integratoren 25, 28 jedoch durch die jeweiligen Maximalwerte begrenzt, so dass eine Verminderung der Maximalwerte sofort und unmittelbar auch zu einer Verminderung des jeweiligen Ausgangssignals des zugehörigen Integrators 25, 28 führt.It follows that the two
Dies bedeutet mit anderen Worten, dass die Ausgangssignale der beiden Integratoren 25, 28 bei der Aufsteuerung hin zu größeren Werten mit einer Begrenzung der Aufsteuergeschwindigkeit versehen sind, bei der Absteuerung hin zu kleineren Werten jedoch eine derartige Geschwindigkeitsbegrenzung nicht vorhanden ist, so dass die Absteuerung unverzögert durchgreift.This means in other words that the output signals of the two
Wie erwähnt, handelt es sich bei dem Ausgangssignal des Integrators 25 um den Soll-Durchflussfaktor ftevflos für das Tankentlüftungsventil 17. Mit diesem Soll-Durchflussfaktor ftevflox wird letztlich das Tankentlüftungsventil 17 angesteuert. Dies bedeutet, dass das Tankentlüftungsventil 17 nicht sprungartig geöffnet werden kann, sondern dass bei einem Öffnen des Tankentlüftungsventils 17 hin zu einem größeren Durchfluss die genannte Geschwindigkeitsbegrenzung vorhanden ist. Gleichzeitig ist es jedoch möglich, das Tankentlüftungsventil 17 unverzögert und damit sprungartig zu schließen. Wie erläutert wurde, greift bei einem derartigen Schließen des Tankentlüftungsventil 17 keine Geschwindigkeitsbegrenzung ein.As mentioned, the output signal of the
Wie ebenfalls bereits erläutert wurde, handelt es sich bei dem Ausgangssignal des Integrators 28 um den Soll-Massenstrom mstesoll über das Tankentlüftungsventil 17. Dieser Soll-Massenstrom mstesoll kann sich damit nicht sprungartig verändern. Stattdessen kann die Aufsteuerung des Soll-Massenstroms mstesoll nur mit der bereits genannten Geschwindigkeitsbegrenzung erfolgen. Umgekehrt ist es jedoch möglich, den Soll-Massenstrom mstesoll sprungartig und damit unverzögert abzusteuern. Hier greift keine Geschwindigkeitsbegrenzung ein.As has already been explained, the output signal of the
Zusammengefasst wird damit von dem ersten Integrator 21 eine Regelung der spezifischen Soll-Kraftstoffrate fkastes durchgeführt. Aus der spezifischen Soll-Kraftstoffrate fkastes wird mit Hilfe des zweiten Integrators 25 ein gedämpfter Soll-Durchflussfaktor ftevflos abgeleitet. Aus dem Soll-Durchflussfaktor ftevflos wird schließlich mit Hilfe des dritten Integrators 28 ein gedämpfter Soll-Massenstrom mstesoll ermittelt. Dieses gesamte Verfahren ist dabei für jegliches Lambda verwendbar. Das Luft-Kraftstoffverhältnis wird über das Soll-Lambda lamsbg bei dem beschriebenen Verfahren berücksichtigt.In summary, a regulation of the specific desired fuel rate is therefore performed by the
Claims (11)
- Method for operating an internal combustion engine (1), in particular of a motor vehicle, in which fuel is injected into a combustion chamber (4) in at least two operating modes, and in which an air/fuel mix flows via a tank venting valve (17) and is fed to the combustion chamber (4), characterized in that an integrator (21) generates an output signal which represents a specific set fuel rate (fkastes) of the air/fuel mix flowing via the tank venting valve (17), which set fuel rate takes account of the current lambda of the internal combustion engine (1), in that a set fuel content (fkates) of the air/fuel mix flowing via the tank venting valve (17) is determined, which set fuel content represents the desired fuel content which is to be delivered via the tank venting valve (17), in that the specific set fuel rate (fkastes) is compared with the set fuel content (fkates), in that the result of the comparison is fed to the integrator (21), and in that the specific set fuel rate (fkastes) is in this way adjusted to the set fuel content (fkates) of the air/fuel mix flowing via the tank venting valve (17).
- Method according to Claim 1, characterized in that the specific set fuel rate (fkastes) is generated by an integrator (25), in that the specific set fuel rate (fkastes) is compared with the set fuel content (fkates), and in that the result of the comparison is fed back to the integrator (25).
- Method according to one of the preceding claims, characterized in that the specific set fuel rate (fkastes) is limited to a maximum value (fkastex) for the specific fuel rate.
