EP0213383B1 - Méthode et dispositif de surveillance du fonctionnement de détecteurs optiques de fumée - Google Patents

Méthode et dispositif de surveillance du fonctionnement de détecteurs optiques de fumée Download PDF

Info

Publication number
EP0213383B1
EP0213383B1 EP86110310A EP86110310A EP0213383B1 EP 0213383 B1 EP0213383 B1 EP 0213383B1 EP 86110310 A EP86110310 A EP 86110310A EP 86110310 A EP86110310 A EP 86110310A EP 0213383 B1 EP0213383 B1 EP 0213383B1
Authority
EP
European Patent Office
Prior art keywords
optical
signal
detectors
control instruction
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86110310A
Other languages
German (de)
English (en)
Other versions
EP0213383A1 (fr
Inventor
Peer Dr.-Ing. Thilo
Karsten Dipl.-Ing. Poulsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT86110310T priority Critical patent/ATE52632T1/de
Publication of EP0213383A1 publication Critical patent/EP0213383A1/fr
Application granted granted Critical
Publication of EP0213383B1 publication Critical patent/EP0213383B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/005Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/14Checking intermittently signalling or alarm systems checking the detection circuits
    • G08B29/145Checking intermittently signalling or alarm systems checking the detection circuits of fire detection circuits

Definitions

  • the invention relates to a method for operational monitoring of optical smoke detectors in a fire detection system operated according to the pulse detection principle, in which the individual, possibly different detectors, such as ionization, heat, optical smoke detectors, a detection line cyclically for their respective measured values from the The control center is queried, evaluated in the control center and alarm or fault criteria are derived, the individual detectors being controllable from the control center with a control command.
  • the invention further relates to an apparatus for performing the method.
  • the functionality of all safety-relevant components plays a major role in fire protection technology.
  • the monitoring of components carrying quiescent current is relatively simple and is also mandatory for the cables.
  • the pulse detection technology (DE-A 25 33 330, DE-A 25 33 382) made it possible to also monitor the ionization smoke detector via its chamber current flowing in the idle state in fire detection systems. An analog idle measurement value is transmitted to the control center, and if there is no or if it grows into a fault area, a fault is recognized for the relevant detector and displayed.
  • the corresponding monitoring of an optical smoke detector is not easily possible, since a signal only occurs when smoke is present. In the case of known optical smoke detectors, operational monitoring is generally dispensed with.
  • Optical smoke detectors are generally adjusted during manufacture so that the least possible backscatter occurs in the case of a scattered light smoke detector and the smallest possible basic signal is thus emitted.
  • This signal is usually so small and, on the other hand, it is subject to a very large number of copies, so that it cannot be used for function monitoring with a reasonable amount of circuitry.
  • a photoelectric smoke detector is known from EP-A 0 122 432, which can be tested for its functionality from the center with a test start signal.
  • a switchover device automatically switches from the operation status to a test status. It is now checked whether the output signal of the light receiver is within the normal level range, i.e. between an upper and a lower level, -. There is no targeted influencing of the optical transmission device, nor is a specific measurement signal value expected for the test.
  • This test only checks whether the basic signal is present if there is no backscatter. However, as already explained above, this is generally very small and also subject to large scattering, so that it does not allow a reliable statement about the functionality of the smoke detector.
  • the object of the invention is to provide a method and a device for such a fire alarm system, which enables the regular functioning of optical smoke detectors to be monitored.
  • this object is achieved in that when the optical smoke detector is manufactured, in the absence of backscattering, it is adjusted to emit a specific measurement signal, which differs from the idle signal and the alarm signal, in that the optical smoke detector is designed to receive the control command. that the optical transmission device of the smoke detector is changed in a predeterminable manner with the control command at predeterminable time intervals, and that the measured value queried is evaluated in the control center as a function signal and the lack of the function signal is displayed as a fault.
  • the object is achieved with the features of claim 3.
  • the method according to the invention allows the use of different types of detectors on one detection line, i.e. in addition to ionization and heat detectors, also optical smoke detectors, e.g. Scattered light smoke detectors without the optical smoke detectors having to be identified separately by means of their own method for detector detection.
  • the individual optical smoke detectors do not need to be adjusted to the lowest possible basic signal. A certain amount of backscatter is unavoidable with the optical smoke detector. Rather, the optical smoke detector is adjusted to a specific measurement signal during manufacture if there is no backscatter in the detector's measuring chamber, e.g. if e.g. the light transmitter is short-circuited.
  • the measurement signal differs from the idle signal and the alarm signal.
  • the idle signal is in the alarm direction with respect to the measurement signal, the distance being different depending on the detector.
  • Correspondingly balanced optical smoke detectors can therefore have different idle values. With the usual pulse detector evaluation technology, however, this is not a material disadvantage, because there can be a rest value tracking (DE-A 31 27 324).
  • Optical calibrated smoke detectors adjusted in this way can thus be used in pulse detection technology without significantly changing the evaluation method.
  • a control command as described in DE-A 25 33 354, is sent to the individual detectors from the control center transfer.
  • This control command only causes a defined change in the optical transmission device of the detector in the optical smoke detector, so that the detector emits a specific measurement signal, which in this case is evaluated in the evaluation device of the control center not as a fault but as a function signal. If the expected measurement signal of an optical smoke detector fails to appear during the functional test, this detector is displayed as faulty.
  • the control command in the form of a short control pulse to the signaling line.
  • This can be achieved by briefly lowering the line voltage to a certain value.
  • the transmitter or receiver of the optical transmission device in the smoke detector is switched off or short-circuited due to the control pulse.
  • the optical smoke detector without backscattering sends a measurement signal to the control center, which, as already mentioned above, is interpreted there as a function signal when the optical smoke detector actually works.
  • a device for carrying out the method provides in the optical smoke detector a receiving device which is connected to the signaling line and receives the control command and subsequently activates a downstream control device so that a defined change in the optical transmission device is effected.
  • the optical transmission device has a light-emitting diode, a measuring chamber and a correspondingly assigned photodiode.
  • the other circuit devices of the optical smoke detector are known per se and described, for example, in DE-A 33 13 137.
  • the evaluation device is designed in such a way that the received measurement signal is interpreted as a function signal during the function check and a fault in the optical smoke detector concerned is only displayed if the function signal is missing:
  • Fig. 1 the voltage curve of the line voltage UL is plotted over time t and below it the current curve IL on the detection line over time t.
  • U1 the full line voltage
  • a query cycle begins with the lowering of the line voltage UL to, for example, the value O, designated U2. This happens at time t0, so that the line current also drops to zero.
  • the interrogation voltage U3 which is somewhat lower than the quiescent voltage U1
  • the individual detectors of a signaling line are connected in sequence to the line in a known manner. The line current increases gradually. Every time a detector is connected to the signal line, a short control pulse SPI, e.g.
  • a pulse for the relevant detector is given to the signaling line. If the detector in question has a receiving device for the control pulse, it responds. If different types of detectors are arranged on a main line, only the optical smoke detector responds to the control impulse, because according to the invention it has a device for receiving the control impulse and a device for changing the optical transmission device of the smoke detector in a defined manner, as is shown in FIG 2 is explained.
  • the optical smoke detector RM has a voltage supply device SPV, which is located on the detection line ML and supplies the individual elements of the optical smoke detector RM with a supply voltage UV.
  • the controllable transmission circuit SS which controls the light-emitting diode LED, is connected to this supply voltage UV, so that it is normally switched on when queried.
  • the photodiode FD which is assigned to the scattered light smoke detector in the measuring chamber MK in accordance with the light-emitting diode LED, leads to an amplifier VER, the output of which leads to a sample and hold circuit SHS.
  • the switching device according to the invention in the optical smoke detector RM consists of the Zener diode ZD, which is connected via the series resistor R to the signal line.
  • the common connection point leads to a switching transistor JTR, which in turn controls the transmission circuit SS.
  • this switching transistor JTR is formed by a junction field-effect transistor, the gate of which lies at the common connection point of the Zener diode ZD and the series resistor R.
  • the gate voltage UG at the P-channel junction field effect transistor JTR is higher than the gate threshold voltage, so that the transistor blocks.
  • the gate voltage is the line voltage reduced by the Zener voltage.
  • the transmission circuit SS is conductive, which means that the light-emitting diode LED is switched on. If the control pulse SIP now occurs when queried, the line voltage UL is reduced. The result of this is that the gate voltage UG becomes lower than the gate threshold voltage of the during the control pulse Blocking field effect transistor JTR. As a result, the transistor becomes conductive and the transmission circuit SS is blocked. The LED light is off.
  • FIG. 3 shows a further exemplary embodiment of the circuit arrangement for carrying out the method according to the invention in the optical smoke detector.
  • the circuit part is shown, which is necessary for driving the light-emitting diode LED.
  • the series resistor R and the field effect transistor JTR according to FIG. 2 a switching transistor TR4 is arranged here, which is in the control circuit of the LED LED and is connected to the signal line ML via the resistor R7.
  • the transmission circuit SS as shown in FIG. 2, here in FIG. 3 essentially consists of the light-emitting diode LED, the two transistors TR1 and TR2 and the timing element R1, R2, R3 and C2.
  • the switching transistor TR4 is arranged between the transistors TR1 and TR2 and responds when the control pulse occurs.
  • the base voltage of the transistor TR4 is greater than the base-emitter threshold voltage during the polling and therefore TR4 is conductive.
  • the transmission transistor TR2 is driven by the transistor TR1, the transistor TR2 is conductive for this time, therefore the normal transmission current flows through the LED.
  • the base voltage of the transistor TR4 falls below the base emitter threshold and TR4 blocks.
  • the transmission transistor TR2 cannot be controlled by the transistor TR1 and the light-emitting diode LED is not switched on according to the invention.
  • the switching device upstream of the transmission circuit consisting of the transistor TR3, the resistor R6 and the capacitor C1, delays the activation of the transmission pulse of the light-emitting diode LED so long that the transmission pulse of the light-emitting diode will occur during a control pulse SPI for the function query. This ensures that the transmission transistor TR2 remains blocked during the control pulse SIP.
  • the other switching elements that are still shown here are not essential to the invention. They were explained in DE-A 33 13 133, which describes a circuit arrangement for suppressing interference signals in optical smoke detectors
  • a defined change in the optical transmission device is also possible in that an optical attenuator is arranged in the measuring chamber, which is electrically controlled and switched on depending on the occurrence of the control pulse.
  • the attenuator can be a controlled liquid crystal cell or a piezoelectrically controlled diaphragm.
  • the method according to the invention and the corresponding device it is therefore possible to schedule, e.g. daily to change the optical transmission device in a defined manner.
  • the method according to the invention and the corresponding switching device it is also easily possible to recognize optical smoke detectors without a separate detector detection during the functional test. If, for example, several different types of detectors have been installed on a detection line and after the fire detection system has been commissioned to monitor the function of the optical smoke detectors, each detector is queried in sequence, only one optical smoke detector reacts in the manner described above and can be identified as such in the central store . The detector recognition for the optical smoke detectors is thus automatically obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Claims (9)

1. Procédé pour contrôler le fonctionnement de détecteurs optiques de fumée dans une installation d'avertissement d'incendie fonctionnant selon le principe de signalisation par impulsions et dans laquelle les valeurs de mesure respectives des détecteurs individuels, qui sont éventuellement de différents types, comme par exemple des détecteurs à ionisation, des détecteurs thermiques, des détecteurs optiques de fumée, d'une ligne de signalisation sont interrogées cycliquement à partir du central et sont évaluées dans ce dernier et des critères d'alarme ou de perturbations en sont dérivés, et selon lequel les différents détecteurs qui possèdent un dispositif correspondant de réception, peuvent être commandés par une instruction de commande à partir du central, caractérisé par le fait
que lors de la fabrication, le détecteur optique de fumée (RM) est réglé, dans le cas de l'absence d'une rétrodiffusion, pour la délivrance d'un signal de mesure déterminé, qui diffère du signal de repos et du signal d'alarme,
que les détecteurs optiques de fumée possèdent le dispositif de réception pour l'instruction de commande,
qu'à des intervalles de temps pouvant être prédéterminés, le dispositif optique de transmission du détecteur de fumée, qui comporte une source de lumière (LED), une chambre de mesure (MK) et un récepteur de lumière (FD), est modifié par l'instruction de commande, d'une manière pouvant être prédéterminée, de sorte que le détecteur de fumée considéré délivre le signal de mesure déterminé préréglé, et
et la valeur de mesure interrogée, qui correspond au signal de mesure déterminé, est évaluée dans le central en tant que signal de fonctionnement et que l'absence du signal de fonctionnement est signalée comme étant une perturbation.
2. Procédé suivant la revendication 1, caractérisé par le fait que l'instruction de commande est formée par une impulsion de commande (SIP) possédant la forme d'une réduction de brève durée de la tension de ligne (UL) à une valeur prédéterminée (U4), et que la source de lumière (LED) ou le récepteur de lumière (FD) du transmetteur de fumée considéré (RM) est débranché ou court-circuité.
3. Dispositif pour la mise en oeuvre du procédé suivant la revendication 1 ou 2, caractérisé par le fait que le détecteur optique de fumée (RM), ajusté en usine, possède un dispositif de réception qui est raccordé à la ligne de signalisation (ML) et qui sert à recevoir l'instruction de commande, et un dispositif de commande qui est branché en aval du dispositif de réception et qui modifie d'une manière définie l'une des éléments du dispositif optique de transmission, à savoir une diode à luminescence (LED), la chambre de mesure (MK) ou une photodiode (FD), et qu'un dispositif d'évaluation du signal de fonctionnement est prévu dans le central.
4. Dispositif suivant la revendication 3, caractérisé par le fait que le dispositif de commande est formé par un circuit d'affaiblissement qui peut être commandé optiquement et qui est disposé dans la section de mesure ou dans la chambre de mesure du dispositif optique de transmission du détecteur de fumée.
5. Dispositif suivant la revendication 4, caractérisé par le fait que le circuit d'affaiblissement optique est formé par une cellule à cristal liquide commandée.
6. Dispositif suivant la revendication 4, caractérisé par le fait que le circuit d'affaiblissement optique est formé par un diaphragme commandé par voie piézoélectrique.
7. Dispositif suivant la revendication 3, caractérisé par le fait que le dispositif de réception pour l'instruction de commande et le dispositif de commande sont formés par une diode Zener (ZD), raccordée par l'intermédiaire d'une résistance additionnelle (R), à la ligne de signalisation (ML), et par un transistor à effet de champ (JT1), qui est branché en aval de cette diode et qui, lors de la réception de l'instruction de commande (SIP), bloque un circuit d'émission (SS), qui raccorde la diode à luminescence (LED).
8. Dispositif suivant la revendication 3, caractérisé par le fait que le dispositif de réception pour l'instruction de commande et le dispositif de commande sont formés par un transistor de commutation (TR4), qui est raccordé par l'intermédiaire d'une résistance (R7) à la ligne de signalisation (ML) et qui est disposé dans le circuit de commande (TR1, TR2) de la diode à luminescence (LED).
EP86110310A 1985-07-29 1986-07-25 Méthode et dispositif de surveillance du fonctionnement de détecteurs optiques de fumée Expired - Lifetime EP0213383B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86110310T ATE52632T1 (de) 1985-07-29 1986-07-25 Verfahren und vorrichtung zur betriebsmaessigen ueberwachung optischer rauchmelder.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3527109 1985-07-29
DE3527109 1985-07-29

Publications (2)

Publication Number Publication Date
EP0213383A1 EP0213383A1 (fr) 1987-03-11
EP0213383B1 true EP0213383B1 (fr) 1990-05-09

Family

ID=6277060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86110310A Expired - Lifetime EP0213383B1 (fr) 1985-07-29 1986-07-25 Méthode et dispositif de surveillance du fonctionnement de détecteurs optiques de fumée

Country Status (3)

Country Link
EP (1) EP0213383B1 (fr)
AT (1) ATE52632T1 (fr)
DE (1) DE3671120D1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9679468B2 (en) * 2014-04-21 2017-06-13 Tyco Fire & Security Gmbh Device and apparatus for self-testing smoke detector baffle system
US9659485B2 (en) 2014-04-23 2017-05-23 Tyco Fire & Security Gmbh Self-testing smoke detector with integrated smoke source
CN109617600B (zh) * 2018-12-28 2020-09-15 东南大学 基于pon链路故障识别的探测脉冲波形自调试系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3307616A1 (de) * 1983-03-03 1984-09-06 Siemens AG, 1000 Berlin und 8000 München Anordnung zur umschaltung einzelner melder auf inspektionsbetrieb in einer gefahrenmeldeanlage
JPS59172094A (ja) * 1983-03-21 1984-09-28 能美防災株式会社 煙検出機能試験装置を備えた光電式煙感知器
DE3313137A1 (de) * 1983-04-12 1984-10-18 Siemens AG, 1000 Berlin und 8000 München Schaltungsanordnung zur stoersignalunterdrueckung in optischen rauchmeldern

Also Published As

Publication number Publication date
EP0213383A1 (fr) 1987-03-11
ATE52632T1 (de) 1990-05-15
DE3671120D1 (de) 1990-06-13

Similar Documents

Publication Publication Date Title
DE3415786C2 (fr)
EP0248298B1 (fr) Dispositif détecteur de danger
EP0111178B1 (fr) Dispositif de contrôle avec plusieurs détecteurs connectés, en forme de chaîne, à une ligne de signalisation
DE2038795A1 (de) Vorrichtung zur Leitungsueberwachung von Feuermeldeanlagen
EP0042501B1 (fr) Dispositif pour la transmission des valeurs mesurées dans un système d'avertissement d'incendie
DE2833922A1 (de) Gas- und/oder brandmeldeanlage
DE2922008A1 (de) Eindringalarmsystem
DE3415766C2 (fr)
EP0125387B1 (fr) Méthode et dispositif de signalisation de risque
EP2105898B1 (fr) Procédé de vérification de la trajectoire de transmission pour une installation d'alerte aux dangers
DE3207993A1 (de) Zweiweg-gegenverkehrs-feuermelder
EP0213383B1 (fr) Méthode et dispositif de surveillance du fonctionnement de détecteurs optiques de fumée
DE3211550C2 (de) Gleichstrommeldeanlage
DE2939462C2 (de) Verfahren und Einrichtung zur Identifizierung einzelner Melder in Einbruch- oder Brandmeldeanlagen
DE1905016B2 (fr)
EP0254125B1 (fr) Système de signalisation de dangers
DE3614692C2 (fr)
EP0125485B1 (fr) Aménagement de circuits pour supprimer des signaux dans des détecteurs de fumée
DE3225032C2 (de) Verfahren und Einrichtung zur wahlweisen automatischen Abfrage der Melderkennung oder des Meldermeßwerts in einer Gefahrenmeldeanlage
EP0098553B1 (fr) Procédé et dispositif pour la demande automatique des valeurs de mesure de signalisation et/ou de l'identificateur de signalisation dans une installation d'avertisseur d'alarme
EP0362797B2 (fr) Procédé pour un fonctionnement économique en énergie de détecteurs de danger dans un dispositif de détection de danger
EP0584510B1 (fr) Dispositif de détection d'articles utilisant un émetteur et un récepteur
EP0185175B1 (fr) Procédé pour la transmission de l'identification des détecteurs dans un système de signalisation de risque
DE3806993C2 (fr)
DE1285921B (de) Automatische Feuermeldeanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19870807

17Q First examination report despatched

Effective date: 19890509

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 52632

Country of ref document: AT

Date of ref document: 19900515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3671120

Country of ref document: DE

Date of ref document: 19900613

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86110310.9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020916

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030626

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030708

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030710

Year of fee payment: 18

Ref country code: GB

Payment date: 20030710

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030722

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030725

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040725

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050725

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20040731