EP0316853B1 - Système sans fil pour signaler des dangers - Google Patents

Système sans fil pour signaler des dangers Download PDF

Info

Publication number
EP0316853B1
EP0316853B1 EP88118986A EP88118986A EP0316853B1 EP 0316853 B1 EP0316853 B1 EP 0316853B1 EP 88118986 A EP88118986 A EP 88118986A EP 88118986 A EP88118986 A EP 88118986A EP 0316853 B1 EP0316853 B1 EP 0316853B1
Authority
EP
European Patent Office
Prior art keywords
infra
pulse
red
infrared
control station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88118986A
Other languages
German (de)
English (en)
Other versions
EP0316853A1 (fr
Inventor
Friedrich Dr.-Ing. Schumacher
Walter Dipl.-Ing. Freter (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT88118986T priority Critical patent/ATE102727T1/de
Publication of EP0316853A1 publication Critical patent/EP0316853A1/fr
Application granted granted Critical
Publication of EP0316853B1 publication Critical patent/EP0316853B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B1/00Systems for signalling characterised solely by the form of transmission of the signal
    • G08B1/08Systems for signalling characterised solely by the form of transmission of the signal using electric transmission ; transformation of alarm signals to electrical signals from a different medium, e.g. transmission of an electric alarm signal upon detection of an audible alarm signal
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/02Monitoring continuously signalling or alarm systems
    • G08B29/06Monitoring of the line circuits, e.g. signalling of line faults

