EP0185611B1 - Verfahren zur fotochemischen Stabilisierung von synthetischen Polyamidfasermaterialien - Google Patents

Verfahren zur fotochemischen Stabilisierung von synthetischen Polyamidfasermaterialien Download PDF

Info

Publication number
EP0185611B1
EP0185611B1 EP85810513A EP85810513A EP0185611B1 EP 0185611 B1 EP0185611 B1 EP 0185611B1 EP 85810513 A EP85810513 A EP 85810513A EP 85810513 A EP85810513 A EP 85810513A EP 0185611 B1 EP0185611 B1 EP 0185611B1
Authority
EP
European Patent Office
Prior art keywords
copper
amino
process according
dye
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85810513A
Other languages
English (en)
French (fr)
Other versions
EP0185611A1 (de
Inventor
Gerhard Dr. Reinert
Hans Ulrich Schütz
Gerhard Dr. Back
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Publication of EP0185611A1 publication Critical patent/EP0185611A1/de
Application granted granted Critical
Publication of EP0185611B1 publication Critical patent/EP0185611B1/de
Expired legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/24Polyamides; Polyurethanes
    • D06P3/241Polyamides; Polyurethanes using acid dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • D06P1/6423Compounds containing azide or oxime groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/92Synthetic fiber dyeing
    • Y10S8/924Polyamide fiber

Definitions

  • the present invention relates to a method for the photochemical stabilization of synthetic polyamide fiber materials with water-soluble copper complex dyes.
  • Dyed synthetic polyamide fiber material is damaged when exposed to light, especially when exposed to heat; therefore synthetic polyamide fibers are used in some areas of application, such as. B. viewed as car upholstery or sail fabrics, as problem fibers.
  • the aim is to improve the photochemical stability of synthetic polyamide fiber materials.
  • inorganic or organic copper salts often have the disadvantage that they are insufficiently and unevenly applied to the polyamide fiber and are therefore used in high concentrations and are often used only in an aftertreatment process can be.
  • the object underlying the present invention was to find a process for the photochemical stabilization of synthetic polyamide fiber materials which does not have the disadvantages described above and which meets today's requirements.
  • the present invention thus relates to a process for the photochemical stabilization of fiber materials made of synthetic polyamides, which is characterized in that the fiber material is mixed with a mixture of a water-soluble copper complex dye and a fiber-affine, water-soluble, non-chromophoric copper complex of bisazomethines, acylhydrazone, semicarbazones or Treated thiosemicarbazones of aromatic aldehydes or ketones.
  • photochemical stabilization here refers to both the light fastness and the maintenance of the mechanical properties of the undyed or dyed polyamide fiber, i.e. Photochemical stabilization against visible and UV light.
  • Preferred embodiments of the process according to the invention are characterized in that water-soluble copper complex dyes, in particular water-soluble copper complex azo or azomethine dyes, are used.
  • the mixtures mentioned are expediently used in an amount such that 2 to 1000 ⁇ g of copper, in particular 5 to 200 ⁇ g of copper, are added to 1 g of polyamide fiber material.
  • a particularly preferred embodiment of the process according to the invention is characterized in that copper complexes of azo or azomethine dyes of the formula which contain water-solubilizing groups where D is a residue of the benzene or naphthalene series, X is a nitrogen atom or the CH group, Y is the HO, CH 3 0 or HOOC group and Y 'is the HO or an amino group, and wherein K is for the Where X is a nitrogen atom, the residue of a coupling component of the benzene, naphthalene or heterocyclic series or the residue of a ketomethylene compound, or, if X is the CH group, K is the residue of an o-hydroxyaldehyde .
  • the copper complex dyes come as water-solubilizing groups such.
  • Suitable sulfone groups are alkyl sulfone and in particular Cl-4 alkyl sulfone groups.
  • N-mono- or N, N-dialkylsulfonamide group is one having one or two C 1-4 -alkyl radicals.
  • copper complex dyes with one to two water-solubilizing groups are used in the process according to the invention.
  • An interesting embodiment of the method according to the invention is characterized in that a copper complex dye of the formula used, in which A is an optionally substituted carboxyphenyl or sulfophenyl radical, R, hydrogen or C 1-4 alkyl, X is a nitrogen atom or the CH group and K, in the event that X is a nitrogen atom, the residue of a coupling component of the benzene, Naphthalene, pyrazolone, aminopyrazole, acetoacetanilide, 2,4-dioxyquinoline, pyridone or pyridine series, or, if X is the CH group, is the remainder of an o-hydroxybenzaldehyde, and the ring B optionally z.
  • B. may be further substituted by chlorine or nitro.
  • azo dyes of the formula (1) have been described in the literature.
  • the azo dyes of the formula (1) are prepared in a manner known per se by using an amine of the formula diazotized and on a coupling component of the formula couples.
  • the diazotization of the diazo component of the formula (3) is generally carried out by the action of nitrous acid in aqueous mineral acid solution at low temperature, the coupling to the coupling component of the formula (4) at acidic, neutral to alkaline pH values.
  • a process variant for the preparation of the copper complex of an azomethine dye of the formula (1) is characterized in that the copper complex can also be prepared with a mixture of the amine of the formula (3) and an o-hydroxyaldehyde instead of with the azomethine of the formula (1).
  • the metal complexes are prepared by methods known per se in an aqueous or organic medium.
  • copper salts such as. B. copper sulfate and copper nitrate.
  • the freshly precipitated hydroxides can also be used.
  • the reaction is carried out in the weakly acidic to alkaline range.
  • reaction is carried out with heating, e.g. B. slightly below the boiling point of the solvent used.
  • Preferred copper complexes of bisazomethines, acylhydrazones, semicarbazones and thiosemicarbazones of aromatic aldehydes or ketones are those which contain sulfonic acid groups. They are readily water-soluble and also have an excellent affinity for polyamide fibers. Such complexes are therefore effective even in small amounts. In addition, it has been shown that they not only increase the lightfastness of the dyed polyamide material, but also generally protect the polyamide fiber against photochemical degradation and thus largely maintain its mechanical properties, such as tear resistance and elasticity.
  • Bisazomethines of aromatic aldehydes and ketones are understood to mean Schiff bases of aliphatic, cycloaliphatic or aromatic diamines, the aldehydes and ketones having an OH group in the o-position to the formyl or acyl radical.
  • the bond with the copper atom takes place via these two OH groups and the two nitrogen atoms in the bisazomethine part. Accordingly, these are tidentate ligands.
  • the ligands contain one or more sulfo groups which are located in the aldehyde or ketone part and / or in the bisazomethine bridge.
  • R 2 , R 3 or R 5 denotes an optionally substituted alkyl radical
  • the cyclohexyl radical can also be used, which can also be substituted, for example by C 1 to C 4 alkyl or C 1 to C 4 alkoxy.
  • R 2 , R 3 or R 5 is an optionally substituted aryl radical
  • a phenyl or naphthyl radical which can be substituted by C 1 -C 4 alkyl, such as methyl, ethyl, propyl, iso-isopropyl, butyl, is particularly suitable.
  • C 2 -C 5 alkanoylamino such as acetylamino, propionylamino and butyrylamino, nitro, cyano, sulfo or a mono- or dialkylated amino group.
  • Z is an alkylene radical, it is primarily a C 2 to C 4 alkylene radical, in particular a —CH 2 —CH 2 bridge.
  • a C 2 to C 8 alkylene chain which is interrupted by oxygen or, in particular, nitrogen is also suitable, in particular the - (CH 2 ) 3 -NH- (CH 2 ) 3 bridge.
  • Z is a cycloalkylene radical, this is preferably cyclohexylene and can have one or two methyl groups.
  • Z is an arylene radical, it is primarily a phenylene radical, in particular an o-phenylene radical. This can also be substituted by C 1 to C 4 alkyl or C 1 to C 4 alkoxy.
  • Suitable substituents for the benzene rings M and N are: C 1 to C 4 alkyl, C 1 to C 4 alkoxy, halogen, such as. As fluorine, chlorine or bromine, furthermore the cyano or nitro groups.
  • the sulfo groups which are located in the benzene rings M and / or N and / or in the bridge member Z, if this denotes an arylene radical, are preferably in the form of the alkali metal salt, in particular the sodium salt or also the amine salt.
  • the Z is preferably -CH 2 -CH 2 -.
  • R 4 is an alkyl radical, this can be branched or unbranched and has a chain length of preferably 1 to 8, in particular 1 to 4, carbon atoms.
  • Suitable substituents are halogen, such as fluorine, chlorine or bromine, C 1 to C 4 alkoxy, such as methoxy or ethoxy, further phenyl or carboxyl, C 1 to C 4 alkylcarbonyl, such as. B. acetyl or hydroxy, mono- or dialkylamino.
  • R 4 is an optionally substituted aryl radical
  • a phenyl or naphthyl radical is particularly suitable, which can be substituted by C 1-4 alkyl, such as. B. methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl, C 1-4 alkoxy, such as. B. methoxy, ethoxy, propoxy, isopropoxy, butoxy, tsobutoxy, sec-butoxy and tert-butoxy, halogen, such as. B.
  • C 2-5 alkanoylamino such as acetylamino, propionylamino and butyrylamino, nitro, cyano, sulfo or a mono- or dialkylated amino group.
  • the complexes of the formula (6) are also preferred in neutral form, ie as the alkali salt, in particular Sodium salt or amine salt used.
  • Complexes of the formula (6) are preferably used in which R 3 is hydrogen and R 4 is hydrogen, methyl or in particular the phenyl radical, especially the complexes in which the sulfo group is in turn in the p-position to the oxygen.
  • the ligands of which are derived from sulfosalicylaldehyde or the corresponding phenyl ketones z. B. also those in which instead of mononuclear, multinuclear aromatic aldehydes and ketones, such as. B. the 2-hydroxy-1-naphthaldehyde sulfonic acid can be used to build up the ligand. It is also pointed out that the fourth coordination point of the metal atom in the complexes of formulas (6) and (7) is occupied by water as the neutral ligand.
  • the copper complexes of the formulas (5) and (6) are preferably used in the present process for photochemical stabilization.
  • the ratio of copper complex dye: fiber-affine, water-soluble, non-chromophoric copper complex is preferably 99: 1 to 10:90.
  • the mixing ratio depends on the number of copper complex dyes used and the desired color depth of the dyeings.
  • the copper complexes of the formulas (5), (6) and (7) given and their alkali metal salts, such as potassium and lithium salts, and in particular their sodium salts, are obtained by known methods.
