EP0213383B1 - Method and device for monitoring the operation of optical smoke detectors - Google Patents

Method and device for monitoring the operation of optical smoke detectors Download PDF

Info

Publication number
EP0213383B1
EP0213383B1 EP86110310A EP86110310A EP0213383B1 EP 0213383 B1 EP0213383 B1 EP 0213383B1 EP 86110310 A EP86110310 A EP 86110310A EP 86110310 A EP86110310 A EP 86110310A EP 0213383 B1 EP0213383 B1 EP 0213383B1
Authority
EP
European Patent Office
Prior art keywords
optical
signal
detectors
control instruction
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86110310A
Other languages
German (de)
French (fr)
Other versions
EP0213383A1 (en
Inventor
Peer Dr.-Ing. Thilo
Karsten Dipl.-Ing. Poulsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT86110310T priority Critical patent/ATE52632T1/en
Publication of EP0213383A1 publication Critical patent/EP0213383A1/en
Application granted granted Critical
Publication of EP0213383B1 publication Critical patent/EP0213383B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/005Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/14Checking intermittently signalling or alarm systems checking the detection circuits
    • G08B29/145Checking intermittently signalling or alarm systems checking the detection circuits of fire detection circuits

Definitions

  • the invention relates to a method for operational monitoring of optical smoke detectors in a fire detection system operated according to the pulse detection principle, in which the individual, possibly different detectors, such as ionization, heat, optical smoke detectors, a detection line cyclically for their respective measured values from the The control center is queried, evaluated in the control center and alarm or fault criteria are derived, the individual detectors being controllable from the control center with a control command.
  • the invention further relates to an apparatus for performing the method.
  • the functionality of all safety-relevant components plays a major role in fire protection technology.
  • the monitoring of components carrying quiescent current is relatively simple and is also mandatory for the cables.
  • the pulse detection technology (DE-A 25 33 330, DE-A 25 33 382) made it possible to also monitor the ionization smoke detector via its chamber current flowing in the idle state in fire detection systems. An analog idle measurement value is transmitted to the control center, and if there is no or if it grows into a fault area, a fault is recognized for the relevant detector and displayed.
  • the corresponding monitoring of an optical smoke detector is not easily possible, since a signal only occurs when smoke is present. In the case of known optical smoke detectors, operational monitoring is generally dispensed with.
  • Optical smoke detectors are generally adjusted during manufacture so that the least possible backscatter occurs in the case of a scattered light smoke detector and the smallest possible basic signal is thus emitted.
  • This signal is usually so small and, on the other hand, it is subject to a very large number of copies, so that it cannot be used for function monitoring with a reasonable amount of circuitry.
  • a photoelectric smoke detector is known from EP-A 0 122 432, which can be tested for its functionality from the center with a test start signal.
  • a switchover device automatically switches from the operation status to a test status. It is now checked whether the output signal of the light receiver is within the normal level range, i.e. between an upper and a lower level, -. There is no targeted influencing of the optical transmission device, nor is a specific measurement signal value expected for the test.
  • This test only checks whether the basic signal is present if there is no backscatter. However, as already explained above, this is generally very small and also subject to large scattering, so that it does not allow a reliable statement about the functionality of the smoke detector.
  • the object of the invention is to provide a method and a device for such a fire alarm system, which enables the regular functioning of optical smoke detectors to be monitored.
  • this object is achieved in that when the optical smoke detector is manufactured, in the absence of backscattering, it is adjusted to emit a specific measurement signal, which differs from the idle signal and the alarm signal, in that the optical smoke detector is designed to receive the control command. that the optical transmission device of the smoke detector is changed in a predeterminable manner with the control command at predeterminable time intervals, and that the measured value queried is evaluated in the control center as a function signal and the lack of the function signal is displayed as a fault.
  • the object is achieved with the features of claim 3.
  • the method according to the invention allows the use of different types of detectors on one detection line, i.e. in addition to ionization and heat detectors, also optical smoke detectors, e.g. Scattered light smoke detectors without the optical smoke detectors having to be identified separately by means of their own method for detector detection.
  • the individual optical smoke detectors do not need to be adjusted to the lowest possible basic signal. A certain amount of backscatter is unavoidable with the optical smoke detector. Rather, the optical smoke detector is adjusted to a specific measurement signal during manufacture if there is no backscatter in the detector's measuring chamber, e.g. if e.g. the light transmitter is short-circuited.
  • the measurement signal differs from the idle signal and the alarm signal.
  • the idle signal is in the alarm direction with respect to the measurement signal, the distance being different depending on the detector.
  • Correspondingly balanced optical smoke detectors can therefore have different idle values. With the usual pulse detector evaluation technology, however, this is not a material disadvantage, because there can be a rest value tracking (DE-A 31 27 324).
  • Optical calibrated smoke detectors adjusted in this way can thus be used in pulse detection technology without significantly changing the evaluation method.
  • a control command as described in DE-A 25 33 354, is sent to the individual detectors from the control center transfer.
  • This control command only causes a defined change in the optical transmission device of the detector in the optical smoke detector, so that the detector emits a specific measurement signal, which in this case is evaluated in the evaluation device of the control center not as a fault but as a function signal. If the expected measurement signal of an optical smoke detector fails to appear during the functional test, this detector is displayed as faulty.
  • the control command in the form of a short control pulse to the signaling line.
  • This can be achieved by briefly lowering the line voltage to a certain value.
  • the transmitter or receiver of the optical transmission device in the smoke detector is switched off or short-circuited due to the control pulse.
  • the optical smoke detector without backscattering sends a measurement signal to the control center, which, as already mentioned above, is interpreted there as a function signal when the optical smoke detector actually works.
  • a device for carrying out the method provides in the optical smoke detector a receiving device which is connected to the signaling line and receives the control command and subsequently activates a downstream control device so that a defined change in the optical transmission device is effected.
  • the optical transmission device has a light-emitting diode, a measuring chamber and a correspondingly assigned photodiode.
  • the other circuit devices of the optical smoke detector are known per se and described, for example, in DE-A 33 13 137.
  • the evaluation device is designed in such a way that the received measurement signal is interpreted as a function signal during the function check and a fault in the optical smoke detector concerned is only displayed if the function signal is missing:
  • Fig. 1 the voltage curve of the line voltage UL is plotted over time t and below it the current curve IL on the detection line over time t.
  • U1 the full line voltage
  • a query cycle begins with the lowering of the line voltage UL to, for example, the value O, designated U2. This happens at time t0, so that the line current also drops to zero.
  • the interrogation voltage U3 which is somewhat lower than the quiescent voltage U1
  • the individual detectors of a signaling line are connected in sequence to the line in a known manner. The line current increases gradually. Every time a detector is connected to the signal line, a short control pulse SPI, e.g.
  • a pulse for the relevant detector is given to the signaling line. If the detector in question has a receiving device for the control pulse, it responds. If different types of detectors are arranged on a main line, only the optical smoke detector responds to the control impulse, because according to the invention it has a device for receiving the control impulse and a device for changing the optical transmission device of the smoke detector in a defined manner, as is shown in FIG 2 is explained.
  • the optical smoke detector RM has a voltage supply device SPV, which is located on the detection line ML and supplies the individual elements of the optical smoke detector RM with a supply voltage UV.
  • the controllable transmission circuit SS which controls the light-emitting diode LED, is connected to this supply voltage UV, so that it is normally switched on when queried.
  • the photodiode FD which is assigned to the scattered light smoke detector in the measuring chamber MK in accordance with the light-emitting diode LED, leads to an amplifier VER, the output of which leads to a sample and hold circuit SHS.
  • the switching device according to the invention in the optical smoke detector RM consists of the Zener diode ZD, which is connected via the series resistor R to the signal line.
  • the common connection point leads to a switching transistor JTR, which in turn controls the transmission circuit SS.
  • this switching transistor JTR is formed by a junction field-effect transistor, the gate of which lies at the common connection point of the Zener diode ZD and the series resistor R.
  • the gate voltage UG at the P-channel junction field effect transistor JTR is higher than the gate threshold voltage, so that the transistor blocks.
  • the gate voltage is the line voltage reduced by the Zener voltage.
  • the transmission circuit SS is conductive, which means that the light-emitting diode LED is switched on. If the control pulse SIP now occurs when queried, the line voltage UL is reduced. The result of this is that the gate voltage UG becomes lower than the gate threshold voltage of the during the control pulse Blocking field effect transistor JTR. As a result, the transistor becomes conductive and the transmission circuit SS is blocked. The LED light is off.
  • FIG. 3 shows a further exemplary embodiment of the circuit arrangement for carrying out the method according to the invention in the optical smoke detector.
  • the circuit part is shown, which is necessary for driving the light-emitting diode LED.
  • the series resistor R and the field effect transistor JTR according to FIG. 2 a switching transistor TR4 is arranged here, which is in the control circuit of the LED LED and is connected to the signal line ML via the resistor R7.
  • the transmission circuit SS as shown in FIG. 2, here in FIG. 3 essentially consists of the light-emitting diode LED, the two transistors TR1 and TR2 and the timing element R1, R2, R3 and C2.
  • the switching transistor TR4 is arranged between the transistors TR1 and TR2 and responds when the control pulse occurs.
  • the base voltage of the transistor TR4 is greater than the base-emitter threshold voltage during the polling and therefore TR4 is conductive.
  • the transmission transistor TR2 is driven by the transistor TR1, the transistor TR2 is conductive for this time, therefore the normal transmission current flows through the LED.
  • the base voltage of the transistor TR4 falls below the base emitter threshold and TR4 blocks.
  • the transmission transistor TR2 cannot be controlled by the transistor TR1 and the light-emitting diode LED is not switched on according to the invention.
  • the switching device upstream of the transmission circuit consisting of the transistor TR3, the resistor R6 and the capacitor C1, delays the activation of the transmission pulse of the light-emitting diode LED so long that the transmission pulse of the light-emitting diode will occur during a control pulse SPI for the function query. This ensures that the transmission transistor TR2 remains blocked during the control pulse SIP.
  • the other switching elements that are still shown here are not essential to the invention. They were explained in DE-A 33 13 133, which describes a circuit arrangement for suppressing interference signals in optical smoke detectors
  • a defined change in the optical transmission device is also possible in that an optical attenuator is arranged in the measuring chamber, which is electrically controlled and switched on depending on the occurrence of the control pulse.
  • the attenuator can be a controlled liquid crystal cell or a piezoelectrically controlled diaphragm.
  • the method according to the invention and the corresponding device it is therefore possible to schedule, e.g. daily to change the optical transmission device in a defined manner.
  • the method according to the invention and the corresponding switching device it is also easily possible to recognize optical smoke detectors without a separate detector detection during the functional test. If, for example, several different types of detectors have been installed on a detection line and after the fire detection system has been commissioned to monitor the function of the optical smoke detectors, each detector is queried in sequence, only one optical smoke detector reacts in the manner described above and can be identified as such in the central store . The detector recognition for the optical smoke detectors is thus automatically obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