Definitions

  • the invention relates to a wireless hazard detection system.
  • a device for hazard reporting with individual detectors and a signaling center in one room is already known from European laid-open specification 0 125 387. There, the signal transmission between the individual detectors and the signaling center takes place alternately with the help of infrared radiation transmission.
  • the signal centers in the individual rooms can be connected to a common signal center.
  • the individual detectors are periodically requested by the signal center with an interrogation signal to transmit.
  • a microprocessor can be provided in the signal center for evaluating the received signals. The individual detectors respond after different time delays characteristic of the individual hazard detectors, from which the detector in question, ie its address, can be determined.
  • Such a hazard warning device has also been proposed in order to reduce or avoid the not inconsiderable installation outlay, in particular if a hazard alarm system has to be installed subsequently.
  • the individual detectors are therefore battery-powered and should therefore have low energy consumption.
  • the individual detectors are also disadvantageously equipped with an infrared receiver and are therefore constantly switched on and ready to receive and in this way nevertheless cause a not inconsiderable energy consumption.
  • the individual detectors and transmitters should be constantly monitored for their functionality.
  • the infrared transmission devices for one or more detectors have only one infrared transmitter, which sends data to the room control center with a relatively low expenditure of energy.
  • the emitting diodes of the individual infrared transmitters which are provided with simple optics, require a low transmission energy due to the orientation towards the central room.
  • the received data of the individual infrared transmitters are processed and processed in the room control center using a microprocessor system and transmitted via a network transmission device to a common building control center via the existing line network, which evaluates the corresponding messages and issues an alarm message in the event of a dangerous state.
  • the invention has a room control center with a plurality of infrared receivers, each of which is assigned an optical receiver with a very extreme beam bundling, ie a very small angle of incidence. This beam bundling can be less than two degrees, for example.
  • Each of these infrared receiving devices with the optics is aligned with a corresponding infrared transmitter.
  • This also has the advantage that, due to the exact alignment, a very low transmission energy is sufficient to receive a sufficiently strong transmission signal with a large signal-to-noise ratio.
  • this arrangement has the decisive advantage that with the extremely narrow beam bundling and exact alignment it is extremely difficult to deceive or disrupt the infrared receivers of the room control center with extraneous light or specifically during sabotage treatment.
  • the infrared transmitters regularly emit pulse telegrams with different pulse intervals, at least four different message states being able to be transmitted.
  • the respective state is determined from the different pulse intervals using a real-time measurement.
  • an evaluation program can be provided in the microprocessor system of the room control center, which program determines the corresponding state from the pulse intervals determined. If, for example, no pulses are received, the transmission is disturbed. If pulses are received at a certain predetermined distance, the transmission is OK and an idle state can be signaled continuously. If the impulses are transmitted with a different pulse interval, the transmission is also OK and the status is interpreted in the event of a danger message. If a lot of impulses occur, a foreign transmitter interference is recognized.
  • double pulses can be generated, both the spacing of the pulses between a double pulse and the different spacing of the pulse pairs being able to be used for the various status information. This further increases the security of transmission and the number of message states.
  • An expedient embodiment of the invention for reducing the power consumption of the individual transmitters is that, in the alarm state, a series of alarm pulses with a smaller pulse interval compared to the Ruheim pulses is emitted immediately and then automatically switched to an energy-saving continuous alarm pulse output, the pulse interval for the permanent alarm output in the area of the pulse interval for the Ruheim pulses, for example a slightly larger pulse interval.
  • This is particularly advantageous for intrusion detectors because certain areas, e.g. can be disarmed in the head office during the day.
  • Alarm messages which are triggered by the contacts of such monitoring devices lead to a status message and transmission for alarm, but are not forwarded to the control center as an official alarm for the duration of the disarming.
  • an alarm state is continuously transmitted from the relevant infrared transmitter via the associated room control center to the building control center, but is not reported there as an alarm because of the disarming. Since there is no information transfer from the room control center to the infrared transmitter for reasons of energy saving, the automatic switchover to the permanent alarm according to the invention ensures that the hazard detector concerned is monitored in a manner similar to the transmission of the idle state if no alarm is given, but the functionality of the hazard detector, the infrared transmitter, is Transmission route and the room control center is continuously checked.
  • the pulser IC can be controlled in each infrared transmitter in such a way that a high pulse sequence with, for example, 20 to 50 ms pulse interval is emitted.
  • this state can be output as analog DC voltage via a digital-to-analog converter and thus the tone frequency of a loudspeaker can be modulated, so that the respective optics can be aligned quickly and precisely on the basis of the pitch.
  • the room control center can be battery-backed, so that monitoring of dangerous conditions is ensured at all times even in the event of a power failure.
  • the building control center is equipped with a mains-independent power supply if necessary.
  • FIG. 1 shows schematically a wireless hazard detection system with directional infrared transmission.
  • RZ1 and RZ2 are connected bidirectionally to a building control center GZ.
  • the building control center can be a conventional danger control center which, as only indicated here, indicates faults ST and alarm AL, but which has a suitable network transmission for data exchange.
  • a network transmission NUB is shown in block diagram form in the room control center RZ1. It is controlled by the MPS microprocessor system.
  • Infrared receivers IRE1 to IRE8 are connected to the MPS microprocessor system.
  • the infrared receivers are each connected to an infrared transmitter IRS1 to IRS8, which is arranged in the same room, for example in the area of a window, via an infrared transmission link.
  • IRS1 to IRS8 which is arranged in the same room, for example in the area of a window, via an infrared transmission link.
