EP0125387B1 - Méthode et dispositif de signalisation de risque - Google Patents

Méthode et dispositif de signalisation de risque Download PDF

Info

Publication number
EP0125387B1
EP0125387B1 EP84101105A EP84101105A EP0125387B1 EP 0125387 B1 EP0125387 B1 EP 0125387B1 EP 84101105 A EP84101105 A EP 84101105A EP 84101105 A EP84101105 A EP 84101105A EP 0125387 B1 EP0125387 B1 EP 0125387B1
Authority
EP
European Patent Office
Prior art keywords
signal
danger
signals
interrogation
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84101105A
Other languages
German (de)
English (en)
Other versions
EP0125387A1 (fr
Inventor
Alan Paul Dr. Phil. Phys. Troup
Hannes Dr. Dipl. Phys. Guettinger
Gustav Dr. Sc. Nat. Phys. Pfister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Publication of EP0125387A1 publication Critical patent/EP0125387A1/fr
Application granted granted Critical
Publication of EP0125387B1 publication Critical patent/EP0125387B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/16Security signalling or alarm systems, e.g. redundant systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/004Alarm systems in which substations are interrogated in succession by a central station with common interrogation of substations
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/181Prevention or correction of operating errors due to failing power supply

Definitions

  • the invention relates to a method for signal transmission in a danger detection system with a signaling center and danger detectors arranged remotely therefrom, interrogation signals being sent from the signaling center, and after receiving the query signals from the danger detectors with a delay time characteristic of the individual danger detectors, corresponding to the state of the danger detectors be sent, which are received and evaluated by the signaling center.
  • the hazard detectors can react to the conditions to be expected and reported for the respective use and can have appropriate sensors that respond, for example, to a fire, smoke, flames or certain gases, or to a break-in or theft.
  • Such methods and devices are known, for example, from DE 25 33 330 and allow the origin of the response signal and the location of the danger detector to be determined and identified from the delay time of the response signals, and the presence and the degree of a dangerous situation, e.g. the smoke density.
  • the disadvantage here is that only the two parameters mentioned are available for signal transmission, and therefore further information desired in the signal center cannot be easily transmitted by the hazard detectors. The operational readiness and the correct functioning of the danger detectors cannot be determined in the signaling center in this way, and the device can deliver faulty signals or become inoperable without being noticed.
  • Difficulties of this kind can indeed be avoided by wirelessly transmitting the signal, e.g. by means of electromagnetic radiation, such as radio waves or infrared radiation, or by means of ultrasound.
  • the energy supply to the individual hazard detectors is generally provided by batteries provided in each hazard detector. To ensure the longest possible lifespan of these batteries and the long-term availability of such a hazard detection system of at least one year, the energy consumption of the hazard detectors must therefore be kept to a minimum, and it is essential to ensure the operating state of the battery and thus the functionality of the individual hazard detectors to continuously and automatically monitor in the signaling center, and to immediately locate and remedy a defect.
  • Previously known hazard detection systems were not able to do this, or only to a limited extent.
  • the invention sets itself the task of eliminating the disadvantages of the prior art mentioned, and in particular to provide a method and a device for hazard reporting that a fail-safe signal transmission with the lowest possible energy consumption of the hazard detector and with simultaneous monitoring of the function and operational readiness of the hazard detector guaranteed.
  • this object is achieved in that the danger detectors in the state of a danger send out a response signal after every n interrogation signal, where n is a predetermined integer, and that the danger detectors in the operational state without a danger being present, however, after every m.
  • Send a query signal a response signal, where m is an integer greater than n.
  • n 1, the hazard detectors sending out a response signal after each query signal, provided that there is a dangerous state, but without such a situation, first allowing several query signals to pass without an answer before an answer is given, e.g. only after every fifth interrogation signal, so that the danger detectors report the danger immediately and without delay in the state of danger, but in the normal state they are in the waiting state with the least possible energy consumption while protecting the battery as much as possible, but nevertheless the operating state is periodically monitored and reported at short intervals .