- Method according to one of the preceding claims, characterized in that the specific set fuel rate (fkastes) is converted into a maximum through-flow factor (ftevflox) for the air/fuel mix flowing via the tank venting valve (17).
- Method according to one of the preceding claims, characterized in that a set through-flow factor (ftevflos) for the air/fuel mix flowing via the tank venting valve (17) is generated and damped.
- Method according to Claims 4 and 5, characterized in that the set through-flow factor (ftevflos) is generated by an integrator (25) with positive feedback, and in that the set through-flow factor (ftevflos) is limited by the maximum through-flow factor (ftevflox).
- Method according to one of the preceding claims, characterized in that a set mass flow (mstesoll) across the tank venting valve (17) is generated and damped.
- Method according to Claims 6 and 7, characterized in that the set through-flow factor (ftevflos) is converted into a maximum mass flow (mstemx) across the tank venting valve (17), in that the set mass flow (mstesoll) is generated by an integrator (28) with positive feedback, and in that the set mass flow (mstesoll) is limited by the maximum mass flow (mstemx).
- Computer program, characterized in that it is programmed to apply the method according to one of Claims 1 to 8.
- Computer program according to Claim 9, characterized in that it is stored on a memory, in particular on a flash memory.
- Control unit (18) for an internal combustion engine (1), in particular of a motor vehicle, characterized in that it is designed to apply the method according to one of Claims 1 to 8.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10028539 | 2000-06-08 | ||
DE10028539A DE10028539A1 (en) | 2000-06-08 | 2000-06-08 | Internal combustion engine operating process involves running at specific intended fuel rate of fuel air mixture via tank venting valve, determined by control device |
PCT/DE2001/001837 WO2001094771A1 (en) | 2000-06-08 | 2001-05-15 | Method for operating an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1292764A1 EP1292764A1 (en) | 2003-03-19 |
EP1292764B1 true EP1292764B1 (en) | 2006-03-22 |
Family
ID=7645209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01944928A Expired - Lifetime EP1292764B1 (en) | 2000-06-08 | 2001-05-15 | Method for operating an internal combustion engine |
Country Status (9)
Country | Link |
---|---|
US (1) | US6814062B2 (en) |
EP (1) | EP1292764B1 (en) |
JP (1) | JP2003536016A (en) |
KR (1) | KR20030036213A (en) |
CN (1) | CN1270073C (en) |
DE (2) | DE10028539A1 (en) |
MX (1) | MXPA02012059A (en) |
RU (1) | RU2002135068A (en) |
WO (1) | WO2001094771A1 (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7743606B2 (en) * | 2004-11-18 | 2010-06-29 | Honeywell International Inc. | Exhaust catalyst system |
US7182075B2 (en) * | 2004-12-07 | 2007-02-27 | Honeywell International Inc. | EGR system |
US7165399B2 (en) * | 2004-12-29 | 2007-01-23 | Honeywell International Inc. | Method and system for using a measure of fueling rate in the air side control of an engine |
US7467614B2 (en) | 2004-12-29 | 2008-12-23 | Honeywell International Inc. | Pedal position and/or pedal change rate for use in control of an engine |
US7752840B2 (en) * | 2005-03-24 | 2010-07-13 | Honeywell International Inc. | Engine exhaust heat exchanger |
US7469177B2 (en) * | 2005-06-17 | 2008-12-23 | Honeywell International Inc. | Distributed control architecture for powertrains |
US7389773B2 (en) | 2005-08-18 | 2008-06-24 | Honeywell International Inc. | Emissions sensors for fuel control in engines |
US7765792B2 (en) | 2005-10-21 | 2010-08-03 | Honeywell International Inc. | System for particulate matter sensor signal processing |
US7357125B2 (en) * | 2005-10-26 | 2008-04-15 | Honeywell International Inc. | Exhaust gas recirculation system |
US7415389B2 (en) * | 2005-12-29 | 2008-08-19 | Honeywell International Inc. | Calibration of engine control systems |
DE102007008119B4 (en) * | 2007-02-19 | 2008-11-13 | Continental Automotive Gmbh | Method for controlling an internal combustion engine and internal combustion engine |
US8060290B2 (en) | 2008-07-17 | 2011-11-15 | Honeywell International Inc. | Configurable automotive controller |
DE102008043976A1 (en) * | 2008-11-21 | 2010-05-27 | Robert Bosch Gmbh | Gas supply module |
US7941265B2 (en) * | 2009-01-28 | 2011-05-10 | GM Global Technology Operations LLC | Individual cylinder fuel mass correction factor for high drivability index (HIDI) fuel |