  • the reception optics of the room control center are aligned with the transmission optics of the infrared transmitter.
  • FIG. 1 only two further infrared transmitters IRS2 and IRS3 are indicated.
  • two danger detectors GM and a door contact TK are connected to the infrared transmitter IRS2.
  • a motion detector BM is connected to the third infrared transmitter IRS3 as a hazard detector GM.
  • the infrared transmitter IRS1 has, for example, two hazard detectors, a window contact FK and a glass break detector GBM.
  • a battery-powered (BAT) pulse generator IC (PIC) which is explained in more detail in principle with reference to FIG. 3, feeds an LED transmitter, which can have, for example, two transmitter diodes SD, which are not shown here.
  • the wireless hazard detection system allows the various intrusion signal sources within a room to be wirelessly connected to the room control center.
  • not only eight but also sixteen infrared transmitters can be connected to a room control center. All infrared transmitters transmit the status information pending at their hazard detectors, for example alarm contacts, to the room control center, which receives these signals from the individual infrared transmitters.
  • Each infrared transmitter has a battery-operated, free-running, quartz-controlled transmitter that emits periodic patterns of pulses.
  • the individual pulse can be formed by a very short, for example 1.5 ⁇ s long, but have a high pulse current, for example up to 2 amps.
  • the infrared transmitter can, for example, regularly send an impulse described above at intervals of 250 ms.
  • This pulse sequence is received in the room control center and interpreted as the idle state of the detector, so that a wire connection is present in accordance with a closed-circuit current monitoring.
  • the pulses received in the room control center RZ via the individual infrared receivers IRE1 to IRE8 are processed by means of an MPS microprocessor system.
  • a computational evaluation is provided.
  • the real-time measurement of the pulse intervals is carried out, for example, using a 24-bit synchronous counter, which is counted up by a 2 MHz quartz oscillator.
  • the connected computer ie the MPS microprocessor system, reads the data from the buffer memory and uses an evaluation program to find the respective status information of the infrared transmitters or the danger detectors connected to them from the pulse intervals determined. At least four status information are provided for each transmission channel: No pulses means that the transmission is disturbed (STu). Pulses with a defined interval for rest (RUP), for example 10 seconds, means that the transmission is OK and the connected hazard detectors are at rest.
  • URP defined interval for rest
  • impulses arrive at a much shorter pulse interval (ALP), for example at a distance of 250 ms, this means that the transmission is OK, but a hazard detector has responded and an alarm message is therefore available.
  • ALP pulse interval
  • STf third-party transmitter
  • the pulse generator IC PIC is formed by a synchronization and changeover logic SUL, a changeover switch UMS, several dividers (EIT, TL, VOT) and a pseudo random generator ZGE.
  • the synchronization and switchover logic SUL for example, has four GMEG hazard detection inputs: a glass break detector input GBM with an associated reset input RGBM and three contact inputs, for example window contacts FK.
  • the synchronization and switchover logic SUL has a set input SEE for setting up the optics and for setting the pseudo additional sequence.
  • a very high pulse sequence ARP is generated via this set input SEE.
  • CGU The pulse is generated, for example, with a simple clock quartz UQ and a downstream prescaler VOT, which, for example, divides the vibrations of 32 kHz down to a ratio of 32: 1, so that a 1 ms cycle arises, which on the one hand is based on an adjustable divider EIT and on the other hand on the random number generator CGU arrives.
  • the random number generator ZGE can be controlled via a reset input R by the synchronization and switching logic component SUL.
  • the clock pulses generated are, on the one hand, via the adjustable divider EIT, which is also controlled by the synchronization and switchover logic SUL, and via a further divider TL and one from the synchronization and switching logic-controlled switching device UNS via a pulse driver PTR.
  • the Ruheim pulses RUP which are emitted at a pulse interval of, for example, 10 seconds, are obtained from the pulses, which are divided down again via the divider TL, and reach the transmitter diode SD via the changeover switch UMS on the normally closed contact RU.
  • the pulses present at the output of the adjustable divider EIT which for example have a spacing of 250 ms, are given to the transmitter diode SD via the switch contact AL of the switch UMS.
  • the pseudo pulses PS which can have a pulse interval of approximately 70 sec., Pass from the random generator ZGE via the changeover contact SS to the transmitter diode SD.
  • the basic circuit diagram illustrates the mode of operation of the hazard detection system according to the invention, the necessary switching elements in the pulse generator IC PIC being implemented in the infrared transmitter IRS.
  • FIG. 3 shows time diagrams of the infrared transmission pulses. Three different pulse telegrams are shown in the first diagram and the pulse sequence in the event of an alarm in the pulse telegram shown below.
  • a high pulse sequence ARP with, for example, a pulse interval of 20 ms is generated, which is controlled for the alignment via the set input (SEE to SUL) in the infrared transmitter.
  • SEE to SUL set input
  • Clubimpulse RUP with a pulse interval of 10 sec. are regularly transmitted from the infrared transmitters to the room control center.
  • pseudo pulses PS are also initiated via the set input (SEE) in the synchronization and switching logic (SUL) according to FIG. 2, which may have a pulse interval of approximately 70 seconds, for example.
  • SEE set input
  • SUL synchronization and switching logic
  • an alarm pulse delivery ALP is generated immediately, which has a pulse interval of, for example, 250 ms. Has. This pulse is emitted, for example, sixteen times, then - as already explained - an alarm message is automatically switched over to save electricity, so that the alarm pulse is given as a permanent alarm DALP with a significantly larger pulse interval, which may be, for example, close to the usual home pulse intervals.
  • a pulse interval of 9 seconds is provided here, for example.
  • a larger pulse interval can also be selected, for example 12 seconds, which is then greater than the interval for Ruheim pulses.
  • an average power consumption of less than 3 ⁇ A is achieved, so that a capacity for five years can be guaranteed with the long-term batteries provided there. Therefore, such a battery capacity design is certainly sufficient for such alarm systems, so that additional monitoring of the capacity of the battery is not necessary.
  • One too early decrease in battery capacity would in any case be reported as a fault if the specified pulse sequences no longer arrive at the room control center and can be interpreted accordingly by the evaluation there.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Alarm Systems (AREA)
  • Burglar Alarm Systems (AREA)
  • Emergency Alarm Devices (AREA)