  • the danger detectors only decrease to every p when the operational readiness diminishes, for example as a result of decreasing battery voltage. Answer the interrogation signal, where p is greater than m, which means that the hazard detectors only respond in longer intervals. In this way, an impending inoperability of a hazard detector can be recognized in good time and the battery replaced, and also the battery when the battery voltage decreases be spared.
  • the evaluation can advantageously be carried out in the signaling center in such a way that from the incoming response signals for each hazard detector it is determined according to their individual time delay how many response signals have been received after a certain number q of query signals. With a number of at least x, i.e. when responding to almost every query signal, a danger is signaled, with a smaller number y the operational readiness.
  • the interrogation and response signals consist of oscillation or pulse packets with a specific frequency and duration. This not only improves the interference immunity of the transmission, it can also be used to transmit additional parameters, e.g. of the value of a parameter that characterizes the dangerous situation.
  • the invention can be applied to all known signal transmission methods, including, among other things, transmission using electrical lines or optical fibers.
  • Particular advantages for example a particularly simple installation, result, however, in the case of wireless transmission, for example by means of radio waves or ultrasound, and in particular in the case of transmission by means of infrared radiation.
  • the external interference that is common with radio waves and ultrasound can be avoided, and furthermore, when using infrared radiation, there are no official requirements that hinder the application.
  • the high bandwidth of the optical transmitters also makes it possible to provide a larger number of transmission channels than in other transmission methods, and to monitor a larger number of danger detectors, up to more than one hundred, from a single signaling center, and to a large extent in an interference-free and particularly simple manner, without Installation effort, and with automatic function monitoring of the entire system.
  • FIG. 1 shows the arrangement of a hazard detection system using the example of a device for monitoring a room R, for example a warehouse, a factory room or an open-plan office.
  • a signaling center S is located at a central point, for example on a longitudinal wall of room R.
  • Various types of danger detectors are distributed over room R according to the risks to be expected.
  • Fire detectors 11 22 ... F4 ' for example heat, smoke or flame detectors, are arranged at different points on the ceiling in such a way that their monitoring area encompasses the entire room.
  • Intrusion detectors 8 1 , B 2 are located at the inputs, which can be designed, for example, as light or infrared barriers, as door contacts or as vibration sensors.
  • Glass breakage detectors G 1 , G 2 are installed on the windows, and a movement detector U is located at the central point of the room, which can be designed, for example, as an infrared body radiation detector or as a Doppler effect ultrasound detector.
  • a day / night circuit can also be provided, in which certain danger detectors, for example the intrusion detectors B 1 ' B 2 and the movement detector U, can be switched off during the day, but all danger detectors are switched on during the night.
  • the individual dangerous fields are as low-power as possible and are powered by batteries.
  • All hazard detectors are connected to the signal center S by means of a specific signal transmission means. These can be electrical lines. In order to avoid a large installation effort, especially in the case of a large number of danger detectors which are to be monitored by the same signaling center, however, a wireless signal transmission is advantageously provided. It should be noted that the device must not be sensitive to external interference, as is often the case with ultrasound systems, or may itself interfere with the surroundings and other systems, such as most radio waves, and the effect must be limited to the actual protection area as far as possible and sufficient large number of transmission channels for a variety of hazard detectors must be available. The transmission medium for the special application must be selected accordingly. Although other transmission means are often quite usable, for applications with particularly unfavorable conditions, signal transmission by means of infrared radiation has proven to be particularly favorable for meeting all requirements.
  • the signal center S in the exemplary embodiment shown is therefore set up to periodically transmit interrogation signals in the form of infrared radiation to all hazard detectors at certain time intervals.
  • the individual hazard avoiders are either in the field of vision of the signal center and receive the query signals directly, or they are obtained by reflection on walls or special ones Reflectors, and emit response signals to the signaling center in accordance with the respective state of the hazard detector, also in the form of infrared radiation, which are evaluated in the signaling center for display and notification.
  • each hazard detector only emits its response signal with a certain delay time, which is characteristic of the hazard detector concerned, after the query signal arrives.
  • the individual response signals are therefore staggered in time with respect to the interrogation signals and follow one another at different time intervals between two interrogation signals, so that the origin of the response signal can be determined from the time difference between the interrogation and response signal in the signaling center and the corresponding hazard detector can be located.
  • the individual hazard detectors contain a specific sensor for the phenomenon to be monitored. This sensor now controls the transmission of the response signals in such a way that, in the normal case, when no dangerous state, i.e. no smoke or no movement is detected in the monitored room, the response signals are suppressed for a certain time or up to a certain number of query signals, or it is suppressed only after every m. Interrogation signal, for example after every fifth, a response signal is given.
  • the battery for the intrinsic voltage supply required for each hazard detector in the case of wireless signal transmission is therefore loaded as little as possible, and the hazard detectors allow a particularly long operating time without the battery having to be replaced.
  • signals are even rarer, for example only after every p.
  • Query signal are given, for example instead of after every fifth only after every tenth query signal.
  • This longer time interval of the response signals can be evaluated in the signaling center to signal an impending battery defect, so that the used battery can be replaced in good time.
  • a complete battery failure, a detector defect or a sabotage attempt can be determined by the fact that no more response signals are received by a danger detector in the signaling center.
  • FIG. 2 shows the time diagrams of the interrogation signals sent by the signaling center S and the response signals returned by four selected gun detectors F 1 ' B 1 , G t , U for an assumed dangerous situation, for example.
  • the signal center S periodically transmits interrogation signals at specific times t 0 , t 1 , t 2 ..., for example at time intervals ⁇ of approximately one second.
  • these consist of an oscillation or pulse packet with a frequency of approximately 30-100 kHz and a duration of approximately 1-10 msec, which between t within the time interval ⁇ t 0 provided for the interrogation signal 0 and t 01 of a total of 3 - 30 msec.
  • time periods t 01 -t 02 , t 02 ... are reserved for the time-graded response signals of the individual hazard detectors, and also have an analog time duration of 3 msec, with safety intervals t oo of approx. 1-10 msec duration between the time periods for the individual signals in order to avoid interference from different hazard detectors and to compensate for the inevitable tolerances of the components used.
  • approximately 250 channels can be created for the simultaneous monitoring of hazard detectors, the status of each hazard detector being able to be determined individually and independently of one another in the signaling center.
  • the following diagrams show the response signals for four selected hazard detectors that are in different states.
  • the first danger detector F t for example a fire detector, only emits a response signal with its own time delay after every fifth interrogation signal. This is interpreted in the signaling center in such a way that there is no dangerous condition, i.e. no fire.
  • the second hazard detector B1 for example an intrusion detector, only delivers a response signal after every tenth interrogation signal. This indicates that there is no danger, but that the battery of this hazard detector has deteriorated and must be replaced urgently.
  • the third hazard detector G l for example a glass break detector, does not provide a response signal at all, which means that this hazard detector is inoperable, for example due to component failure or sabotage.
  • the fourth hazard detector U for example a motion detector, gives a response signal after each interrogation signal. This shows that there is an alarm situation because there is a person moved smoothly in the monitored room. For some reason, individual response signals may not appear, for example at time t 3 in the diagram.
  • the evaluation in the signaling center expediently takes this into account and also delivers a danger signal if individual response signals should fail to appear.
  • Figure 3 shows an example of a possible circuit of a hazard detector.
  • the various components of the hazard detector are supplied with a DC voltage of approximately 9 V from a battery 1 via lines 2, 3.
  • a photo diode 4 for example of the Siemens BP 104 type with a maximum sensitivity at a wavelength of 950 nm, picks up the infrared radiation emitted by the signal center and passes it on to a decoding circuit 5, which emits a trigger signal at its output. if the incoming query signals are the correct form, ie Duration and frequency.
  • the trigger signal sets a time delay element 6 into operation, which delivers an output signal after a predetermined time.
  • the time delay can be adjustable and is different for each hazard detector.
  • the time-delayed output signal is fed to a digital counter 7, which outputs an output pulse after a predetermined and set number m of incoming trigger pulses, for example after every fifth pulse.