1. Method for monitoring the operation of optical smoke detectors in a fire alarm system operated according to the pulse signalling principe, in which fire alarm system the individual detectors, possibly of different kinds, such as ionisation, heat and optical smoke detectors, on a signalling line are respectively interrogated from the central processing unit in respect of their test values, evaluated in the central processing unit and alarm and fault criteria are derived, the individual detectors, which have a corresponding receiving device, being actuable by means of a control instruction from the central processing unit, characterized in that, during manufacture of the optical smole detectors (RM), they are tuned to issue, in the event of the absence of back scattering, a certain test signal, which differs from the rest signal and from the alarm signal, in that the optical smoke detectors have the receiving device for the control instruction, in that, at predeterminable time intervals, the optical transmission device of the smoke detector having a phototransmitter (LED), a test chamber (MK) and an optical receiver (FD) can be changed in a predeterminable manner by means of the control instruction so that the relevant smoke detector issues the particular, preset test signal, and in that the test value interrogated as a result of this, which corresponds to the particular test signal, is recognised in the central processing unit as a function signal and the absence of the function signal is indicated as a fault.

Description

Die Erfindung bezieht sich auf ein Verfahren zur betriebsmäßigen Überwachung optischer Rauchmelder in einer nach dem Pulsmeldeprinzip betriebenen Brandmeldeanlage, bei der die einzelnen, gegebenenfalls verschiedenartigen Melder, wie lonisations-, Wärme-, optische Rauch-Melder, einer Meldeleitung zyklisch auf ihre jeweiligen Meßwerte von der Zentrale aus abgefragt, in der Zentrale ausgewertet und Alarm- bzw. Störungskriterien abgeleitet werden, wobei mit einem Steuerbefehl von der Zentrale aus die einzelnen Melder ansteuerbar sind. Ferner bezieht sich die Erfindung auf eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for operational monitoring of optical smoke detectors in a fire detection system operated according to the pulse detection principle, in which the individual, possibly different detectors, such as ionization, heat, optical smoke detectors, a detection line cyclically for their respective measured values from the The control center is queried, evaluated in the control center and alarm or fault criteria are derived, the individual detectors being controllable from the control center with a control command. The invention further relates to an apparatus for performing the method.

In der Brandschutztechnik spielt die Funktionsfähigkeit aller sicherheitsrelevanten Komponenten eine große Rolle. So ist die Überwachung von ruhestromführenden Komponenten relativ einfach und für die Leitungen auch zwingend vorgeschrieben. Mit der Pulsmeldetechnik (DE-A 25 33 330, DE-A 25 33 382) wurde es möglich, in Brandmeldeanlagen auch den lonisations-Rauchmelder über seinen im Ruhezustand fließenden Kammerstrom zu überwachen. Es wird dabei ein analoger Ruhemeßwert-zur Zentrale übertragen und beim Ausbleiben bzw. beim Anwachsen in einen Störungsbereich wird für den betreffenden Melder auf eine Störung erkannt und diese angezeigt. Dagegen ist die entsprechende Überwachung eines optischen Rauchmelders nicht ohne weiteres möglich, da hier ein Signal nur auftritt, wenn Rauch vorhanden ist. Bei bekannten optischen Rauchmeldem wird in der Regel auf eine betriebsmäßige Überwachung verzichtet.The functionality of all safety-relevant components plays a major role in fire protection technology. The monitoring of components carrying quiescent current is relatively simple and is also mandatory for the cables. The pulse detection technology (DE-A 25 33 330, DE-A 25 33 382) made it possible to also monitor the ionization smoke detector via its chamber current flowing in the idle state in fire detection systems. An analog idle measurement value is transmitted to the control center, and if there is no or if it grows into a fault area, a fault is recognized for the relevant detector and displayed. On the other hand, the corresponding monitoring of an optical smoke detector is not easily possible, since a signal only occurs when smoke is present. In the case of known optical smoke detectors, operational monitoring is generally dispensed with.

Optische Rauchmelder werden bei der Herstellung im allgemeinen so abgeglichen, daß eine möglichst geringe Rückstreuung im Falle eines Streulicht-Rauchmelders auftritt und somit ein möglichst kleines Grundsignal abgegeben wird. Dieses Signal ist in der Regel so klein und andererseits einer recht großen Exemplarstreuung unterworfen, so daß es mit vertretbarem Schaltungsaufwand für eine Funktionsüberwachung nicht herangezogen werden kann.Optical smoke detectors are generally adjusted during manufacture so that the least possible backscatter occurs in the case of a scattered light smoke detector and the smallest possible basic signal is thus emitted. This signal is usually so small and, on the other hand, it is subject to a very large number of copies, so that it cannot be used for function monitoring with a reasonable amount of circuitry.

Aus der EP-A 0 122 432 ist ein fotoelektrischer Rauchdetektor bekannt, der von der Zentrale aus mit einem Teststartsignal auf seine Funktionsfähigkeit hin getestet werden kann. Dabei wird mittels einer Umschaltevorrichtung automatisch vom Operationsstatus in einen Teststatus umgeschaltet. Hierbei wird nun geprüft, ob das Ausgangssignal des Lichtempfängers sich innerhalb des normalen Pegelbereichs, d.h. zwischen einem oberen und einem unteren Pegel, - befindet. Es wird dabei weder eine gezielte Beeinflussung der optischen Übertragungseinrichtung vorgenommen, noch wird ein bestimmter Meßsignalwert für den Test erwartet. Bei diesem Test wird also lediglich überprüft, ob bei fehlender Rückstreuung das Grundsignal vorhanden ist. Dieses ist aber - wie bereits oben ausgeführt - im allgemeinen sehr klein und auch großen Streuungen unterworfen, so daß es keine zuverlässige Aussage über die Funktionsfähigkeit des Rauchmelders zuläßt.A photoelectric smoke detector is known from EP-A 0 122 432, which can be tested for its functionality from the center with a test start signal. A switchover device automatically switches from the operation status to a test status. It is now checked whether the output signal of the light receiver is within the normal level range, i.e. between an upper and a lower level, -. There is no targeted influencing of the optical transmission device, nor is a specific measurement signal value expected for the test. This test only checks whether the basic signal is present if there is no backscatter. However, as already explained above, this is generally very small and also subject to large scattering, so that it does not allow a reliable statement about the functionality of the smoke detector.

Aus der DE-A 25 33 354 ist bekannt, in Brandmeldeanlagen, die nach dem Prinzip der Pulsmeldetechnik betrieben werden, jedem auf seinen analogen Meßwert abgefragten Melder auf derselben Meldeleitung von der Zentrale aus einen Steuerbefehl zu übertragen, wenn der Melder eine entsprechende Empfangseinrichtung aufweist. Diese Steuerbefehle werden im allgemeinen dazu benützt, um ein einem Melder zugeordnetes Steuerorgan im Fall einer Alarmauslösung anzuschalten.From DE-A 25 33 354 it is known in fire alarm systems which operate according to the principle of pulse detection technology to transmit a control command from the control center to each detector queried for its analog measured value on the same signaling line if the detector has a corresponding receiving device. These control commands are generally used to switch on a control element assigned to a detector in the event of an alarm being triggered.

Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung für eine derartige Brandmeldeanlage anzugeben, das bzw. die es gestattet, optische Rauchmelder turnusmäßig auf ihre Funktionsfähigkeit zu überwachen.The object of the invention is to provide a method and a device for such a fire alarm system, which enables the regular functioning of optical smoke detectors to be monitored.

Diese Aufgabe wird bezüglich des Verfahrens dadurch gelöst, daß bei der Fabrikation der optische Rauchmelder bei fehlender Rückstreuung auf die Abgabe eines bestimmten Meßsignals, welches sich vom Ruhesignal und vom Alarmsignal unterscheidet, abgeglichen wird, daß der optische Rauchmelder für den Empfang des Steuerbefehls ausgebildet ist, daß in vorgebbaren Zeitabständen mit dem Steuerbefehl die optische Übertragungseinrichtung des Rauchmelders in vorgebbarer Weise verändert wird, und daß der dabei abgefragte Meßwert in der Zentrale als Funktionssignal bewertet und das Fehlen des Funktionssignals als Störung angezeigt wird. Bezüglich der Vorrichtung wird die Aufgabe mit den Merkmalen des Anspruchs 3 gelöst.With regard to the method, this object is achieved in that when the optical smoke detector is manufactured, in the absence of backscattering, it is adjusted to emit a specific measurement signal, which differs from the idle signal and the alarm signal, in that the optical smoke detector is designed to receive the control command. that the optical transmission device of the smoke detector is changed in a predeterminable manner with the control command at predeterminable time intervals, and that the measured value queried is evaluated in the control center as a function signal and the lack of the function signal is displayed as a fault. With regard to the device, the object is achieved with the features of claim 3.

Das erfindungsgemäße Verfahren erlaubt die Verwendung von unterschiedlichen Meldertypen an einer Meldeleitung, also neben lonisations- und Wärmemelder auch optische Rauchmelder, z.B. Streulicht-Rauchmelder, ohne daß die optischen Rauchmelder gesondert mittels eines eigenen Verfahrens zur Melderkennung gekennzeichnet werden müssen. In vorteilhafter Weise brauchen bei dem erfindungsgemäßen Verfahren die einzelnen optischen Rauchmelder nicht auf ein möglichst geringes Grundsignal abgeglichen zu werden. Eine gewisse Rückstreuung ist beim optischen Rauchmelder unvermeidbar. Vielmehr wird der optische Rauchmelder schon bei der Herstellung auf ein bestimmtes Meßsignal abgeglichen, wenn keine Rückstreuung in der Meßkammer des Melders vorhanden ist, wenn also z.B. der Lichtsender kurzgeschlossen ist. Dabei unterscheidet sich das Meßsignal vom Ruhesignal und vom Alarmsignal. Das Ruhesignal liegt in bezug auf das Meßsignal in Alarmrichtung, wobei der Abstand melderspezifisch unterschiedlich ist. Entsprechend abgeglichene optische Rauchmelder können also unterschiedliche Ruhewerte haben. Bei der üblichen Pulsmelderauswertetechnik ist dies jedoch kein sachlicher Nachteil, weil dort eine Ruhewert-Nachführung (DE-A 31 27 324) vorgesehen sein kann.The method according to the invention allows the use of different types of detectors on one detection line, i.e. in addition to ionization and heat detectors, also optical smoke detectors, e.g. Scattered light smoke detectors without the optical smoke detectors having to be identified separately by means of their own method for detector detection. Advantageously, in the method according to the invention, the individual optical smoke detectors do not need to be adjusted to the lowest possible basic signal. A certain amount of backscatter is unavoidable with the optical smoke detector. Rather, the optical smoke detector is adjusted to a specific measurement signal during manufacture if there is no backscatter in the detector's measuring chamber, e.g. if e.g. the light transmitter is short-circuited. The measurement signal differs from the idle signal and the alarm signal. The idle signal is in the alarm direction with respect to the measurement signal, the distance being different depending on the detector. Correspondingly balanced optical smoke detectors can therefore have different idle values. With the usual pulse detector evaluation technology, however, this is not a material disadvantage, because there can be a rest value tracking (DE-A 31 27 324).

Es können also derartig abgeglichene optische Rauchmelder in der Pulsmeldetechnik verwendet werden, ohne das Auswerteverfahren wesentlich zu ändern. Zur Funktionsüberwachung der optischen Rauchmelder wird turnusmäßig ein Steuerbefehl, wie er in der DE-A 25 33 354 beschrieben ist, zu den einzelnen Meldem von der Zentrale aus übertragen. Dieser Steuerbefehl veranlaßt lediglich im optischen Rauchmelder eine definierte Veränderung in der optischen Übertragungseinrichtung des Melders, so daß der Melder ein bestimmtes Meßsignal abgibt, welches in der Auswerteeinrichtung der Zentrale in diesem Fall nicht als Störung sondern als Funktionssignal bewertet wird. Bleibt bei der Funktionsprüfung das erwartete Meßsignal eines optischen Rauchmelders aus, so wird dieser Melder als gestört angezeigt.Optical calibrated smoke detectors adjusted in this way can thus be used in pulse detection technology without significantly changing the evaluation method. To monitor the function of the optical smoke detectors, a control command, as described in DE-A 25 33 354, is sent to the individual detectors from the control center transfer. This control command only causes a defined change in the optical transmission device of the detector in the optical smoke detector, so that the detector emits a specific measurement signal, which in this case is evaluated in the evaluation device of the control center not as a fault but as a function signal. If the expected measurement signal of an optical smoke detector fails to appear during the functional test, this detector is displayed as faulty.

Bei dem erfindungsgemäßen Verfahren ist es zweckmäßig, den Steuerbefehl in Form eines kurzen Steuerimpulses auf die Meldeleitung zu geben. Dies kann durch eine kurzzeitige Absenkung der Linienspannung auf einen bestimmten Wert erreicht werden. Dabei wird aufgrund des Steuerimpulses der Sender oder der Empfänger der optischen Übertragungseinrichtung im Rauchmelder abgeschaltet oder kurzgeschlossen. Auf diese Weise gibt der optische Rauchmelder ohne Rückstreuung ein Meßsignal an die Zentrale, das dort, wie oben schon erwähnt, als Funktionssignal interpretiert wird, wenn der optische Rauchmelder tatsächlich funktioniert.In the method according to the invention, it is expedient to give the control command in the form of a short control pulse to the signaling line. This can be achieved by briefly lowering the line voltage to a certain value. The transmitter or receiver of the optical transmission device in the smoke detector is switched off or short-circuited due to the control pulse. In this way, the optical smoke detector without backscattering sends a measurement signal to the control center, which, as already mentioned above, is interpreted there as a function signal when the optical smoke detector actually works.

Eine Vorrichtung zur Durchführung des Verfahrens sieht im optischen Rauchmelder eine Empfangseinrichtung vor, die an der Meldeleitung angeschlossen ist und den Steuerbefehl empfängt und in Folge davon eine nachgeschaltete Steuereinrichtung aktiviert, so daß eine definierte Veränderung der optischen Übertragungseinrichtung bewirkt wird. Die optische Übertragungseinrichtung weist dabei eine Leuchtdiode, eine Meßkammer und eine entsprechend zugeordnete Fotodiode auf. Die weiteren Schaltungseinrichtungen des optischen Rauchmelders sind an sich bekannt und beispielsweise in der DE-A 33 13 137 beschrieben. In der Zentrale ist die Auswerteeinrichtung so ausgelegt, daß bei der Funktionsüberprüfung das empfangene Meßsignal als Funktionssignal interpretiert wird und nur bei fehlendem Funktionssignal eine Störung des betreffenden optischen Rauchmelders angezeigt wird:A device for carrying out the method provides in the optical smoke detector a receiving device which is connected to the signaling line and receives the control command and subsequently activates a downstream control device so that a defined change in the optical transmission device is effected. The optical transmission device has a light-emitting diode, a measuring chamber and a correspondingly assigned photodiode. The other circuit devices of the optical smoke detector are known per se and described, for example, in DE-A 33 13 137. In the control center, the evaluation device is designed in such a way that the received measurement signal is interpreted as a function signal during the function check and a fault in the optical smoke detector concerned is only displayed if the function signal is missing:

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus den Unteransprüchen und der Erläuterung der Erfindung an zwei Ausführungsbeispielen für einen optischen Rauchmelder. Dabei zeigen die

  • Fig. 1 ein bekanntes Spannungs- und Stromdiagramm auf der Meldeleitung, die
  • Fig. 2 ein erstes und die
  • Fig. 3 ein zweites Schaltbeispiel eines optischen Rauchmelders für das erfindungsgemäße Verfahren.
Further details and advantages of the invention emerge from the subclaims and the explanation of the invention using two exemplary embodiments for an optical smoke detector. The show
  • Fig. 1 shows a known voltage and current diagram on the message line
  • Fig. 2 shows a first and the
  • Fig. 3 shows a second circuit example of an optical smoke detector for the inventive method.

In Fig. 1 ist der Spannungsverlauf der Linienspannung UL über der Zeit t und darunter der Stromverlauf IL auf der Meldelinie über der Zeit t aufgetragen. In der Ruhephase liegt die volle Linienspannung mit U1 bezeichnet an der Meldeleitung an. Ein Abfragezyklus beginnt mit dem Absenken der Linienspannung UL auf beispielsweise den Wert O, mit U2 bezeichnet. Dies geschieht zum Zeitpunkt t0, so daß der Linienstrom auch auf Null sinkt. Mit dem Anlegen der Abfragespannung U3, die etwas niedriger ist als die Ruhespannung U1, zum Zeitpunkt t1 werden die einzelnen Melder einer Meldeleitung der Reihe nach an die Linie in bekannter Weise geschaltet. Dabei erhöht sich der Linienstrom stufenförmig. Jedesmal, wenn ein Melder an die Meldeleitung angeschaltet wurde, wird mit einem kurzen Steuerimpuls SPI, z.B. durch kurzzeitiges Absenken der Abfragespannung U3 auf den Wert U4, ein Impuls für den betreffenden Melder auf die Meldeleitung gegeben. Weist der betreffende Melder eine Empfangseinrichtung für den Steuerimpuls auf, so spricht diese an. Sind auf einer Meideleitung verschiedenartige Meldertypen angeordnet, so spricht auf den Steuerimpuls nur der optische Rauchmelder an, denn der hat erfindungsgemäß eine Einrichtung zum Empfang des Steuerimpulses und eine Einrichtung, um die optische Übertragungseinrichtung des Rauchmelders in definierter Weise zu verändern, wie dies anhand der Fig. 2 erläutert wird.In Fig. 1, the voltage curve of the line voltage UL is plotted over time t and below it the current curve IL on the detection line over time t. In the idle phase, the full line voltage, designated U1, is applied to the signal line. A query cycle begins with the lowering of the line voltage UL to, for example, the value O, designated U2. This happens at time t0, so that the line current also drops to zero. When the interrogation voltage U3, which is somewhat lower than the quiescent voltage U1, is applied at time t1, the individual detectors of a signaling line are connected in sequence to the line in a known manner. The line current increases gradually. Every time a detector is connected to the signal line, a short control pulse SPI, e.g. by briefly lowering the interrogation voltage U3 to the value U4, a pulse for the relevant detector is given to the signaling line. If the detector in question has a receiving device for the control pulse, it responds. If different types of detectors are arranged on a main line, only the optical smoke detector responds to the control impulse, because according to the invention it has a device for receiving the control impulse and a device for changing the optical transmission device of the smoke detector in a defined manner, as is shown in FIG 2 is explained.

In Fig. 2 ist ein optischer Rauchmelder RM mit den erfindungsgemäßen Schalteinrichtungen für das erfindungsgemäße Verfahren dargestellt. Der optische Rauchmelder RM weist eine Spannungsversorgungseinrichtung SPV auf, die an der Meldelinie ML liegt und mit einer Versorgungsspannung UV die einzelnen Elemente des optischen Rauchmelders RM versorgt. So ist an diese Versorgungsspannung UV die ansteuerbare Sendeschaltung SS angeschlossen, die die Leuchtdiode LED ansteuert, um im Normalfall bei der Abfrage eingeschaltet zu werden. Die Fotodiode FD, die beim Streulicht-Rauchmelder in der Meßkammer MK entsprechend der Leuchtdiode LED zugeordnet ist, führt auf einen Verstärker VER, dessen Ausgang auf eine Sample- and Hold-Schaltung SHS führt. Diese wiederum ist mit einem Spannungs/Zeit-Wandler VTC verbunden, der entsprechend des analogen Meßwertes zeitverzögert den nachfolgenden Melder über den Schalttransistor TR an die Meldeleitung ML anschaltet. Dies ist an und für sich bekannt. Die erfindungsgemäße Schalteinrichtung im optischen Rauchmelder RM besteht aus der Zenerdiode ZD, die über den Vorwiderstand R an der Meldeleitung angeschlossen ist. Der gemeinsame Anschlußpunkt führt auf einen Schalttransistor JTR, der seinerseits die Sendeschaltung SS ansteuert. Hier im Ausführungsbeispiel ist dieser Schalttransistor JTR von einem Sperrschicht-Feldeffekttransistor gebildet, dessen Gate am gemeinsamen Anschlußpunkt der Zenerdiode ZD und des Vorwiderstandes R liegt. Im Normalbetrieb, d.h. wenn kein Steuerimpuls kommt, ist die Gatespannung UG an dem P-Kanal-Sperrschicht-Feldeffekttransistors JTR höher als die Gateschwellenspannung, so daß der Transistor sperrt. Die Gatespannung ist die um die Zenerspannung reduzierte Linienspannung. Bei gesperrtem Feldeffekttransistor JTR ist die Sendeschaltung SS leitend, dadurch ist die Leuchtdiode LED eingeschaltet. Tritt nun bei der Abfrage der Steuerimpuls SIP auf, so wird die Linienspannung UL abgesenkt. Das hat zur Folge, daß während des Steuerimpulses die Gatespannung UG niedriger wird als die Gateschwellenspannung des Sperrsichtfeldeffekttransistors JTR. Dadurch wird der Transistor leitend und die Sendeschaltung SS gesperrt. Die Leuchtdiode LED ist abgeschaltet.2 shows an optical smoke detector RM with the switching devices according to the invention for the method according to the invention. The optical smoke detector RM has a voltage supply device SPV, which is located on the detection line ML and supplies the individual elements of the optical smoke detector RM with a supply voltage UV. The controllable transmission circuit SS, which controls the light-emitting diode LED, is connected to this supply voltage UV, so that it is normally switched on when queried. The photodiode FD, which is assigned to the scattered light smoke detector in the measuring chamber MK in accordance with the light-emitting diode LED, leads to an amplifier VER, the output of which leads to a sample and hold circuit SHS. This, in turn, is connected to a voltage / time converter VTC which, in accordance with the analog measured value, connects the subsequent detector with a time delay to the signal line ML via the switching transistor TR. This is known in and of itself. The switching device according to the invention in the optical smoke detector RM consists of the Zener diode ZD, which is connected via the series resistor R to the signal line. The common connection point leads to a switching transistor JTR, which in turn controls the transmission circuit SS. In the exemplary embodiment, this switching transistor JTR is formed by a junction field-effect transistor, the gate of which lies at the common connection point of the Zener diode ZD and the series resistor R. In normal operation, ie when there is no control pulse, the gate voltage UG at the P-channel junction field effect transistor JTR is higher than the gate threshold voltage, so that the transistor blocks. The gate voltage is the line voltage reduced by the Zener voltage. When the field effect transistor JTR is blocked, the transmission circuit SS is conductive, which means that the light-emitting diode LED is switched on. If the control pulse SIP now occurs when queried, the line voltage UL is reduced. The result of this is that the gate voltage UG becomes lower than the gate threshold voltage of the during the control pulse Blocking field effect transistor JTR. As a result, the transistor becomes conductive and the transmission circuit SS is blocked. The LED light is off.

In der Figur 3 ist ein weiteres Ausführungsbeispiel für die Schaltungsanordnung zur Durchführung des erfindungsgemäßen Verfahrens im optischen Rauchmelder gezeigt. Hier ist lediglich der Schaltungsteil dargestellt, der für das Ansteuern der Leuchtdiode LED notwendig ist. Anstelle der Zenerdiode ZD, des Vorwiderstandes R und des Feldeffekttransistors JTR gemäß der Fig. 2 ist hier ein Schalttransistor TR4 angeordnet, der im Ansteuerkreis der Leuchtdiode LED liegt und über den Widerstand R7 an der Meldeleitung ML liegt. Die Sendeschaltung SS, wie in Fig. 2 gezeigt, besteht hier in Fig. 3 im wesentlichen aus der Leuchtdiode LED, den beiden Transistoren TR1 und TR2 und dem Zeitglied R1, R2, R3 und C2. Zwischen den Transistoren TR1 und TR2 ist erfindungsgemäß der Schalttransistor TR4 angeordnet, der beim Auftreten des Steuerimpulses anspricht. Im Normalbetrieb, also während des Abfragezyklus ohne Steuerimpuls, ist die Basisspannung des Transistors TR4 während der Abfrage größer als die Basisemitter-Schwellenspannung und daher ist TR4 leitend. Während dieser Abfragephase ist der Sendetransistor TR2 vom Transistors TR1 angesteuert, der Transistor TR2 ist für diese Zeit leitend, daher fließt durch die Leuchtdiode LED der normale Sendestrom. Im Falle eines den Sendeimpuls überlappenden Steuerimpulses, d.h. wenn während der Abfrage der Steuerimpuls (Absenken der Abfragespannung) auftritt, fällt die Basisspannung des Transistors TR4 unter die Basisemitterschwelle und TR4 sperrt. Dadurch kann der Sendetransistor TR2 nicht vom Transistor TR1 angesteuert werden und die Leuchtdiode LED wird erfindungsgemäß nicht eingeschaltet. Die der Sendeschaltung vorgeschaltete Schalteinrichtung, bestehend aus dem Transitor TR3, dem Widerstand R6 und dem Kondensator C1 verzögert die Einschaltung des Sendeimpulses der Leuchtdiode LED solange, daß der Sendeimpuls der Leuchtdiode während eines Steuerimpulses SPI für die Funktionsabfrage auftreten wird. Dadurch wird gewährleistet, daß der Sendetransistor TR2 während des Steuerimpulses SIP gesperrt bleibt. Die weiteren Schaltelemente, die hier noch dargestellt sind, sind für die Erfindung nicht wesentlich. Sie wurden in der DE-A 33 13 133 erläutert, in der eine Schaltungsanordnung zur Störsignalunterdrückung in optischen Rauchmeldem beschrieben istFIG. 3 shows a further exemplary embodiment of the circuit arrangement for carrying out the method according to the invention in the optical smoke detector. Here only the circuit part is shown, which is necessary for driving the light-emitting diode LED. Instead of the Zener diode ZD, the series resistor R and the field effect transistor JTR according to FIG. 2, a switching transistor TR4 is arranged here, which is in the control circuit of the LED LED and is connected to the signal line ML via the resistor R7. The transmission circuit SS, as shown in FIG. 2, here in FIG. 3 essentially consists of the light-emitting diode LED, the two transistors TR1 and TR2 and the timing element R1, R2, R3 and C2. According to the invention, the switching transistor TR4 is arranged between the transistors TR1 and TR2 and responds when the control pulse occurs. In normal operation, that is to say during the polling cycle without a control pulse, the base voltage of the transistor TR4 is greater than the base-emitter threshold voltage during the polling and therefore TR4 is conductive. During this interrogation phase, the transmission transistor TR2 is driven by the transistor TR1, the transistor TR2 is conductive for this time, therefore the normal transmission current flows through the LED. In the case of a control pulse overlapping the transmission pulse, i.e. if the control pulse (lowering of the interrogation voltage) occurs during the interrogation, the base voltage of the transistor TR4 falls below the base emitter threshold and TR4 blocks. As a result, the transmission transistor TR2 cannot be controlled by the transistor TR1 and the light-emitting diode LED is not switched on according to the invention. The switching device upstream of the transmission circuit, consisting of the transistor TR3, the resistor R6 and the capacitor C1, delays the activation of the transmission pulse of the light-emitting diode LED so long that the transmission pulse of the light-emitting diode will occur during a control pulse SPI for the function query. This ensures that the transmission transistor TR2 remains blocked during the control pulse SIP. The other switching elements that are still shown here are not essential to the invention. They were explained in DE-A 33 13 133, which describes a circuit arrangement for suppressing interference signals in optical smoke detectors

So wie hier anhand der beiden Ausführungsbeispiele erläutert wurde, den Lichtsender im optischen Rauchmelder abzuschalten, ist es natürlich auch möglich, die Empfangsdiode abzuschalten oder kurzzuschließen. Eine definierte Veränderung der optischen Übertragungseinrichtung ist auch dadurch möglich, daß in der Meßkammer ein optisches Dämpfungsglied angeordnet wird, welches elektrisch angesteuert wird und in Abhängigkeit vom Auftreten des Steuerimpulses angeschaltet wird. Dabei kann das Dämpfungsglied eine gesteuerte Flüssigkristallzelle oder eine piezoelektrisch gesteuerte Blende sein.As was explained here using the two exemplary embodiments to switch off the light transmitter in the optical smoke detector, it is of course also possible to switch off or short-circuit the receiver diode. A defined change in the optical transmission device is also possible in that an optical attenuator is arranged in the measuring chamber, which is electrically controlled and switched on depending on the occurrence of the control pulse. The attenuator can be a controlled liquid crystal cell or a piezoelectrically controlled diaphragm.

Mit dem erfindungsgemäßen Verfahren und der entsprechenden Vorrichtung ist es daher möglich, von der Zentrale aus turnusmäßig, z.B. täglich, die optische Übertragungseinrichtung in definierter Weise zu verändern. Mit dem erfindungsgemäßen Verfahren und der entsprechenden Schalteinrichtung ist es auch ohne weiteres möglich, ohne eine eigens vorzusehende Melderkennung bei der Funktionsprüfung optische Rauchmelder zu erkennen. Sind beispielsweise mehrere verschiedenartige Melder auf einer Meldelinie installiert worden und wird nach der Inbetriebnahme der Brandmeldeanlage zur Funktionsüberwachung der optischen Rauchmelder jeder Melder der Reihe nach abgefragt, so reagiert nur ein optischer Rauchmelder in der oben beschriebenen Weise und kann als solcher im Speicher der Zentrale gekennzeichnet werden. Man erhält somit automatisch die Melderkennung für die optischen Rauchmelder. Dies ist auch insofern zweckmäßig, denn zum Erkennen eines nicht funktionsfähigen optischen Rauchmelders ist die automatisch erfaßte Erkennung der optischen Melder bei der Funktionsprüfung notwendig, denn ein nicht funktionsfähiger optischer Rauchmelder könnte bei der Funktionsabfrage ein ähnliches Verhalten (Meßwert) zeigen, wie beispielsweise ein lonisations-Rauchmelder.With the method according to the invention and the corresponding device, it is therefore possible to schedule, e.g. daily to change the optical transmission device in a defined manner. With the method according to the invention and the corresponding switching device, it is also easily possible to recognize optical smoke detectors without a separate detector detection during the functional test. If, for example, several different types of detectors have been installed on a detection line and after the fire detection system has been commissioned to monitor the function of the optical smoke detectors, each detector is queried in sequence, only one optical smoke detector reacts in the manner described above and can be identified as such in the central store . The detector recognition for the optical smoke detectors is thus automatically obtained. This is also useful because to detect a non-functional optical smoke detector, the automatically detected recognition of the optical detector during the functional test is necessary, because a non-functional optical smoke detector could show a similar behavior (measured value) when querying the function, such as an ionization Smoke detector.

Claims (9)

1. Method for monitoring the operation of optical smoke detectors in a fire alarm system operated according to the pulse signalling principle, in which fire alarm system the individual detectors, possibly of different kinds, such as ionisation, heat and optical smoke detectors, on a signalling line are respectively interrogated from the central processing unit in respect of their test values, evaluated in the central processing unit and alarm and fault criteria are derived, the individual detectors, which have a corresponding receiving device, being actuable by means of a control instruction from the central processing unit, characterized in that, during manufacture of the optical smole detectors (RM), they are tuned to issue, in the event of the absence of back scattering, a certain test signal, which differs from the rest signal and from the alarm signal, in that the optical smoke detectors have the receiving device for the control instruction, in that, at predeterminable time intervals, the optical transmission device of the smoke detector having a phototransmitter (LED), a test chamber (MK) and an optical receiver (FD) can be changed in a predeterminable manner by means of the control instruction so that the relevant smoke detector issues the particular, preset test signal, and in that the test value interrogated as a result of this, which corresponds to the particular test signal, is recognised in the central processing unit as a function signal and the absence of the function signal is indicated as a fault.
2. Method according to Claim 1, characterized in that the control instruction is formed by a control pulse (SIP) in the form of a brief drop in the line voltage (UL) to a predetermined value (U4) and in that the phototransmitter (LED) or the photoreceiver (FD) of the relevant smoke detector (RM) is switched off or short-circuited.
3. Device for performing the method according to Claim 1 or 2, characterized in that the optical smoke detector (RM) tuned at the works has a receiving device connected to the signalling line (ML), for the control instruction and a control device connected downstream of the receiving device, which control device changes in a defined manner one of the elements of the optical transmission device, namely a light-emitting diode (LED), the test chamber (MK) or a photodiode (FD) and in that, in the central processing unit, an evaluation device is provided for the function signal.
4. Device according to Claim 3, characterized in that the control device is formed by an optical, actuable attenuation member which is arranged in the test section or test chamber of the optical transmission device of the smoke detector.
5. Device according to Claim 4, characterized in that the optical attenuation member is formed by a controlled liquid crystal cell.
6. Device according to Claim 4, characterized in that the optical attenuationmember is formed by a piezo-electrically controlled diaphragm.
7. Device according to Claim 3, characterized in that the receiving device for the control instruction and the control device is formed by a Zener diode (ZD) connected via a series resistor (R) to the signalling line (ML) and by a field effect transistor (JTR) connected downstream of said series resistor, which field effect transistor, on receiving the control instruction (SIP) blocks a transmitting circuit (SS), which switches on the light-emitting diode (LED).
8. Device according to Claim 3, characterized in that the receiving device for the control instruction and the control device is formed by a switching transistor (TR4) which is connected via a resistor (R7) to the signalling line (ML) and is arranged in the control circuit (TR1, TR2) of the light-emitting diode (LED). -
EP86110310A 1985-07-29 1986-07-25 Method and device for monitoring the operation of optical smoke detectors Expired - Lifetime EP0213383B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86110310T ATE52632T1 (en) 1985-07-29 1986-07-25 METHOD AND DEVICE FOR OPERATIONAL MONITORING OF OPTICAL SMOKE DETECTORS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3527109 1985-07-29
DE3527109 1985-07-29

Publications (2)

Publication Number Publication Date
EP0213383A1 EP0213383A1 (en) 1987-03-11
EP0213383B1 true EP0213383B1 (en) 1990-05-09

Family

ID=6277060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86110310A Expired - Lifetime EP0213383B1 (en) 1985-07-29 1986-07-25 Method and device for monitoring the operation of optical smoke detectors

Country Status (3)

Country Link
EP (1) EP0213383B1 (en)
AT (1) ATE52632T1 (en)
DE (1) DE3671120D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9679468B2 (en) * 2014-04-21 2017-06-13 Tyco Fire & Security Gmbh Device and apparatus for self-testing smoke detector baffle system
US9659485B2 (en) * 2014-04-23 2017-05-23 Tyco Fire & Security Gmbh Self-testing smoke detector with integrated smoke source
CN109617600B (en) * 2018-12-28 2020-09-15 东南大学 Detection pulse waveform self-debugging system and method based on PON link fault recognition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3307616A1 (en) * 1983-03-03 1984-09-06 Siemens AG, 1000 Berlin und 8000 München ARRANGEMENT FOR SWITCHING SINGLE DETECTORS INTO INSPECTION MODE IN A HAZARD ALARM SYSTEM
JPS59172094A (en) * 1983-03-21 1984-09-28 能美防災株式会社 Optoelectric smoke sensor with smoke detecting function tester
DE3313137A1 (en) * 1983-04-12 1984-10-18 Siemens AG, 1000 Berlin und 8000 München CIRCUIT ARRANGEMENT FOR CANCELING NOISE IN OPTICAL SMOKE DETECTORS

Also Published As

Publication number Publication date
EP0213383A1 (en) 1987-03-11
DE3671120D1 (en) 1990-06-13
ATE52632T1 (en) 1990-05-15

Similar Documents

Publication Publication Date Title
DE3415786C2 (en)
EP0111178B1 (en) Control device with several detectors connected in chain form to a signal line
EP0248298A1 (en) Danger alarm installation
DE2038795A1 (en) Device for line monitoring of fire alarm systems
EP0042501B1 (en) Device for the transmission of measured values in a fire warning system
DE2833922A1 (en) GAS AND / OR FIRE DETECTING SYSTEM
DE2922008A1 (en) Intrusion alarm system
EP0067339A2 (en) Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems
DE3415766C2 (en)
DE3120986A1 (en) METHOD AND ARRANGEMENT FOR REVISION IN A DANGER, IN PARTICULAR FIRE DETECTING SYSTEM
EP0125387A1 (en) Risk signalling method and apparatus
DE3207993A1 (en) TWO-WAY TWO-WAY FIRE DETECTOR
EP0213383B1 (en) Method and device for monitoring the operation of optical smoke detectors
DE3211550C2 (en) DC alarm system
DE2939462C2 (en) Process and device for the identification of individual detectors in intrusion or fire alarm systems
DE69310431T2 (en) Fire alarm system
EP0254125B1 (en) Danger signalling system
DE3614692C2 (en)
EP0125485B1 (en) Signal suppression circuit for optical smoke detectors
DE3225032C2 (en) Method and device for the optional automatic query of the detector identification or the detector measured value in a hazard alarm system
EP0098553B1 (en) Method and device for automatically demanding signal measure values and/or signal identification in an alarm installation
EP0066879A1 (en) Circuit arrangement for the transmission of measured values to a central station, especially for a fire signalling system
EP0362797B2 (en) Method for the energy-saving operation of risk detectors in a risk detection arrangement
EP0128357B1 (en) apparatus for the remotely controlled inspection of a primary line in danger warning systems or in transmitting systems for danger warnings
EP0185175B1 (en) Method for the identification transmission of the detectors in a risk-signalling system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19870807

17Q First examination report despatched

Effective date: 19890509

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 52632

Country of ref document: AT

Date of ref document: 19900515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3671120

Country of ref document: DE

Date of ref document: 19900613

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86110310.9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020916

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030626

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030708

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030710

Year of fee payment: 18

Ref country code: GB

Payment date: 20030710

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030722

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030725

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040725

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050725

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20040731