US8620461B2 (en) | 2009-09-24 | 2013-12-31 | Honeywell International, Inc. | Method and system for updating tuning parameters of a controller |
US8504175B2 (en) | 2010-06-02 | 2013-08-06 | Honeywell International Inc. | Using model predictive control to optimize variable trajectories and system control |
US9677493B2 (en) | 2011-09-19 | 2017-06-13 | Honeywell Spol, S.R.O. | Coordinated engine and emissions control system |
US9650934B2 (en) | 2011-11-04 | 2017-05-16 | Honeywell spol.s.r.o. | Engine and aftertreatment optimization system |
US20130111905A1 (en) | 2011-11-04 | 2013-05-09 | Honeywell Spol. S.R.O. | Integrated optimization and control of an engine and aftertreatment system |
EP3051367B1 (en) | 2015-01-28 | 2020-11-25 | Honeywell spol s.r.o. | An approach and system for handling constraints for measured disturbances with uncertain preview |
EP3056706A1 (en) | 2015-02-16 | 2016-08-17 | Honeywell International Inc. | An approach for aftertreatment system modeling and model identification |
EP3091212A1 (en) | 2015-05-06 | 2016-11-09 | Honeywell International Inc. | An identification approach for internal combustion engine mean value models |
EP3125052B1 (en) | 2015-07-31 | 2020-09-02 | Garrett Transportation I Inc. | Quadratic program solver for mpc using variable ordering |
US10272779B2 (en) | 2015-08-05 | 2019-04-30 | Garrett Transportation I Inc. | System and approach for dynamic vehicle speed optimization |
US10415492B2 (en) | 2016-01-29 | 2019-09-17 | Garrett Transportation I Inc. | Engine system with inferential sensor |
US10124750B2 (en) | 2016-04-26 | 2018-11-13 | Honeywell International Inc. | Vehicle security module system |
US10036338B2 (en) | 2016-04-26 | 2018-07-31 | Honeywell International Inc. | Condition-based powertrain control system |
EP3548729B1 (en) | 2016-11-29 | 2023-02-22 | Garrett Transportation I Inc. | An inferential flow sensor |
US11057213B2 (en) | 2017-10-13 | 2021-07-06 | Garrett Transportation I, Inc. | Authentication system for electronic control unit on a bus |
US12085216B2 (en) | 2022-02-17 | 2024-09-10 | Arctic Cat Inc. | Multi-use fuel filler tube |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3813220C2 (en) | 1988-04-20 | 1997-03-20 | Bosch Gmbh Robert | Method and device for setting a tank ventilation valve |
DE59000761D1 (en) * | 1990-04-12 | 1993-02-25 | Siemens Ag | TANK BLEEDING SYSTEM. |
JPH04292542A (en) * | 1991-03-19 | 1992-10-16 | Honda Motor Co Ltd | Device for measuring component of air-fuel mixture to be sucked by internal combustion engine and air/fuel ratio control device for internal combustion engine |
JPH04309816A (en) * | 1991-04-08 | 1992-11-02 | Nippondenso Co Ltd | Flow rate detector for vaporized fuel gas |
JP3089687B2 (en) * | 1991-04-12 | 2000-09-18 | 株式会社デンソー | Fuel evaporative gas state detector |
JPH0533733A (en) * | 1991-05-20 | 1993-02-09 | Honda Motor Co Ltd | Vapor fuel controller of internal combustion engine |
US5390644A (en) * | 1991-12-27 | 1995-02-21 | Nippondenso Co., Ltd. | Method for producing fuel/air mixture for combustion engine |
US5476081A (en) * | 1993-06-14 | 1995-12-19 | Toyota Jidosha Kabushiki Kaisha | Apparatus for controlling air-fuel ratio of air-fuel mixture to an engine having an evaporated fuel purge system |
KR100364568B1 (en) * | 1994-03-30 | 2003-03-03 | 마츠다 가부시키가이샤 | Evaporative fuel estimating device and engine control device equipped with this device |
DE19509310C2 (en) * | 1995-03-15 | 2001-02-08 | Iav Motor Gmbh | Method and device for relieving the absorption memory of a tank ventilation in internal combustion engines |
JP3287228B2 (en) * | 1996-08-09 | 2002-06-04 | トヨタ自動車株式会社 | Evaporative fuel treatment system for internal combustion engine |
JP3385919B2 (en) * | 1997-07-10 | 2003-03-10 | 日産自動車株式会社 | Evaporative fuel purge control system for internal combustion engine |
CA2340105C (en) * | 1998-08-10 | 2005-10-11 | Toyota Jidosha Kabushiki Kaisha | Evaporated fuel treatment device of an engine |
DE19844086A1 (en) * | 1998-09-25 | 1999-11-18 | Siemens Ag | Combustion engine control apparatus |
DE19849256A1 (en) * | 1998-10-26 | 2000-04-27 | Bosch Gmbh Robert | Method and appliance for diagnosing exhaust gas recirculation system of IC engine monitors effect of controlled change in rate of recirculation on emission levels |
US6237328B1 (en) * | 1999-08-02 | 2001-05-29 | Ford Global Technologies, Inc. | Engine control with a fuel vapor purge system |
-
2000
- 2000-06-08 DE DE10028539A patent/DE10028539A1/en not_active Ceased
-
2001
- 2001-05-15 KR KR1020027016572A patent/KR20030036213A/en not_active Application Discontinuation
- 2001-05-15 RU RU2002135068/06A patent/RU2002135068A/en not_active Application Discontinuation
- 2001-05-15 JP JP2002502297A patent/JP2003536016A/en active Pending
- 2001-05-15 DE DE50109298T patent/DE50109298D1/en not_active Expired - Lifetime
- 2001-05-15 MX MXPA02012059A patent/MXPA02012059A/en unknown
- 2001-05-15 US US10/297,365 patent/US6814062B2/en not_active Expired - Fee Related
- 2001-05-15 EP EP01944928A patent/EP1292764B1/en not_active Expired - Lifetime
- 2001-05-15 WO PCT/DE2001/001837 patent/WO2001094771A1/en active IP Right Grant
- 2001-05-15 CN CNB018108938A patent/CN1270073C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
MXPA02012059A (en) | 2004-03-16 |
DE50109298D1 (en) | 2006-05-11 |
DE10028539A1 (en) | 2001-12-20 |
WO2001094771A1 (en) | 2001-12-13 |
CN1436281A (en) | 2003-08-13 |
EP1292764A1 (en) | 2003-03-19 |
JP2003536016A (en) | 2003-12-02 |
CN1270073C (en) | 2006-08-16 |
US20030145837A1 (en) | 2003-08-07 |
US6814062B2 (en) | 2004-11-09 |
KR20030036213A (en) | 2003-05-09 |
RU2002135068A (en) | 2004-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1292764B1 (en) | Method for operating an internal combustion engine | |
DE4343353C2 (en) | Method and device for controlling an internal combustion engine | |
DE19951096C2 (en) | Engine control system for a turbocharged diesel engine | |
DE10137851B4 (en) | Fuel injection control system for a direct injection engine | |
EP1066458B1 (en) | Method of operation for an internal combustion engine | |
DE19813381A1 (en) | Method for operating an internal combustion engine, in particular a motor vehicle | |
DE19928825C2 (en) | Method for operating an internal combustion engine, control device for an internal combustion engine and internal combustion engine, in particular for a motor vehicle | |
EP1206635B1 (en) | Method for operating an internal combustion engine | |
EP1099051B1 (en) | Method for operating an internal combustion engine | |
DE19928824C2 (en) | Method for operating an internal combustion engine | |
DE10033946B4 (en) | Fuel injection control system for a direct injection internal combustion engine | |
DE19913407A1 (en) | Method for operating an internal combustion engine | |
EP1204814A1 (en) | Method for the operation of an internal combustion engine | |
DE19952526A1 (en) | Method for operating an internal combustion engine | |
DE10305878B4 (en) | Method for operating an internal combustion engine, control and / or regulating device for an internal combustion engine, computer program and electrical storage medium of an internal combustion engine | |
EP1081363B1 (en) | Method to control an internal combustion engine | |
EP1099052B1 (en) | Method for operating an internal combustion engine | |
DE10029858A1 (en) | Method for operating an internal combustion engine | |
EP1300574A2 (en) | Method and Apparatus for Controlling an Internal Combustion Engine during Changeover between two Combustion Modes | |
EP0985089B1 (en) | Method for operating an internal combustion engine mainly intended for a motor vehicle | |
EP1192347B1 (en) | Method for operating an internal combustion engine | |
EP1184557B1 (en) | Method for operating an internal combustion engine of a motor vehicle | |
EP1436496B1 (en) | Method for operating an internal combustion engine in particular of a motor vehicle | |
DE19908726A1 (en) | Internal combustion engine operating method involves injecting fuel into combustion chamber during compression phase with injection start angle varied depending on quiet running | |
DE19925788A1 (en) | Method for operating an internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030108 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR IT |
|
17Q | First examination report despatched |
Effective date: 20050418 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR IT |
|
REF | Corresponds to: |
Ref document number: 50109298 Country of ref document: DE Date of ref document: 20060511 Kind code of ref document: P |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060519 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060531 Year of fee payment: 6 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20061227 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070515 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120723 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131203 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50109298 Country of ref document: DE Effective date: 20131203 |