  • the digital counter 7 is bridged by an electronic switch 8, which is controlled by a sensor 9 so that it closes and bridges the counter 7 when the sensor 9 detects a dangerous situation, but is open in the normal state. In the event of danger, therefore, every trigger pulse is forwarded, but normally only every fifth pulse.
  • the senor is designed as an ionization smoke detector with two series, differently smoke-sensitive ionization chambers 10, 11, the voltage characteristic for the smoke density at the connection point of the two chambers being converted into a digital signal via a threshold switch 12, for example a MOS-FET , which controls the electronic switch 8.
  • the output pulses of the counter 7, or of the switch 8 arrive at the input of a driver circuit 13, which has its own battery, and which has a light-emitting diode 14, for example of the Siemens LD 271 type, with a radiation maximum at 950 nm, for sending out a response signal in the form of a pulse packet with a different pulse rate and possibly other than the request signal.
  • Optical focusing means 15 can be provided to align the radiation with the receiver in the signal center.
  • the time difference between the interrogation signal and the response signal depends on the delay time of the timing element 6.
  • a voltage sensor 16 can be provided, which switches the counter 7 from m to a higher value p, for example to ten, when the battery voltage drops below a predetermined value. This means that the relevant hazard detector responds with a reduced battery voltage to only every tenth instead of every fifth interrogation signal.
  • the senor 9 can have an additional analog output 17, from which the driver circuit 13 is additionally controlled, whereby, for example, the frequency or duration of the pulse packet of the output signal is changed, whereby the value of the smoke density, ie a measure of the magnitude of the danger, also signals becomes.
  • a clock generator 18 which periodically emits a control pulse at intervals of approximately 1 sec.
  • a driver circuit 19 causes one or more light-emitting diodes 20, which can also be of the type LD 271, to periodically transmit request signals in the form of pulse packets.
  • the pulse frequency must be sufficiently different from that of the response signals so that the detectors cannot influence each other by the response signals.
  • the radiation arriving from the danger detectors is picked up by a photodetector 21, which can also be of the type BP 104, and fed to a decoding circuit 22, which only transmits the signals if they have the intended shape or frequency.
  • the signals are fed to a series of parallel time gates 23, 24, 25, 26, which are simultaneously actuated by the clock generator 18, and only let a signal pass if it arrives within a certain time interval after a clock pulse. These time intervals are selected differently for the individual time gates, so that the individual intervals do not overlap, and a number of time-graded evaluation channels are created, of which only four are shown, but the number in practice is several hundred can. If a response signal arrives during the opening side interval of one of the time gates, it is forwarded by this to an assigned digital counter 27, 28, 29, 30. Another counter 31, controlled by the clock generator 18, supplies this digital counter 27 ... 30 after each q. Cycle, for example after every tenth cycle, a trigger signal that resets it.
  • the counter reading of the digital counter at the next reset pulse is individually displayed on a display panel 32 for the individual hazard detectors, as shown Example for four different detectors F 1 ' B 1' G 1 , U. If the number of registered response signals z is 9 or 10 within the evaluation time, a hazard signal r (red light) is triggered, with a counter reading between 4 and 8, operational readiness g (Green light) signals, if the number is between 1 and 3, low battery y (yellow light) is displayed, and if the signals are completely absent, fault indicator o (orange) is triggered.
  • circuits can be provided which automatically forward a hazard report to the police or fire service or trigger protective and control measures, the addressee being able to be selected according to the type of hazard detector addressed.
  • a complex installation for the signal lines can be saved. Instead of separate signal lines, it is also conceivable to use the mains lines to transmit the signals in the form of high-frequency pulse packets.
  • a sub-control center can be provided in each room, which monitors several hazard detectors, the individual sub-control centers being connected to a common signal control center which processes and displays the signals of the entire installation.
  • the signal center only needs to determine the presence of a pulse packet with a specific frequency and duration, but does not have to resolve individual bits.
  • the power of the driver circuits for the response signal transmitters can be reduced, or the range can be increased considerably while the power remains the same.
  • ranges of up to over 100 meters can be achieved, in the presence of strong solar radiation still at least about 20 meters without interference, and with a service life of at least one year when using C batteries in the driver circuits.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Alarm Systems (AREA)

Claims (10)

1. Procédé pour transmettre et traiter des signaux dans un système avertisseur de danger comportant un central (S) d'acheminement des signaux et des avertisseurs de danger (F1... B1..., G,... U) disposés à distance de ce céntral, et selon lequel des signaux d'interrogation sont émis par le central d'acheminement de signaux et des signaux de réponse, qui correspondent à l'état des transmetteurs de signaux et qui sont reçus et exploités par le central d'acheminement des signaux, sont émis, après réception des signaux d'interrogation par les avertisseurs de danger, avec un retard caractéristique pour les différents avartisseurs de danger, caractérisé par le fait que, dans le cas d'une condition de danger, les avertisseurs de danger émettent un signal de réponse après chaque n-ième signal d'interrogation, n étant un nombre entier prédéterminé, et que dans leur état'prêt à fonctionner les avertisseurs de danger émettent un signal de réponse seulement au bout de chaque m-ième signal dinterrogation, dans le cas de la présence d'un danger, m étant un nombre entier supérieur à n.
2. Procédé suivant la revendication 1, caractérise par le fait que, lorsqu'il quittent leur état prêt à fonctionner, les avertisseurs de danger émettent un signal de reponse uniquement après chaque p-ième signal d'interrogation, pétant un mombre entier supérieur à m.
3. Procédé suivant l'une des revendications 1 ou 2, caractérisé par le fait que n = 1, c'est-à-dire que les avertisseurs de danger émettent un signal de réponse, dans le cas d'un état de danger, après chaque signal d'interrogation.
4. Procédé suivant l'une des revendications 1 à 3, caractérisé parle fait que les signaux d'interrogation et les signaux de réponse sont constitués par des paquets d'oscillations ou d'impulsions possédant une fréquence et une durée déterminées.
5. Procédé suivant la revendication 4, caractérisé par le fait que la fréquence ou la durée des paquets de signaux de réponse dépend de la valeur d'une grandeur de mesure caractérisant le danger.
6. Procédé suivant l'une des revendications 1 à 5, caractérisé par le fait que le central d'acheminement des signaux évalue les signaux de réponse reçus de telle sorte qu'après l'émission de q signaux d'interrogation, un danger est signalé lorsque, pendant l'intervalle de temps correspondant aux q signaux d'interrogation, au moins x signaux de réponse arrivent en provenance d'un avertisseur de danger, et que l'état prêt à fonctionner est signalé lorsque, pendant le même intervalle de temps, au moins y, mais moins de x signaux de réponse arrivent en provenance d'un avertisseur de danger, q, x, y étant des nombres entiers et x étant supérieur à y.
7. Procédé suivant l'une des revendications 1 à 6, caractérisé par le fait que la transmission de signaux d'interrogation par le central d'acheminent des signaux en direction des avertisseurs de danger et la transmission des signaux de réponse par les avertisseurs de danger en direction du central d'acheminement des signaux s'effectue sans fil.
8. Procédé suivant la revendication 7, caractérisé par le fait que la transmission de signaux d'interrogation et des signaux de réponse s'effectue au moyen d'un rayonnement infrarouge.
9. Procédé suivant la revendication 8, caractérisé par le fait que la transmission des signaux de réponse par les avertisseurs de danger au central d'acheminement des signaux s'effectue à l'aide d'un rayonnement infrarouge focalisé par des moyens optiques de focalisation.
10. Dispositif pour la signalisation de danger, comportant un central (S) d'acheminement des signaux et des avertisseurs de danger (Fi, Bi, Gi, U) éloignés de ce central, et dans lequel le central d'acheminement des signaux comporte au moins un générateur de signaux (20) servant à envoyer des signaux d'interrogation, et dans lequel les avertisseurs de danger comportent un recepteur de signaux (4) servant à recevoir les signaux d'interrogation, un générateur de signaux (14) servant à envoyer des signaux de réponse, ainsi qu'un detecteur de danger (9) servant à influer sur les signaux de reponse, et un dispositif à retard (6) servant à retarder les signaux de réponse d'un retard caractéristique pour les différents avertisseurs de danger, après la réception d'un signal d'interrogation, et dans lequel le signal d'acheminement des signaux comporte un récepteur de signaux (21) servant à recevoir des signaux de réponse envoyés par les différents avertisseurs de danger, caractérisé par le fait que les avertisseurs de danger sont agencés de manière à émettre un signal de réponse, dans le cas d'un état de danger, après chaque n-ième signal d'interrogation reçu et, dans l'état prêt à fonctionner, sans la présence d'un danger, après chaque m-ième signal d'interrogation reçu, m et n étant des nombres entiers predéterminés et m étant supérieur à n, le central d'acheminement des signaux comportant un dispositif d'exploitation (27,28, 30) qui est agencé de manière à délivrer un signal de danger (r) lorsqu'au bout de q signaux d'interrogation émis, au moins x signaux de réponse sont reçus de la part d'un avertisseur de danger, et un signal (g) d'état prêt à fonctionner lorsqu'au moins y, mais moins de x signaux sont reçus, q, x, y étant des nombres entiers, q étant au moins égal à x, x étant supérieur à y et y étant égal au moins à 1.
EP84101105A 1983-04-29 1984-02-03 Méthode et dispositif de signalisation de risque Expired EP0125387B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2375/83 1983-04-29
CH237583 1983-04-29

Publications (2)

Publication Number Publication Date
EP0125387A1 EP0125387A1 (fr) 1984-11-21
EP0125387B1 true EP0125387B1 (fr) 1987-01-14

Family

ID=4232301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84101105A Expired EP0125387B1 (fr) 1983-04-29 1984-02-03 Méthode et dispositif de signalisation de risque

Country Status (8)

Country Link
US (1) US4551710A (fr)
EP (1) EP0125387B1 (fr)
JP (1) JPS59218595A (fr)
CA (1) CA1222554A (fr)
DE (1) DE3462075D1 (fr)
DK (1) DK107784A (fr)
NO (1) NO841529L (fr)
YU (1) YU68284A (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231201A (ja) * 1984-04-29 1985-11-16 Toshiba Corp センサ回路
US4717913A (en) * 1985-08-29 1988-01-05 Johnson Service Company Data telemetry system using diffused infrared light
EP0253156A1 (fr) * 1986-06-25 1988-01-20 Siemens Aktiengesellschaft Système de signalisation d'effraction
ATE102727T1 (de) * 1987-11-17 1994-03-15 Siemens Ag Kabelloses gefahrenmeldesystem.
US4969112A (en) * 1988-10-14 1990-11-06 Moore Industries-International, Inc. Wireless weighing system
DE4041825C2 (de) * 1990-12-24 1996-06-20 Diehl Gmbh & Co Alarmanlage
FR2671894A1 (fr) * 1991-01-18 1992-07-24 Gemplus Card Int Systeme de communication entre une borne et des mobiles.
GB9410412D0 (en) * 1994-05-23 1994-07-13 Aromascan Plc Sensor arrangement
GB0029293D0 (en) 2000-12-01 2001-01-17 Hewlett Packard Co Device inventory by sound
US6598454B2 (en) * 2001-07-30 2003-07-29 Bs&B Safety Systems, Inc. System and method for monitoring a pressurized system
WO2006038163A1 (fr) * 2004-10-01 2006-04-13 Nortel Networks Limited Segmentation et groupage dans un reseau de detection
JP2010231702A (ja) * 2009-03-30 2010-10-14 Brother Ind Ltd 無線タグ通信装置
US8760631B2 (en) * 2010-01-27 2014-06-24 Intersil Americas Inc. Distance sensing by IQ domain differentiation of time of flight (TOF) measurements
GB201110757D0 (en) * 2011-06-24 2011-08-10 Gassecure As Wireless sensor networks
CN112950892B (zh) * 2021-01-29 2024-02-09 深圳市晨北科技有限公司 报警处理方法、装置、设备及存储介质
GB2604049B (en) * 2021-02-19 2023-05-17 Pyronix Ltd Alarm system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2533330A1 (de) * 1975-07-25 1977-01-27 Siemens Ag Verfahren und einrichtung zur uebertragung von messwerten in einem brandmeldesystem

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508260A (en) * 1968-09-03 1970-04-21 Edward S Stein Transponder monitoring system
US3623003A (en) * 1970-03-03 1971-11-23 Gen Electric Subscriber-response unit
FR2279173A2 (fr) * 1974-07-16 1976-02-13 Liou Tchen San Rene Nouveau systeme de securite contre le vol
US4056815A (en) * 1976-02-03 1977-11-01 Westinghouse Electric Corporation Battery operated transmitter circuit
DE2802075C3 (de) * 1978-01-18 1980-11-13 Compur-Electronic Gmbh, 8000 Muenchen Verfahren zur Sicherung und Überwachung, insbesondere zur Personensicherung und -überwachung, sowie Anordnung zur Durchführung des Verfahrens
US4423410A (en) * 1978-10-16 1983-12-27 American District Telegraph Company Two-wire multi-zone alarm system
US4232308A (en) * 1979-06-21 1980-11-04 The Scott & Fetzer Company Wireless alarm system
GB2060965A (en) * 1979-09-25 1981-05-07 Standard Telephones Cables Ltd Portable alarm system
CA1171514A (fr) * 1980-08-29 1984-07-24 Ultrak, Inc. Systeme de securite sans fil
DE3037692A1 (de) * 1980-10-06 1982-05-13 Friedrich Merk-Telefonbau GmbH, 8000 München Batteriebetriebener gefahrenmelder
US4477809A (en) * 1982-06-18 1984-10-16 General Electric Company Method for random-access radio-frequency data communications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2533330A1 (de) * 1975-07-25 1977-01-27 Siemens Ag Verfahren und einrichtung zur uebertragung von messwerten in einem brandmeldesystem

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger

Also Published As

Publication number Publication date
CA1222554A (fr) 1987-06-02
DK107784D0 (da) 1984-02-27
DE3462075D1 (en) 1987-02-19
US4551710A (en) 1985-11-05
DK107784A (da) 1984-10-24
JPS59218595A (ja) 1984-12-08
NO841529L (no) 1984-10-24
EP0125387A1 (fr) 1984-11-21
YU68284A (en) 1987-10-31

Similar Documents

Publication Publication Date Title
EP0125387B1 (fr) Méthode et dispositif de signalisation de risque
EP0484880B1 (fr) Système radio d'alarme
DE60216536T2 (de) Kommunikationssystem für Gefahrenmelder
EP0111178B1 (fr) Dispositif de contrôle avec plusieurs détecteurs connectés, en forme de chaîne, à une ligne de signalisation
DE3415786C2 (fr)
DE19506385C1 (de) Drahtlose Gefahren-Meldeanlage und Meldeverfahren
DE3415766C2 (fr)
DE60116965T2 (de) Verbindbarer Detector mit lokaler Alarmanzeige
DE4243026C2 (de) Funkalarmanlage mit asynchroner Übermittlung von Meldungen über Zeitkanäle unterschiedlicher Periodendauern
EP0742539B1 (fr) Système radio d'alarme
EP0599192B1 (fr) Procédé pour la surveillance et le fonctionnement d'une liaison radio entre capteurs et unité centrale d'un système d'alarme
EP0316853B1 (fr) Système sans fil pour signaler des dangers
EP0770977A1 (fr) Procédé pour l'augmentation de la sécurité de transmission d'un dispositif d'alarme radio
DE19522113C1 (de) Anlage zum Überwachen und Alarmieren bei Störungen innerhalb eines überwachten Bereichs
DE3036029C2 (de) Schaltungsanordnung zur Überwachung einer Verbindungsleitung
EP2064685B1 (fr) Procédé et équipement pour l'identification d'un avertisseur de danger
DE3225032C2 (de) Verfahren und Einrichtung zur wahlweisen automatischen Abfrage der Melderkennung oder des Meldermeßwerts in einer Gefahrenmeldeanlage
EP0362797B2 (fr) Procédé pour un fonctionnement économique en énergie de détecteurs de danger dans un dispositif de détection de danger
DE4408268C2 (de) Verfahren zur Erhöhung der Störsicherheit einer Funkalarmanlage
EP0213383B1 (fr) Méthode et dispositif de surveillance du fonctionnement de détecteurs optiques de fumée
DE19944843B4 (de) Alarmsystem
DE4307244C2 (de) Gefahrenmeldesystem
EP0222682B1 (fr) Système de transmission de signaux pour un dispositif de protection à comparaison
EP0128357B1 (fr) Appareil pour l'inspection commandée à distance d'une ligne primaire de dispositifs d'annonce de danger ou dans des systèmes de transmission pour messages de danger
EP0098553B1 (fr) Procédé et dispositif pour la demande automatique des valeurs de mesure de signalisation et/ou de l'identificateur de signalisation dans une installation d'avertisseur d'alarme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840214

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 19860407

ITF It: translation for a ep patent filed

Owner name: VETTOR GALLETTI DI SAN CATALDO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 3462075

Country of ref document: DE

Date of ref document: 19870219

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920115

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920120

Year of fee payment: 9

Ref country code: DE

Payment date: 19920120

Year of fee payment: 9

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930228

Ref country code: CH

Effective date: 19930228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931029

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84101105.9

Effective date: 19930912