Claims (8)

  1. Système de signalisation de danger sans fil, constitué par un central (RZ) disposé dans une pièce et un central (GZ) du bâtiment, qui est raccordé au central situé dans la pièce par l'intermédiaire de lignes existantes (NL) du réseau, et par plusieurs dispositifs de transmission à infrarouge, auxquels est raccordé respectivement au moins un transmetteur de danger (G1), et qui sont raccordés à un dispositif de transmission à infrarouge situé dans le central (RZ) placé dans la pièce, et dans lequel chaque dispositif de transmission à infrarouge pour un transmetteur comportant un émetteur à infrarouge (IRS) alimenté par pile comporte un circuit intégré formant générateur d'impulsions piloté par quartz (PIC), auquel sont raccordés plusieurs transmetteurs ou capteurs de danger (GM),
    chaque émetteur à infrarouge possède plusieurs diodes émissives (SD) comportant un système optique respectif d'émission, qui est aligné sur le central (RZ) situé dans la pièce,
    le central (RZ) situé dans la pièce possède plusieurs récepteurs à infrarouge (IRE), auxquels est associé respectivement un système optique de réception possédant un angle d'incidence extrêmement faible,
    respectivement un récepteur à infrarouge (IRE) est orienté sur un émetteur à infrarouge (IRS), et
    le central (RZ) situé dans l'espace comporte un système à microprocesseur (MPS), qui traite les données de réception et les prépare pour la transmission par le réseau en direction du central (GB) du bâtiment, par l'intermédiaire d'un dispositif associé de transmission (NUB) du réseau.
  2. Système de signalisation de danger sans fil suivant la revendication 1, caractérisé par le fait que les émetteurs à infrarouge (IRS) émettent régulièrement des télégrammes d'impulsions (RUP, PS, ALP, DALP), modulés par une modulation en intervalle des impulsions, au moins quatre informations d'état différentes (RU, AL, ST, STt) étant transmises, et que les états correspondants sont déterminés dans le central (RZ) situé dans la pièce, par une mesure en temps réel.
  3. Système de signalisation de danger sans fil suivant la revendication 2, caractérisé par le fait que des impulsions doubles sont produites, les différentes informations d'état dépendant d'intervalles différents entre les impulsions de l'impulsion double et des intervalles différents entre les couples d'impulsions.
  4. Système de signalisation de danger sans fil suivant la revendication 2 ou 3, caractérisé par le fait que des impulsions supplémentaires (PS) produites de façon aléatoire (ZGE) sont transmises, en dehors des intervalles entre impulsions pour les signalisations d'état pour réaliser une protection vis-à-vis d'un sabotage (SS), l'arrivée correcte dans le temps de l'impulsion supplémentaire (PS) étant identifiée dans le central (RZ) situé dans la pièce.
  5. Système de signalisation de danger sans fil suivant la revendication 2 ou 3, caractérisé par le fait que l'état d'alarme (AL) est commuté automatiquement sur une alarme continue (DALP) réalisant une économie de courant, après délivrance d'une série d'impulsions d'alarme (ALP) avec un faible intervalle entre impulsions par rapport à des impulsions de repos, l'intervalle entre impulsions pour l'alarme permanente (DALP) se situant au voisinage de l'intervalle entre les impulsions de repos.
  6. Système de signalisation de danger sans fil suivant l'une des revendications précédentes, caractérisé par le fait qu'une suite (ARP) d'impulsions séparées par un très faible intervalle peut être produite (SEA) pour l'alignement de la liaison à infrarouge dans l'émetteur à infrarouge (IRS).
  7. Système de signalisation de danger sans fil suivant l'une des revendications précédentes, caractérisé par le fait que le central (GZ) du bâtiment est raccordé selon un mode bidirectionnel au central (RZ) de la pièce et synchronise l'ensemble du système de signalisation.
  8. Système de signalisation de danger sans fil suivant l'une des revendications précédentes, caractérisé par le fait que le central (RZ) de la pièce est alimenté transitoirement par une pile.
EP88118986A 1987-11-17 1988-11-14 Système sans fil pour signaler des dangers Expired - Lifetime EP0316853B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88118986T ATE102727T1 (de) 1987-11-17 1988-11-14 Kabelloses gefahrenmeldesystem.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3739042 1987-11-17
DE3739042 1987-11-17

Publications (2)

Publication Number Publication Date
EP0316853A1 EP0316853A1 (fr) 1989-05-24
EP0316853B1 true EP0316853B1 (fr) 1994-03-09

Family

ID=6340695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88118986A Expired - Lifetime EP0316853B1 (fr) 1987-11-17 1988-11-14 Système sans fil pour signaler des dangers

Country Status (3)

Country Link
EP (1) EP0316853B1 (fr)
AT (1) ATE102727T1 (fr)
DE (1) DE3888291D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006021597A1 (de) * 2006-05-09 2007-11-22 Siemens Ag Vorrichtung und System zum Erkennen einer Beeinträchtigung eines Netzelementes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59010587D1 (de) * 1990-09-27 1997-01-09 Siemens Ag Fernsteuersystem für Grossräume
DE4243026C2 (de) * 1992-12-18 1994-10-13 Grundig Emv Funkalarmanlage mit asynchroner Übermittlung von Meldungen über Zeitkanäle unterschiedlicher Periodendauern
DE4242973C2 (de) * 1992-12-18 1995-01-05 Grundig Emv Funkalarmanlage mit einer Vielzahl von nach dem Code-Multiplexverfahren gebildeten Nachrichtenkanälen
DE4307244C2 (de) * 1993-03-08 1995-01-19 Siemens Ag Gefahrenmeldesystem
EP0911775B1 (fr) * 1997-09-30 2003-12-10 Siemens Aktiengesellschaft Procédé de transmission radio dans un système de signalisation d'alarmes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125387B1 (fr) * 1983-04-29 1987-01-14 Cerberus Ag Méthode et dispositif de signalisation de risque
FR2578993B1 (fr) * 1985-03-15 1988-05-13 Loire Electronique Procede pour assurer la surveillance de personnes et/ou de biens et systeme pour la mise en oeuvre de ce procede
FR2588682B1 (fr) * 1985-10-16 1988-08-26 Gurba Jean Luc Dispositif d'alarme comprenant au moins un capteur

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006021597A1 (de) * 2006-05-09 2007-11-22 Siemens Ag Vorrichtung und System zum Erkennen einer Beeinträchtigung eines Netzelementes

Also Published As

Publication number Publication date
DE3888291D1 (de) 1994-04-14
EP0316853A1 (fr) 1989-05-24
ATE102727T1 (de) 1994-03-15

Similar Documents

Publication Publication Date Title
EP1206765B1 (fr) Procede et dispositif d'affectation automatique d'adresses de detecteurs dans un systeme avertisseur de danger
DE102016217163B4 (de) Weckmechanismus mit geringer Leistungsaufnahme für drahtlose Vorrichtungen
DE4344172C2 (de) Verfahren und Anordnung zur Synchronisierung der Außeneinheiten einer Funkalarmanlage mit der Zentraleinheit
DE2165754C3 (de) Anlage zur Abgabe einer Anzeige eines von mehreren Alarmzuständen in einer von mehreren Außenstationen an eine Überwachungsstation
DE19506385C2 (de) Drahtlose Gefahren-Meldeanlage und Meldeverfahren
EP0125387B1 (fr) Méthode et dispositif de signalisation de risque
DE3530646A1 (de) Flaechensicherung
EP0248298A1 (fr) Dispositif détecteur de danger
EP0316853B1 (fr) Système sans fil pour signaler des dangers
CH660926A5 (de) Ueberwachungsanlage.
EP0833288A2 (fr) Procédé pour la transmission radioélectrique de données des capteurs et système d'alarme radio
DE19539312A1 (de) Verfahren zur Erhöhung der Übertragungssicherheit bei Funkalarmanlagen
DE2923732C2 (de) Anordnung zur Alarmgabe bei unbefugtem Eindringen in einen geschützten Bereich
DE3614692C2 (fr)
EP0098554B1 (fr) Procédé et dispositif pour la demande automatique des valeurs de mesure de signalisation et de l'identificateur de signalisation dans une installation d'avertisseur d'alarme
DE4237311C1 (de) Aus einem Sender und einem Empfänger bestehende Einrichtung zum Erfassen von Gegenständen
EP0492427A2 (fr) Circuit économiseur de batterie pour système d'alarme
EP0098553B1 (fr) Procédé et dispositif pour la demande automatique des valeurs de mesure de signalisation et/ou de l'identificateur de signalisation dans une installation d'avertisseur d'alarme
DE2452864B2 (de) Objektueberwachungsanlage
DE3806993C2 (fr)
DE2245928A1 (de) Verfahren und einrichtung zur zentralen erfassung von ausgeloesten detektoren
EP0121102B1 (fr) Dispositif pour la commutation d'avertisseurs individuels à l'opération de contrôle dans des installations de signalisation de danger
DE3225032A1 (de) Verfahren und einrichtung zur wahlweisen automatischen abfrage der melderkennung und des meldermesswerts in einer gefahrenmeldeanlage
DE4333563C1 (de) Drahtlose Datenübertragungsvorrichtung
DE19539989C1 (de) Alarmanlage mit erhöhter Störsicherheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19891108

17Q First examination report despatched

Effective date: 19920204

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 102727

Country of ref document: AT

Date of ref document: 19940315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3888291

Country of ref document: DE

Date of ref document: 19940414

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940516

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 88118986.4

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951019

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951025

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19951101

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19951116

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951117

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951123

Year of fee payment: 8

Ref country code: FR

Payment date: 19951123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960119

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961114

Ref country code: GB

Effective date: 19961114

Ref country code: AT

Effective date: 19961114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19961130

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19961130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970801

EUG Se: european patent has lapsed

Ref document number: 88118986.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051114