  • the metal complexes of the formula (5) are accessible, for example, in two different ways. So you can first metallize the aldehyde or the ketone and then react with the corresponding diamine to the finished complex of formula (5). However, one can also first synthesize the ligand from aldehyde or ketone and diamine and then carry out the metallization.
  • the acylhydrazones, the ligands of the complexes (6) are obtained, for example, by reacting the aldehyde or ketone with the corresponding monoacylhydrazine and subsequent metallization.
  • the complexes of the formula (7) can also be prepared quite analogously. At least one of the starting products for the preparation of the compounds of the formula (5), (6) and (7) must contain a sulfonic acid group.
  • the copper complexes of the formulas (5) to (7) are preferably used, in particular the copper complexes of the formulas (5) and (6).
  • the copper complexes of the formulas are very particularly preferred within the group of metal complexes with bisazomethine ligand and within the group of metal complexes with acylhydrazone ligand, the copper complexes of the formulas
  • the fourth coordination point of the copper in the complexes of formulas (10), (11) and (12) is occupied by water without this being explicitly stated in the structural formulas.
  • Another preferred embodiment of the method according to the invention is characterized in that the mixture of the copper complex compounds is used together with acid dyes, in particular in the same dye bath.
  • acid dyes come e.g. B. metal-free mono- or polyazo dyes, 1: 2-chromium or 1: 2-cobalt complex azo dyes, anthraquinone, dioxazine, phthalocyanine, nitroaryl or stilbene dyes into consideration, which have at least one acid group, such as. B. carboxyl or preferably have a sulfonic acid group.
  • An interesting embodiment of the method according to the invention is characterized in that a mixture of at least one red-dyeing dye, at least one yellow- or orange-dyeing dye and at least one blue-dyeing dye is used for trichromatic dyeing, the mixture containing at least one copper complex dye.
  • polyamide fiber material such synthetic polyamides, such as. B. polyamide-6, polyamide-66 or polyamide-12 used.
  • the polyamide fiber material can be in a wide variety of processing forms, such as. B. fiber, yarn, woven or knitted fabric, in particular textile fiber material.
  • the dyes containing sulfo groups used in the process according to the invention are present either in the form of their free sulfonic acid or preferably as their salts.
  • suitable salts are the alkali metal, alkaline earth metal or ammonium salts or the salts of an organic amine.
  • suitable salts include the sodium, lithium, potassium or ammonium salts or the salt of triethanolamine.
  • the dyes used in the inventive method usually contain other additives such as. B. table salt or dextrin.
  • the process according to the invention for dyeing synthetic polyamide fiber materials can be applied to the customary dyeing processes.
  • the dyeing liquors can contain further additives, for example wetting agents, anti-foaming agents, leveling agents, salts, acids or buffer substances.
  • synthetic polyamide fiber materials are stabilized photochemically, i.e. protected against exposure, especially hot exposure, with visible and UV light.
  • a particularly noteworthy advantage of the method according to the invention is that, compared to previously known methods for the photochemical stabilization of synthetic polyamide fiber materials, no pre- or post-treatment of the fiber material is required.
  • the mixtures of copper complex dyes with the non-chromophoric copper complex compounds used in accordance with the process according to the invention have the advantage that, regardless of the desired depth of color of the dyeings contained with the copper complex dyes, a constant copper content of the fiber can be set, i.e. the protective effect is not subject to nuance-related fluctuations.
  • parts represent parts by weight.
  • the temperatures are degrees Celsius.
  • the relationship between parts by weight and parts by volume is the same as that between grams and cubic centimeters.
  • the tensile strength and elongation values of untreated and unexposed polyamide fiber material are set equal to 100%.
  • a portion of the yarn of the individual treatments is wound up on cardboard and exposed in a fade-ometer (manufacturer: Atlas Electric Devices Co., Chicago) for 250 hours and a "black panel temperature" of 83 ° C.
  • the yarn of both exposure tests is then tested for its tensile strength and elongation values in accordance with SNV (Swiss Standards Association) standard 97 461.
  • SNV Standard 97 461.
  • the tensile strength and elongation values of unexposed and untreated polyamide 66 fiber material are set equal to 100%:
  • treatment bath 1A the colorations obtained with the addition of the compound of the formula (103) being referred to as treatment bath 1A, 2A, 3A and 4A.
  • Table 1 shows that the photochemical stability of light dyeings with copper complex dyes on synthetic polyamide materials [treatment baths (2) (3) and (4)] can be further improved by adding colorless fiber-affine copper complex compounds [treatment baths (2A), (3A) and (4A)].
  • Dyeing on nylon filament yarn is carried out with 0.05% dyestuff of the formula (100), as described in Example 1, but at 95 ° C. and in each case with the use of 0.05% of each of the copper complex compounds of the formulas (103), (104) and (105) and with the addition of 2% acetic acid 80%.
  • the material is exposed according to DIN 75 202 (Fakra) and xenon (SN-ISO 105 B02) and tested for its tensile strength and elongation. The following results are obtained, the tensile strength values and elongation values of unexposed and untreated polyamide fiber material being set equal to 100%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Coloring (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur fotochemischen Stabilisierung von synthetischen Polyamidfasermaterialien mit wasserlöslichen Kupferkomplexfarbstoffen.
  • Gefärbtes synthetisches Polyamidfasermaterial wird bei Belichtung insbesondere bei gleichzeitiger Wärmeeinwirkung geschädigt; daher werden synthetische Polyamidfasern in einigen Anwendungsbereichen, wie z. B. als Autopolster- oder Segelstoffe, als Problemfasern angesehen.
  • Den heutigen Anforderungen entsprechend wird eine Verbesserung der fotochemischen Stabilität von synthetischen Polyamidfasermaterialien angestrebt.
  • Die Verwendung von Kupfersalzen, wie z. B. Kupfersulfat, zur Verbesserung der Lichtechtheit von Färbungen auf Polyamidfasern mit Metallkomplexfarbstoffen ist allgemein bekannt; verwiesen wird auf das in der US-A-3 592 584 offenbarte Verfahren zur Verbesserung der Egalität und der Lichtechtheit von Färbungen auf Polyamidfasern durch Behandlung der Fasern mit Färbeflotten enthaltend Kupferkomplexfarbstoffe, bestimmte Färbereihilfsmittel sowie eine Mischung aus dem Natriumsalz der Ethylendiamintetraessigsäure und wasserfreiem Kupfersulfat, sowie
  • auf den Artikel von I.B. HANES in American Dyestuff Reporter 3 (1980), Seiten 19 und 20. Anorganische oder auch organische Kupfersalze haben jedoch vielfach den Nachteil, dass sie nur ungenügend und ungleichmässig auf die Polyamidfaser aufziehen, daher in hohen Konzentrationen verwendet werden und oft nur in einem Nachbehandlungsverfahren verwendet werden können.
  • Man hat daher versucht, das Kupfer in Form von Verbindungen einzusetzen, die eine Affinität zur Polyamidfaser aufweisen. So wird z. B. in der EP-0 018 775 Kupferphosphat empfohlen, das sich ähnlich wie ein Dispersfarbstoff verhalten soll und entsprechend auf die Nylonfaser aufzieht. Derartige bekannte Kupferverbindungen haben jedoch im allgemeinen eine zu geringe Wasserlöslichkeit, was sich ebenfalls negativ auf den Ausziehgrad auswirkt. Darüberhinaus führt das im Färbebad verbleibende Kupfer zu einer starken Abwasserbelastung.
  • Die der vorliegenden Erfindung zugrundeliegende Aufgabe war es, ein Verfahren zur fotochemischen Stabilisierung von synthetischen Polyamidfasermaterialien zu finden, welches die vorstehend beschriebenen Nachteile nicht aufweist und den heutigen Anforderungen genügt.
  • Diese Aufgabe wird dadurch gelöst, dass man anstelle der bekannten, wenig faseraffinen bzw. schlecht wasserlöslichen Kupferverbindungen, wasserlösliche Kupferkomplexfarbstoffe verwendet. Diese Farbstoffe sind faseraffin und enthalten wasserlöslichmachende Gruppen.
  • Gegenstand der vorliegenden Erfindung ist somit ein Verfahren zur fotochemischen Stabilisierung von Fasermaterialien aus synthetischen Polyamiden, welches dadurch gekennzeichnet ist, dass man das Fasermaterial mit einer Mischung von einem wasserlöslichen Kupferkomplexfarbstoff und einem faseraffinen, wasserlöslichen, nicht-chromophoren Kupferkomplex von Bisazomethinen, Acylhydrazonen, Semicarbazonen oder Thiosemicarbazonen aromatischer Aldehyde oder Ketone behandelt.
  • Der Ausdruck fotochemische Stabilisierung bezieht sich im vorliegenden sowohl auf die Lichtechtheit, wie auch auf die Erhaltung der mechanischen Eigenschaften der ungefärbten oder gefärbten Polyamidfaser, d.h. fotochemische Stabilisierung gegen sichtbares und UV-Licht.
  • Mit dem erfindungsgemässen Verfahren werden gefärbte, synthetische Polyamidmaterialien von sehr hoher fotochemischer Stabilität vor allem bei gleichzeitiger Licht- und Wärmeeinwirkung erhalten.
  • Bevorzugte Ausführungsformen des erfindungsgemässen Verfahrens sind dadurch gekennzeichnet, dass man wasserlösliche Kupferkomplexfarbstoffe, insbesondere wasserlösliche Kupferkomplexazo- oder -azomethinfarbstoffe verwendet.
  • Die genannten Mischungen werden zweckmässigerweise in einer Menge eingesetzt, dass auf 1 g Polyamidfasermaterial 2 bis 1000 µg Kupfer, insbesondere 5 bis 200 µg Kupfer, zukommt.
  • Eine besonders bevorzugte Ausführungsform des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass man wasserlöslich-machende Gruppen enthaltende Kupferkomplexe von Azo- oder Azomethinfarbstoffen der Formel
    Figure imgb0001
    verwendet worin D ein Rest der Benzol- oder Naphthalinreihe, X ein Stickstoffatom oder die CH-Gruppe, Y die HO-, CH30- oder HOOC- Gruppe und Y' die HO- oder eine Aminogruppe ist, und worin K, für den Fall, dass X ein Stickstoffatom ist, den Rest einer Kupplungskomponente der Benzol-, Naphthalin- oder heterocyclischen Reihe oder den Rest einer Ketomethylenverbindung bedeutet, oder, für den Fall, dass X die CH-Gruppe ist, K den Rest eines o-Hydroxyaldehyds bedeutet.
  • In den Azo- oder Azomethinfarbstoffen der Formel (1) ist Y bzw. Y' in Nachbarstellung zur Gruppe -N=X- an D bzw. K gebunden.
  • In den Kupferkomplexfarbstoffen kommen als wasserlöslichmachende Gruppen z. B. Sulfon-, Sulfonamid-, N-Mono- oder N,N-Dialkylsulfonamidgruppen, Carboxylgruppen oder insbesondere Sulfonsäuregruppen in Betracht.
  • Als Sulfongruppen eignen sich Alkylsulfon- und insbesondere Cl-4-Alkylsulfongruppen.
  • Als N-Mono- oder N,N-Dialkylsulfonamidgruppe kommt insbesondere eine solche mit einem oder zwei C1-4-Alkylresten in Betracht.
  • Insbesondere werden in dem erfindungsgemässen Verfahren Kupferkomplexfarbstoffe mit einer bis zwei wasserlöslichmachenden Gruppen, insbesondere mit einer einzigen wasserlöslichmachenden Gruppe verwendet.
  • Eine interessante Ausführungsform des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass man einen Kupferkomplexfarbstoff der Formel
    Figure imgb0002
    verwendet, worin A ein gegebenenfalls substituierter Carboxyphenyloder Sulfophenylrest, R, Wasserstoff oder C1-4-Alkyl, X ein Stickstoffatom oder die CH-Gruppe und K, für den Fall, dass X ein Stickstoffatom ist, der Rest einer Kupplungskomponente der Benzol-, Naphthalin-, Pyrazolon-, Aminopyrazol-, Acetoacetanilid-, 2,4-Dioxychinolin-, Pyridon- oder Pyridinreihe ist, oder, falls X die CH-Gruppe ist, der Rest eines o-Hydroxybenzaldehyds ist, und der Ring B gegebenenfalls z. B. durch Chlor oder Nitro weitersubstituiert sein kann.
  • In der Literatur sind viele metallisierbare Azo- und Azomethinfarbstoffe der Formel (1) beschrieben. Die Azofarbstoffe der Formel (1) werden in an sich bekannter Weise hergestellt, indem man ein Amin der Formel
    Figure imgb0003
    diazotiert und auf eine Kupplungskomponente der Formel
    Figure imgb0004
    kuppelt.
  • Die Diazotierung der Diazokomponente der Formel (3) erfolgt in der Regel durch Einwirkung salpetriger Säure in wässrig-mineralsaurer Lösung bei tiefer Temperatur, die Kupplung auf die Kupplungskomponente der Formel (4) bei sauren, neutralen bis alkalischen pH-Werten.
  • Als Amine der Formel (3) kommen z. B. in Betracht:
    • 2-Amino-1-hydroxybenzol, 2-Amino-1-methoxybenzol Anthranilsäure, 4- oder 5-Sulfonamido-anthranilsäure, 3- oder 5-Chloranthranilsäure, 4-Chlor- und 4,6-Dichlor-2-amino-1-hydroxybenzol, 4- oder 5- oder 6-Nitro-2-amino-1-hydroxybenzol, 4-Chlor- und 4-Methyl- und 4-Acetylamino-6-nitro-2-amino-1-hydroxybenzol, 6-Acetylamino- und 6-Chlor-4-nitro-2-amino-1-hydroxybenzol, 4-Cyan-2-amino-1-hydroxybenzol, 4-Methoxy-2-amino-1-hydroxybenzol, 2-Amino-1-hydroxybenzol-5-methyl- und -5-benzylsulfon, 2-Amino-1-hydroxybenzol-4-methyl-, -äthyl-, -chlor methyl- und -butylsulfon, 6-Chlor-, 5-Nitro- und 6-Nitro-2-amino-1-hydroxybenzol-4-methylsulfon, 2-Amino-1-hydroxybenzol-4- oder -5-sulfamid, -sulf-N-methyl- und -sulf-N-ß-hydroxyäthylamid, 2-Amino-1-methoxybenzol-4-sulfanilid, 4-Methoxy-5-chlor-2-amino-1-hydroxybenzol, 4-Methyl-2-amino-1-hydroxybenzol, 4-Chlor-5-nitro-2-amino-l-hydroxybenzol, 5-Nitro-4-methyl-2-amino-1-hydroxybenzol, 5-Nitro-4-methoxy-2-amino-1-hydroxybenzol, 3,4,6-Trichlor-2-amino-1-hydroxybenzol, 6-Acetylamino-4-chlor-2-amino-1-hydroxybenzol, 4,6-Dinitro-2-amino-1-hydroxybenzol. 4-Nitro-2-amino-1-hydroxybenzol-5-oder -6-sulfonsäureamid, 4- oder 5-Chloranisidin, 4- oder 5-Nitroanisidin, 2-Methoxy-5-methylanilin, 2,5-Dimethoxyanilin, 2-Anisidin-4- oder -5-ß-hydroxyäthylsulfon, 4-Methyl-6-sulfo-2-amino-1-hydroxybenzol, 2-Amino-4-sulfo-1-hydroxybenzol, 4-Chlor-6-sulfo-2-amino-1-hydroxybenzol, 6-Chlor-4-sulfo-2-amino-1-hydroxybenzol, 5-Nitro-4-sulfo-2-amino-1-hydroxybenzol, 4-Nitro-6-sulfo-2-amino-1-hydroxybenzol, 6-Nitro-4-sulfo-2-amino-1-hydroxybenzol, 4-Acetylamino-2-amino-1-hydroxybenzol, 4-Acetylamino-6-sulfo-2-amino-1-hydroxybenzol, 5-Acetylamino-2-amino-1-hydroxybenzol, 6-Acetylamino-4-sulfo-2-amino-1-hydroxybenzol, 4-Chlor-2-amino-1-hydroxybenzol-5-sulfamid, 2-Amino-1-hydroxybenzol-4-(N-2'-Carboxyphenyl)sulfamid, 1-Amino-2-hydroxy-4-sulfonaphthalin, 1-Amino-2-hydroxy-4-sulfo-6-nitronaphthalin, 1-Amino-2-hydroxy-4-sulfo-6-acetamidonaphthalin, 1-Amino-2-hydroxy-4,8-disulfonaphthalin, 1-Amino-2-hydroxy-6-sulfonaphthalin, 1-Amino-2-hydroxy-7-sulfonaphthalin, 1-Amino-2-hydroxy-8-sulfonaphthalin, 2-Amino-1-hydroxy-4-sulfonaphthalin, 2-Amino-1-hydroxy-6-sulfo-naphthalin.
  • Die Kupplungskomponenten der Formel (4) können sich z. B. von folgenden Gruppen von Kupplungskomponenten ableiten:
    • -In o-Stellung zur OH-Gruppe kuppelnde Naphthole, die gegebenenfalls mit Chlor, Amino, Acylamino, Acyl, C1-4-Alkyl, C1-4-Alkoxy, Sulfonamido-, N-mono- oder N,N-disubstituierten Sulfonamidogruppen Sulfo- und Sulfongruppen substituiert sind.
    • - In o-Stellung zur Aminogruppe kuppelnde Naphthylamine, die gegebenenfalls mit Halogen, insbesondere Brom, C1-4-Alkyl, C1-4-Alkoxy, Sulfonamido-, mono- oder disubstituierten Sulfonamido-, Sulfo- oder Sulfongruppen substituiert sind.
    • - 5-Pyrazolone oder 5-Aminopyrazole die in 1-Stellung einen gegebenenfalls mit Chlor, Nitro, C1-4-Alkyl- und-Alkoxygruppen, Sulfonamino-, N-alkylierten Sulfonamidgruppen, Sulfogruppen, Sulfongruppen und insbesondere Aminogruppen substituierten Phenyl- oder Naphtylrest besitzen.
    • - 2,6-Dihydroxy-3-cyano- oder -3-carbonamido-4-alkylpyridine und 6-Hydroxy-2-pyridone, die in 1-Stellung durch gegebenenfalls substituiertes C1-4-Alkyl, z. B. Methyl, Isopropyl, β-Hydroxyäthyl, β-Aminoäthyl, y-Isopropoxypropyl oder durch -NH2 oder eine substituierte Aminogruppe wie z. B. Dimethylamino oder Diäthylamino substituiert sind, in 3-Stellung eine Cyano- oder Carbonamidogruppe und in 4-Stellung eine C1-4-Alkylgruppe, insbesondere Methyl, tragen.
    • - Acetessigsäureanilide und Benzoylessigsäureanilide, die im Anilidkern gegebenenfalls mit Cl-4-Alkyl-,
    • -Alkoxy-, -Alkylsulfonylgruppen, C1-4-Hydroxyalkyl- Alkoxyalkyl- oder Cyanalkylsulfonylgruppen, Sulfonamido-, N-alkylierten Sulfonamidogruppen, Sulfo, Acetylamino und Halogen substituiert sein können.
    • - Phenole, die mit niedrigmolekularen Acylaminogruppen und/oder mit 1 bis 5 Kohlenstoffatome enthaltenden Alkylgruppen substituiert sind und in o-Stellung kuppeln.
  • Beispiele solcher Kupplungskomponenten sind:
    • 2-Naphthol, 1-Naphthol, 1-Hydroxynaphthalin-4- oder 5-sulfonsäure, 1,3- oder 1,5-Dihydroxynaphthalin, 1-Hydroxy-7-aminonaphthalin-3-sulfonsäure, 2-Naphthol-6-sulfonamid, 1-Hydroxy-7-N-methyl- oder N-acetylaminonaphthalin-3-sulfonsäure, 2-Naphthol-6-ß-hydroxyäthylsulfon, 1-Hydroxy-6-amino- oder -6-N-Methyl- oder -6-N-Acetylaminonaphthalin-3-sulfonsäure, 1-Hydroxy-7-aminonaphthalin-3,6-disulfonsäure, 1-Hydroxy-6-aminonaphthalin-3,5-disulfonsäure, 1-Acetylamino-7-naphthol, 1-Hydroxy-6-N-(4'-aminophenyl)aminonaphthalin-3-sulfonsäure, 1-Hydroxy-5-aminonaphthalin-3-sulfonsäure, 1-Propionylamino-7-naphthol, 2-Hydroxy-6-aminonaphthalin-4-sulfonsäure, 1-Carbomethoxyamino-7-naphthol, 1-Hydroxy-8-aminonaphthalin-5-sulfonsäure, 1-Carboäthoxyamino-7-naphthol, 1-Hydroxy-8-aminonaphthalin-5,7- disulfonsäure, 1-Carbopropoxy-amino-7-naphthol, 1-Hydroxy-8-aminonaphthalin-3-sulfonsäure, 1-Dimethylaminosulfonylamino-7-naphthol, 6-Acetylamino-2-naphthol, 1-Hydroxy-8-aminonaphthalin- 3,5- oder -3,6-disulfonsäure, 4-Acetylamino-2-naphthol, 2-Hydroxy-5-aminonaphthalin-4,7-disulfonsäure, 4-Methoxy-1-naphthol, 4-Acetylamino-1-naphthol, 1-Naphthol-3-, -4- oder -5-sulfonamid, 2-Naphthol-3-, -4-, -5-, -6-, -7- oder -8-sulfonamid, 5,8-Dichlor-1-naphthol, 5-Chlor-1-naphthol, 2-Naphthylamin, 2-Naphthylamin-1-sulfonsäure, 2-Aminonaphthalin-5-, -6- oder -7-sulfonamid, 2-Aminonaphthalin-6-sulfonsäure-N-methyl-, -äthyl-, -isopropyl-, -ß-oxyäthyl- oder y-methoxypropylamid, 2-Aminonaphthalin-6-sulfanilid, 2-Aminonaphtalin-6-sulfonsäure-N-methylanilid, 1-Aminonaphthalin-3-, -4- oder -5-sulfonamid, 1-Aminonaphthalin-5-methyl- oder -äthylsulfon, 5,8-Dichlor-1-aminonaphthalin, 2-Phenylamino-naphthalin, 2-N-Methylaminonaphthalin, 2-N-Äthylaminonaphthalin, 2-Phenylaminonaphthalin-5-, -6- oder -7-sulfonamid, 2-(3'-Chlorphenylamino)-naphthalin-5-, -6- oder -7-sulfonamid, 6-Methyl-2-aminonaphthalin, 6-Brom-2-aminonaphthalin, 6-Methoxy-2-aminonaphthalin, 1,3-Dimethylpyrazolon, 3-Methyl-5-pyrazolon, 1-Phenyl-3-methyl-5-pyrazolon, 1-Phenyl-3-carbonamido-5-pyrazolon, 1-(2'-, 3'- oder 4'-Methylphenyl)-3-methyl-5-pyrazolon, 1-[3'- oder 4'-(ß-Hydroxyäthylsulfonyl)-phenyl]-3-methyl-5-pyrazolon, 1-(2'-Methoxyphenyl)-3-Methyl-5-pyrazolon, 1-(2'-, 3,-oder 4'-Chlorphenyl)-3-methyl-5-pyrazolon, 1-(2'-, 3'- oder 4'-Nitrophenyl)-3-methyl-5-pyrazolon, 1-(2', 5' oder 3', 4'-Dichlorphenyl)-3-methyl-5-pyrazolon, 1-(2'-, 3'- oder 4'-Sulfamoylphenyl)-3-methyl-5-pyrazolon, 1-(2'-, 3'-oder 4'-Methylsulfonylphenyl)-3-methyl-5-pyrazolon, 2,6-Dihydroxy-3-cyano-4-methylpyridin, 1-Methyl-3-cyano-4-äthyl-6 hydroxypyridon-(2), 1-Amino-3-cyano-4-methyl-6-hydroxypyridon-(2), 1-Phenyl-3-carbonamido-4-methyl-6-hydroxypyridon-(2), Acetoacetanilid, Acetoacet-o-, -m- oder -p-sulfoanilid, Acetoacet-4-(ß- hydroxyäthylsulfonyl)-anilid, Acetoacet-o-anisidid, Acetoacetnaphthylamid, Acetoacet-o-toluidid, Acetoacet-o-chloranilid, Acetoacet-m- oder -p-chloranilid, Acetoacetanilid-3- oder -4-sulfonamid, Acetoacet-3- oder -4-aminoanilid, Acetoacet-m-xylidid, Benzoylessigsäureanilid, 4-Methylphenol, 3-Dialkylaminophenol, besonders 3-Dimethylamino- und 3-Diäthylaminophenol, 4-t-Butylphenol, 4-t-Amylphenol, 2- oder 3-Acetylamino-4-methylphenol, 2-Methoxycarbonylamino-4-methylphenol, 2-Äthoxycarbonylamino-4-methylphenol, 3,4-Dimethylphenol und 2,4-Dimethylphenol, 1-(4'-Aminophenyl)-3-methyl-5-pyrazolon, 1-(2'-, 3'- oder 4'-Sulfophenyl)-3-methyl-5-pyrazolon, 1-(2'-Chlor-4'- oder 5'-sulfophenyl)-3-methyl-5-pyrazolon, 1-(2'-Methyl-6'- chlorphenyl)-3-methyl-5-pyrazolon, 1-(2'-Methyl-4'-sulfophenyl)-3-methyl-5-pyrazolon, 1-(2'-, 3'- oder 4'-Chlor-oder Methyl- oder Sulfophenyl)-3-carboxy-S-pyrazolon, 1-[5'-sulfonaphthyl(2')]-3-methyl-5-pyrazolon, 1-(4"-Amino-2',2"-disulfostilben-(4')]-3-methyl-5-pyrazolon, 1-Äthyl-3-cyano-4-methyl-6-hydroxypyridon-(2), 1-Äthyl-3-sulfomethyl-4-methyl-6-hydroxypyridon-(2), 2,6-Dihydroxy-3-cyano-4-sulfomethylpyridin, 2,4,6-Trihydroxypyrimidin, 2,3-Dihydroxypyridin, 5-Brom-(chlor)-2,3-dihydroxypyridin, 2-Amino-3-hydroxypyridin, 5-Brom-2-amino-3-hydroxypyridin, 5-Ethylmercapto-2,3-dihydroxypyridin, 5-Phenylsulfonyl-2,3-dihydroxypyridin, 2,3-Dyhydroxypyridin-5-sulfonsäure und 2-Amino-3-hydroxypyridin-5-sulfonsäure.
  • Für die Herstellung der Azomethinfarbstoffe der Formel (1) werden in bekannter Weise die oben genannten aromatischen Amine der Formel (3) mit o-Hydroxybenzaldehyden oder o-Hydroxynaphthaldehyden kondensiert.
  • Geeignete Aldehyde sind beispielsweise:
    • 2-Hydroxybenzaldehyd, 3- und 5-Methyl-2-hydroxybenzaldehyd, 3,5- und 3,6-Dimethyl-2-hydroxybenzaldehyd, 5-Butyl-2-hydroxybenzaldehyd, 5-Chlor- oder -Brom-2-hydroxybenzaldehyd, 3- und 4-Chlor-2-hydroxybenzaldehyd, 3,5-Dichlor-2-hydroxybenzaldehyd, 3-Chlor-5-methyl-2-hydroxybenzaldehyd, 3-Methyl-5-chlor-2-hydroxybenzaldehyd, 3- und 4-und 5-Nitro-2-hydroxybenzaldehyd, 3,5-Dinitro- und 4-Chlor-5-nitro-2-hydroxybenzaldehyd, 4-Methoxy-2-hydroxybenzaldehyd, 1-Hydroxy-2-naphthaldehyd und dessen in 4-Stellung chlorierter Abkömmling; und 2-Hydroxy-1-naphthaldehyd.
  • Eine Verfahrensvariante zur Herstellung des Kupferkomplexes eines Azomethinfarbstoffes der Formel (1) ist dadurch gekennzeichnet, dass man den Kupferkomplex statt mit dem Azomethin der Formel (1) auch mit einem Gemisch des Amins der Formel (3) und einem o-Hydroxyaldehyd herstellen kann. Die Herstellung der Metallkomplexe geschieht nach an sich bekannten Methoden in einem wässrigen oder organischen Medium. Als Kupfer abgebende Mittel verwendet man Kupfersalze, wie z. B. Kupfersulfat und Kupfernitrat. Auch die frisch gefällten Hydroxyde können verwendet werden. Die Umsetzung wird im schwach sauren bis alkalischen Bereich durchgeführt. Man arbeitet beispielsweise mit Kupfersulfat in wässrigem Medium in Gegenwart von Natriumacetat oder Ammoniak oder mit Kupfernitrat in Gegenwart von Soda in einem organischen Medium wie Methylcellosolve.
  • Im allgemeinen wird die Reaktion unter Erwärmen durchgeführt, z. B. etwas unterhalb des Siedepunktes des verwendeten Lösungsmittels.
  • Als Kupferkomplexe von Bisazomethinen, Acylhydrazonen, Semicarbazonen und Thiosemicarbazonen aromatischer Aldehyde oder Ketone kommen vorzugsweise solche in Betracht, die Sulfonsäuregruppenhaltig sind. Sie sind gut wasserlöslich und haben zudem eine ausgezeichnete Affinität zur Polyamidfaser. Solche Komplexe sind daher bereits in geringen Mengen wirksam. Zudem hat sich gezeigt, dass sie nicht nur die Lichtechtheit des gefärbten Polyamidmaterials erhöhen, sondern ganz allgemein die Polyamidfaser gegen fotochemischen Abbau schützen und so deren mechanische Eigenschaften, wie Reissfestigkeit und Elastizität weitgehend erhalten..
  • Unter Bisazomethinen aromatischer Aldehyde und Ketone werden hier Schiff'scheBasen von aliphatischen, cycloaliphatischen oder aromatischen Diaminen verstanden, wobei die Aldehyde und Ketone in o-Stellung zum Formyl- bzw. Acylrest eine OH-Gruppe aufweisen. Die Bindung mit dem Kupferatom erfolgt über diese beiden OH-Gruppen und die beiden Stickstoffatome im Bisazomethinteil. Es handelt sich demnach hier um vierzähnige Liganden. Die Liganden enthalten eine oder auch mehrere Sulfogruppen, die sich im Aldehyd- bzw. Ketonteil und/oder in der Bisazomethinbrücke befinden.
  • Bevorzugte Ausführungsformen der erfindungsgemässen Verfahren sind dadurch gekennzeichnet, dass man eine Mischung enthaltend einen Kupferkomplexfarbstoff und einen nicht-chromophoren Kupferkomplex
    • a) der Formel
      Figure imgb0005
      verwendet, worin Me Kupfer, R2 Wasserstoff oder einen gegebenenfalls substituierten Alkyl- oder Arylrest und Z einen gegebenenfalls substituierten Alkylen- Cycloalkylen- oder Arylenrest bedeuten und n 1, 2 oder 3 ist; oder
    • b) der Formel
      Figure imgb0006
      verwendet, worin Me Kupfer bedeutet und R3 und R4 unabhängig voneinander diesembe Bedeutung wie für R2 angegeben haben; oder
    • c) der Formel
      Figure imgb0007
      verwendet, worin Me Kupfer, R5 Wasserstoff oder einen gegebenenfalls substituierten Alkyl- oder Arylrest und V ein Sauerstoff- oder Schwefelatom bedeuten.
  • Bezeichnet R2, R3 oder R5 einen gegebenenfalls substituierten Alkylrest, so kommt vorzugsweise ein C, bis C8-Alkylrest, insbesondere ein C1 bis C4-Alkylrest in Betracht, der verzweigt oder unverzweigt und gegebenenfalls substituiert sein kann und zwar durch Halogen, wie z. B. Fluor, Chlor oder Brom, C1 bis C4-Alkoxy, wie z. B. Methoxy oder Äthoxy, durch einen Phenyl oder Carboxylrest, durch C1 bis C4 -Alkylcarbonyl, wie z. B. den Acetylrest oder durch Hydroxy oder eine mono- oder dialkylierte Aminogruppe. Darüberhinaus kommt auch der Cyclohexylrest in Frage, der ebenfalls substituiert sein kann, wie beispielsweise durch C1 bis C4 -Alkyl oder C1 bis C4 -Alkoxy.
  • Bedeutet R2, R3 oder R5 einen gegebenenfalls substituierten Arylrest, so kommt insbesondere ein Phenyl-oder Naphthylrest in Betracht der substituiert sein kann durch C1-C4-Alkyl, wie Methyl, Äthyl, Propyl, Iso-Isopropyl, Butyl, Isobutyl, sek.-Butyl und tert.-Butyl, C1-C4-Alkoxy, wie z. B. Methoxy, Äthoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, sek.-Butoxy und tert.-Butoxy, Halogen, wie z. B. Fluor, Chlor und Brom, C2-C5-Alkanoylamino, wie z.B. Acetylamino, Propionylamino und Butyrylamino, Nitro, Cyano, Sulfo oder eine mono-oder dialkylierte Aminogruppe. Bedeutet Z einen Alkylenrest, so handelt es sich vor allem um einen C2 bis C4 Alkylenrest, insbesondere eine -CH2-CH2-Brücke. In Frage kommt aber auch eine durch Sauerstoff oder insbesondere durch Stickstoff unterbrochene C2 bis C8-Alkylenkette und zwar vor allem die -(CH2)3-NH-(CH2)3-Brücke.
  • Bedeutet Z einen Cycloalkylenrest, so ist dieser bevorzugt Cyclohexylen und kann eine oder zwei Methylgruppen aufweisen.
  • Bedeutet Z einen Arylenrest, so handelt es sich in erster Linie um einen Phenylenrest, insbesondere einen o-Phenylenrest. Dieser kann ebenfalls durch C1 bis C4-Alkyl oder C1 bis C4-Alkoxy substituiert sein.
  • Als Substituenten für die Benzolringe M und N kommen beispielsweise in Frage: C1 bis C4-Alkyl, C1 bis C4-Alkoxy, Halogen, wie z. B. Fluor, Chlor, oder Brom, ferner die Cyano- oder Nitrogruppen.
  • Die Sulfogruppen, die sich in den Benzolringen M und/oder N und/oder im Brückenglied Z befinden, falls dieses einen Arylenrest bezeichnet, liegen bevorzugt als Alkalicetallsalz, insbesondere als Natriumsalz oder auch als Aminsalz vor.
  • Insbesondere gelangen im vorliegenden Verfahren die Kupferkomplexe der Formel (5) zur Anwendung, worin R2 Wasserstoff bedeutet, Z die Äthylen- oder Cyclohexylenbrücke bezeichnet und n = 2 ist, wobei sich die beiden Sulfogruppen in den Benzolringen M und N befinden und hier vor allem die Komplexe, bei denen die Sulfogruppen jeweils p-ständig zum Sauerstoff angeordnet sind. Dabei ist die Z vorzugsweise -CH2-CH2-.
  • Bedeutet R4 einen Alkylrest, so kann dieser verzweigt oder unverzweigt sein und hat eine Kettenlänge von vorzugsweise 1 bis 8, insbesondere 1 bis 4 C-Atomen. Als Substituenten kommen in Frage Halogen, wie Fluor, Chlor oder Brom, C1 bis C4-Alkoxy, wie Methoxy oder Äthoxy, ferner Phenyl oder Carboxyl, C1 bis C4-Alkylcarbonyl, wie z. B. Acetyl oder Hydroxy, Mono- oder Dialkylamino.
  • Bedeutet R4 einen gegebenenfalls substituierten Arylrest, so kommt insbesondere ein Phenyl- oder Naphthylrest in Betracht, der substituiert sein Kann durch C1-4-Alkyl, wie z. B. Metyl, Äthyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl und tert.-Butyl, C1-4-Alkoxy, wie z. B. Methoxy, Äthoxy, Propoxy, lsopropoxy, Butoxy, tsobutoxy, sek.-Butoxy und tert.-Butoxy, Halogen, wie z. B. Fluor, Chlor und Brom, C2-5-Alkanoylamino, wie Acetylamino, Propionylamino und Butyrylamino, Nitro, Cyano, Sulfo oder eine mono- oder dialkylierte Aminogruppe.
  • Auch die Komplexe der Formel (6) werden bevorzugt in neutraler Form, d.h. als Alkalisalz, insbesondere Natriumsalz oder Aminsalz verwendet.
  • Bevorzugt gelangen solche Komplexe der Formel (6) zur Anwendung, in denen R3 Wasserstoff und R4 Wasserstoff, Methyl oder insbesondere den Phenylrest bedeutet, vor allem die Komplexe, bei denen sich die Sulfogruppe wiederum in p-Stellung zum Sauerstoff befindet.
  • Neben dem Kupferkomolexen der Formeln (6) und (7), deren Liganden sich vom Sulfosalicylaldehyd oder den entsprechenden Phenylketonen ableiten, kommen z. B. auch solche in Frage, bei denen anstelle einkerniger, mehrkernige aromatische Aldehyde und Ketone, wie z. B. die 2-Hydroxy-1-naphthaldehydsulfonsäure zum Aufbau des Liganden eingesetzt werden. Zudem wird darauf hingewiesen, dass die vierte Koordinationsstelle des Metallatoms in den Komplexen der Formeln (6) und (7) durch Wasser als Neutralligand besetzt ist.
  • Bevorzugt werden im vorliegenden Verfahren zur fotochemischen Stabilisierung insbesondere die Kupferkomplexe der Formeln (5) und (6) verwendet.
  • In dem erfindungsgemässen Verfahren ist das Verhältnis von Kupferkomplexfarbstoff: faseraffinem, wasserlöslichem, nicht-chromophorem Kupferkomplex, vorzugsweise 99 :1 bis 10 : 90.
  • Das Mischungsverhältnis hängt dabei von der Anzahl der verwendeten Kupferkomplexfarbstoffe und der gewünschten Farbtiefe der Färbungen ab.
  • Die Kupferkomplexe der angegebenen Formeln (5), (6) und (7) und deren Alkalimetallsalze, wie Kalium- und Lithiumsalze, und insbesondere deren Natriumsalze werden nach bekannten Methoden erhalten.
  • Die Metallkomplexe der Formel (5) sind beispielsweise auf zwei verschiedenen Wegen zugänglich. So kann man einmal den Aldehyd oder das Keton zunächst metallisieren und anschliessend mit dem entsprechenden Diamin zum fertigen Komplex der Formel (5) umsetzen. Man kann aber auch zunächst den Liganden aus Aldehyd bzw. Keton und Diamin synthetisieren und anschliessend die Metallisierung durchführen.
  • Die Acylhydrazone, die Liganden der Komplexe (6), werden beispielsweise durch Umsetzen des Aldehyds bzw. Ketons mit dem entsprechenden Monoacylhydrazin und anschliessende Metallisierung gewonnen. Ganz analog lassen sich auch die Komplexe der Formel (7) herstellen. Mindestens eines der Ausgangsprodukte zur Herstellung der Verbindungen der Formel (5), (6) und (7) muss eine Sulfonsäuregruppe enthalten.
  • Bevorzugt verwendet man die Kupferkomplexe der Formeln (5) bis (7), insbesondere die Kupferkomplexe der Formeln (5) und (6).
  • Ganz besonders bevorzugt sind innerhalb der Gruppe der Metallkomplexe mit Bisazomethinligand die Kupferkomplexe der Formeln
    Figure imgb0008
    Figure imgb0009
    und innerhalb der Gruppe der Metallkomplexe mit Acylhydrazonligand die Kupferkomplexe der Formeln
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Die vierte Koordinationsstelle des Kupfers in den Komplexen der Formeln (10), (11) und (12) ist durch Wasser besetzt, ohne dass dies in den Strukturformeln ausdrücklich vermerkt ist.
  • Eine weitere bevorzugte Ausführungsart des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass man die Mischung der Kupferkomplexverbindungen zusammen mit Säurefarbstoffen insbesondere im gleichen Färbebad verwendet.
  • Als Säurefarbstoffe kommen z. B. metallfreie Mono- oder Polyazofarbstoffe, 1 : 2-Chrom- oder 1 : 2-Kobaltkomplexazofarbstoffe, Anthrachinon-, Dioxazin-, Phthalocyanin-, Nitroaryl- oder Stilbenfarbstoffe in Betracht, die mindestens eine Säuregruppe, wie z. B. Carboxyl oder vorzugsweise eine Sulfonsäuregruppe aufweisen.
  • Eine interessante Ausführungsform des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet dass man zum Trichromiefärben eine Mischung aus mindestens einem rotfärbenden Farbstoff, mindestens einem gelb- oder orangefärbenden Farbstoff und mindestens einem blaufärbenden Farbstoff verwendet, wobei die Mischung mindestens einen Kupferkomplexfarbstoff enthält.
  • Als Polyamidfasermaterial wird in dem erfindungsgemässen Verfahren solches aus synthetischen Polyamiden, wie z. B. Polyamid-6, Polyamid-66 oder auch Polyamid-12, verwendet.
  • Grundsätzlich kann das Polyamidfasermaterial in den verschiedensten Verarbeitungsformen vorliegen, wie z. B. Faser, Garn, Gewebe oder Gewirke, insbesondere textiles Fasermaterial.
  • Die in dem erfindungsgemässen Verfahren verwendeten sulfogruppenhaltigen Farbstoffe liegen entweder in der Form ihrer freien Sulfonsäure oder vorzugsweise als deren Salze vor.
  • Als Salze kommen beispielsweise die Alkali-, Erdalkali- oder Ammoniumsalze oder die Salze eines organischen Amins in Betracht. Als Beispiele seien die Natrium-, Lithium-, Kalium- oder Ammoniumsalze oder das Salz des Triäthanolamins genannt.
  • Die in dem erfindungsgemässen Verfahren verwendeten Farbstoffe enthalten in der Regel weitere Zusätze wie z. B. Kochsalz oder Dextrin.
  • Das erfindungsgemässe Verfahren zum Färben von synthetischen Polyamidfasermaterialien kann auf die üblichen Färbeverfahren angewendet werden.
  • Die Färbeflotten können ausser Wasser und den Farbstoffen weitere Zusätze, beispielsweise Netzmittel, Antischaummittel, Egalisiermittel, Salze, Säuren oder Puffersubstanzen enthalten.
  • Mit dem erfindungsgemässen Verfahren werden synthetische Polyamidfasermaterialien fotochemisch stabilisiert, d.h. gegen Belichtung, insbesondere Heissbelichtung, mit sichtbarem und UV-Licht geschützt.
  • Ein besonders hervorzuhebender Vorteil des erfindungsgemässen Verfahrens ist, dass im Vergleich zu bisher bekannten Verfahren zur fotochemischen Stabilisierung von synthetischen Polyamidfasermaterialien keine Vor- oder Nachbehandlung des Fasermaterials erforderlich ist.
  • Die gemäss dem erfindungsgemässen Verfahren verwendeten Mischungen von Kupferkomplexfarbstoffen mit den nicht-chromophoren Kupferkomplexverbindungen, zeigen den Vorteil, dass unabhängig von der gewünschten Farbtiefe der mit den Kupferkomplexfarbstoffen enthaltenen Färbungen, ein konstanter Kupfergehalt der Faser eingestellt werden kann, d.h. die Schutzwirkung unterliegt keinen nuancebedingten Schwankungen.
  • Die Prüfung der fotochemischen Stabilisierung des Fasermaterials erfolgt z. B. in einem Fade-Ometer bei einer "Black panel temperature" von 83° C (Heissbelichtung) oder durch Belichtung in einer Xenotest-Apparatur gemäss DIN 75 202, Entwurf (= Fakra, Heissbelichtung) oder SN (Schweizerische-Norm)-ISO 105 B 02 (= Xenon) mit anschliessender Prüfung der Reissfestigkeit und Dehnung des Materials gemäss SNV-Norm 97 461 und 198 461.
  • In den folgenden Beispielen stehen Teile für Gewichtsteile. Die Temperaturen sind Celsiusgrade. Die Beziehung zwischen Gewichtsteilen und Volumenteilen ist dieselbe wie diejenige zwischen Gramm und Kubikzentimeter. Die Reissfestigkeits- und Dehnungswerte von unbehandeltem und nicht belichtetem Polyamidfasermaterial werden gleich 100 % gesetzt.
  • Beispiel 1:
  • Sieben Garnstränge ä 10 g aus Polyamid-66 werden in einem Färbeapparat (z. B. einem Färbeapparat mit offenen Behandlungsbädern) mit Flotten (Flottenverhältnis 1 : 20) behandelt, die generell 2 % Ammonsulfat (pH 6,5) enthalten und folgende Farbstoffe:
    • Behandlungsbad 1: kein Farbstoffzusatz, mit Belichtung und mit Behandlung;
    • Behandlungsbad 2: 0 025 % des gelben Farbstoffes der Formel
      Figure imgb0013
    • Behandlungsbad 3: 0,025 % des roten Farbstoffs der Formel
      Figure imgb0014
    • Behandlungsbad 4: 0,025 % des blauen Farbstoffes der Formel
      Figure imgb0015
    Zunächst wird das Garn bei 50° während 5 Minuten in den bereiteten Flotten behandelt, sodann werden die Bäder mit 2°/Minute auf 95°C aufgeheizt. Zur Erschöpfung der Färbebäder werden nach 15 Minuten bei 95°C 2 % Essigsäure (80 %-ig) zugesetzt und noch weitere 30 Minuten behandelt und sodann auf 70° C abgekühlt. Das behandelte Garn wird warm und kalt gespült, zentrifugiert und bei 80° C in einem Trockenschrank getrocknet.
  • Die Versuche 1 bis 4 werden wiederholt mit dem Unterschied aber, dass die Behandlungsbäder zusätzlich 0,075 % (bezogen auf das Warengewicht) der Verbindung der Formel
    Figure imgb0016
    enthalten.
  • Eine Teilmenge des Garnes der einzelnen Behandlungen wird auf Karton aufgewickelt und in einem Fade-Ometer (Hersteller: Atlas Electric Devices Co., Chicago) während 250 Stunden und einer "black panel temperature" von 83° C belichtet.
  • Eine andere Teilmenge des Garnes der einzelnen Behandlungen wird auf Karton aufgewickelt und in einer Xenotest-Apparatur (Hersteller: Quarzlampengesellschaft, Hanau) während 1 000 Stunden belichtet [SN (Schweizerische Norm) - ISO-105 B02].
  • Danach wird das Garn beider Belichtungstests gemäss SNV (Schweizerische-Normen-Vereinigung)-Norm 97 461 auf seine Reissfestigkeits- und Dehnungswerte geprüft. Die Reissfestigkeits- und Dehnungswerte von unbelichtetem und unbehandeltem Polyamid-66-Faser-material werden gleich 100 % gesetzt:
  • Die erzielten Resultate sind in der nachfolgenden Tabelle 1 zusammengestellt, wobei die unter Zusatz der Verbindung der Formel (103) erhaltenen Färbungen als Behandlungsbad 1A, 2A, 3A und 4A bezeichnet sind.
    Figure imgb0017
    Tabelle 1 macht deutlich, dass die fotochemische Stabilität von hellen Färbungen mit Kupferkomplexfarbstoffen auf synthetischen Polyamidmaterialien [Behandlungsbäder (2) (3) und (4)] durch Zusatz von farblosen faseraffinen Kupferkomplexverbindungen noch weiter verbessert werden kann [Behandlungsbäder (2A), (3A) und (4A)].
  • Werden die beschriebenen Färbeversuche unter Verwendung von 0,075 % (bezogen auf das Warengewicht) der Verbindung der Formel
    Figure imgb0018
    oder 0,075 % der Verbindung der Formel
    Figure imgb0019
    anstelle des Kupferkomplexes der Formel (103) durchgeführt, so erhält man ebenfalls eine deutliche zusätzliche Verbesserung der fotochemischen Stabilität der Färbungen.
  • Beispiel 2:
  • Färbungen auf Nylon-Filamentgarn erfolgen mit 0,05 % Farbstoff der Formel (100), wie in Beispiel 1 beschrieben, jedoch bei 95° C und jeweils unter Mitverwendung vön 0 05% jeder der Kupferkomplexverbindungen der Formeln (103), (104) und (105) und unter Zusatz von 2 % Essigsäure 80 %.
  • Das Material wird nach DIN 75 202 (Fakra) und Xenon (SN-ISO 105 B02) belichtet und auf seine Reissfestigkeit und Dehnung geprüft. Es werden folgende Ergebnisse erhalten, wobei die Reissfestigkeitswerte und Dehnungswerte von unbelichteten und unbehandeltem Polyamid-Fasermaterial gleich 100 % gesetzt werden.
    Figure imgb0020

Claims (14)

1. Verfahren zur fotochemischen Stabilisierung von Fasermaterialien aus synthetischen Polyamiden, dadurch gekennzeichnet, dass man die Fasermaterialien mit einer Mischung aus einem wasserlöslichen Kupferkomplexfarbstoff und einem faseraffinen, wasserlöslichen, nicht- chromophoren Kupferkomplex von Bisazomethinen, Acylhydrazonen, Semicarbazonen oder Thiosemicarbazonen aromatischer Aldehyde oder Ketone behandelt.
2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man als Kupferkomplexfarbstoff einen wasserlöslichen Kupferkomplexazo- oder -azomethinfarbstoff verwendet.
3. Verfahren gemäss Anspruch 2, dadurch gekennzeichnet, dass man wasserlöslich-machende Gruppen enthaltende Kupferkomplexe von Azo- oder Azomethinfarbstoffen der Formel
Figure imgb0021
verwendet, worin D ein Rest der Benzol- oder Naphthalinreihe, X ein Stickstoffatom oder die CH-Gruppe, Y die HO-, CH30- oder HOOC- Gruppe und Y' die HO- oder eine Aminogruppe ist, und worin K, für den Fall, dass X ein Stickstoffatom ist, den Rest einer Kupplungskomponente der Benzol-, Naphthalin- oder heterocyclischen Reihe oder den Rest einer Ketomethylenverbindung bedeutet, oder für den Fall, dass X die CH-Gruppe ist, K den Rest eines o-Hydroxyaldehyds bedeutet.
4. Verfahren gemäss Anspruch 3, dadurch gekennzeichnet, dass man einen Kupferkomplexfarbstoff der Formel
Figure imgb0022
verwendet, worin A ein gegebenenfalls substituierter Carboxyphenyl- oder Sulfophenylrest, R1 Wasserstoff oder C1-4-Alkyl, X ein Stickstoffatom oder die CH-Gruppe und K, für den Fall, dass X ein Stickstoffatom ist, der Rest einer Kupplungskomponente der Benzol-, Naphthalin-, Pyrazolon-, Aminopyrazol-, Acetoacetanilid-, 2,4-Dioxychinolin-, Pyridon- oder Pyridinreihe ist, oder, falls X die CH-Gruppe ist, der Rest eines o-Hydroxybenzaldehyds ist, und der Ring B gegebenenfalls weitersubstituiert sein kann.
5. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man als faseraffinen wasserlöslichen Kupferkomplex einen solchen der Formel
Figure imgb0023
verwendet, worin Me Kupfer, R2 Wasserstoff oder einen gegebenenfalls substituierten Alkyl- oder Arylrest und Z einen gegebenenfalls substituierten Alkylen-, Cycloalkylen- oder Arylenrest bedeuten und n 1,2 oder 3 ist.
6. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man als faseraffinen, wasserlöslichen Kupferkomplex einen solchen der Formel
Figure imgb0024
verwendet, worin Me Kupfer bedeutet und R3 und R4 unabhängig voneinander dieselbe Bedeutung wie für R2 in Anspruch 5 angegeben haben.
7. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man als faseraffinen, wasserlöslichen Kupferkomplex einen solchen der Formel
Figure imgb0025
verwendet, worin Me Kupfer, R5 Wasserstoff oder einen gegebenenfalls substituierten Alkyl- oder Arylrest und V ein Sauerstoffoder Schwefelatom bedeuten.
8. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man eine Mischung verwendet, worin das Verhältnis von Kupferkomplexfarbstoff zur faseraffinen wasserlöslichen Kupferkomplexverbindung 99 : 1 bis 10: 90 ist.
9. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man Mischungen der Kupferkomplexverbindungen in einer Menge einsetzt, dass auf 1 g Polyamidmaterial 2 bis 1000 gg Kupfer zukommt, insbesondere, dass auf 1 g Polyamid 5 bis 200 µg Kupfer zukommt.
10. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man die Mischung der Kupferkomplexverbindungen zusammen mit Säurefarbstoffen verwendet.
11. Verfahren gemäss Anspruch 10, dadurch gekennzeichnet, dass man die Mischung der Kupferkomplexverbindungen zusammen mit Säurefarbstoffen im gleichen Färbebad verwendet.
12. Verfahren gemäss Anspruch 10 oder 11, dadurch gekennzeichnet, dass man als Säurefarbstoffe metallfreie Monoazo- oder Polyazofarbstoffe, 1 : 2-Chrom- oder 1 : 2-Kobaltkomplexazofarbstoffe, Anthrachinon- Dioxazin-, Phthalocyanin-, Nitroaryl- oder Stilbenfarbstoffe verwendet, die mindestens eine Säuregruppe, insbesondere eine Sulfonsäuregruppe aufweisen.
13. Verfahren gemäss Anspruch 10, dadurch gekennzeichnet, dass man zum Trichromiefärben eine Mischung aus mindestens einem rotfärbenden Farbstoff, mindestens einem gelb- oder orangefärbenden Farbstoff und mindestens einem blaufärbenden Farbstoff verwendet, wobei die Mischung mindestens einen Kupferkomplexfarbstoff enthält.
14. Wässrige Färbeflotte, dadurch gekennzeichnet dass sie eine Mischung von einem wasserlöslichen Kupferkomplexfarbstoff und einem faseraffinen, wasserlöslichen, nicht-chromophoren Kupferkomplex von Bisazomethinen, Acylhydrazonen, Semicarbazonen oder Thiosemicarbazonen aromatischer Aldehyde oder Ketone enthält.
EP85810513A 1984-12-21 1985-11-04 Verfahren zur fotochemischen Stabilisierung von synthetischen Polyamidfasermaterialien Expired EP0185611B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6099/84 1984-12-21
CH609984 1984-12-21

Publications (2)

Publication Number Publication Date
EP0185611A1 EP0185611A1 (de) 1986-06-25
EP0185611B1 true EP0185611B1 (de) 1988-09-21

Family

ID=4304258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85810513A Expired EP0185611B1 (de) 1984-12-21 1985-11-04 Verfahren zur fotochemischen Stabilisierung von synthetischen Polyamidfasermaterialien

Country Status (5)

Country Link
US (1) US4704133A (de)
EP (1) EP0185611B1 (de)
JP (1) JPS61152881A (de)
BR (1) BR8505622A (de)
DE (1) DE3565136D1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775386A (en) * 1986-05-05 1988-10-04 Ciba-Geigy Corporation Process for photochemical stabilization of undyed and dyed polyamide fibre material and blends thereof with other fibres: copper complex and light stabilizer treatment
US4874391A (en) * 1986-07-29 1989-10-17 Ciba-Geigy Corporation Process for photochemical stabilization of polyamide fiber material and mixtures thereof with other fibers: water-soluble copper complex dye and light-stabilizer
DE58905902D1 (de) * 1988-09-29 1993-11-18 Ciba Geigy Verfahren zur fotochemischen Stabilisierung von ungefärbtem und gefärbtem Polyamidfasermaterial und dessen Mischungen.
FR2643395A1 (fr) * 1989-02-22 1990-08-24 Sandoz Sa Nouveau procede de teinture des fibres de polyamides
US5069681A (en) * 1990-01-03 1991-12-03 Ciba-Geigy Corporation Process for the photochemical stabilization of dyed polyamide fibres with foamed aqueous composition of copper organic complexes
EP0511166A1 (de) * 1991-04-26 1992-10-28 Ciba-Geigy Ag Verfahren zur photochemischen und thermischen Stabilisierung von Polyamid-Fasermaterial mit einer faseraffinen Kupferkomplexverbindung und einem Oxalsäurediarylamid
US5733693A (en) 1993-08-05 1998-03-31 Kimberly-Clark Worldwide, Inc. Method for improving the readability of data processing forms
US6017471A (en) 1993-08-05 2000-01-25 Kimberly-Clark Worldwide, Inc. Colorants and colorant modifiers
US5645964A (en) 1993-08-05 1997-07-08 Kimberly-Clark Corporation Digital information recording media and method of using same
US5681380A (en) 1995-06-05 1997-10-28 Kimberly-Clark Worldwide, Inc. Ink for ink jet printers
US6211383B1 (en) 1993-08-05 2001-04-03 Kimberly-Clark Worldwide, Inc. Nohr-McDonald elimination reaction
US6017661A (en) 1994-11-09 2000-01-25 Kimberly-Clark Corporation Temporary marking using photoerasable colorants
US5685754A (en) 1994-06-30 1997-11-11 Kimberly-Clark Corporation Method of generating a reactive species and polymer coating applications therefor
US6242057B1 (en) 1994-06-30 2001-06-05 Kimberly-Clark Worldwide, Inc. Photoreactor composition and applications therefor
US6071979A (en) 1994-06-30 2000-06-06 Kimberly-Clark Worldwide, Inc. Photoreactor composition method of generating a reactive species and applications therefor
US6008268A (en) 1994-10-21 1999-12-28 Kimberly-Clark Worldwide, Inc. Photoreactor composition, method of generating a reactive species, and applications therefor
WO1996039646A1 (en) 1995-06-05 1996-12-12 Kimberly-Clark Worldwide, Inc. Novel pre-dyes
US5786132A (en) 1995-06-05 1998-07-28 Kimberly-Clark Corporation Pre-dyes, mutable dye compositions, and methods of developing a color
MX9710016A (es) 1995-06-28 1998-07-31 Kimberly Clark Co Colorantes novedosos y modificadores de colorante.
US5782963A (en) 1996-03-29 1998-07-21 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5855655A (en) 1996-03-29 1999-01-05 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
ES2175168T3 (es) 1995-11-28 2002-11-16 Kimberly Clark Co Compuestos de colorantes estabilizados por la luz.
US6099628A (en) 1996-03-29 2000-08-08 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5891229A (en) 1996-03-29 1999-04-06 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US6524379B2 (en) 1997-08-15 2003-02-25 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
JP2002517540A (ja) 1998-06-03 2002-06-18 キンバリー クラーク ワールドワイド インコーポレイテッド インク及びインクジェット印刷用のネオナノプラスト及びマイクロエマルション技術
EP1000090A1 (de) 1998-06-03 2000-05-17 Kimberly-Clark Worldwide, Inc. Neue photoinitiatoren und deren anwendung
CA2336641A1 (en) 1998-07-20 2000-01-27 Kimberly-Clark Worldwide, Inc. Improved ink jet ink compositions
DE69930948T2 (de) 1998-09-28 2006-09-07 Kimberly-Clark Worldwide, Inc., Neenah Chelate mit chinoiden gruppen als photoinitiatoren
EP1144512B1 (de) 1999-01-19 2003-04-23 Kimberly-Clark Worldwide, Inc. Farbstoffe, farbstoffstabilisatoren, tintenzusammensetzungen und verfahren zu deren herstellung
US6294698B1 (en) 1999-04-16 2001-09-25 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
US6368395B1 (en) 1999-05-24 2002-04-09 Kimberly-Clark Worldwide, Inc. Subphthalocyanine colorants, ink compositions, and method of making the same
JP4906912B2 (ja) * 2009-12-25 2012-03-28 スプレーイングシステムスジャパン株式会社 二流体ノズル用アジャスタブルジョイントを備えた加湿器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1289930B (de) * 1964-09-24 1969-02-27 Hoechst Ag Verfahren zur Herstellung von Azofarbstoffen und deren Metallkomplexverbindungen
US3592584A (en) * 1968-01-23 1971-07-13 Du Pont Dyeing continuous filament nylon with 1:1 premetallized dyes and mixtures thereof with dye assistants
US3511827A (en) * 1968-04-04 1970-05-12 Crompton & Knowles Corp Metallized monoazo dye for nylon
DE2327109C2 (de) * 1972-05-30 1983-04-14 Toms River Chemical Corp., Toms River, N.J. Metallisierte Monoazo-Farbstoffe, deren Herstellung und Verwendung
US4058515A (en) * 1972-05-30 1977-11-15 Toms River Chemical Corporation Metallized phenyl-azo-naphthol compounds
US3928328A (en) * 1972-12-08 1975-12-23 Du Pont Schiff base and metal bisazomethine metal chelate
US4125368A (en) * 1974-05-31 1978-11-14 Toms River Chemical Corp. Metallized monoazo dyes
DE3041153A1 (de) * 1980-10-31 1982-06-16 Bayer Ag, 5090 Leverkusen Verfahren zur verbesserung der lichtechtheit von polyamidfaerbungen
DE3247051A1 (de) * 1982-12-20 1984-06-20 Bayer Ag, 5090 Leverkusen Verfahren zur verbesserung der lichtechtheit von polyamidfaerbungen
EP0162811B1 (de) * 1984-05-22 1989-10-11 Ciba-Geigy Ag Verfahren zur fotochemischen Stabilisierung von Polyamidfasermaterial

Also Published As

Publication number Publication date
EP0185611A1 (de) 1986-06-25
JPS61152881A (ja) 1986-07-11
US4704133A (en) 1987-11-03
BR8505622A (pt) 1986-08-12
DE3565136D1 (en) 1988-10-27

Similar Documents

Publication Publication Date Title
EP0185611B1 (de) Verfahren zur fotochemischen Stabilisierung von synthetischen Polyamidfasermaterialien
DE1932809C3 (de) Verfahren zum Färben von synthetischen Textilien
EP0255481A1 (de) Verfahren zur fotochemischen Stabilisierung von Polyamidfasermaterial und dessen Mischungen mit anderen Fasern
DE1155088B (de) Verfahren zum Faerben, Bedrucken und/oder optischen Aufhellen von Textilgut
EP0278910B1 (de) Schwermetallkomplexfarbstoffe, deren Herstellung und Verwendung
EP0044937B1 (de) 1:2-Chrom-Mischkomplexfarbstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung
DE1469754B1 (de) Verfahren zur Erzeugung echter Faerbungen auf natuerlichem oder synthetischem Polyamidmaterial
EP0142104B1 (de) Faserreaktive Chromkomplexe, deren Herstellung und Verwendung
EP0144776B1 (de) Faserreaktive Chromkomplexe, deren Herstellung und Verwendung
EP0159962B1 (de) Faserreaktive Chrom- oder Kobaltkomplexe, deren Herstellung und Verwendung
DE2152536A1 (de) Azoverbindungen,deren Herstellung und Verwendung
EP0648816B1 (de) Färben von Leder mit Farbstoffmischungen
EP0110825A1 (de) Unsymmetrische 1:2-Chromkomplexfarbstoffe, enthaltend eine Azo- und eine Azomethinverbindung
DE952622C (de) Verfahren zur Erzeugung unloeslicher Azofarbstoffe auf Polyvinylalkoholfasern oder deren Gemischen mit anderen Fasern
EP0264346A1 (de) Verfahren zum Färben von Fasermaterial aus natürlichen oder synthetischen Polyamiden mit 1:1-Metallkomplexfarbstoffen
CH661276A5 (de) Chrom- oder kobaltkomplexe und deren herstellung.
DE918808C (de) Verfahren zum Faerben dicht gepackter Wolle aus saurem Bade und Faerbepraeparate
DE1256624B (de) Faerbezubereitung
EP0141416A2 (de) Faserreaktive Chromkomplexe, deren Herstellung und Verwendung
DE711327C (de) Verfahren zum Erzeugen echter Faerbungen auf tierischen Fasern oder tierische Fasern enthaltenden Fasermischungen
AT232472B (de) Verfahren zum Färben und bzw. oder Bedrucken von Textilgut und Farbstoffpräparate hiezu
DE1151616B (de) Verfahren zur Herstellung von metallhaltigen, wasserunloeslichen Azofarbstoffen
DE3703361A1 (de) Unsymmetrische 1:2-chromkomplexfarbstoffe
DE1281998B (de) Verfahren zum Faerben oder Bedrucken von stickstoffhaltigen Fasern
DE1135590B (de) Verfahren zur Herstellung von metallhaltigen, wasserunloeslichen Azofarbstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19851106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19870902

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3565136

Country of ref document: DE

Date of ref document: 19881027

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920918

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921001

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921026

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19921214

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931130

Ref country code: CH

Effective date: 19931130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940802

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST