EP0042501B1 - Device for the transmission of measured values in a fire warning system - Google Patents

Device for the transmission of measured values in a fire warning system Download PDF

Info

Publication number
EP0042501B1
EP0042501B1 EP81104115A EP81104115A EP0042501B1 EP 0042501 B1 EP0042501 B1 EP 0042501B1 EP 81104115 A EP81104115 A EP 81104115A EP 81104115 A EP81104115 A EP 81104115A EP 0042501 B1 EP0042501 B1 EP 0042501B1
Authority
EP
European Patent Office
Prior art keywords
fire
alarm
fire alarm
line
reporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81104115A
Other languages
German (de)
French (fr)
Other versions
EP0042501A1 (en
Inventor
Peter Müller
Eugen Schibli
Andreas Scheidweiler
Jürg Muggli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Priority to AT81104115T priority Critical patent/ATE13231T1/en
Publication of EP0042501A1 publication Critical patent/EP0042501A1/en
Application granted granted Critical
Publication of EP0042501B1 publication Critical patent/EP0042501B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/005Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion

Definitions

  • the invention relates to a device for transmitting measured values in a fire alarm system of the type defined in the preamble of claim 1.
  • DE-AS 2 533 382 proposed a method for transmitting measured values in a fire detection system, in which the measured values determined by individual fire detectors lying in a chain on the detection lines are passed analogously to a signaling center and there for obtaining differentiated malfunctions. or alarm messages are linked, with all fire detectors being separated from the detection line by a voltage change at the beginning of each query cycle and then being switched on again in a predetermined order in such a way that each fire detector also connects the subsequent fire detectors to the line voltage after a time delay corresponding to its measured value switches on and that in the signaling center the respective detector address is derived from the number of previous increases in the line current and the measured value from the length of the switching delay in question.
  • the installation of the serial detector must incur increased effort to ensure that the detectors are connected correctly. Even if one speaks of a two-wire system, the detector still has three terminals and you have to make sure that the incoming and outgoing wire are not interchanged. Compared to the classic installation technology of two-wire systems, this means an aggravation and also a source of errors.
  • the number of detectors per line is limited by the resistance of the switches connected in series.
  • the object of the invention is to provide a device for transmitting measured values in a fire alarm system, which avoid the disadvantages mentioned above, d. H. enable the transmission of measured values even if a fire detector in a detection line fails or a detector line is interrupted or short-circuited, which also allows the fire detectors to be connected to the detection lines without having to take care that the entry and exit of the detection line does not are exchanged and which ultimately allow a higher current to be sent through the detection lines or a larger number of fire detectors to be connected to the detection line.
  • the device according to the invention is preferably used in a method for transmitting measured values in a fire alarm system in such a way that, after the measured value of the last detector of a line has been transmitted, current is fed into the detection lines from both sides. By connecting the detection lines on both sides, the current serving to supply the fire detectors can be practically quadrupled.
  • the measurement values are transmitted in the delay time between two detector connections.
  • the time delay is not dependent on the measured value and remains constant.
  • a detector is switched on, ie when the connection to the control center is established, this is followed by the conversion of the measured value into a coded pulse sequence or an alternating voltage signal whose frequency is dependent on the measured value. It goes without saying that the duration of the measured value signal must be shorter than the delay time.
  • FR-A-2 176004 a transmission system has become known in which local transmission stations for the transmission of messages via a first line loop in series and for monitoring via a second line loop are connected in parallel to a central station. Messages from the local transmission stations are transmitted via the first line loop, for example by means of direct current pulses.
  • the central station transmits alternating current pulses via the second line loop at certain time intervals, which actuate electronic switching devices in the local transmission stations and initiate the transmission of a message via the first line loop when the switching device reaches the switching position assigned to the individual transmission station. All transmission stations receive the monitoring impulses at the same time, they have no bidirectional switching elements and, above all, no equivalent inputs that make installation easier.
  • the transmission system of FR-A-2 176 004 requires an increased outlay on lines.
  • Signaling lines Li ... Li emanate from terminals K 1a ... K ia from a signal center Z.
  • the fire detectors M 11 ... M 1m essentially contain, in addition to sensors sensitive to fire parameters, a transducer, a timer, and a bidirectional switch S. From the last fire detector of a detection line, two lines are connected to the terminals K) x ... K; x of the signaling center Z returned. After applying the line voltage to the terminals K 1a , a timer starts to run in the M 11 detector. After a certain delay, the switch S 11 closes and applies the line voltage to the detector M 12 , where a timer also starts to run again. In this way, all switches of the detectors in a zone close in succession. This process can be repeated periodically so that the fire detectors of a detection line are polled cyclically. After the line voltage has been applied to a detector or the relevant switch has been closed, the measured values from the sensor can be transmitted to the signaling center.
  • the detector line evaluation circuit of the signal center Z is connected to the terminals K; a of the lines concerned.
  • the occurrence of a line fault or the failure of a detector is detected in the signal center Z by the fact that the polling cycle stops.
  • the detector line evaluation circuit is automatically switched to terminals K ix of the relevant detector lines.
  • the fire detectors are now interrogated in the opposite direction to the faulty location.
  • FIG. 2 shows the circuit arrangement of a fire detector M, in which the time delay is controlled by the measured value.
  • a smoke-sensitive measuring ionization chamber MK is drawn as the sensor, the current of which generates the voltage U k at the external resistor R 2 . This voltage is fed to the input of the transducer MW, the output voltage U A of which acts on the timing element T.
  • the bidirectional switch 19 is used to switch the line voltage to the next detector.
  • the diodes D13 and D14 are used for balancing, i. h, when installing the fire detector, it is not necessary to pay attention to the correct sequence of connections 2 and 3.
  • transistor T19 When the line voltage is applied to terminals 1A / 1B and 2 or 1A / 1B and 3, transistor T19 initially remains blocked. At the same time, the timer T starts and, after a time delay which is given by the value of the voltage U A , opens the transistor T19 and thus switches the line voltage to the next detector.
  • a resistor in the fire detector is also switched on, which causes the current increase, which is evaluated in the control center to determine the detector address.
  • FIG. 3 shows a circuit arrangement of a preferred embodiment of a fire detector according to FIG. 2.
  • a fire detector with a measurement ionization chamber serves as an example as a smoke-sensitive sensor.
  • the measurement ionization chamber MK is connected in series with a comparison resistor R 2, in its place a reference ionization chamber can also be used, to the stabilized voltage U s .
  • the capacitor C20 is charged via the rectifier D11 and bridges the systemic periodic interruptions in the line voltage.
  • the transistor T16 forms, together with the resistor R and the zener diode D12, a voltage stabilization U s in a known manner.
  • the MOSFET T18 serves as an impedance converter, ie it transmits the output voltage U K of the sensor to the input of the operational amplifier A, the operating point of which is determined by the resistors R4, R5 and R6.
  • the output voltage U A of the operational amplifier is proportional to the sensor voltage U K.
  • the transistor T17 In the normal operating state, the transistor T17 is not conductive, the gate connection of the bidirectional switch T19 is therefore at the potential of the connection 1, as a result of which the transistor T19 is kept conductive.
  • the voltage across the capacitor C21 is approximately limited by the diode 15 to the value of the amplifier output voltage U A.
  • the capacitor C21 discharges to zero via the resistors R7, R9 and R10.
  • a charging current flows through the resistor R7 to the capacitor C21 and further via the resistor R10.
  • the transistor T17 thus becomes conductive and an additional current flows through the resistor R8.
  • T19 jumps below the threshold voltage of the field effect transistor and thus blocks T19. If the capacitor C21 has now charged up to the output voltage U A of the amplifier via the resistor R7, no further charging current flows to C21, which means that T17 blocks. The gate of T19 jumps back to the potential of connection 1 and thus brings switch T19 into the conductive state.
  • the diodes D13 and D14 ensure a symmetrical supply to the detector electronics, which, together with the symmetry properties of the transistor T19, enables the optional supply from connection 2 or connection 3.
  • circuit arrangements with other symmetrical switching elements instead of the transistor T19 are conceivable. JFETs or relays can also be used as bidirectional switches.
  • FIG. 4 shows an embodiment of the method according to the invention in which the time delay is independent of the measured value.
  • the mode of operation is similar to that shown in FIG. 2.
  • the output voltage U A of the transducer MW does not control the timing element T.
  • the measured value is converted into a coded pulse train or an AC signal, the frequency of which is determined by the measured value. This signal is received at the control center and evaluated accordingly.
  • the timer T runs and switches on the transistor T19 after a fixed preselected time and thus switches the line voltage on to the next detector. It goes without saying that the duration of the measured value signal must be shorter than the switch-on delay.
  • This embodiment has the advantage that it is possible to separate between the transmission of measured values and the addressing of the detector.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire Alarms (AREA)
  • Alarm Systems (AREA)
  • General Induction Heating (AREA)
  • Dc-Dc Converters (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

In a fire alarm system individual fire alarms are connected in series by reporting lines with a central signal station. In order to be able to connect a greater number of fire alarms with the individual reporting or signaling lines and/or in order to be able to dispatch an increased amount of current through the reporting lines, the reporting or signaling lines from the last fire alarm of a line are returned back to the central signal station in the form of a ring circuit or loop. Upon the absence of signals at a reporting line an interrogation device is reversed, so that there can be ensured that in the event of a line disturbance or breakdown of a fire alarm the remainder of the fire alarms still can be utilized for giving a signal. The individual fire alarms are structured such that during assembly the inputs and outputs can be mutually interchanged.

Description

Die Erfindung geht aus von einer Einrichtung zur Übertragung von Meßwerten in einem Brandmeldesystem der im Oberbegriff des Patentanspruchs 1 definierten Gattung.The invention relates to a device for transmitting measured values in a fire alarm system of the type defined in the preamble of claim 1.

Automatische Brandmeldeanlagen haben die Aufgabe, Brände möglichst im Frühstadium zu erkennen, um eine wirksame Bekämpfung zu ermöglichen. Eine Forderung, die im Brandmelder gestellt wird, ist eine hohe Empfindlichkeit, um bereits Spuren von Brandfolgeprodukten zur Branderkennung auszunutzen. Parallel mit der Erhöhung der Empfindlichkeit geht jedoch leider auch die Neigung zu Fehlalarmen. In der Signalzentrale kann daher manchmal nur schwer zwischen einem echten Alarm und einem Fehlalarm unterschieden werden.Automatic fire alarm systems have the task of detecting fires as early as possible in order to enable effective fighting. A requirement that is set in the fire detector is high sensitivity in order to use traces of fire by-products for fire detection. Unfortunately, in parallel with the increase in sensitivity, there is also a tendency towards false alarms. In the signaling center it is therefore sometimes difficult to distinguish between a real alarm and a false alarm.

Zur Überwindung dieses Nachteils wurde bereits vorgeschlagen, anstelle eines Alarmsignals den der zu messenden Brandkenngröße analogen Meßwert zur Signalzentrale zu übertragen und die Entscheidung, ob es sich um einen Brandfall oder eine Störung handelt, in der der Signalzentrale vornehmen zu lassen, weil aus dem Vergleich der Meßgrößen verschiedener Melder eine wesentlich genauere Aussage gemacht werden kann.To overcome this disadvantage, it has already been proposed, instead of an alarm signal, to transmit the measured value analogous to the fire parameter to be measured to the signaling center and to have the decision as to whether it is a fire or a fault in the signaling center, because from the comparison of the Measured variables of different detectors a much more accurate statement can be made.

Voraussetzung für eine sinnvolle Auswertung der Meldersignale in der Signalzentrale ist jedoch, daß die Herkunft der Signale klar ermittelt werden kann, d. h. die Melder müssen identifizierbar, d. h. adressierbar sein.A prerequisite for a meaningful evaluation of the detector signals in the signal center, however, is that the origin of the signals can be clearly determined, i. H. the detectors must be identifiable, i. H. be addressable.

In den letzten Jahren wurden bereits mehrere Brandmeldesysteme entwickelt, bei denen eine Melderidentifizierung möglich ist und eine Meßwertübertragung zur Zentrale stattfindet. Jedoch ist der schaltungstechnische Aufwand sehr hoch bzw. ist die Installation mit applikationstechnischen Schwierigkeiten verbunden.In recent years, several fire alarm systems have been developed that can be used to identify detectors and transmit measured values to the control center. However, the complexity of the circuitry is very high or the installation is associated with application-related difficulties.

Der Hauptnachteil dieser Verfahren besteht darin, daß zur Festlegung der Melderadresse an jedem Melder individuell eine Einstellung vorgenommen werden muß. Hierdurch ergeben sich Gefahren der Fehladressierung und der damit verbundenen Fehlidentifizierung.The main disadvantage of these methods is that each detector must be set individually to determine the detector address. This results in dangers of incorrect addressing and the associated incorrect identification.

Zur Überwindung dieses Nachteils wurde in der DE-AS 2 533 382 ein Verfahren zur Übertragung von Meßwerten in einem Brandmeldesystem vorgeschlagen, bei dem die von einzelnen, kettenförmig an den Meldelinien liegenden Brandmelder ermittelten Meßwerte analog an eine Signalzentrale gegeben und dort zur Gewinnung differenzierter Störungs- bzw. Alarmmmeldungen verknüpft werden, wobei zu Beginn eines jeden Abfragezyklus alle Brandmelder durch eine Spannungsänderung von der Meldelinie abgetrennt und dann in vorgegebener Reihenfolge in der Weise wieder angeschaltet werden, daß jeder Brandmelder nach einer seinem Meßwert entsprechenden Zeitverzögerung den jeweils nachfolgenden Brandmelder zusätzlich an die Linienspannung anschaltet und daß in der Signalzentrale die jeweilige Melderadresse aus der Zahl der vorhergehenden Erhöhungen des Linienstromes und der Meßwert aus der Länge der betreffenden Schaltverzögerung abgeleitet wird.In order to overcome this disadvantage, DE-AS 2 533 382 proposed a method for transmitting measured values in a fire detection system, in which the measured values determined by individual fire detectors lying in a chain on the detection lines are passed analogously to a signaling center and there for obtaining differentiated malfunctions. or alarm messages are linked, with all fire detectors being separated from the detection line by a voltage change at the beginning of each query cycle and then being switched on again in a predetermined order in such a way that each fire detector also connects the subsequent fire detectors to the line voltage after a time delay corresponding to its measured value switches on and that in the signaling center the respective detector address is derived from the number of previous increases in the line current and the measured value from the length of the switching delay in question.

Jedoch weist auch dieses Verfahren drei grundsätzliche Nachteile auf.However, this method also has three basic disadvantages.

Erstens muß durch die serielle Melderanordnung bei der Installation erhöhter Aufwand getrieben werden, um sicherzustellen, daß die Melder richtig angeschlossen werden. Wenn auch von einem Zweidrahtsystem gesprochen wird, so besitzt der Melder dennoch drei Klemmen und man muß darauf achten, daß der ankommende und der weggehende Draht nicht vertauscht werden. Dies bedeutet gegenüber der klassischen Installationstechnik von Zweidrahtsystemen eine Erschwerung und auch eine Fehlerquelle.Firstly, the installation of the serial detector must incur increased effort to ensure that the detectors are connected correctly. Even if one speaks of a two-wire system, the detector still has three terminals and you have to make sure that the incoming and outgoing wire are not interchanged. Compared to the classic installation technology of two-wire systems, this means an aggravation and also a source of errors.

Zweitens ist die Zahl der Melder je Linie durch den Widerstand der in Serie geschalteten Schalter begrenzt.Second, the number of detectors per line is limited by the resistance of the switches connected in series.

Drittens ist bei Ausfall eines Melders oder Unterbruch bzw. Kurzzschluß der Leitung zumindest ein Teil der Melder einer Linie außer Betrieb gesetzt.Third, if a detector fails or the line is interrupted or short-circuited, at least some of the detectors on a line are deactivated.

Aufgabe der Erfindung ist es, eine Einrichtung zur Übertragung von Meßwerten in einem Brandmeldesystem zu schaffen, welche die vorstehend genannten Nachteile vermeiden, d. h. die Übertragung von Meßwerten auch dann ermöglichen, wenn ein Brandmelder in einer Meldelinie ausfällt oder eine Melderlinie unterbrochen oder kurzgeschlossen ist, die es ferner gestatten, die Brandmelder an die Meldelinien anzuschließen, ohne daß darauf geachtet werden muß, daß Ein-und Ausgang der Meldelinie nicht vertauscht werden und die es schließlich gestatten, einen höheren Strom durch die Meldelinien zu schikken oder eine größere Anzahl Brandmelder an die Meldelinie anzuschließen.The object of the invention is to provide a device for transmitting measured values in a fire alarm system, which avoid the disadvantages mentioned above, d. H. enable the transmission of measured values even if a fire detector in a detection line fails or a detector line is interrupted or short-circuited, which also allows the fire detectors to be connected to the detection lines without having to take care that the entry and exit of the detection line does not are exchanged and which ultimately allow a higher current to be sent through the detection lines or a larger number of fire detectors to be connected to the detection line.

Diese Aufgabe wird erfindungsgemäß durch die im kennzeichnenden Teil des Patentanspruchs 1 definierten Merkmale gelöst. Bevorzugte Ausführungsformen der Erfindung, bzw. besondere Ausführungsarten der im Patentanspruch 1 definierten Erfindung sind in weiteren Patentansprüchen umschrieben.This object is achieved by the features defined in the characterizing part of claim 1. Preferred embodiments of the invention or special embodiments of the invention defined in claim 1 are described in further claims.

Die Anwendung der erfindungsgemäßen Einrichtung in einem Verfahren zur Übertragung von Meßwerten in einem Brandmeldesystem erfolgt vorzugsweise so, daß nach der Übermittlung des Meßwertes des letzten Melders einer Linie von beiden Seiten her Strom in die Meldelinien eingespeist wird. Durch den beidseitigen Anschluß der Meldelinien wird erreicht, daß der zur Speisung der Brandmelder dienende Strom praktisch vervierfacht werden kann.The device according to the invention is preferably used in a method for transmitting measured values in a fire alarm system in such a way that, after the measured value of the last detector of a line has been transmitted, current is fed into the detection lines from both sides. By connecting the detection lines on both sides, the current serving to supply the fire detectors can be practically quadrupled.

Es kann auch so vorgegangen werden, daß die Übertragung der Meßwerte in der Verzögerungszeit zwischen zwei Melderanschaltungen erfolgt. Die Zeitverzögerung ist nicht vom Meßwert abhängig und bleibt konstant. Unmittelbar nach der Anschaltung eines Melders, d. h. wenn die Verbindung zur Zentrale hergestellt ist, er-folgt die Umwandlung des Meßwertes in eine codierte Impulsfolge oder ein Wechselspannungssignal dessen Frequenz vom Meßwert abhängig ist. Es versteht sich von selbst, daß die Dauer des Meßwertsignals kürzer sein muß als die Verzögerungszeit.It can also be done in such a way that the measurement values are transmitted in the delay time between two detector connections. The time delay is not dependent on the measured value and remains constant. Immediately after a detector is switched on, ie when the connection to the control center is established, this is followed by the conversion of the measured value into a coded pulse sequence or an alternating voltage signal whose frequency is dependent on the measured value. It goes without saying that the duration of the measured value signal must be shorter than the delay time.

Aus der FR-A-2 176004 ist ein Übertragungssystem bekanntgeworden, bei dem örtliche Übertragungsstationen zur Übermittlung von Meldungen über eine erste Leitungsschleife in Reihe und zur Überwachung über eine zweite Leitungsschleife parallel an eine Zentralstation angeschlossen sind. Die Übertragung von Meldungen der örtlichen Übertragungsstationen über die erste Leitungsschleife erfolgt beispielsweise durch Gleichstromimpulse. Die Zentralstation sendet in bestimmten Zeitintervallen über die zweite Leitungsschleife Wechselstromimpulse aus, welche elektronische Schaltvorrichtungen in den örtlichen Übertragungsstationen betätigen und die Übermittlung einer Meldung über die erste Leitungsschleife veranlassen, wenn die Schaltvorrichtung die der einzelnen Übertragungsstation zugeordnete Schaltstellung erreicht. Sämtliche Übertragungsstationen erhalten gleichzeitig die Überwachungsimpulse, sie weisen keine bidirektionalen Schaltelemente auf und vor allem keine gleichwertigen Eingänge, die eine erleichterte Montage ermöglichen. Außerdem erfordert das Übertragungssystem der FR-A-2 176 004 einen erhöhten Aufwand an Leitungen.From FR-A-2 176004 a transmission system has become known in which local transmission stations for the transmission of messages via a first line loop in series and for monitoring via a second line loop are connected in parallel to a central station. Messages from the local transmission stations are transmitted via the first line loop, for example by means of direct current pulses. The central station transmits alternating current pulses via the second line loop at certain time intervals, which actuate electronic switching devices in the local transmission stations and initiate the transmission of a message via the first line loop when the switching device reaches the switching position assigned to the individual transmission station. All transmission stations receive the monitoring impulses at the same time, they have no bidirectional switching elements and, above all, no equivalent inputs that make installation easier. In addition, the transmission system of FR-A-2 176 004 requires an increased outlay on lines.

Im folgenden werden anhand der Zeichnungen bevorzugte Ausführungsformen der Erfindung näher erläutert.Preferred embodiments of the invention are explained in more detail below with reference to the drawings.

Es zeigt

  • Fig. 1 eine Ausführungsform einer erfindungsgemäßen Einrichtung für ein Brandmeldesystem,
  • Fig. 2 eine Schaltungsanordnung für einen Brandmelder, bei dem die Zeitverzögerung vom Meßwert abhängig ist,
  • Fig. 3 eine bevorzugte Ausführungsform der Schaltungsanordnung gemäß Fig. 2,
  • Fig. 4 eine Schaltungsanordnung für einen Brandmelder dessen Zeitverzögerung vom Meßwert unabhängig ist.
It shows
  • 1 shows an embodiment of a device according to the invention for a fire alarm system,
  • 2 shows a circuit arrangement for a fire detector in which the time delay is dependent on the measured value,
  • 3 shows a preferred embodiment of the circuit arrangement according to FIG. 2,
  • Fig. 4 shows a circuit arrangement for a fire detector whose time delay is independent of the measured value.

Fig. 1 zeigt den Aufbau eines Brandmeldesystems für das erfindungsgemäße Übertragungsverfahren. Von einer Signalzentrale Z gehen von den Klemmen K1a... Kia Meldelinien Li ... Li aus.1 shows the structure of a fire alarm system for the transmission method according to the invention. Signaling lines Li ... Li emanate from terminals K 1a ... K ia from a signal center Z.

An diese Meldelinien sind jeweils mehrere Brandmelder M11... M1m angeschlossen. Die Brandmelder M11... M1m enthalten im wesentlichen neben brandkenngrößenempfindlichen Sensoren einen Meßwertumwandler, ein Zeitglied, sowie einen bidirektionalen Schalter S. Vom letzten Brandmelder einer Meldelinie werden jeweils zwei Leitungen an die Klemmen K)x... K;x der Signalzentrale Z zurückgeführt. Nach Anlegen der Linienspannung an die Klemmen K1a beginnt im Melder M11 ein Zeitglied zu laufen. Nach einer bestimmten Verzögerung schließt der Schalter S11 und legt die Linienspannung an den Melder M12, wo ebenfalls wieder ein Zeitglied zu laufen beginnt. Auf diese Art schließen nacheinander alle Schalter der Melder einer Meldelinie. Dieser Vorgang läßt sich periodisch wiederholen, so daß die Brandmelder einer Meldelinie zyklisch abgefragt werden. Nach Anlegen der Linienspannung an einen Melder bzw. mit Schließen des betreffenden Schalters kann eine Übertragung der Meßwerte des Sensors zur Signalzentrale stattfinden.Several M 11 ... M 1m fire detectors are connected to each of these lines. The fire detectors M 11 ... M 1m essentially contain, in addition to sensors sensitive to fire parameters, a transducer, a timer, and a bidirectional switch S. From the last fire detector of a detection line, two lines are connected to the terminals K) x ... K; x of the signaling center Z returned. After applying the line voltage to the terminals K 1a , a timer starts to run in the M 11 detector. After a certain delay, the switch S 11 closes and applies the line voltage to the detector M 12 , where a timer also starts to run again. In this way, all switches of the detectors in a zone close in succession. This process can be repeated periodically so that the fire detectors of a detection line are polled cyclically. After the line voltage has been applied to a detector or the relevant switch has been closed, the measured values from the sensor can be transmitted to the signaling center.

Am Ende eines Abfragezyklus werden in den Meldern befindliche Speicherkondensatoren aufgeladen, welche die Energieversorgung der Brandmelder während der systembedingten Unterbrüche sicherstellen.At the end of a query cycle, storage capacitors in the detectors are charged, which ensure the energy supply to the fire detectors during system-related interruptions.

Im Normalbetrieb, d. h. im ungestörten Zustand, ist die Melderlinienauswerteschaltung der Signalzentrale Z an die Klemmen K;a der betreffenden Linien angeschlossen.In normal operation, ie in the undisturbed state, the detector line evaluation circuit of the signal center Z is connected to the terminals K; a of the lines concerned.

Das Auftreten einer Leitungsstörung oder der Ausfall eines Melders wird in der Signalzentrale Z dadurch detektiert, daß der Abfragezyklus stehenbleibt. In diesem Fall erfolgt eine automatische Umschaltung der Melderlinienauswerteschaltung auf die Klemmen Kix der betreffenden Meldelinien. Das Abfragen der Brandmelder erfolgt nun in umgekehrter Richtung bis zur gestörten Stelle.The occurrence of a line fault or the failure of a detector is detected in the signal center Z by the fact that the polling cycle stops. In this case, the detector line evaluation circuit is automatically switched to terminals K ix of the relevant detector lines. The fire detectors are now interrogated in the opposite direction to the faulty location.

Durch periodisches Umschalten der Meldelinienauswerteschaltung von den Klemmen Kia auf die Klemmen K;x wird erreicht, daß selbst im Störungsfall die noch intakten Melder einer Melderlinie ihre Meßwerte zur Signalzentrale Z übertragen können.By periodically switching the detector line evaluation circuit from terminals K ia to terminals K; x is achieved so that the still intact detectors of a detector line can transmit their measured values to the signal center Z even in the event of a fault.

In Fig. 2 ist die Schaltungsanordnung eines Brandmelders M dargestellt, bei dem die Zeitverzögerung durch den Meßwert gesteuert wird.2 shows the circuit arrangement of a fire detector M, in which the time delay is controlled by the measured value.

Als Sensor ist hier eine rauchempfindliche Meßionisationskammer MK gezeichnet, deren Strom am Außenwiderstand R2 die Spannung Uk erzeugt. Diese Spannung wird dem Eingang des Meßwandlers MW zugeführt, dessen Ausgangsspannung UA auf das Zeitglied T einwirkt. Der bidirektionale Schalter 19 dient zur Weiterschaltung der Linienspannung an den nächstfolgenden Melder. Die Dioden D13 und D14 dienen der Symmetrierung, d. h, bei der Installation des Brandmelders muß nicht auf die richtige Reihenfolge der Anschlüsse 2 und 3 geachtet werden.A smoke-sensitive measuring ionization chamber MK is drawn as the sensor, the current of which generates the voltage U k at the external resistor R 2 . This voltage is fed to the input of the transducer MW, the output voltage U A of which acts on the timing element T. The bidirectional switch 19 is used to switch the line voltage to the next detector. The diodes D13 and D14 are used for balancing, i. h, when installing the fire detector, it is not necessary to pay attention to the correct sequence of connections 2 and 3.

Bei Anlegen der Linienspannung an die Klemmen 1A/1B und 2 oder 1A/1B und 3 bleibt der Transistor T19 zunächst gesperrt. Gleichzeitig startet das Zeitglied T und öffnet nach einer Zeitverzögerung welche durch den Wert der Spannung UA gegeben ist den Transistor T19 und schaltet somit die Linienspannung auf den nächsten Melder weiter.When the line voltage is applied to terminals 1A / 1B and 2 or 1A / 1B and 3, transistor T19 initially remains blocked. At the same time, the timer T starts and, after a time delay which is given by the value of the voltage U A , opens the transistor T19 and thus switches the line voltage to the next detector.

Bei Anlegen der Linienspannung wird ferner ein Widerstand im Brandmelder eingeschaltet, der die Stromerhöhung bewirkt, die in der Zentrale zur Feststellung der Melderadresse ausgewertet wird.When the line voltage is applied, a resistor in the fire detector is also switched on, which causes the current increase, which is evaluated in the control center to determine the detector address.

In Fig. 3 ist eine Schaltungsanordnung einer bevorzugten Ausführungsform eines Brandmelders nach Fig.2 dargestellt. Als Beispiel dient wiederum ein Brandmelder mit einer Meßionisationskammer als rauchempfindlicher Sensor.FIG. 3 shows a circuit arrangement of a preferred embodiment of a fire detector according to FIG. 2. A fire detector with a measurement ionization chamber serves as an example as a smoke-sensitive sensor.

Die Meßionisationskammer MK ist in Serie mit einem Vergleichswiderstand R2 an dessen Stelle auch eine Referenzionisationskammer eingesetzt werden kann, an die stabilisierte Spannung Us geschaltet. Der Kondensator C20 wird über den Gleichrichter D11 aufgeladen und überbrückt die systembedingten periodischen Unterbrüche in der Linienspannung. Der Transistor T16 bildet zusammen mit dem Widerstand R, und der Zenerdiode D12 in bekannter Weise eine Spannungsstabilisierung Us. Der MOSFET T18 dient als Impedanzwandler, d. h. er überträgt die Ausgangsspannung UK des Sensors auf den Eingang des Operationsverstärkers A, dessen Arbeitspunkt durch die Widerstände R4, R5 und R6 bestimmt wird. Die Ausgangsspannung UA des Operationsverstärkers ist der Sensorspannung UKproportional.The measurement ionization chamber MK is connected in series with a comparison resistor R 2, in its place a reference ionization chamber can also be used, to the stabilized voltage U s . The capacitor C20 is charged via the rectifier D11 and bridges the systemic periodic interruptions in the line voltage. The transistor T16 forms, together with the resistor R and the zener diode D12, a voltage stabilization U s in a known manner. The MOSFET T18 serves as an impedance converter, ie it transmits the output voltage U K of the sensor to the input of the operational amplifier A, the operating point of which is determined by the resistors R4, R5 and R6. The output voltage U A of the operational amplifier is proportional to the sensor voltage U K.

Im normalen Betriebszustand ist der Transistor T17 nicht leitend, der Gateanschluß des bidirektionalen Schalters T19 ist daher auf dem Potential des Anschlusses 1, wodurch der Transistor T19 leitend gehalten wird. Die Spannung über dem Kondensator C21 wird über die Diode 15 annähernd auf den Wert der Verstärkerausgangsspannung UA begrenzt. Wenn nun zu Beginn einesAbfragezyklus die Linienspannung auf Null abgesenkt wird, so entlädt sich der Kondensator C21 über die Widerstände R7, R9 und R10 auf Null. Beim Wiedereinschalten der Leitungsspannung fließt ein Ladestrom über den Widerstand R7 auf den Kondensator C21 und weiter über den Widerstand R10. Damit wird der Transistor T17 leitend und es fließt ein zusätzlicher Strom durch den Widerstand R8. Das Gatepotential von T19 schaltet sprunghaft unter die Schwellspannung des Feldeffekttransistors und sperrt damit T19. Wenn sich nun der Kondensator C21 über den Widerstand R7 auf die Ausgangsspannung UA des Verstärkers aufgeladen hat, fließt kein weiterer Ladestrom mehr auf C21, was bedeutet, das T17 sperrt. Das Gate von T19 springt wieder auf das Potential des Anschlusses 1 und bringt damit den Schalter T19 in den leitenden Zustand.In the normal operating state, the transistor T17 is not conductive, the gate connection of the bidirectional switch T19 is therefore at the potential of the connection 1, as a result of which the transistor T19 is kept conductive. The voltage across the capacitor C21 is approximately limited by the diode 15 to the value of the amplifier output voltage U A. Now, when the line voltage is lowered to zero at the beginning of an interrogation cycle, the capacitor C21 discharges to zero via the resistors R7, R9 and R10. When the line voltage is switched on again, a charging current flows through the resistor R7 to the capacitor C21 and further via the resistor R10. The transistor T17 thus becomes conductive and an additional current flows through the resistor R8. The gate potential of T19 jumps below the threshold voltage of the field effect transistor and thus blocks T19. If the capacitor C21 has now charged up to the output voltage U A of the amplifier via the resistor R7, no further charging current flows to C21, which means that T17 blocks. The gate of T19 jumps back to the potential of connection 1 and thus brings switch T19 into the conductive state.

Die Dioden D13 und D14 gewährleisten eine symmetrische Speisung der Melderelektronik, was zusammen mit den Symmetrieeigenschaften des Transistors T19 die wahlweise Speisung von Anschluß 2 oder Anschluß 3 her ermöglicht. In ähnlicher Weise sind Schaltungsanordnungen mit anderen symmetrischen Schaltelementen anstelle des Transistors T19 denkbar. Als bidirektionale Schalter kommen also auch JFET oder Relais in Frage.The diodes D13 and D14 ensure a symmetrical supply to the detector electronics, which, together with the symmetry properties of the transistor T19, enables the optional supply from connection 2 or connection 3. In a similar way, circuit arrangements with other symmetrical switching elements instead of the transistor T19 are conceivable. JFETs or relays can also be used as bidirectional switches.

In Fig. 4 ist eine Ausführungsform des erfindungsgemäßen Verfahrens dargestellt, bei der die Zeitverzögerung vom Meßwert unabhängig ist. Die Funktionsweise ist ähnlich wie die in Fig. 2 dargestellte. Allerdings steuert die Ausgangsspannung UA des Meßwandlers MW nicht das Zeitglied T. Unmittelbar nach Anlegen der Linienspannung an die Klemmen 2 oder 3, d. h. wenn die Verwendung zur Zentrale hergestellt ist, erfolgt die Umwandlung des Meßwertes in eine codierte Impulsfolge oder ein Wechselspannungssignal, dessen Frequenz vom Meßwert bestimmt wird. Dieses Signal wird in der Zentrale empfangen und entsprechend ausgewertet. Gleichzeitig läuft das Zeitglied T und schaltet nach einer fest vorgewählten Zeit den Transistor T19 ein und schaltet somit die Linienspannung auf den nächsten Melder weiter. Es versteht sich von selbst, daß die Dauer des Meßwertsignals kürzer sein muß als die Anschaltverzögerung. Diese Ausführungsform hat den Vorteil, daß zwischen der Meßwertübertragung und der Melderadressierung getrennt werden kann.4 shows an embodiment of the method according to the invention in which the time delay is independent of the measured value. The mode of operation is similar to that shown in FIG. 2. However, the output voltage U A of the transducer MW does not control the timing element T. Immediately after the line voltage has been applied to terminals 2 or 3, i.e. when the use is made to the control center, the measured value is converted into a coded pulse train or an AC signal, the frequency of which is determined by the measured value. This signal is received at the control center and evaluated accordingly. At the same time, the timer T runs and switches on the transistor T19 after a fixed preselected time and thus switches the line voltage on to the next detector. It goes without saying that the duration of the measured value signal must be shorter than the switch-on delay. This embodiment has the advantage that it is possible to separate between the transmission of measured values and the addressing of the detector.

Claims (6)

1. Apparatus for a fire alarm system comprising a central signal station (Z) and a plurality of fire alarms (M11 to M1m) arranged in a chain-like fashion at alarm reporting lines (L11 to L1m) which alarm reporting lines (L11 to L1m) are returned from the last fire alarm (M1 m, Mim) to the central station (Z) in which apparatus each individual fire alarm (M) within an interrogation cycle its measuring values transmits to the central signal station (Z) and all fire alarms (M) at the start of one of each interrogation cycle are disconnected from the central signal station (Z) by a voltage change of the alarm reporting line (L) and then all fire alarms (M) are reconnected in a timewise staggered fashion such that each fire alarm (M) after a certain time-delay additionally connects a subsequently arrannged fire alarm with the line voltage and each reconnected fire alarm (M) reports its address and wherein upon absence of measuring signals the interrogation direction for the affected alarm reporting line (L) is reversed, characterized in that each fire alarm (M1m to Mim) comprises two equivalent terminals (1A, 1B, 2; 1A, 1B, 3) for connecting it with the alarm reporting lines (L1 to Li) and a bidirectional switch (T19) for connecting the next (in the direction of interrogation) fire alarm in the chain with the alarm reporting lines.
2. Apparatus according to claim 1, characterized in that each fire alarm (M) comprises an electrical circuit (T, R7, R8, R10, C21, T17) which upon application of a potential at one of both inputs (1A, 1B, 2; 1A, 1B, 3) after a time-delay causes the bidirectional switch (T19) to generate a signal at the other input (3; 2) (Figures 2, 3, 4).
3. Apparatus according to claim 2, characterized in that the circuit and the bidirectional switch (T19) are connected with each other by diodes (D13, D14) (Figures 2, 3, 4).
4. Apparatus according to claim 2, characterized in that the time delay is dependent upon the measuring value (UA) of the sensors (MK, MW) (Figures 2, 3).
5. Apparatus according to claim 2, characterized in that the time delay is independent upon the measuring value (UA) of the sensors (MK, MW) and that the measuring value (UA) is transmitted to the central signal station (Z) within the time delay (Figure 4).
6. Apparatus according to claim 1, characterized in that the bidirectional switch (T19) is a relay, a MOS-FET transistor or a JFET transistor.
EP81104115A 1980-06-23 1981-05-29 Device for the transmission of measured values in a fire warning system Expired EP0042501B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81104115T ATE13231T1 (en) 1980-06-23 1981-05-29 DEVICE FOR TRANSMISSION OF MEASURED VALUES IN A FIRE DETECTION SYSTEM.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4803/80 1980-06-23
CH4803/80A CH651688A5 (en) 1980-06-23 1980-06-23 METHOD FOR TRANSMITTING MEASURED VALUES IN A FIRE DETECTING SYSTEM AND DEVICE FOR IMPLEMENTING THE METHOD.

Publications (2)

Publication Number Publication Date
EP0042501A1 EP0042501A1 (en) 1981-12-30
EP0042501B1 true EP0042501B1 (en) 1985-05-08

Family

ID=4282811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104115A Expired EP0042501B1 (en) 1980-06-23 1981-05-29 Device for the transmission of measured values in a fire warning system

Country Status (9)

Country Link
US (1) US4404548A (en)
EP (1) EP0042501B1 (en)
JP (1) JPS5730098A (en)
AT (1) ATE13231T1 (en)
CH (1) CH651688A5 (en)
DE (1) DE3170379D1 (en)
DK (1) DK263881A (en)
FI (1) FI811935L (en)
NO (1) NO152526C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4036639A1 (en) * 1990-11-16 1992-05-21 Esser Sicherheitstechnik METHOD FOR DETERMINING THE CONFIGURATION OF THE DETECTORS OF A DANGER DETECTION SYSTEM AND FOR DETERMINING DETECTORS SUITABLE FOR THE SYSTEM CONFIGURATION
DE19940700C2 (en) * 1999-08-27 2003-05-08 Job Lizenz Gmbh & Co Kg Method and device for the automatic assignment of detector addresses in a hazard detection system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507652A (en) * 1982-02-04 1985-03-26 Baker Industries, Inc. Bidirectional, interactive fire detection system
CH664637A5 (en) * 1982-04-28 1988-03-15 Cerberus Ag METHOD FOR TRANSMITTING MEASURED VALUES IN A MONITORING SYSTEM.
DE3370089D1 (en) * 1982-07-16 1987-04-09 Apollo Fire Detectors Ltd Short circuit fault isolation means for electrical circuit arrangements
EP0111178B1 (en) * 1982-11-23 1987-10-28 Cerberus Ag Control device with several detectors connected in chain form to a signal line
NO162317C (en) * 1983-05-19 1992-02-06 Hochiki Co FIRE ALARM INSTALLATIONS
US4528610A (en) * 1983-07-05 1985-07-09 Apollo Fire Detectors Limited Short circuit fault isolation means for electrical circuit arrangements
DE3614692A1 (en) * 1986-04-30 1987-11-05 Nixdorf Computer Ag DANGER REPORTING SYSTEM
US4745398A (en) * 1987-02-09 1988-05-17 Sentrol, Inc. Self-powered sensor for use in closed-loop security system
USRE33807E (en) * 1987-02-09 1992-01-28 Sentrol, Inc. Self-powered sensor for use in closed-loop security system
US4916432A (en) * 1987-10-21 1990-04-10 Pittway Corporation Smoke and fire detection system communication
ATE132642T1 (en) * 1989-09-19 1996-01-15 Siemens Ag METHOD AND DEVICE FOR CONSIDERATION OF CLIMATE ENVIRONMENTAL INFLUENCES ON AUTOMATIC FIRE DETECTORS
US5801913A (en) * 1996-04-29 1998-09-01 Kiddie-Fenwal, Inc. Isolation circuitry
JP2006099394A (en) * 2004-09-29 2006-04-13 Horiba Ltd Fire detection system and method for controlling the same system
DE102005037047B3 (en) * 2005-08-05 2006-12-28 Novar Gmbh Building control and hazard alert system, has bus substation circuit lying between parallely connected direct current connections of bridges and measuring voltage ratios and their polarity at alternating voltage inputs of bridges
DE102010047220B4 (en) * 2010-10-04 2012-07-05 Novar Gmbh Method for operating a voice announcement system
CN106155861A (en) * 2015-04-22 2016-11-23 鸿富锦精密工业(武汉)有限公司 Electronic equipment warning circuit
JP7064890B2 (en) * 2018-01-22 2022-05-11 ホーチキ株式会社 Fire alarm system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH468682A (en) * 1967-06-26 1969-02-15 Cerberus Ag Fire alarm system
US3716834A (en) * 1971-10-07 1973-02-13 H Adams Data transmission system with immunity to circuit faults
SE374970B (en) * 1972-03-15 1975-03-24 Ericsson Telefon Ab L M
DE2533382C2 (en) * 1975-07-25 1980-07-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Method and device for the transmission of measured values in a fire alarm system
GB1556062A (en) * 1975-08-28 1979-11-21 Sumitomo Chemical Co Centralised monitoring system for gas leakage
DE2836760C2 (en) * 1978-08-23 1983-11-17 Dr. Alfred Ristow GmbH & Co, 7500 Karlsruhe Electronic remote monitoring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4036639A1 (en) * 1990-11-16 1992-05-21 Esser Sicherheitstechnik METHOD FOR DETERMINING THE CONFIGURATION OF THE DETECTORS OF A DANGER DETECTION SYSTEM AND FOR DETERMINING DETECTORS SUITABLE FOR THE SYSTEM CONFIGURATION
DE19940700C2 (en) * 1999-08-27 2003-05-08 Job Lizenz Gmbh & Co Kg Method and device for the automatic assignment of detector addresses in a hazard detection system
US6838999B1 (en) 1999-08-27 2005-01-04 Job Lizenz Gmbh & Co. Kg Method and device for automatically allocating detector addresses in an alarm system

Also Published As

Publication number Publication date
FI811935L (en) 1981-12-24
CH651688A5 (en) 1985-09-30
US4404548A (en) 1983-09-13
NO812130L (en) 1981-12-28
JPS64753B2 (en) 1989-01-09
NO152526C (en) 1985-10-09
EP0042501A1 (en) 1981-12-30
DK263881A (en) 1981-12-24
NO152526B (en) 1985-07-01
ATE13231T1 (en) 1985-05-15
JPS5730098A (en) 1982-02-18
DE3170379D1 (en) 1985-06-13

Similar Documents

Publication Publication Date Title
EP0042501B1 (en) Device for the transmission of measured values in a fire warning system
EP2804163B1 (en) Method and apparatus for detecting faults in control lines in hazard warning and control systems
EP1206765B1 (en) Method and device for automatically allocating detector addresses in an alarm system
EP0248298B1 (en) Danger alarm installation
EP0067339A2 (en) Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems
DE2533330C3 (en) Method and device for the transmission of measured values in a fire alarm system
EP1109143A2 (en) Method and device for determining the defective detectors in an alarm system
DE2533354B2 (en) Device for transmitting control commands in a fire protection system
EP0090399B1 (en) Direct current signalling installation
CH660927A5 (en) MONITORING SYSTEM.
EP1197936B1 (en) Alarm system
EP0295593B1 (en) Individual identification
DE3128796C2 (en)
DE4322841C2 (en) Hazard detection system
DE3614692C2 (en)
EP0098554B1 (en) Method and device for automatically demanding signal measure values and signal identification in an alarm installation
EP0004912B1 (en) Annunciator of danger
EP0254125B1 (en) Danger signalling system
EP0098552B1 (en) Method and device for automatically demanding signal measure values and signal identification in an alarm installation
DE3225032C2 (en) Method and device for the optional automatic query of the detector identification or the detector measured value in a hazard alarm system
EP0098553B1 (en) Method and device for automatically demanding signal measure values and/or signal identification in an alarm installation
DE3036029C2 (en) Circuit arrangement for monitoring a connecting line
DE1167229B (en) Room protection system with measuring electrodes included in a bridge circuit and periodic checking of the system
EP0213383B1 (en) Method and device for monitoring the operation of optical smoke detectors
DE3415819A1 (en) Fire alarm device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19811205

ITF It: translation for a ep patent filed

Owner name: VETTOR GALLETTI DI SAN CATALDO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 13231

Country of ref document: AT

Date of ref document: 19850515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3170379

Country of ref document: DE

Date of ref document: 19850613

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910410

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920529

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940425

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940531

Year of fee payment: 14

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 81104115.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970411

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970416

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970417

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970423

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970702

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980529

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

BERE Be: lapsed

Owner name: CERBERUS A.G.

Effective date: 19980531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980529

EUG Se: european patent has lapsed

Ref document number: 81104115.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST