EP0173100B1 - Hochleistungszündspule - Google Patents

Hochleistungszündspule Download PDF

Info

Publication number
EP0173100B1
EP0173100B1 EP85109620A EP85109620A EP0173100B1 EP 0173100 B1 EP0173100 B1 EP 0173100B1 EP 85109620 A EP85109620 A EP 85109620A EP 85109620 A EP85109620 A EP 85109620A EP 0173100 B1 EP0173100 B1 EP 0173100B1
Authority
EP
European Patent Office
Prior art keywords
core
preferred direction
main
ignition coil
magnetised
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85109620A
Other languages
English (en)
French (fr)
Other versions
EP0173100A2 (de
EP0173100A3 (en
EP0173100B2 (de
Inventor
Robert Ing. Tschuk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSCHUK Robert Ing
Original Assignee
BERTOS AG
TSCHUK Robert Ing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6242350&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0173100(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BERTOS AG, TSCHUK Robert Ing filed Critical BERTOS AG
Priority to AT85109620T priority Critical patent/ATE64036T1/de
Publication of EP0173100A2 publication Critical patent/EP0173100A2/de
Publication of EP0173100A3 publication Critical patent/EP0173100A3/de
Publication of EP0173100B1 publication Critical patent/EP0173100B1/de
Application granted granted Critical
Publication of EP0173100B2 publication Critical patent/EP0173100B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/12Ignition, e.g. for IC engines

Definitions

  • the invention relates to a high-performance ignition coil for internal combustion engines with a soft magnetic layered core made of grain-oriented sheet and air gap and a primary and secondary winding surrounding the main core, in which the main flow generated by the primary winding in the main core runs in the preferred direction of the grain-oriented sheet.
  • Such an ignition coil is known from DE-U-79 24 989.
  • an obliquely arranged air gap in the main core with permanent magnets attached therein is mandatory, while the course of the main flow in the main core has not been explicitly discussed.
  • the dimensioning of the remaining sections of the magnetic circuit was not discussed in any way there.
  • CH-A-342 282 discloses a core for magnetic circuits, in particular for magnetic amplifiers, which is constructed from U-plates which are layered without overlapping layers and in which the height of the yokes lying transverse to the preferred magnetic direction increases by the ratio of an induction along the rolling direction an induction transverse to the rolling direction at the same field strength is greater than twice the leg width in order to make the yokes and legs magnetically equivalent.
  • the magnetic field in the air gap where the magnetic energy is concentrated already has such a high magnetic field strength that the permanent magnets in their coercive force are overridden.
  • the air gap is arranged, for example, obliquely in the magnetic circuit (DE-U-79 24 989), or else the air gap is arranged on one or both end faces of the main core which carries the exciting primary winding (DE-B - 12 55 990) and / or the air gap area is increased.
  • the air gap is arranged, for example, obliquely in the magnetic circuit (DE-U-79 24 989), or else the air gap is arranged on one or both end faces of the main core which carries the exciting primary winding (DE-B - 12 55 990) and / or the air gap area is increased.
  • the permanent magnets are expensive and the arrangement in the magnetic circuit during manufacture requires great care.
  • Permanent magnet materials made of cobalt and rare earths, especially cobalt samarium, are characterized by a particularly large coercive field strength with high saturation and good temperature resistance.
  • thermal stress the exceeding of which leads to a drop in the coercive field strength and thus the storage capacity of an ignition coil can be significantly impaired.
  • core sheets in E, I, U, I or M shape such as are standardized in DIN 41302, for example, are used when using soft magnetic material.
  • a common feature of these core sheets is that the magnetic induction is practically the same size over the entire magnetic circuit.
  • core plates for ignition coils according to DIN 41302 or similar symmetrical dimensions are used.
  • Grain-oriented electrical sheet is distinguished from the other soft magnetic materials by a pronounced magnetic preferred direction in the rolling direction (longitudinal direction) and has about ten times better magnetizability in this longitudinal direction than conventional non-grain-oriented electrical sheets. Across the direction of rolling, grain-oriented electrical steel has about the same magnetic properties as non-grain-oriented electrical steel.
  • the invention has for its object to design and build the soft magnetic core of a high-performance ignition coil of the type described in such a way that with unchanged primary and secondary winding and thus unchanged magnetic induction in the main core and An unchanged large magnetic energy can be stored without arrangement of a permanent magnet and accordingly unchanged performance data of the ignition coil can be obtained.
  • This object is achieved according to the invention with a high-performance ignition coil of the type described at the outset in that the core is layered as a core of the core type with abutting core parts and without a permanent magnet in the air gap, and that with the same core layer height, the height of the yokes magnetized transversely to the preferred direction is approximately 1.5 times to 1.8 times the width of the main core magnetized in the preferred direction.
  • the core is layered as a jacket-type core with abutting core parts and without a permanent magnet in the air gap, and that with the same core layer height, the height of the yokes magnetized transversely to the preferred direction is approximately 0.75 to 0.9 times the width of the main core magnetized in the preferred direction.
  • the core is made of EI sheets with abutting core parts and without a permanent magnet in the air gap, and that with the same core layer height, the height of the yoke magnetized transversely to the preferred direction is approximately 0.75 to 0.9 times and the height of the I-shaped yoke magnetized in the preferred direction is approximately 0.5 times the width of the main core magnetized in the preferred direction.
  • the yoke parts of the core are expediently dimensioned transversely to the preferred direction of the grain-oriented sheet in magnetic induction in accordance with the assigned greatest possible permeability.
  • the core With the configuration of the core according to the invention, it is possible, while maintaining the number of turns of the primary and secondary windings and the cross-sectional area of the in the preferred direction, i.e. Rolling direction of the magnetized parts of the core, to achieve the same properties and performance data of the ignition coil, as can be achieved with the attachment of a permanent magnet for magnetic bias, only by slightly more material expenditure while increasing the cross-sectional area of the parts of the core magnetized transverse to the preferred direction.
  • ignition coils with a core designed and constructed in accordance with the invention which have practically half the power-to-weight ratio compared to pencil ignition coils, can now be subjected to a short-term thermal load of up to 150 C without permanent magnet, without the magnetic properties and thus the performance data of the ignition coil being influenced.
  • the height of the yokes magnetized transversely to the preferred direction is 1.7 times that of the core type cores or 0.85 times the width of the main core magnetized in the preferred direction for cores of the cladding type.
  • the air gap is expediently arranged in the main core in the middle of the primary winding.
  • this has the advantage of optimally dissipating the heat generated over the main core and the entire core.
  • the core consists of two identical U parts in a core layered from UU sheet metal or two identical E parts in the case of a core layered from EE sheet metal.
  • the core can advantageously be constructed from UU sheets and an I-shaped main core magnetized in the preferred direction, which is connected to the UU sheets with four wedge surfaces by an oblique fermentation cut, the air gap being arranged symmetrically on at least one end face of the main core.
  • the punched core sheets can advantageously be after-annealed.
  • FIG. 1 to 3 show a core structure with a soft magnetic layered core 1 of the core type, layered from UU sheets of the same shape.
  • a primary winding 2 with the number of turns wi and a secondary winding 3 with the number of turns W2 surround the main core 4.
  • the core sheets are stamped in such a way that both the main lerm 4 and the yoke leg 5 are magnetized in the magnetic preferred direction (rolling direction) of the grain-oriented sheet, while Yokes 6 and 7 are magnetized transversely to the magnetic preferred direction.
  • An air gap A is arranged in the main core 4 approximately in the middle of the primary winding 2.
  • the winding window has a width b and a height e.
  • the core layer height is d
  • the width of the main core 4 is a
  • the width of the yoke leg 5 is approximately a.
  • the height of yokes 6 and 7 is c.
  • the direction of rolling of the sheets is indicated by arrows.
  • F EL denotes the cross-sectional area of the main core 4 magnetized in the preferred direction
  • F EQ denotes the cross-sectional area of the yokes 6, 7 magnetized transverse to the preferred direction.
  • the core 1 is designed and constructed such that the ratio of yoke height c to core width a is 1.5 to 1.8, preferably 1.7.
  • Yokes 9 and 10 have a height ci2 here, while yoke legs 11 and 12 have a width of approximately a / 2.
  • the ratio of the height c / 2 of the yokes 9, 10 to the width a of the main core 4 is 0.75 to 0.9, preferably 0.85.
  • FIG. 7 shows a further example of a core structure of the jacket type according to the invention with a core 13 which is layered from E and I sheets.
  • the ratio of the height c / 2 of the one yoke 10 to the width a of the main core 4 is again 0.75 to 0.9, preferably 0.85, while the height a / 2 of the yoke 9 is approximately half the width a of the main core 4 is.
  • the yoke 9 is layered from 1-sheet metal, which are magnetized in the preferred direction.
  • the core sheets of both the core 6 of the core type and the cores 8, 13, 14 of the sheath type are punched in such a way that the main magnetic flux 0 H is built up in the rolling direction of the magnetic preferred direction of the grain-oriented sheet when it is acted upon by the current I of the primary winding 2.
  • the magnetic circuit is preferably interrupted approximately in the middle of the primary winding 2 by the air gap A, the main seat of the magnetic field.
  • the magnetic field is an energy store. According to the theory, the total energy present in the magnetic field is a coil through which current I flows
  • the inductance L is constant and that the coil fluxes are proportional to the exciting currents, that is, there is no iron or at least the iron is unsaturated.
  • the magnetic flux is a function of the current itself, so that when the iron core is saturated, the magnetic flux 0 increases with the current I; the coil inductance L decreases, and thus the storage capacity for magnetic energy.
  • the magnetization requirement of grain-oriented electrical sheets in the rolling direction is only about 1/10 of that required to magnetize the electrical sheets transverse to the rolling direction.
  • Cold and hot rolled, non-grain oriented electrical sheets and strips have approximately the same magnetization requirement as grain oriented sheets across the rolling direction.
  • the grain-oriented sheet can be specifically loaded with magnetic induction of 1.5 ... 1.7 T without requiring a greater magnetization than the conventional electrical sheets.
  • the core sheets of conventional and commercial type are dimensioned so that the cross section of the return flow is approximately the same size as the cross section of the main flow. If this type of electrical sheet is used, magnetic material with a pronounced preferred direction, e.g. Grain-oriented sheet with the preferred direction in the rolling direction applied, so that the part of the magnetic circuit leading the main magnetic flux can be subjected to a specific high load, those parts of the core sheet in which the magnetic flux must be driven transversely to the rolling direction, however, require a corresponding high need for magnetization.
  • magnetic material with a pronounced preferred direction e.g. Grain-oriented sheet with the preferred direction in the rolling direction applied
  • the magnetization requirement H (A / cm) for a commercially available grain-oriented sheet according to DIN 40600 is assigned to the specific material stress, the magnetic induction B (T).
  • Curve a) shows the magnetization requirement in the rolling direction, curve b) transverse to Rolling direction.
  • the magnetization requirement and the saturation properties of this material both in the rolling direction and transverse to the rolling direction are illustrated by the curves a) and b) of the relative permeability ur: In the rolling direction, the relative permeability is about ten times greater than in the transverse direction.
  • curve I shows the known shear when the magnetic circuit is oversaturated.
  • the shear of the characteristic curve I for example in the induction of 1.0 ... 1.2 T, is solely due to the increased magnetization requirement transverse to the rolling direction of the parts of the magnetic circuit .
  • the attachment of a permanent magnet in the air gap of the magnetic circuit avoids this disadvantage of the deflection and thus the storage capacity of the inductance, because, as is well known, the induction stroke is increased by the DC bias against the direction of flow of the ignition coil and the storage capacity increases quadratically with the current applied.
  • those parts of the magnetic circuit which are magnetized transverse to the rolling direction are dimensioned up to at most the induction which corresponds approximately to the maximum relative permeability.
  • a specific material stress of approximately 1.0 T can be seen from a design example for the core sheet from the relative permeability curve b) at the maximum permeability (point A).
  • point B In order to drive the main magnetic flux 0H through these sections transversely to the rolling direction, about 1.8 A / cm is required (point B).
  • the entire magnetic circuit is approximately balanced with respect to the magnetization if the parts of the magnetic circuit which are magnetized in the rolling direction are used until about the same magnetization requirement for these parts.
  • this is approximately the case in the magnetization curve a) for the sheet in the rolling direction when the magnetic sections in the rolling direction are specifically stressed with approximately 1.7 T induction (point C).
  • the sections of the longitudinal and transverse magnetization are approximately of the same length.
  • the factor is approximately 1.5 ... 1.8.
  • Fig. 10 also illustrates the invention.
  • this diagram shows the magnetic flux 0 as a function of the magnetic flux, the impressed current I.
  • Induction B 1 is shown in the coordinate, that is, based on the specific stress in the rolling direction; this is directly proportional to the main magnetic flux 0 H.
  • Curve II applies to a core sheet of conventional type, without cross-sectional reinforcement transverse to the rolling direction.
  • the flux 0 increases proportionally with the current I applied, until saturation is reached in the magnetic sections with the magnetization transverse to the rolling direction.
  • the magnetic flux hardly increases; the characteristic curve is strongly curved.
  • the design of the core according to the invention thus has the advantage that an expensive permanent magnet can be saved with slightly more material expenditure of the magnetic circuit and, moreover, the production is simplified considerably because no increased care and attention to the correct installation and the rich term polarization of the brittle permanent magnet must be dedicated.
  • ignition coils of this type with a practically half power-to-weight ratio can be subjected to thermal loads of up to 150 ° C. for a short time compared to pencil ignition coils without permanent magnets, without negatively influencing the magnetic properties and thus the performance data of the ignition coil.
  • the structure of the core according to the invention can be used not only for ignition coils, but also generally for magnetic energy stores, for example for switching power supplies, chokes in DC dividers in power electronics, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

  • Die Erfindung bezieht sich auf eine Hochleistungszündspule für Brennkraftmaschinen mit einem weichmagnetischen geschichteten Kern aus kornorientiertem Blech und Luftspalt und einer den Hauptkern umgebenden Primär- und Sekundärwicklung, bei der der von der Primärwicklung erzeugte Hauptfluß im Hauptkern in der Vorzugsrichtung des kornorientierten Bleches verläuft.
  • Eine derartige Zündspule ist aus der DE-U-79 24 989 bekannt. Dort ist ein im Hauptkern schräg angeordneter Luftspalt mit darin angebrachtem Permanentmagneten zwingend vorgesehen, während auf den Verlauf des Hauptflusses im Hauptkern nicht expressis verbis eingegangen ist. Auf die Bemessung der übrigen Teilabschnitte des magnetischen Kreises ist dort in keiner Weise eingegangen.
  • Aus der CH-A-342 282 ist ein aus stoßfugenfrei überlappt geschichteten U-Blechen aufgebauter Kern für magnetische Kreise, insbesondere für magnetische Verstärker, bekannt, bei dem die Höhe der quer zur magnetischen Vorzugsrichtung liegenden Joche um das Verhältnis einer Induktion längs zur Walzrichtung zu einer Induktion quer zur Walzrichtung bei derselben Feldstärke größer als die doppelte Schenkelbreite ist, um die Joche und Schenkel magnetisch gleichwertig zu machen.
  • Es ist bekannt, die Speicherfähigkeit von magnetischen Energiespeichern für pulsierenden Gleichstrom, insbesondere Zündspulen, dadurch zu erhöhen, daß im magnetischen Kreis das Magnetmaterial durch einen Permanentmagneten in umgekehrter Richtung wie der Hauptfluß des pulsierenden Gleichstromes vormagnetisiert und somit nicht mehr einseitig vom pulsierenden Gleich-strom beaufschlagt wird. Damit kann bei gleichem Aufwand an Aktivmaterial - magnetischer Kreis und Wicklung - entweder nahezu doppelt soviel elektrische Energie gespeichert werden, oder es kann bei gleicher gespeicherter magnetischer Energie der Aktivteil entsprechend kleiner bemessen werden. Die Feldliniendichte, d.h. die magnetische Induktion, kann bei derart bemessenen magnetisch vorgespannten Kreisen bis zu 35% gegenüber herkömmlicher Dimensionierung erhöht werden, wobei trotzdem eine Proportionalität zwischen aufgeprägtem Strom und magnetischem Fluß erreicht wird. Bei den in der Praxis zur Anwendung gelangenden magnetischen Induktionen von 1,0 ... 1,4 T derart vorgespannter magnetischer Kreise herrscht im Luftspalt des magnetischen Kreises, wo sich die magnetische Energie konzentriert, bereits eine derart hohe magnetische Feldstärke, daß die Permanentmagnete in ihrer Koerzitivfeldstärke übersteuert werden.
  • Um eine solche Übersteuerung zu vermeiden, wird der Luftspalt beispielsweise schräg im magnetischen Kreis angeordnet (DE-U- 79 24 989), oder aber der Luftspalt wird an einer oder beiden Stirnseiten des Hauptkerns, der die erregende Primärwicklung trägt, angeordnet (DE-B- 12 55 990) und/oder die Luftspaltfläche wird vergrößert. Infolge der Anordnung der Permanentmagnete an einer oder beiden Stirnseiten des die Primärwicklung tragenden Hauptkerns tritt eine unerwünschte magnetische Streuung auf, denn der Hauptfluß verläßt die im magnetischen Kreis vorgegebenen Bahnen aufgrund des geringeren magnetischen Widerstandes außerhalb der erregenden Primärwicklung. Der magnetische Hauptfluß ist somit nicht mehr vollständig mit den einzelnen Windungen der Primärwicklung verkettet, die Rückschlußschenkel des magnetischen Kreises werden nicht mehr voll ausgenutzt; der magnetische Kreis wird bei dieser Anordnung der Luftspalte örtlich übersättigt.
  • Die Permanentmagnete sind kostspielig und die Anordnung im magnetischen Kreis während der Fertigung erfordert große Sorgfalt. Dauermagnetwerkstoffe aus Kobalt und seltenen Erden, insbesondere Kobalt-Samarium, zeichnen sich zwar durch eine besonders große Koerzitivfeldstärke bei gleichzeitig hoher Sättigung und guter Temperaturbeständigkeit aus. Der thermischen Beanspruchung sind jedoch Grenzen gesetzt, deren Überschreitung einen Einbruch der Koerzitivfeldstärke mit sich zieht und somit die Speicherfähigkeit einer Zündspule erheblich beeinträchtigt werden kann.
  • Bei bekannten magnetischen Kreisen von Zündspulen kommen bei Anwednung weichmagnetischen Materials Kernbleche in E-, I-Form, U-, I-Form oder M-Form, wie sie beispielsweise in DIN 41302 genormt sind, zur Anwendung. Diese Kernbleche haben als gemeinsames Merkmal, daß die magnetische Induktion über den gesamten magnetischen Kreis praktisch gleich groß ist. Auch beim Einsatz von kornorientiertem Elektroblech (gemäß DIN 46400) werden Kernbleche für Zündspulen gemäß DIN 41302 oder in ähnlicher symmetrischer Bemessung zur Anwendung gebracht.
  • Kornorientiertes Elektroblech zeichnet sich gegenüber den übrigen weichmagnetischen Werkstoffen durch eine ausgeprägte magnetische Vorzugsrichtung in Walzrichtung (Längsrichtung) aus und hat in dieser Längsrichtung eine etwa zehnmal bessere Magnetisierbarkeit als herkömmliche nicht kornorientierte Elektrobleche. Quer zur Walzrichtung hat kornorientiertes Elektroblech allerdings etwa die gleichen magnetischen Eigenschaften wie nicht kornorientierte Elektrobleche.
  • Der Erfindung liegt die Aufgabe zugrunde, den weichmagnetischen Kern einer Hochleistungszündspule der eingangs beschriebenen Art derart auszubilden und aufzubauen, daß bei unveränderter Primär- und Sekundärwicklung und somit unveränderter magnetischer Induktion im Hauptkern und ohne Anordnung eines Permanentmagneten eine unverändert große magnetische Energie speicherbar ist und dementsprechend unveränderte Leistungsdaten der Zündspule erbringbar sind.
  • Diese Aufgabe wird mit einer Hochleistungszündspule der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß der Kern als Kern vom Kerntyp mit aneinanderstoßenden Kernteilen und ohne Permanentmagnet im Luftspalt geschichtet ist, und daß bei gleicher Kernschichthöhe die Höhe der quer zur Vorzugsrichtung magnetisierten Joche etwa das 1,5-fache bis 1,8-fache der Breite des in der Vorzugsrichtung magnetisierten Hauptkerns beträgt.
  • Eine andere Lösung der Aufgabe besteht darin, daß der Kern als Kern vom Manteltyp mit aneinanderstoßenden Kernteilen und ohne Permanentmagnet im Luftspalt geschichtet ist, und daß bei gleicher Kernschichthöhe die Höhe der quer zur Vorzugsrichtung magnetisierten Joche etwa das 0,75- bis 0,9-fache der Breite des in der Vorzugsrichtung magnetisierten Hauptkerns beträgt.
  • Eine weitere Lösung der Aufgabe besteht darin, daß der Kern aus EI-Blechen mit aneinanderstoßenden Kernteilen und ohne Permanentmagnet im Luftspalt geschichtet ist, und daß bei gleicher Kernschichthöhe die Höhe des quer zur Vorzugsrichtung magnetisierten Jochs etwa das 0,75- bis 0,9- fache und die Höhe des in der Vorzugsrichtung magnetisierten I-förmigen Jochs etwa das 0,5-fache der Breite des in der Vorzugsrichtung magnetisierten Hauptkerns beträgt.
  • Zweckmäßig sind die Jochteile des Kerns quer zur Vorzugsrichtung des kornorientierten Bleches in der magnetischen Induktion entsprechend der zugeordneten größtmöglichen Permeabilität bemessen.
  • Mit der erfindungsgemäßen Ausgestaltung des Kerns ist es möglich, unter Beibehaltung der Windungszahl der Primär- und Sekundärwicklung sowie der Querschnittsfläche der in der Vorzugsrichtung, d.h. Walzrichtung der magnetisierten Teile des Kerns, lediglich durch geringfügig mehr Materialaufwand bei Vergrößerung der Querschnittsfläche der quer zur Vorzugsrichtung magnetisierten Teile des Kerns die gleichen Eigenschaften und Leistungsdaten der Zündspule zu erreichen, wie sie mit der Anbringung eines Permanentmagneten zur magnetischen Vorspannung erreicht werden können.
  • Mit geringfügig mehr Materialaufwand für den magnetischen Kreis kann also bei dem erfindungsgemäßen Aufbau ein kostspieliger Permanentmagnet eingespart und darüber hinaus die Fertigung wesentlich vereinfacht werden, da keine erhöhte Sorgfalt und Aufmerksamkeit dem richtigen Einbau und der richtigen Polarisierung des spröden Permanentmagneten gewidmet werden muß.
  • Außerdem können Zündspulen mit einem gemäß der Erfindung ausgebildeten und aufgebauten Kern, die praktisch das halbe Leistungsgewicht verglichen mit Stabzündspulen haben, nun ohne Permanentmagnet kurzfristig thermisch bis über 150 C belastet werden, ohne daß die magnetischen Eigenschaften und somit die Leistungsdaten der Zündspule beeinflußt werden.
  • Zweckmäßig beträgt die Höhe der quer zur Vorzugsrichtung magnetisierten Joche bei Kernen vom Kerntyp das 1,7-fache- bzw. bei Kernen vom Manteltyp das 0,85-fache der Breite des in der Vorzugsrichtung magnetisierten Hauptkerns.
  • Der Luftspalt ist zweckmäßig im Hauptkern mittig zur Primärwicklung angeordnet. Dies bringt insbesondere den Vorteil einer optimalen Abführung der entstehenden Wärme über den Hauptkern und den gesamten Kern.
  • Gemäß weiteren bevorzugten Ausführungsformen der Erfindung besteht bei einem aus UU-Blechen geschichteten Kern der Kern aus zwei gleichen U-Teilen bzw. bei einem aus EE-Blechen geschichteten Kern aus zwei gleichen E-Teilen.
  • Weiter kann der Kern vorteilhaft aus UU-Blechen und einem in der Vorzugsrichtung magnetisierten I-förmigen Hauptkern aufgebaut sein, der mit vier Keilflächen durch einen Schräggärungsschnitt an die UU-Bleche anschließt, wobei an wenigstens einer Stirnseite des Hauptkerns symmetrisch der Luftspalt angeordnet ist.
  • Schließlich können zur Verbesserung der magnetischen Eigenschaften die gestanzten Kernbleche nach dem Stanzen vorteilhaft nachgeglüht werden.
  • Die Erfindung ist im folgenden an Ausführungsbeispielen und anhand der Zeichnungen näher erläutert. In den Zeichnungen zeigen
    • Fig. 1 einen erfindungsgemäßen Kernaufbau für einen Kern vom Kerntyp in Seitenschnittansicht,
    • Fig. 2 einen Kernaufbau wie in Fig. 1 in Stirnschnittansicht,
    • Fig. 3 einen Kernaufbau wie in Fig. 1 in Querschnittsansicht,
    • Fig. 4 einen erfindungsgemäßen Kernaufbau mit einem Kern vom Manteltyp in Seitenschnittansicht,
    • Fig. 5 einen Kernaufbau wie in Fig. 4 in Stirnschnittansicht,
    • Fig. 6 einen Kernaufbau wie in Fig. 4 in Querschnittsansicht,
    • Fig. 7 eine Darstellung eines erfindungsgemäßen Kernaufbaus aus EI-Blechen,
    • Fig. 8 eine Darstellung eines erfindungsgemäßen Kernaufbaus aus UU-Blechen und I-förmigem Hauptkern mit Schrägschnitt an den Stirnseiten,
    • Fig. 9 eine Darstellung der Gleichfeld-Kommutierungskurve (Permeabilitätskurve), und
    • Fig. 10 eine Darstellung der Kennlinie Hauptfluß über Erregerstrom.
  • In den Fig. 1 bis 3 ist ein Kernaufbau mit einem weichmagnetischen geschichteten Kern 1 vom Kerntyp, geschichtet aus UU-Blechen gleicher Form, dargestellt. Eine Primärwicklung 2 mit der Windungszahl wi und eine Sekundärwicklung 3 mit der Windungszahl W2 umgeben den Hauptkern 4. Die Kernbleche sind derartig gestanzt, daß sowohl der Hauptlerm 4 als auch der Rückschlußschenkel 5 in der magnetischen Vorzugsrichtung (Walzrichtung) des kornorientierten Bleches magnetisiert werden, während Joche 6 und 7 quer zur magnetischen Vorzugsrichtung magnetisiert werden. Ein Luftspalt A ist im Hauptkern 4 etwa mittig zur Primärwicklung 2 angeordnet.
  • Das Wicklungsfenster hat eine Breite b und eine Höhe e. Die Kernschichthöhe ist d, die Breite des Hauptkerns 4 ist a, die Breite des Rülckschlußschenkels 5 etwa a. Die Höhe der Joche 6 und 7 ist c. Die Walzrichtung der Bleche ist mit Pfeilen angedeutet. Mit FEL ist die Querschnittsfläche des in der Vorzugsrichtung magnetisierten Hauptkerns 4, mit FEQ die Querschnittsfläche der quer zur Vorzugsrichtung magnetisierten Joche 6, 7 bezeichnet.
  • Der Kern 1 ist derart ausgebildet und aufgebaut, daß das Verhältnis von Jochhöhe c zu Kernbreite a 1,5 bis 1,8, vorzugsweise 1,7, beträgt.
  • In den Fig. 4 bis 6 ist ein bevorzugter Kernaufbau vom Manteltyp mit einem Kern 8 dargestellt. Joche 9 und 10 haben hier eine Höhe ci2 während Rückschlußschenkel 11 und 12 eine Breite etwa a/2 aufweisen. Hier beträgt das Verhältnis der Höhe c/2 der Joche 9, 10 zur Breite a des Hauptkerns 4 0,75 bis 0,9, vorzugsweise 0,85.
  • Fig. 7 zeigt ein weiteres Beispiel eines erfindungsgemäßen Kernaufbaus vom Manteltyp mit einem Kern 13, der aus E- und I-Blechen geschichtet ist. Das Verhältnis der Höhe c/2 des einen Jochs 10 zur Breite a des Hauptkerns 4 beträgt hier wieder 0,75 bis 0,9, vorzugsweise 0,85, während die Höhe a/2 des Joches 9 etwa die Hälfte der Breite a des Hauptkerns 4 beträgt. Das Joch 9 ist aus 1-Blechen geschichtet, die in Vorzugsrichtung magnetisiert sind.
  • Die Höhen und Breiten des in Fig. 8 dargestellten Ausführungsbeispiels eines erfindungsgemäßen Kernaufbaus vom Manteltyp mit Kern 14 sind die gleichen wie bei dem bevorzugten Ausführungsbeispiel der Fig. 4 bis 6.
  • Die Kernbleche sowohl des Kerns 6 vom Kerntyp als auch der Kerne 8, 13, 14 vom Manteltyp sind derart gestanzt, daß in Walzrichtung der magnetischen Vorzugsrichtung des kornorientierten Bleches der magnetische Hauptfluß 0H bei Beaufschlagung durch den Strom I der Primärwicklung 2 aufgebaut wird. Vorzugsweise ist der magnetische Kreis etwa mittig der Primärwicklung 2 durch den Luftspalt A, dem Hauptsitz des magnetischen Feldes, unterbrochen.
  • Das magnetische Feld ist ein Energiespeicher. Nach der Theorie ist die gesamte im Magnetfeld einer vom Strom I durchflossene Spule vorhandene Energie
  • Figure imgb0001
  • In dieser Gleichung ist vorausgesetzt, daß die Induktivität L konstant und die Spulenflüsse den erregenden Strömen proportional sind, also kein Eisen vorhanden oder wenigstens das Eisen ungesättigt ist. Bei einer Spule mit Eisenkern ist der magnetische Fluß eine Funktion des Stromes selbst, so daß bei Sättigung des Eisenkernes der magnetische Fluß 0 mit dem Strom I zunimmt; die Spuleninduktivität L nimmt ab, und somit die Speicherfähigkeit für magnetische Energie.
  • Es ist bekannt, daß der Magnetisierungsbedarf kornorientierter Elektrobleche in Walzrichtung, der magnetischen Vorzugsrichtung, etwa nur 1/10 desjenigen Bedarfs beträgt, der erforderlich ist, um die Elektrobleche quer zur Walzrichtung zu magnetisieren. Kalt- und warmgewalzte, nicht kornorientierte Elektrobleche und Bänder haben etwa den gleichen Magnetisierungsbedarf wie kornorientierte Bleche quer zur Walzrichtung. In Walzrichtung kann also das kornorientierte Blech mit magnetischen Induktionen von 1,5 ... 1,7 T spezifisch belastet werden, ohne einen größeren Magnetisierungsbedarf zu benötigen als die herkömmlichen Elektrobleche.
  • Die Kernbleche herkömmlicher und handelsüblicher Art sind so bemessen, daß der Querschnitt des Rückflusses etwa gleich groß ist, wie der Querschnitt des Hauptflusses. Wird bei Anwendung dieser Art von Elektroblechen magnetisches Material mit ausgeprägter Vorzugsrichtung, z.B. kornorientiertes Blech mit der Vorzugsrichtung in Walzrichtung zur Anwendung gebracht, so kann zwar der den magnetischen Hauptfluß führende Teil des magnetischen Kreises entsprechend spezifisch hoch belastet werden, diejenigen Teile des Kernbleches, in denen der magnetische Fluß quer zur Walzrichtung getrieben werden muß, erfordern jedoch einen entsprechend hohen Magnetisierungsbedarf.
  • In Fig. 9 ist für ein handelsübliches kornorientiertes Blech gemäß DIN 40600 der Magnetisierungsbedarf H (A/cm) der spezifischen Materialbeanspruchung, der magnetischen Induktion B (T), zugeordnet. Die Kurve a) zeigt den Magnetisierungsbedarf in Walzrichtung, die Kurve b) quer zur Walzrichtung. Der Magnetisierungsbedarf und die Sättigungseigenschaften dieses Materials sowohl in Walzrichtung als auch quer zur Walzrichtung werden durch die Kurven a) und b) der relativen Permeabilität ur veranschaulicht: In Walzrichtung ist die relative Permeabilität etwa zehnmal größer als in Querrichtung.
  • In Fig. 10 zeigt die Kurve I die bekannte Scherung bei Übersättigung des magnetischen Kreises. In bekannt gewordenen Ausgestaltungen von Zündspulen mit Kernblechen der DIN-mäßigen Bemessung rührt die Scherung der Kennlinie I etwa bei der Induktion von 1,0 ... 1,2 T einzig und allein von dem erhöhten Magnetisierungsbedarf quer zur Walzrichtung der Teilstücke des magnetischen Kreises her. Die Anbringung eines Permanentmagneten im Luftspalt des magnetischen Kreises vermeidet diesen Nachteil der Ausscherung und somit der Speicherfähigkeit der Induktivität, weil durch die Gleichstromvormagnetisierung entgegen der Flußrichtung der Zündspule der Induktionshub bekanntlich vergrößert wird und die Speicherfähigkeit direkt quadratisch mit dem beaufschlagten Strom zunimmt.
  • Gemäß der erfindungsgemäßen Ausgestaltung der Kernbleche für Kernmaterialien mit magnetischer Vorzugsrichtung werden diejenigen Teilstükke des magnetischen Kreises, die quer zur Walzrichtung magnetisiert werden, bis höchstens derjenigen Induktion bemessen, die etwa der maximalen relativen Permeabilität entspricht. In Fig. 9 ist an einem Bemessungsbeispiel für das Kernblech aus der relativen Permeabilitätskurve b) bei der maximalen Permeabilität (Punkt A) eine spezifische Materialbeanspruchung von etwa 1,0 T zu entnehmen. Um den magnetischen Hauptfluß 0H durch diese Teilstücke quer zur Walzrichtung zu treiben, sind etwa 1,8 A/cm erforderlich (Punkt B). Bei dem erfindungsgemäßen Kernaufbau ist der gesamte magnetische Kreis hinsichtlich der Magnetisierung etwa dann ausgewogen, wenn für diejenigen Teile des magnetischen Kreises, die in Walzrichtung magnetisiert werden, bis etwa der gleiche Magnetisierungsbedarf für diese Teile aufgewendet wird. In diesem Ausführungsbeispiel für die Bemessung ist dies in der Magnetisierungskurve a) für das Blech in Walzrichtung etwa der Fall, wenn die magnetischen Teilstücke in Walzrichtung mit etwa der Induktion 1,7 T (Punkt C) spezifisch beansprucht werden. In den Ausführungsbeispielen gemäß Fig. 1 bis 6 sind die Teilstücke der Längs- und Quermagnetisierung etwa gleich lang.
  • Dies bedeutet in diesem Ausführungsbeispiel, daß, um den magnetischen Hauptfluß durch den gesamten Magnetkreis zu treiben, etwa gilt:
    Figure imgb0002
    Für die bisher bekannt gewordenen Kernmaterialien mit magnetischerVorzugsrichtung ergibt sich je nach Einsatz der Sorte für die Vergrößerung des Querschnitts in Querrichtung etwa der Faktor 1,5 ... 1,8. Versuche haben bestätigt, daß beispielsweise beim Einsatz der Sorte VM 111-35 gemäß DIN 40600 mit einer Vergrößerung des Joches bei einem EE-Blech auf das 1,7-fache des Querschnittes des Hauptflusses ein Optimum hinsichtlich der magnetischen Speicherfähigkeit erzielt worden ist.
  • Fig. 10 verdeutlich darüber hinaus die Erfindung. In diesem Diagramm ist in einem Ausführungsbeispiel bei gegebener Primärwicklung mit der Windungszahl wi und dem Eisenquerschnitt FEL der magnetische Fluß 0 in Abhängigkeit von der magnetischen Durchflutung, dem aufgeprägten Strom I dargestellt. In der Koordinate ist die Induktion B 1, also bezogen auf die spezifische Beanspruchung in Walzrichtung dargestellt; diese ist dem magnetischen Hauptfluß 0H direkt proportional. Die Kurve II gilt für ein Kernblech herkömmlicher Art, ohne Querschnittsverstärkung quer zur Walzrichtung. Zunächst steigt der Fluß 0 proportional mit dem beaufschlagen Strom I an, bis in den magnetischen Teilstücken mit der Magnetisierung quer zur Walzrichtung die Sättigung erreicht ist. Mit der weiteren Steigerung des Stromes nimmt der magnetische Fluß kaum noch zu; die Kennlinie ist stark gekrümmt. Gemäß der erfindungsgemäßen Ausgestaltung des magnetischen Kreises dagegen ergibt sich bei dem maximal zu beaufschlagenden Spulenstrom noch ein direkt proportionaler Zusammenhang, so daß die maximale magnetische Energie bei diesem Strom der Zündspule (Permanentmagnet) gespeichert werden kann.
  • Bei der erfindungsgemäßen Ausbildung und Aufbau des Kerns ist es möglich, unter Beibehaltung der gleichen Windungszahlund des gleichen Querschnitts FE in Walzrichtung lediglich mit etwas mehr Materialaufwand durch Verstärkung der Fläche quer zur Walzrichtung die gleichen Eigenschaften und Leistungsdaten der Zündspule zu erreichen wie bei einer Spule mit der Anbringung eines Permanentmagneten zur magnetischen Vorspannung.
  • Die erfindungsgemäße Ausbildung des Kerns hat also den Vorteil, daß mit geringfügig mehr Materialaufwand des magnetischen Kreises ein kostspieliger Permanentmagnet eingespart werden kann und darüber hinaus die Fertigung wesentlich vereinfacht wird, weil keine erhöhte Sorgfalt und Aufmerksamkeit dem richtigen Einbau und der richtigen Polarisierung des spröden Permanentmagneten gewidmet werden muß. Außerdem können derart bemessene Zündspulen mit praktisch halbem Leistungsgewicht gegenüber Stabzündspulen ohne Permanentmagnet auch kurzfristig thermisch bis über 150°C belastet werden, ohne die magnetischen Eigenschaften und somit die Leistungsdaten der Zündspule negativ zu beeinflussen.
  • Der erfindungsgemäße Aufbau des Kerns ist nicht nur für Zündspulen, sondern auch allgemein für magnetische Energiespeicher anwendbar, beispielsweise für Schaltnetzteile, Drosseln in Gleichstromteilern der Leistungselektronik etc..

Claims (11)

1. Hochleistungszündspule für Brennkraftmaschinen mit einem weichmagnetischen geschichteten Kern (1) aus kornorientiertem Blech und Luftspalt (A) und einer den Hauptkern (4) umgebenden Primär- und Sekundärwicklung (2, 3), bei der der von der Primärwicklung (2) erzeugte Hauptfluß (0H) im Hauptkem (4) in der Vorzugsrichtung des kornorientierten Bleches verläuft,
dadurch gekennzeichnet,
daß der Kern als Kern (1) vom Kerntyp mit aneinanderstoßenden Kernteilen und ohne Permanentmagnet im Luftspalt (A) geschichtet ist, und daß bei gleicher Kernschichthöhe (d) die Höhe (c) der quer zur Vorzugsrichtung magnetisierten Joche (6, 7) etwa das 1,5- bis 1,8- fache der Breite (a) des in der Vorzugsrichtung magnetisierten Hauptkerns (4) beträgt.
2. Hochleistungszündspule für Brennkraftmaschinen mit einem weichmagnetischen geschichteten Kern (8, 14) aus kornorientiertem Blech und Luftspalt (A) und einer den Hauptkern (4) umgebenden Primär- und Sekundärwicklung (2, 3), bei der der von der Primärwicklung (2) erzeugte Hauptfluß (0H) im Hauptkern (4) in der Vorzugsrichtung des kornorientierten Bleches verläuft,
dadurch gekennzeichnet,
daß der Kern als Kern (8, 14) vom Manteltyp mit aneinanderstoßenden Kernteilen und ohne Permanentmagnet im Luftspalt (Δ) geschichtet ist, und daß bei gleicher Kernschichthöhe (d) die Höhe (c/2) der quer zur Vorzugsrichtung magnetisierten Joche (9, 10) etwa das 0,75- bis 0,9-fache der Breite (a) des in der Vorzugsrichtung magnetisierten Hauptkerns (4) beträgt.
3. Hochleistungszündspule für Brennkraftmaschinen mit einem weichmagnetischen geschichteten Kern (13) aus kornorientiertem Blech und Luftspalt (A) und einer den Hauptkern (4) umgebenden Primär- und Sekundärwicklung (2, 3), bei der der von der Primärwicklung (2) erzeugte Hauptfluß (0H) im Hauptkern (4) in der Vorzugsrichtung des kornorientierten Bleches verläuft,
dadurch gekennzeichnet,
daß der Kern (13) aus EI-Blechen mit aneinanderstoßenden Kernteilen und ohne Permanentmagnet im Luftspalt (A) geschichtet ist, und daß bei gleicher Kernschichthöhe (d) die Höhe (c/2) des quer zur Vorzugsrichtung magnetisierten Jochs (10) etwa das 0,75- bis 0,9-fache und die Höhe (ai2) des in der Vorzugsrichtung magnetisierten I-förmigen Jochs (9) etwa das 0,5-fache der Breite (a) des in der Vorzugsrichtung magnetisierten Hauptkerns (4) beträgt.
4. Hochleistungszündspule nach Anspruch 1, 2 oder 3,
dadurch gekennzeichnet,
daß die Jochteile (6, 7, 9, 10) des Kerns (1, 8, 13, 14) quer zur Vorzugsrichtung des kornorientierten Bleches in der magnetischen Induktion entsprechend der zugeordneten größtmöglichen Permeabilität bemessen sind.
5. Hochleistungszündspule nach Anspruch 1,
dadurch gekennzeichnet,
daß die Höhe (c) der quer zur Vorzugsrichtung magnetisierten Joche (6, 7) das 1,7-fache der Breite (a) des Hauptkerns (4) beträgt.
6. Hochleistungszündspule nach Anspruch 2 oder 3,
dadurch gekennzeichnet,
daß die Höhe (c/2) der quer zur Vorzugsrichtung mag-netisiertenJoche (9, 10) das 0,85- fache der Breite (a) des Hauptkerns (4) beträgt.
7. Hochleistungszündspule nach Anspruh 1 oder 2,
dadurch gekennzeichnet,
daß der Luftspalt (A) im Hauptkern (4) mittig zur Primärwicklung (2) angeordnet ist.
8. Hochleistungszündspule nach Anspruch 1,
dadurch gekennzeichnet,
daß bei einem aus UU-Blechen geschichteten Kern (1) der Kern aus zwei gleichen U-Teilen besteht.
9. Hochleistungszündspule nach Anspruch 2,
dadurch gekennzeichnet,
daß bei einem aus EE-Blechen geschichteten Kern (8) der Kern aus zwei gleichen E-Teilen besteht.
10. Hochleistungszündspule nach Anspruch 2,
dadurch gekennzeichnet,
daß der Kern (14) aus UU-Blechen und einem in der Vorzugsrichtung magnetisierten I-förmigen Hauptkern (4) aufgebaut ist, der mit vier Keilflächen durch einen Schräggärungsschnitt an die UU-Bleche anschließt, und daß an wenigstens einer Stirnseite des Hauptkerns (4) symmetrisch der Luftspalt (A) angeordnet ist.
11. Hochleistungszündspule nach einem der vor
hergehenden Ansprüche,
dadurch gekennzeichnet, daß die Kernbleche nach dem Stanzen nachgeglüht sind.
EP85109620A 1984-08-03 1985-07-31 Hochleistungszündspule Expired - Lifetime EP0173100B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85109620T ATE64036T1 (de) 1984-08-03 1985-07-31 Hochleistungszuendspule.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3428763 1984-08-03
DE3428763A DE3428763C2 (de) 1984-08-03 1984-08-03 Hochleistungszündspule

Publications (4)

Publication Number Publication Date
EP0173100A2 EP0173100A2 (de) 1986-03-05
EP0173100A3 EP0173100A3 (en) 1987-06-03
EP0173100B1 true EP0173100B1 (de) 1991-05-29
EP0173100B2 EP0173100B2 (de) 1996-09-04

Family

ID=6242350

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85109620A Expired - Lifetime EP0173100B2 (de) 1984-08-03 1985-07-31 Hochleistungszündspule

Country Status (3)

Country Link
EP (1) EP0173100B2 (de)
AT (1) ATE64036T1 (de)
DE (2) DE3428763C2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2040409T3 (es) * 1988-07-28 1993-10-16 Nippondenso Co., Ltd. Bobina de ignicion.
WO1992017892A1 (en) * 1991-04-01 1992-10-15 Motorola Lighting, Inc. Inductor
DE19833190A1 (de) * 1998-07-23 2000-01-27 Bayerische Motoren Werke Ag Zündspule
DE102006044436C5 (de) * 2006-09-21 2020-07-30 Robert Bosch Gmbh Vorrichtung zur Energiespeicherung und Energietransformierung
EP3185254A1 (de) * 2015-12-22 2017-06-28 ABB Schweiz AG Magnetkern und transformator mit einem magnetkern

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB618114A (en) * 1945-10-22 1949-02-16 British Thomson Houston Co Ltd Improvements in and relating to magnetic cores
DE974598C (de) * 1951-04-19 1961-02-23 Siemens Ag Schichtkern fuer Transformatoren, Drosseln und aehnliche Geraete
FR66586E (fr) * 1954-06-16 1957-04-16 App Marchal Soc D Expl Const D Transformateur dit <<bobine>> d'allumage
CH342282A (de) * 1955-06-23 1959-11-15 Licentia Gmbh Aus Rechteckschnitten aufgebauter Kern für magnetische Kreise
DE1255990B (de) * 1959-03-13 1967-12-07 Max Baermann Zuendspule zum Erzeugen elektrischer Funken und Schaltung mit einer solchen Spule
DE1273084B (de) * 1960-02-27 1968-07-18 Vacuumschmelze Ges Mit Beschra Aus Stanzteilen mit magnetischer Vorzugsrichtung geschichteter Magnetkern
DE2057786A1 (de) * 1970-11-24 1972-05-31 Bernhard Philberth Zweiteiliger Kernblechschnitt fuer Transformatoren
JPS524939A (en) * 1975-07-02 1977-01-14 Hitachi Ltd Ignition coil
DE7924989U1 (de) * 1979-09-04 1980-11-13 Brown, Boveri & Cie Ag, 6800 Mannheim Magnetischer Energiespeicher
DE8230848U1 (de) * 1982-11-04 1984-04-12 Robert Bosch Gmbh, 7000 Stuttgart Zur zuendanlage einer brennkraftmaschine gehoerende zuendspule

Also Published As

Publication number Publication date
ATE64036T1 (de) 1991-06-15
DE3428763C2 (de) 1986-10-02
EP0173100A2 (de) 1986-03-05
DE3428763A1 (de) 1986-02-13
EP0173100A3 (en) 1987-06-03
DE3582981D1 (de) 1991-07-04
EP0173100B2 (de) 1996-09-04

Similar Documents

Publication Publication Date Title
DE68906607T2 (de) Zündspule.
DE69533505T2 (de) Gleichstromdrossel
DE2424131B2 (de) Drossel
DE60101943T2 (de) Induktives Bauteil mit einem Dauermagnet im Bereich eines Magnetspaltes
DE3305708A1 (de) Drehstromdrosselspule mit fuenfschenkelkern
EP0173100B1 (de) Hochleistungszündspule
DE3202600C2 (de)
EP0183015A1 (de) Strombegrenzungsvorrichtung
DE19953291A1 (de) Wickelzahn zur Aufnahme einer Wicklung für den Magnetkreis eines elektro-magneto-mechanischen Wandlers, Blechpaket sowie elektro-magneto-mechanischer Wandler
EP0127119A1 (de) Elektromagnetisches Gerät für mit Hochfrequenz betriebene Leistungsstromkreise, insbesondere Transformator oder Drosselspule
DE69425853T2 (de) Zündspule
DE1252952B (de) Magnetostriktiver Ultraschallwandler
DE9208380U1 (de) Magnetschienenbremse
DE2947670A1 (de) Elektromotor
DE2104117C (de) Kreisstromdrossel
WO2000067265A1 (de) Induktivitätsanordnung
DE3423160A1 (de) Steuerbare, spannung wandelnde elektrische maschine
DE3144840A1 (de) Streufeldspartransformator
CH353443A (de) Geschichteter Magnetkern
DE1050438B (de) Geschichteter Eisenkern fur elektrische Gerate insbesondere fur Transformatoren Drosseln u dgl
EP0279253A1 (de) Vorschaltgerät für Gasentladungslampen
DE3203843C2 (de) U-förmiger Magnetkern für einen Betätigungsmagneten
DE2333929C3 (de) Kernlose Drossel
DE2814933A1 (de) Streufeldtransformator
DE1061915B (de) Geschichteter Magnetkern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT SE

17P Request for examination filed

Effective date: 19871124

17Q First examination report despatched

Effective date: 19891010

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT SE

REF Corresponds to:

Ref document number: 64036

Country of ref document: AT

Date of ref document: 19910615

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3582981

Country of ref document: DE

Date of ref document: 19910704

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ROBERT BOSCH GMBH

Effective date: 19920227

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TSCHUK, ROBERT, ING.

EAL Se: european patent in force in sweden

Ref document number: 85109620.6

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19960904

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

ITF It: translation for a ep patent filed
APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ET3 Fr: translation filed ** decision concerning opposition
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19961211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990729

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000801

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010727

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010731

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010801

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

EUG Se: european patent has lapsed

Ref document number: 85109620.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040730

Year of fee payment: 20

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO