EP0156378B1 - Verfahren und Einrichtung zur Gasaufkohlung von Stahl - Google Patents

Verfahren und Einrichtung zur Gasaufkohlung von Stahl Download PDF

Info

Publication number
EP0156378B1
EP0156378B1 EP85103680A EP85103680A EP0156378B1 EP 0156378 B1 EP0156378 B1 EP 0156378B1 EP 85103680 A EP85103680 A EP 85103680A EP 85103680 A EP85103680 A EP 85103680A EP 0156378 B1 EP0156378 B1 EP 0156378B1
Authority
EP
European Patent Office
Prior art keywords
carbon
content
carburizing
gas
carbon content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85103680A
Other languages
English (en)
French (fr)
Other versions
EP0156378A2 (de
EP0156378A3 (en
Inventor
Joachim Dr.-Ing. Wünning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUENNING, JOACHIM, DR.-ING.
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT85103680T priority Critical patent/ATE45190T1/de
Publication of EP0156378A2 publication Critical patent/EP0156378A2/de
Publication of EP0156378A3 publication Critical patent/EP0156378A3/de
Application granted granted Critical
Publication of EP0156378B1 publication Critical patent/EP0156378B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Definitions

  • the invention relates to a method for gas carburizing steel according to the preamble of patent claim 1.
  • the process parameters "carbon potential” and "reaction rate” became more and more exacting. introduced on the surface.
  • the mathematical relationship and the other process values the C profile in the workpiece can therefore be calculated in advance, whereby the carburization of the edge area is based on the fact that the C potential of the gas atmosphere in the furnace chamber used for carburizing is regulated in such a way that that the desired target values are achieved. It is also known to use a computing unit to change the C potential during the carburization in order to avoid carbide formation at the edge of the workpiece in the shortest possible time (DE-PS-3 139 622).
  • the present invention is therefore based on the object of designing a method of this type such that atmospheres which are supersaturated with hydrocarbons can also be used for carburizing processes in such a way that unambiguous control and determination of the carbon profile at the edge of the workpieces is possible.
  • a device which, in a known manner, provides a carburizing furnace with at least one heatable chamber, with a sensor for detecting the chamber temperature, with a carburizing agent feed line in which a controllable control valve is arranged and with a sensor reaching into the chamber. which has at least one electrical measuring resistor exposed to the furnace atmosphere, as described, for example, in the journal Stahl und Eisen 80 (1960, number 26, pages 1952 to 1954).
  • the measuring resistor acts as a C-current sensor and is arranged in a sensor chamber which is connected to a supply line for a decarburization gas, and that in this supply line a shut-off valve which can be controlled as a function of the determined values is arranged.
  • This decarburization gas can be used in facilities with egg nem sensor, which has a comparison resistor around which a comparison gas flows for temperature compensation, at the same time be the comparison gas which is provided for the compensation comparison resistor.
  • the supply line containing the shut-off valve can branch off in a simple manner from the connecting line to the comparison resistor.
  • This shut-off valve contains its control pulses for opening and closing in a simple manner step by step from the computing unit, which thus tracks the carbon content of the measuring resistor to the carbon content at the edge of the workpiece to be carburized.
  • the time course of the C content of the sensor therefore corresponds to the carburizing process at the edge of the workpiece.
  • the carbon content of the sensor can be tracked in the opposite way, even as the carbon content in the atmosphere decreases, analogously to the type just described.
  • the decarburization phases are then replaced by carburization phases.
  • the new processes not only to carry out carburizing processes, but also, for example, processes for carbonitriding.
  • carburizing processes the known C potential control can also be used in the final phase to precisely adjust the edge C content on the workpieces.
  • the advantage of the new process is the higher carbon supply in the initial phase, but without the risk of over-carbonization.
  • the invention is illustrated in the drawing using two exemplary embodiments of devices for carrying out the new methods and is also explained below using an example.
  • a carburizing furnace 1 is provided with a circulating device formed by a blower 1 a, into which a workpiece batch 2 for carburizing with the surface A is inserted.
  • a temperature sensor 6, the measured values of which are fed to a computing unit 7, is also introduced into the furnace 1.
  • a controllable control valve 4 is inserted into the carbonant feed line 3 and can be actuated via an actuator 5, which receives its control impulses from the computer 7.
  • a C-current sensor 8 Also introduced into the furnace 1 is a C-current sensor 8, the sensor head 8a of which is connected to the computer 7, so that the values determined by the C-current sensor 8 can be evaluated by the computer 7.
  • this sensor head 8a is also connected to a supply line 9 for a decarburization gas which is supplied in the direction of arrow 9a.
  • a shut-off valve 10 is inserted, which can be opened or closed via an actuator 11 controlled by the computer 7.
  • the desired target variables Z and the value for the initial C content CK of the workpiece batch 2 are also entered into the computer 7.
  • the computer 7 is connected to a recorder 12 for the carbon profile C-X, which records the carbon profile in the workpiece as a function of the edge distance. This course is determined by the computer 7 in a known manner.
  • the C-current sensor 8 consists of a tube divided into two chambers 8b and 8c by the wall 13, which continue into the sensor head 8a.
  • the chamber 8b contains a measuring resistor 14, through which an electric current flows in a manner not shown in detail and which is connected via the connecting line 14a to an evaluation circuit arranged in the computer 7.
  • the chamber 8b is also connected to the supply line 9 for the decarburizing agent, in which the shut-off valve 10 is arranged.
  • the chamber 8a of the C-flow sensor 8 is connected via a connecting line 16 to the feed line 9 for the decarburizing agent, so that the chamber 8a is constantly acted upon with a certain amount of the decarburizing agent which is also used as reference gas in the exemplary embodiment.
  • furnace 1 is flushed with nitrogen.
  • the atmosphere in the furnace 1 is monitored by the C-current sensor 8 with the measuring resistor 14, which can consist, for example, of an iron wire with a diameter of 0.2 mm, the carbon content of which changes by 0.26% C / h when the C flow is 1 g / m 2 h, which results from the surface / volume ratio of the sensor 8.
  • the measuring resistor 14 can consist, for example, of an iron wire with a diameter of 0.2 mm, the carbon content of which changes by 0.26% C / h when the C flow is 1 g / m 2 h, which results from the surface / volume ratio of the sensor 8.
  • the carbon content C of the sensor is tracked by the decarburization cycles controlled by the computer 7 to the edge C content of the workpiece batch 2.
  • the C content of the sensor is continuously drawn out. This sawtooth-like line is designated 18.
  • the respective decarburization phases 19 are controlled by the computer 7.
  • the shut-off valve 10 - controlled by the computer - is opened and decarburizing agent flows briefly through the chamber 8b.
  • the mean value of the course of the C content on the sensor thus corresponds to the dashed line 20, which represents the course of the marginal C content on the workpiece 2, which is determined by the computer.
  • the proportional C current is determined from the value dC dt.
  • the carbonization gas supply in the direction of arrow 3a is terminated as soon as the sum of the carbon supplied corresponds to the predetermined target value of 35 g / m 2 . In the exemplary embodiment according to FIG. 4, this is achieved after four hours.
  • the mixture is then diffused with the addition of nitrogen until the computer 7 displays the predetermined edge C content, which is approximately 0.8%, as desired, after about five hours and 20 minutes according to FIG. 4. (See section 111 in Fig. 4).
  • the temperature is reduced to the hardening temperature, as can be seen from the diagram above with the temperature profile.
  • the batch report output by the computer 7 shows the carburizing process regulated by the C flow.
  • 5 shows the final carbon curve at the end of the process, which corresponds to the predetermined target values.
  • the edge distance in the workpiece is plotted on the abscissa in FIG. 5.
  • On the ordinate the C content.
  • the marginal carbon content CR is 0.180% C. With a carburizing depth of 1 mm, the C content is 0.35% C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Gasaufkohlung von Stahl nach dem Oberbegriff des Patentanspruchs 1.
  • Solche Gasaufkohlungsverfahren, wie sie der Einsatzhärtung von Stahlteilen vorausgehen, sind bekannt (Zeitschrift für wirtschaftliche Fertigung, Heft 9, September 1968, Seite 456 bis 464). Bei der Aufkohlung von Werkstücken aus Stahl wird dabei deren Randschicht mit Kohlenstoff angereichert. Für das Prozeßende wird ein bestimmter Kohlenstoffverlauf angestrebt, mit den Zielgrößen "Aufkohlungstiefe", "Rand- kohlenstoffgehalt" und "C-Verlauf am Rand". Dieser Vorgang kann aufgrund der Diffusionsgesetze berechnet werden (Zeitschrift Forsch. Ing. Wes. 13, 1942, S. 177), weil neben der Temperatur und der Zeit sogenannte Randbedingungen als Variable eingehen, mit denen das Kohlenstoffangebot an der Oberfläche definiert wird.
  • Während man in den Anfängen der Aufkohlungstechnik davon ausging, daß der Rand-C-Gehalt während der gesamten Prozeßdauer angenähert konstant bleibt und daß demnach die Aufkohlungstiefe mit der Wurzel aus der Zeit wächst, wurden mit zunehmenden Genauigkeitsansprüchen die Prozeßparameter "Kohlenstoffpotential" und "Reaktionsgeschwindigkeit" an der Oberfläche eingeführt. Abhängig von den jeweils gemessenen Werten, dem mathematischen Zusammenhang und den anderen Prozeßwerten kann daher der C-Verlauf im Werkstück vorausberechnet werden, wobei die Aufkohlung des Randbereiches darauf beruht, daß das C-Potential der Gasatmosphäre in der zur Aufkohlung verwendeten Ofenkammer so geregelt wird, daß die gewünschten Zielgrößen erreicht werden. Es ist zudem auch bekannt, mit Hilfe einer Recheneinheit das C-Potential während der Aufkohlung zu verändern, um mit geringstmöglichem Zeitaufwand Karbidbildung am Rand des Werkstückes zu vermeiden (DE-PS-3 139 622).
  • Diese Art der Regelung von Aufkohlungsprozessen läßt sich aber nur dann durchführen, wenn sogenannte Gleichgewichtsatmosphären vorliegen, weil nur dann das C-Potential definiert ist und auch gemessen werden kann. Mit Kohlenwasserstoffen übersättigte Atmosphären werden in der Regel wegen ihrer eingeschränkten Regelfähigkeit vermieden, obwohl sie, weil sie ein noch größeres Kohlenstoffangebot mit sich bringen, eine Rohstoff- und Energieersparnis bringen können.
  • Aus der DE-1 222 762 B 1 ist es bekannt, die Änderung des elektrischen Widerstandes eines Eisenfühlers als Maß für die Kohlenstoffaufnahme des Stahlteiles auszunutzen und in Abhängigkeit davon die Kohlungsgaszufuhr zu steuern. Geregelt wird dort, abhängig von der Messung, das Kohlenstoffabgabevermögen des Aufkohlungsgases, was relativ aufwendig ist. Dieses Verfahren bietet keine Möglichkeit, mit übersättigten Kohlenwasserstoffatmosphären zu arbeiten, ohne daß die Gefahr von Ruß- oder Karbidbildung auftritt.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren dieser Art so auszubilden, daß auch mit Kohlenwasserstoffen übersättigte Atmosphären für Aufkohlungsprozesse so eingesetzt werden können, daß eine eindeutige Steuerung und Bestimmung des Kohlenstoffverlaufes am Rand der Werkstücke möglich ist.
  • Zur Lösung dieser Aufgabe werden die kennzeichnenden Merkmale des Patentanspruchs 1 vorgesehen. Ein solches Verfahren läßt sich durchführen, obwohl die theoretisch für den Kohlenstoffstrom an der Oberfläche der Werkstücke bekannten Zusammenhänge nicht ohne weiteres in die Praxis umzusetzen sind, weil dieser C-Strom im Gegensatz zum C-Potential während des Aufkohlungsprozesses in komplizierter Weise verändert werden muß, wenn am Ende ein bestimmter Kohlenstoffverlauf vorliegen soll. Dies läßt sich aber, ebenso wie bei bekannten Verfahren, durch Rechner laufend oder in bestimmten kurzen Zeitabschnitten so bestimmen, daß die gewünschte Regelung möglich ist, wenn Werte für den C-Strom zur Verfügung gestellt werden, was in einfacher Weise über die zeitliche Änderung des elektrischen Widerstandes eines Eisenfühlers möglich wird.
  • Um hierbei keine Gefahr zu laufen, daß der Kohlenstoffgehalt des Fühlers dem Kohlenstoffgehalt am Rand des aufzukohlenden Werkstückes davonläuft, wird jeweils vorteilhaft dafür gesorgt, daß der mittlere Kohlenstoffgehalt des Eisenfühlers durch schrittweise kurz-zeitige Entkohlungsphasen dem für den Rand- kohlenstoffgehalt des Stahlteiles in bekannter Weise rechnerisch ermittelten Wert nachgeführt wird. Erreicht daher der vom C-Fühler ermittelte Wert den für den Randkohlenstoffgehalt am Werkstück angestrebten Wert, so muß die Zufuhr von Kohlungsgas so zurückgenommen werden, daß beispielsweise die schädliche Karbidbildung vermieden wird.
  • Zur Durchführung des neuen Verfahrens wird eine Einrichtung vorgesehen, die in bekannter Weise einen Aufkohlungsofen mit mindestens einer beheizbaren Kammer, mit Fühlers zum Erfassen der Kammertemperatur, mit einer Kohlungsmittelzuführleitung, in der ein steuerbares Regelventil angeordnet ist und mit einem in die Kammer hereinreichenden Fühler vorgesehen, der mindestens einen der Ofenatmosphäre ausgesetzten elektrischen Meßwiderstand aufweist, wie das beispielsweise in der Zeitschrift Stahl und Eisen 80 (1960, Heft 26, Seiten 1952 bis 1954) beschrieben ist. Bei einer solchen Einrichtung wird erfindungsgemäß jedoch vorgesehen, daß der Meßwiderstand als C-Strom-Fühler wirkt und in einer Fühlerkammer angeordnet ist, die an eine Zufuhrleitung für ein Entkohlungsgas angeschlossen ist, und daß in diese Zuführleitung ein in Abhängigkeit von den ermittelten Werten steuerbares Absperrventil angeordnet ist. Dieses Entkohlungsgas kann bei Einrichtungen mit einem Fühler, der einen von einem Vergleichsgas umströmten Vergleichswiderstand zur Temperaturkompensation aufweist, gleichzeitig das Vergleichsgas sein, das für den Kompensations-Vergleichswiderstand vorgesehen ist. Die das Absperrventil enthaltende Zuleitung kann dabei in einfacher Weise von der Anschlußleitung zum Vergleichswiderstand abzweigen. Dieses Absperrventil enthält seine Steuerimpulse zum Öffnen und Schließen in einfacher Weise schrittweise von der Recheneinheit, die damit den Kohlenstoffgehalt des Meßwiderstandes dem Kohlenstoffgehalt am Rand des aufzukohlenden Werkstücks nachführt. Der zeitliche Verlauf des C-Gehaltes des Meß-fühlers entspricht daher dem Aufkohlungsverlauf am Rand des Werkstückes.
  • Natürlich läßt sich der Kohlenstoffgehalt des Fühlers analog der eben beschriebenen Art in umgekehrter Weise auch bei absinkendem Kohlenstoffgehalt in der Atmosphäre nachführen. Die Entkohlungsphasen werden dann durch Aufkohlungsphasen ersetzt.
  • Natürlich ist es auch bei den neuen Verfahren möglich, nicht nur Aufkohlungsprozesse, sondern beispielsweise auch Verfahren zum Karbonitrieren durchzuführen. Bei Aufkohlungsprozessen kann in der Schlußphase zur genauen Einstellung des Rand-C-Gehaltes an den Werkstücken auch auf die bekannte C-Potential-Regelung umgeschaltet werden. Der Vorteil des neuen Verfahren ist das höhere Kohlenstoffangebot in der Anfangsphase, jedoch ohne die Gefahr der Überkohlung.
  • Die erfindung ist anhand von zwei Ausführungsbeispielen von Einrichtungen zur Durchführung der neuen Verfahren in der Zeichnung dargestellt und wird im folgenden auch anhand eines Beispiels erläutert.
  • Es zeigen:
    • Fig. 1 die schematische Darstellung einer erfindungsgemäßen Einrichtung zur Stahlaufkohlung, bei der ein C-Strom-Fühler zur Steuerung des Aufkohlungsvorganges eingesetzt ist,
    • Fig. 2 die schematische und vergrößerte Darstellung des C-Strom-Fühlers der Fig. 1,
    • Fig. 3 eine diagrammartige Darstellung, die den Verlauf des C-Gehaltes des Fühlers der Fig. 2 und dessen Steuerung in Abhängigkeit von der Zeit,
    • Fig. 4 Diagramme mit dem Verlauf der Temperatur, des Randkohlenstoffgehaltes, der Aufkohlungstiefe und des C-Stromes jeweils anhand eines auch beschriebenen Beispieles und über dem Zeitverlauf aufgetragen,
    • Fig. 5 die diagrammartige Darstellung des Kohlenstoffverlaufes bei Prozeßende in Abhängigkeit des Abstandes vom Rand.
  • In der Fig. 1 ist ein Aufkohlungsofen 1 mit einer durch ein Gebläse 1a gebildeten Umwälzeinrichtung vorgesehen, in den eine Werkstückcharge 2 zur Aufkohlung mit der Oberfläche A eingesetzt ist. In den Ofen mündet eine Kohlungsmittelzuführleitung 3, in die das Aufkohlungsgas in Richtung des Pfeiles 3a eingegeben wird. Aus dem Aufkohlungsofen 1, der in bekannter Weise mit einer wärmebeständigen Isolierwand versehen ist, heraus führt eine Abzugsleitung 1b, an der das in Richtung des Pfeiles 4 austretende Abgas abgefackelt wird. In den Ofen 1 hereingeführt ist auch ein Temperaturfühler 6, dessen Meßwerte einer Recheneinheit 7 zugeführt werden. In die Kohlungsmittelzuführleitung 3 ist ein steuerbares Regelventil 4 eingesetzt, das über ein Stellglied 5 betätigt werden kann, welches seine Steuerimpulse vom Rechner 7 erhält.
  • Ebenfalls in den Ofen 1 hereingeführt ist ein C-Strom-Fühler 8, dessen Fühlerkopf 8a mit dem Rechner 7 in Verbindung steht, so daß die vom C-Strom-Fühler 8 ermittelten Werte vom Rechner 7 ausgewertet werden können. Dieser Fühlerkopf 8a steht außerdem aber noch mit einer Zufuhrleitung 9 für ein Entkohlungsgas in Verbindung, das in Richtung des Pfeiles 9a zugeführt wird. In diese Zuführleitung 9 ist ein Absperrventil 10 eingesetzt, das über ein vom Rechner 7 gesteuertes Stellglied 11 geöffnet oder geschlossen werden kann. In den Rechner 7 werden außerdem die gewünschten Zielgrößen Z sowie der Wert für den Anfangs-C-Gehalt CKder Werkstückcharge 2 eingegeben. Der Rechner 7 steht mit einem Schreiber 12 für den Kohlenstoffverlauf C-X in Verbindung, welcher den Kohlenstoffverlauf im Werkstück in Abhängigkeit von Randabstand aufzeichnet. Dieser Verlauf wird vom Rechner 7 in bekannter Weise ermittelt.
  • Aus Fig. 2 wird deutlich, daß der C-Strom-Fühler 8 aus einem in zwei Kammern 8b und 8c durch die Wand 13 unterteilten Rohr besteht, die sich bis in den Fühlerkopf 8a fortsetzen. Die Kammer 8b enthält einen Meßwiderstand 14, der in nicht näher dargestellter Weise von einem elektrischen Strom durchflossen wird und über die Verbindungsleitung 14a mit einer im Rechner 7 angeordneten Auswertschaltung in Verbindung steht. Die Kammer 8b steht außerdem mit der Zuführleitung 9 für das Entkohlungsmittel in Verbindung, in der das Absperrventil 10 angeordnet ist.
  • Die Kammer 8a des C-Strom-Fühlers 8 steht über eine Anschlußleitung 16 mit der Zuführleitung 9 für das Entkohlungsmittel in Verbindung, so daß die Kammer 8a ständig mit einer gewissen Menge des beim Ausführungsbeispiel gleichzeitig als Vergleichsgas dienenden Entkohlungsmittel beaufschlagt ist.
  • Die Arbeitsweise der Einrichtung der Fig. 1 und 2 soll nun an einem Beispiel beschrieben werden.
  • In dem beispielsweise als Retortenofen ausgebildeten Aufkohlungsofen 1 wird die Charge 2 von Werkstücken aus Stahl mit einem Anfangs-C-Gehalt von 0,20 0/oC und einer Gesamtoberfläche A von 10 m2 bei 930°C aufgekohlt. Die Zielgrößen Z bei Prozeßende sind folgende:
    • Aufkohlungstiefe AT = 1 mm bei 0,35 %C;
    • Randkohlenstoffgehalt CR = 0,80 %C;
    C-Verlauf am Rand soll flach sein.
  • Diese Zielgrößen ergeben einen Kohlenstoffbedarf - errechnet - von 35 g/m2.
  • Aus wirtschaftlichen Gründen wird eine kurze Aufkohlungsdauer, d. h. ein hohes Kohlenstoffangebot angestrebt. Der Rand-C-Gehalt soll jedoch während der Aufkohlung 1,00 %C nicht überschreiten, um Carbidbildung zu vermeiden. Vor dem Ausfahren soll die Temperatur der Charge 2 auf die Härtetemperatur von 860° C abgesenkt werden.
  • Beim Aufheizen der Charge 2 wird der Ofen 1 mit Stickstoff gespült.
  • Ab 850°C wird etwas Methanol zur Bildung von CO und H2 sowie Erdgas CH4 als Kohlungsgas zugesetzt, was über die Kohlungsmittelzufuhrleitung 3 geschieht, und zwar in so hohem Anteil, daß eine C-Potentialmessung wegen Übersättigung nicht durchgeführt werden kann. In dem in der Fig. 4 gezeigten Abschnitt I ist der C-Strom begrenzt, um übermäßige Rußbildung im Ofen 1 zu vermeiden. Im Abschnitt II wird der C-Strom zurückgenommen, weil sonst der Rand-C-Gehalt über ein Prozent steigen würde.
  • Die Atmosphäre im Ofen 1 wird von dem C-Strom-Fühler 8 mit dem Meßwiderstand 14 überwacht, der beispielsweise aus einem Eisendraht mit einem Durchmesser von 0,2 mm bestehen kann, dessen Kohlenstoffgehalt sich um 0,26 %C/h verändert, wenn der C-Strom 1 g/m2h beträgt, was sich aus dem Oberflächen-/ Volumenverhältnis des Fühlers 8 ergibt.
  • Der Kohlenstoffgehalt C des Fühlers wird, wie Fig. 3 zu entnehmen ist, durch vom Rechner 7 gesteuerte Entkohlungszyklen dem Rand-C-Gehalt der Werkstückcharge 2 nachgeführt. In Fig. 3 ist der C-Gehalt des Fühlers durchgehend ausgezogen. Diese sägezahnartige Linie ist mit 18 bezeichnet. Die jeweiligen Entkohlungsphasen 19 werden vom Rechner 7 gesteuert. In diesem Fall wird das Absperrventil 10 - vom Rechner gesteuert - geöffnet und es fließt kurzzeitig Entkohlungsmittel durch die Kammer 8b.
  • Der Mittelwert des Verlaufes des C-Gehaltes am Fühler entspricht so der gestrichelt dargestellten Linie 20, welche den Verlauf des Rand-C-Gehaltes am Werkstück 2 darstellt, der vom Rechner ermittelt wird.
  • Es ist aus Fig. 3 auch zu erkennen, daß die Zeit tE für die Entkohlungsphasen nur sehr kurz ist. Sie reicht aber aus, um den Mittelwert des C-Gehaltes des Fühlers 8 dem Rand-C-Gehalt 20 nach zuführen.
  • Aus dem Wert dC dt wird der dazu proportionale C-Strom ermittelt.
  • Die Kohlungsgaszufuhr in Richtung des Pfeiles 3a wird abgebrochen, sobald die Summe des zugeführten Kohlenstoffes mit dem vorgegebenen Zielwert 35 g/m2 übereinstimmt. Dies ist im Ausführungsbeispiel gemäß Fig. 4 nach vier Stunden erreicht. Danach wird unter Stickstoffzufuhr diffundiert, bis der Rechner 7 den vorgegebenen Rand-C-Gehalt anzeigt, der etwa nach fünf Stunden und 20 Minuten gemäß Fig. 4 bei 0,8 %, wie gewünscht, liegt. (siehe in Fig. 4 Abschnitt 111). In der Diffusionsphase wird gleichzeitig auf Härtetemperatur abgesenkt, wie das aus dem oberen Diagramm mit dem Temperaturverlauf zu ersehen ist.
  • Das vom Rechner 7 ausgegebene Chargenprotokoll (Fig. 4) zeigt den über den C-Strom geregelten Aufkohlungsprozeß. Fig. 5 zeigt den endgültigen Kohlenstoffverlauf bei Prozeßende, der mit den vorgegebenen Zielgrößen übereinstimmt. Dabei ist in Fig. 5 auf der Abszisse der Randabstand im Werkstück aufgetragen. Auf der Ordinate der C-Gehalt. Der Rand- kohlenstoffgehalt CR beträgt 0,180 %C. Bei der Aufkohlungstiefe 1 mm beträgt der C-Gehalt 0,35 %C.

Claims (2)

1. Verfahren zur Gasaufkohlung von Stahl, bei dem das Stahlteil in einer kohlenstoffangereicherten Gasatmosphäre eines Ofens o.dgl. einem Diffusionsprozeß zur Bildung eines Randbereiches mit erhöhtem und abhängig vom Randabstand bestimmten Kohlenstoffgehalt ausgesetzt wird, bei dem in gewissen Zeitabständen die für den Diffusionsvorgang wichtigen Meßgrößen einschließlich der Temperatur ermittelt und als Steuergrößen für die Beeinflussung des Diffusionsvorganges verwendet werden und bei dem die Änderung des elektrischen Widerstandes eines Eisenfühlers (8) als Maß für die Kohlenstoffaufnahme des Stahlteiles dient und in Abhängigkeit davon die Kohlungsgaszufuhr gesteuert wird, dadurch gekennzeichnet, daß die Gasatmosphäre mit Kohlenstoff übersättigt wird und der mittlere Kohlenstoffgehalt des Eisenfühlers (8) durch schrittweise, kurzzeitige Entkohlungsphasen (19) dem für den Rand-Kohlenstoffgehalt (CR) des Stahlteiles ermittelten Wert (20) nachgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß alle Meßgrößen und Zielgrößen einer Recheneinheit (7) zugeführt werden, die hieraus und aus den für die Berechnung des Verlaufs des Randkohlenstoffgehaltes wichtigen und abgespeicherten Daten, wie Geometrie des Stahlteiles, Diffusionskoeffizient und Kern-C-Gehalt den zum jeweiligen Zeitpunkt vorliegenden Verlauf (20) des C-Gehaltes im Stahlteil berechnet und abhängig davon Signale zur Steuerung der Kohlengaszufuhr gibt.
EP85103680A 1984-03-29 1985-03-27 Verfahren und Einrichtung zur Gasaufkohlung von Stahl Expired EP0156378B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85103680T ATE45190T1 (de) 1984-03-29 1985-03-27 Verfahren und einrichtung zur gasaufkohlung von stahl.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3411605 1984-03-29
DE3411605A DE3411605C2 (de) 1984-03-29 1984-03-29 Verfahren und Einrichtung zur Gasaufkohlung von Stahl

Publications (3)

Publication Number Publication Date
EP0156378A2 EP0156378A2 (de) 1985-10-02
EP0156378A3 EP0156378A3 (en) 1986-03-26
EP0156378B1 true EP0156378B1 (de) 1989-08-02

Family

ID=6231980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85103680A Expired EP0156378B1 (de) 1984-03-29 1985-03-27 Verfahren und Einrichtung zur Gasaufkohlung von Stahl

Country Status (5)

Country Link
US (1) US4591132A (de)
EP (1) EP0156378B1 (de)
JP (1) JPS60228665A (de)
AT (1) ATE45190T1 (de)
DE (1) DE3411605C2 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535820B2 (ja) * 1986-02-15 1996-09-18 大同特殊鋼株式会社 金属材料の浸炭処理方法
DE3714283C1 (de) * 1987-04-29 1988-11-24 Ipsen Ind Internat Gmbh Verfahren zur Gasaufkohlung von Stahl
DE3826351A1 (de) * 1988-08-03 1990-02-08 Degussa Verfahren zur bestimmung des kohlungspotentials in gaskohlungsoefen und vorrichtung dazu
DE3904776A1 (de) * 1989-02-17 1990-08-23 Ver Schmiedewerke Gmbh Verfahren zur herstellung eines hochfesten und zaehen metallischen schichtverbundwerkstoffes
US5064620A (en) * 1989-06-01 1991-11-12 Pierre Beuret Probe for measuring carbon flux
US5324415A (en) * 1989-06-09 1994-06-28 Blumenthal Robert N Apparatus and systems for analyzing a sample of treatment atmosphere having a carbon potential
US4966348A (en) * 1989-06-30 1990-10-30 Lindberg Corp. Method and apparatus for monitoring atmosphere in furnaces
US5139584A (en) * 1989-07-13 1992-08-18 Solo Fours Industriels Sa Carburization process
JP3531736B2 (ja) 2001-01-19 2004-05-31 オリエンタルエンヂニアリング株式会社 浸炭方法及び浸炭装置
JP5428031B2 (ja) * 2001-06-05 2014-02-26 Dowaサーモテック株式会社 浸炭処理方法及びその装置
JP5428032B2 (ja) * 2001-06-05 2014-02-26 Dowaサーモテック株式会社 浸炭処理方法
DE10152204B4 (de) * 2001-10-23 2004-01-22 Schwäbische Härtetechnik Ulm GmbH Vorrichtung und Verfahren zum Messen und/oder Regeln der Aufkohlungsatmophäre in einer Vakuumaufkohlungsanlage
DE10235131A1 (de) * 2002-08-01 2004-02-19 Ipsen International Gmbh Verfahren und Vorrichtung zum Schwärzen von Bauteilen
US20080149226A1 (en) * 2006-12-26 2008-06-26 Karen Anne Connery Method of optimizing an oxygen free heat treating process
US20080149227A1 (en) * 2006-12-26 2008-06-26 Karen Anne Connery Method for oxygen free carburization in atmospheric pressure furnaces
US20080149225A1 (en) * 2006-12-26 2008-06-26 Karen Anne Connery Method for oxygen free carburization in atmospheric pressure furnaces
US9109277B2 (en) 2011-01-10 2015-08-18 Air Products And Chemicals, Inc. Method and apparatus for heat treating a metal
TW201418476A (zh) * 2012-11-01 2014-05-16 Metal Ind Res & Dev Ct 用於小型熱處理爐之爐氣產生裝置
CN111172492B (zh) * 2020-01-03 2021-01-19 燕山大学 一种用于齿轮表面渗碳的装置及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3139622C2 (de) * 1981-10-06 1989-12-14 Joachim Dr.-Ing. 7250 Leonberg Wünning Verfahren zur Gasaufkohlung von Stahl und Vorrichtung zu seiner Durchführung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980415A (en) * 1954-02-16 1961-04-18 Honeywell Regulator Co Apparatus for controlling case hardening action
DE1222762B (de) * 1957-07-19 1966-08-11 Bbc Brown Boveri & Cie Verfahren zur Regelung der Gasaufkohlung von Stahl und Eisen oder deren Legierungen
DE2152440C3 (de) * 1971-10-21 1979-04-12 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren und Anordnung zum rußfreien Aufkohlen von Stahl
LU71534A1 (de) * 1973-12-21 1975-06-17
US4108693A (en) * 1974-12-19 1978-08-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the heat-treatment of steel and for the control of said treatment
US4049473A (en) * 1976-03-11 1977-09-20 Airco, Inc. Methods for carburizing steel parts
DE3038078A1 (de) * 1980-10-08 1982-05-06 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zum aufkohlen metallischer werkstuecke
SU985144A1 (ru) * 1981-03-04 1982-12-30 Предприятие П/Я Р-6205 Способ измерени углеродного потенциала науглероживающей атмосферы

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3139622C2 (de) * 1981-10-06 1989-12-14 Joachim Dr.-Ing. 7250 Leonberg Wünning Verfahren zur Gasaufkohlung von Stahl und Vorrichtung zu seiner Durchführung

Also Published As

Publication number Publication date
US4591132A (en) 1986-05-27
ATE45190T1 (de) 1989-08-15
JPS60228665A (ja) 1985-11-13
DE3411605A1 (de) 1985-10-10
DE3411605C2 (de) 1986-07-17
EP0156378A2 (de) 1985-10-02
EP0156378A3 (en) 1986-03-26

Similar Documents

Publication Publication Date Title
EP0156378B1 (de) Verfahren und Einrichtung zur Gasaufkohlung von Stahl
DE2700264C2 (de) Verfahren zur Verbreiterung des Bereiches von Luft-Brennstoff-Verhältnissen bei Anwendung eines auf drei Arten wirksamen Katalysators zur Abgasnachverbrennung
DE2414982B2 (de)
EP0049530A1 (de) Verfahren und Vorrichtung zum Aufkohlen metallischer Werkstücke
DE2851494C2 (de)
DE69912698T2 (de) Verfahren für die Feuerverzinkung eines Metallbandes
DE2255759B2 (de) Verfahren zur Reduktion von zerkleinertem Erz zu Metall mittels eines reduzierenden Gases
EP0021208B1 (de) Anordnung zur Steuerung der Zusammensetzung der Atmosphäre eines Wärmebehandlungsofens
EP0080124A2 (de) Verfahren zum Einsatzhärten metallischer Werkstücke
DE3139622A1 (de) Verfahren zur gasaufkohlung von stahl
EP0655512B1 (de) Verfahren zur Herstellung einheitlicher Oxidationsschichten auf metallischen Werkstücken und Vorrichtung zur Durchführung des Verfahrens
DE3507527A1 (de) Verfahren und anlage zum aufkohlen eines werkstueckes aus stahl
EP0564437B1 (de) Verfahren zum Verzinken eines Bandes sowie Anlage zur Durchführung des Verfahrens
DE2152440C3 (de) Verfahren und Anordnung zum rußfreien Aufkohlen von Stahl
DE3347145C2 (de)
DE2802445B2 (de) Verfahren zur kontinuierlichen Herstellung eines Stahlbandes aus Stahlpulver
EP0571353A2 (de) Verfahren zum Verzinken eines Bandes sowie Anlage zur Durchführung des Verfahrens
DE2529484B2 (de) Verfahren und Vorrichtung zum epitaktischen Abscheiden von Silicium auf einem Substrat
EP0953654B1 (de) Verfahren und Anlage zum Gasaufkohlen
DD220340A1 (de) Verfahren zur kombinierten oberflaechenbehandlung metallischer werkstoffe
DE2141906B2 (de) Verfahren zur kontinuierlichen Herstellung von Metallbändern mit gleichmäßigen Festigkeitswerten durch Glühen in einem Durchlaufofen und anschließendes Recken
DE2734219A1 (de) Mess- und regelanordnung fuer eine nitrier-atmosphaere
DE3224607A1 (de) Verfahren zum einsatzhaerten und kohlungsneutralen gluehen metallischer werkstuecke
DE3725174A1 (de) Verfahren zum blank- und rekristallisationsgluehen
DE2315844B2 (de) Verfahren und vorrichtung zur herstellung von blaehton aus kohlenstoffhaltigen stoffen, insbes. aus schiefertonen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH FR GB IT LI SE

17P Request for examination filed

Effective date: 19860906

17Q First examination report despatched

Effective date: 19870916

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WUENNING, JOACHIM, DR.-ING.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890802

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890802

Ref country code: GB

Effective date: 19890802

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19890802

REF Corresponds to:

Ref document number: 45190

Country of ref document: AT

Date of ref document: 19890815

Kind code of ref document: T

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920225

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940603

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950331

Ref country code: CH

Effective date: 19950331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL