EP0254125B1 - Danger signalling system - Google Patents

Danger signalling system Download PDF

Info

Publication number
EP0254125B1
EP0254125B1 EP87109814A EP87109814A EP0254125B1 EP 0254125 B1 EP0254125 B1 EP 0254125B1 EP 87109814 A EP87109814 A EP 87109814A EP 87109814 A EP87109814 A EP 87109814A EP 0254125 B1 EP0254125 B1 EP 0254125B1
Authority
EP
European Patent Office
Prior art keywords
detector
interrogation
status
voltage
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87109814A
Other languages
German (de)
French (fr)
Other versions
EP0254125A1 (en
Inventor
Otto-Walter Dipl.-Ing. Moser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT87109814T priority Critical patent/ATE60885T1/en
Publication of EP0254125A1 publication Critical patent/EP0254125A1/en
Application granted granted Critical
Publication of EP0254125B1 publication Critical patent/EP0254125B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/005Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade

Definitions

  • the invention relates to a hazard alarm system according to the preamble of patent claim 1.
  • the object of the invention is therefore to shorten the alarm detection time in a hazard alarm system described at the outset.
  • the control center executes status polling cycles in quick succession and, in the event of a status change or if there is any other requirement, regular polling cycles. If a change in detector status is detected on a line, a regular polling cycle is then carried out for this line, in which the detector address is also determined.
  • each detector is additionally provided with a comparison device which switches the subsequent detector on without delay, ie immediately, when the status is queried.
  • the status query according to the invention has the advantage that the alarm detection time is considerably shortened because only a change in status is checked.
  • the query time is therefore independent of the number of detectors per line.
  • the longer regular polling cycle address polling cycle
  • the regular polling cycle is required if control commands are transmitted to certain detectors or control elements which are assigned to certain detectors, as already known from DE-C-25 33 354.
  • Fig. 4 shows an embodiment of the detector according to the invention.
  • FIG. 1 shows the known connection of the individual detectors M1 to Mn to a detection line ML with the line wire pair a, b at the control center Z.
  • the detectors are connected in a chain and each have a controllable switch ST1, ST2, etc. in the b-wire.
  • ST1, ST2, etc. When the interrogation voltage is applied, the subsequent detectors are switched on to the signaling line with a time delay in normal operation. This is known and need not be explained in detail.
  • a detector according to the invention for the status query is shown in a block diagram in FIG.
  • the circuit is partly known from the conventional pulse detector.
  • a timing element ZG is connected to the detection line, ie to line wire a and line wire b, the duration of which is determined by the measured value of the detector.
  • the analog detector measurement value determines the running time. This switching example is based on a manually operated detector.
  • the detector status depends on the position of switch S1, R corresponds to the rest position, A corresponds to the alarm position and S corresponds to a fault, which each cause different delay times.
  • the output from the timing element ZG causes a current pulse via the transverse transistor TQ and the transverse resistor RQ via the pulse generator IG.
  • This current pulse is measured and evaluated in a known manner in the control center. Furthermore, the output of the timing element ZG controls the switch ST via the OR link OR, which is closed after the timing element ZG has expired and switches the detection line b through to the next detector (b) in a known manner. Normal pulse detectors are connected to the line one after the other and send their measuring current pulses IL one after the other via the detection line a, b to the control center Z.
  • a comparator K is provided in each detector Mi, which immediately closes the switch ST for the status query when the query voltage for the status query is on the message line ML.
  • a reference voltage Uref at the comparator K which is less than the query voltage for the status query.
  • the interrogation voltage UL reaches the second input of the comparator K via the signal line ML. If the voltage on the signal line exceeds the Uref specified at the comparator input, the output of the comparator K emits a signal via the OR gate OR, so that the switch ST is closed and a transfer to the next detector regardless of the running time of the timing element ZG he follows.
  • FIGS 3a and 3b show a voltage and a current diagram.
  • 3a shows the line voltage UL as a function of time t.
  • the line current IL measured in the control center is plotted below the time t accordingly.
  • Each polling cycle begins with the start signal U0, ie the line voltage UL is reduced to the value 0. This short start signal ensures that all detectors are switched off by the signaling line.
  • the interrogation voltage is switched to the signaling line.
  • a query voltage U3 is applied for the status query cycle ZAZ. This query voltage is higher than the query voltage U2 for the regular query cycle RAZ.
  • the reference input Uref of the comparator K in the respective detector (Mi) can be based on the value be set.
  • the switches ST immediately switch through via the OR link OR.
  • the b-wire is connected through to the last detector Mn. All detectors are connected to the alarm line in parallel and all ZG timers start at the same time. Are all detectors in the idle state, they send their measuring current pulses Ii to In simultaneously at the time tR, as shown in FIG. 3b.
  • one detector sends an alarm
  • another detector a fault, i.e. A measuring current pulse I2 comes at time tA
  • another measuring current pulse I3 comes later, at time tS.
  • the other detectors simultaneously emit their quiescent current pulses at time tR. This is shown in Fig.3b.
  • the evaluation device in the control center can distinguish between the alarm, fault and Ruheim pulses, but it cannot recognize the number of the detector (detector address).
  • the relevant detector addresses are determined in the subsequent regular query cycle RAZ1.
  • This regular polling cycle is a completely normal pulse detector polling cycle with the regular polling voltage U2, which is lower than the polling voltage U3 for the state change.
  • the respective comparators do not switch with this voltage on the signal line, i.e. the individual switches STi are only closed after the associated time elements ZGi have expired.
  • the detectors thus send their measuring current pulses one after the other in a known manner.
  • Control signals are transmitted to the detector M2, as is done in a known manner by reducing the voltage to U1.
  • the open circuit voltage UR is connected to the line in a known manner after the query time AZ.
  • This (UR) is greater than the interrogation voltage U3 and serves to supply energy to the detectors, in particular also Charging the energy buffer capacitors provided there.
  • Figure 4 shows an embodiment of the detector according to the invention.
  • the capacitors C1 and C2 discharge, the transistor T3 is blocked. So all detectors are switched off by the reporting line.
  • the timing element ZG consists of the resistors R1, R2, R3, the capacitor C1 and the transistor T1.
  • the capacitor C1 charges in the idle state of the detector via R3, in the alarm state AL, i.e. when the switch S2 is closed, via the parallel connection of R3 and R2.
  • the transistor T1 becomes conductive with a delay.
  • the pulse generator IG which consists of the capacitor C2 and the resistors R4, R5 and the transistor T2, the measuring current pulse Ii is generated via the resistor R6.
  • the (switching) transistor T3 becomes conductive, which switches the line b to b 'to the next detector.
  • the Zener diode ZD1 With the regular interrogation with the lower interrogation voltage U2, the Zener diode ZD1 remains ineffective.
  • the transistor T3 becomes conductive via the Zener diode ZD1 immediately after the voltage is applied, that is to say regardless of the running time of the timing element.
  • the invention also has the advantage that an alarm detection can be ensured in a simple manner in the case of conventional pulse signaling lines if the central evaluation device fails. It can are only recognized on line alarm, but the alarm triggering detector is not identified. With this status query according to the invention, an alarm can also be recognized if one of the switching transistors T3 or the switch ST remains closed, for example due to a lightning effect. In this case too, alarm detection of the relevant message line is possible.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)

Abstract

Danger alarm system with a control centre (Z) with an analyser and several two-wire signalling leads (ML) to which a plurality (i) of individually identifiable detectors (Mi) are connected in a chain arrangement; each of these has a controllable switch (STi) in one of the two wire leads (b). The detectors (Mi) are scanned cyclically from the control centre for their current status, each detector (Mi) switching the next detector (Mi + 1) through to the signalling lead (ML) after a time delay (ZG) dependent on its measured value and sends a current pulse on the signalling lead. In the analyser, the detector address and its measured value are determined from the respective time of the current pulse (li) and from these an alarm or malfunction indication is obtained. In accordance with the invention, a number of status scanning cycles (ZAZ) are carried out in sequence by the control centre (Z) and, in the case of a change of status or for any other reason, regular scanning cycles (RAZ) are carried out in which the detector address is also determined. The status scanning cycle uses a scan voltage (U3) which deviates from the scan voltage (U2) used for the regular scanning cycle (RAZ). For the status scanning (ZAZ), each detector (Mi) has additionally a comparator element (K) which switches the following detector (Mi + 1) through with no time delay. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Gefahrenmeldeanlage gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a hazard alarm system according to the preamble of patent claim 1.

Bei Gefahrenmeldeanlagen, insbesondere bei Einbruch- oder Brandmeldeanlagen mit manuell betätigbaren Meldern, beispielsweise Druckknopfmeldern, ist es notwendig, eine Alarmierung möglichst rasch zu erkennen. In Gefahrenmeldeanlagen, die nach dem sogenannten Puls-Melde-Prinzip arbeiten (DE-C- 25 33 382), senden bei der Linienabfrage alle an eine Meldeleitung angeschlossenen Melder in bekannter Weise nacheinander Meßstromimpulse an die Zentrale. Üblicherweise sind an einer zentralen Baugruppe mehrere Linien angeschaltet, die nacheinander abgefragt werden. Die Abfragezeit eines Melders hängt somit von der Linienanzahl und der Anzahl der Melder pro Linie ab. Normalerweise kann frühestens nach dieser Zeit die Zustandsänderung des betreffenden Melders, d.h. des alarmauslösenden Melders, erkannt werden. Mit der Alarmgabe dieses Melders erfolgt gleichzeitig die Adressenangabe, die Auswertung für beide Meldergrößen wird in der Zentrale vorgenommen und angezeigt. Das heißt, eine Auswertung und Aussage über eine Melderzustandsänderung erfolgt erst nach einem vollständigen Abfragezyklus. Wenn auch die einzelnen Abfragezyklen verhältnismäßig kurz sind, kann es dennoch notwendig sein, möglichst schnell eine Brandmeldung oder eine Überfallmeldung im Falle einer Intrusionsschutzanlage sofort zu erkennen.In the case of hazard detection systems, in particular intrusion or fire detection systems with manually operated detectors, for example push-button detectors, it is necessary to recognize an alarm as quickly as possible. In alarm systems that work according to the so-called pulse-signaling principle (DE-C-25 33 382), all detectors connected to a signaling line successively send measuring current pulses to the control center in a known manner when the line is queried. Usually, several lines are connected to a central module, which are queried one after the other. The query time of a detector thus depends on the number of lines and the number of detectors per line. Normally after this time at the earliest, the status change of the relevant detector, ie the alarm triggering detector, can be recognized. When this detector is alarmed, the address is given at the same time, the evaluation for both detector sizes is carried out and displayed in the control center. This means that an evaluation and statement about a change in detector status only takes place after a complete query cycle. Even if the individual polling cycles are relatively short, it may still be necessary to recognize a fire report or an attack report in the case of an intrusion protection system as quickly as possible.

Aufgabe der Erfindung ist es daher, bei einer eingangs geschilderten Gefahrenmeldeanlage die Alarmerkennungszeit zu verkürzen.The object of the invention is therefore to shorten the alarm detection time in a hazard alarm system described at the outset.

Diese Aufgabe wird erfindungsgemäß bei einer nach dem Puls-Melde-Prinzip arbeitenden Gefahrenmeldeanlage mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.This object is achieved according to the invention in a hazard alarm system operating on the pulse-reporting principle with the characterizing features of claim 1.

Mit der Erfindung ist es möglich, innerhalb wesentlich kürzerer Zeit festzustellen, ob auf einer Linie ein Melder seinen Zustand verändert hat, also von Ruhe in Alarm oder Störung geschaltet hat. In diesen Fall ist die Ermittlung des Melderortes zweitrangig, so daß hierfür eine längere Zeit benötigt werden darf. Die schnelle Alarmerkennung wird erfindungsgemäß dadurch erreicht, daß von der Zentrale aus rasch aufeinander folgende Zustandsabfragezyklen und im Falle einer Zustandsänderung oder bei einem anderweitigen Bedarf reguläre Abfragezyklen durchgeführt werden. Wird auf einer Linie eine Melderzustandsänderung erkannt, so wird anschließend für diese Linie ein regulärer Abfragezyklus durchgeführt, bei dem auch die Melderadresse ermittelt wird. Man kann ihn in diesem Zusammenhang auch als Adressabfragezyklus bezeichnen, obwohl dieser ein herkömmlicher Pulsmelderabfragezyklus ist, bei dem sowohl der analoge Meldermeßwert und die Melderadresse erfaßt werden. Dabei erfolgt die Zustandsabfrage mit einer Abfragespannung, die von der Abfragespannung beim regulären Abfragezyklus abweicht. Dementsprechend ist erfindungsgemäß zusätzlich jeder Melder mit einer Vergleichseinrichtung versehen, welche bei der Zustandsabfrage den nachfolgenden Melder unverzögert, d.h. unmittelbar, anschaltet.With the invention, it is possible to determine within a considerably shorter time whether a detector has changed its state on a line, ie has switched from rest to alarm or fault. In this case, the determination of the reporting location is of secondary importance, so that a longer time may be required for this. The rapid alarm detection is achieved according to the invention in that the control center executes status polling cycles in quick succession and, in the event of a status change or if there is any other requirement, regular polling cycles. If a change in detector status is detected on a line, a regular polling cycle is then carried out for this line, in which the detector address is also determined. In this context, it can also be called an address polling cycle, although this is a conventional pulse detector polling cycle in which both the analog detector measured value and the detector address are recorded. The status query is carried out with a query voltage that differs from the query voltage in the regular query cycle. Accordingly, according to the invention, each detector is additionally provided with a comparison device which switches the subsequent detector on without delay, ie immediately, when the status is queried.

Da bei Gefahrenmeldeanlagen die Melder die meiste Zeit im Ruhezustand sind, hat die erfindungsgemäße Zustandsabfrage den Vorteil, daß die Alarmerkennungszeit erheblich verkürzt wird, weil nur auf eine Zustandsänderung geprüft wird. Die Abfragezeit ist somit unabhängig von der Anzahl der Melder pro Linie. Der längerdauernde reguläre Abfragezyklus (Adressabfragezyklus) wird entweder durchgeführt, wenn eine Zustandsänderung auf der Meldelinie erkannt wurde, oder wenn ein sonstiger Bedarf vorliegt, beispielsweise um die Funktion der angeschlossenen Melder zu prüfen. Ferner ist der reguläre Abfragezyklus erforderlich, wenn Steuerbefehle an bestimmte Melder oder Steuerorgane, die bestimmten Meldern zugeordnet sind, übertragen werden, wie bereits aus der DE-C- 25 33 354 bekannt.Since the detectors are mostly in the idle state in hazard alarm systems, the status query according to the invention has the advantage that the alarm detection time is considerably shortened because only a change in status is checked. The query time is therefore independent of the number of detectors per line. The longer regular polling cycle (address polling cycle) is carried out either when a change in status has been detected on the detection line or when there is another need, for example to check the function of the connected detectors. Furthermore, the regular polling cycle is required if control commands are transmitted to certain detectors or control elements which are assigned to certain detectors, as already known from DE-C-25 33 354.

Weitere Ausgestaltungen und Vorteile der Erfindung ergeben sich aus den Unteransprüchen.Further refinements and advantages of the invention result from the subclaims.

Im folgenden wird anhand der Zeichnung die Erfindung im einzelnen beschrieben. Dabei zeigenThe invention is described in detail below with reference to the drawing. Show

Fig. 1 die bekannte Anschaltung der Melder an einer Zentrale,1 shows the known connection of the detectors to a control center,

Fig. 2 eine Prinzipschaltung eines erfindungsgemäßen Melders,2 shows a basic circuit of a detector according to the invention,

Fig. 3a und 3b Spannungs- und Stromdiagramme und3a and 3b voltage and current diagrams and

Fig. 4 ein Ausführungsbeispiel des erfindungsgemäßen Melders.Fig. 4 shows an embodiment of the detector according to the invention.

In Fig. 1 ist die bekannte Anschaltung der einzelnen Melder M1 bis Mn an einer Meldelinie ML mit dem Leitungsadernpaar a,b an der Zentrale Z dargestellt. Die Melder sind kettenförmig angeschlossen und weisen jeweils in der b-Ader einen ansteuerbaren Schalter ST1, ST2, usw. auf. Mit dem Anlegen der Abfragespannung werden der Reihe nach im regulären Betrieb jeweils zeitverzögert die jeweils nachfolgenden Melder an die Meldeleitung angeschaltet. Dies ist bekannt und muß nicht im einzelnen erläutert werden.1 shows the known connection of the individual detectors M1 to Mn to a detection line ML with the line wire pair a, b at the control center Z. The detectors are connected in a chain and each have a controllable switch ST1, ST2, etc. in the b-wire. When the interrogation voltage is applied, the subsequent detectors are switched on to the signaling line with a time delay in normal operation. This is known and need not be explained in detail.

In Fig.2 ist an einem Blockschaltbild ein erfindungsgemäßer Melder für die Zustandsabfrage dargestellt. Die Schaltung ist teilweise vom herkömmlichen Pulsmelder bekannt. An der Meldelinie, d.h. an der Leitungsader a und an der Leitungsader b, ist ein Zeitglied ZG angeschlossen, dessen Laufzeit vom Meldermeßwert bestimmt ist. Bei automatischen Brandmeldern bestimmt der analoge Meldermeßwert die Laufzeit. Diesem Schaltbeispiel liegt ein manuell betätigbarer Melder zugrunde. Der Melderzustand ist hier von der Stellung des Schalters S1 abhängig, R entspricht der Ruhestellung, A der Alarmstellung und S einer Störung, die jeweils unterschiedliche Verzögerungszeiten bewirken. Der Ausgang vom Zeitglied ZG verursacht über den Impulsgeber IG einen Stromimpuls über den Quertransistor TQ und den Querwiderstand RQ. Dieser Stromimpuls wird in bekannter Weise in der Zentrale gemessen und ausgewertet. Des weiteren steuert der Ausgang des Zeitgliedes ZG über die Oder-Verknüpfung OR den Schalter ST, der nach Ablauf des Zeitgliedes ZG geschlossen wird und die Meldelinie b in bekannter Weise zum nächsten Melder (b) durchschaltet. Normale Pulsmelder werden so der Reihe nach an die Linie angeschaltet und senden nacheinander ihre Meßstromimpulse IL über die Meldelinie a,b zur Zentrale Z.A detector according to the invention for the status query is shown in a block diagram in FIG. The circuit is partly known from the conventional pulse detector. A timing element ZG is connected to the detection line, ie to line wire a and line wire b, the duration of which is determined by the measured value of the detector. In the case of automatic fire detectors, the analog detector measurement value determines the running time. This switching example is based on a manually operated detector. The detector status depends on the position of switch S1, R corresponds to the rest position, A corresponds to the alarm position and S corresponds to a fault, which each cause different delay times. The output from the timing element ZG causes a current pulse via the transverse transistor TQ and the transverse resistor RQ via the pulse generator IG. This current pulse is measured and evaluated in a known manner in the control center. Furthermore, the output of the timing element ZG controls the switch ST via the OR link OR, which is closed after the timing element ZG has expired and switches the detection line b through to the next detector (b) in a known manner. Normal pulse detectors are connected to the line one after the other and send their measuring current pulses IL one after the other via the detection line a, b to the control center Z.

Erfindungsgemäß ist in jedem Melder Mi ein Komparator K vorgesehen, der für die Zustandsabfrage den Schalter ST sofort schließt, wenn die Abfragespannung für die Zustandsabfrage an der Meldeleitung ML liegt. Dazu liegt am Komparator K eine Referenzspannung Uref die kleiner ist als die Abfragespannung für die Zustandsabfrage. Die Abfragespannung UL gelangt an den zweiten Eingang des Komparators K über die Meldeleitung ML. Wenn die Spannung an der Meldeleitung den am Komparatoreingang vorgegebenen Uref überschreitet, gibt der Ausgang des Komparators K ein Signal über das Oder-Glied OR ab, so daß der Schalter ST geschlossen wird und eine Weiterschaltung an den nächsten Melder unabhängig von der Laufzeit des Zeitgliedes ZG erfolgt.According to the invention, a comparator K is provided in each detector Mi, which immediately closes the switch ST for the status query when the query voltage for the status query is on the message line ML. For this purpose there is a reference voltage Uref at the comparator K which is less than the query voltage for the status query. The interrogation voltage UL reaches the second input of the comparator K via the signal line ML. If the voltage on the signal line exceeds the Uref specified at the comparator input, the output of the comparator K emits a signal via the OR gate OR, so that the switch ST is closed and a transfer to the next detector regardless of the running time of the timing element ZG he follows.

Die Figuren 3a und 3b zeigen ein Spannungs- und ein Stromdiagramm. In Fig.3a ist die Linienspannung UL in Abhängigkeit der Zeit t aufgetragen. Entsprechend darunter ist der in der Zentrale gemessene Linienstrom IL über der Zeit t aufgetragen. Jeder Abfragezyklus beginnt mit dem Startsignal U0, d.h. die Linienspannung UL wird auf den Wert 0 abgesenkt. Mit diesem kurzen Startsignal wird erreicht, daß sämtliche Melder von der Meldeleitung abgeschaltet werden. Zum Zeitpunkt t0 wird die Abfragespannung an die Meldeleitung geschaltet. Für den Zustandsabfragezyklus ZAZ wird beispielsweise eine Abfragespannung U3 angelegt. Diese Abfragespannung ist gegenüber der Abfragespannung U2 für den regulären Abfragezyklus RAZ höher. Der Referenzeingang Uref des Komparators K im jeweiligen Melder (Mi) kann dabei auf den Wert

Figure imgb0001
eingestellt sein. Damit schalten mit der Abfragespannung U3, die am zweiten Eingang aller Komparatoren anliegt, über die Oder-Verknüpfung OR die Schalter ST sofort durch. Damit ist die b-Ader bis zum letzten Melder Mn durchverbunden. Alle Melder hängen parallel an der Meldeleitung und alle Zeitglieder ZG starten gleichzeitig. Sind alle Melder im Ruhezustand, so senden sie ihre Meßstromimpulse Ii bis In gleichzeitig zum Zeitpunkt tR, wie dies in Fig.3b gezeigt ist.Figures 3a and 3b show a voltage and a current diagram. 3a shows the line voltage UL as a function of time t. The line current IL measured in the control center is plotted below the time t accordingly. Each polling cycle begins with the start signal U0, ie the line voltage UL is reduced to the value 0. This short start signal ensures that all detectors are switched off by the signaling line. At time t0, the interrogation voltage is switched to the signaling line. For example, a query voltage U3 is applied for the status query cycle ZAZ. This query voltage is higher than the query voltage U2 for the regular query cycle RAZ. The reference input Uref of the comparator K in the respective detector (Mi) can be based on the value
Figure imgb0001
be set. Thus, with the interrogation voltage U3, which is present at the second input of all comparators, the switches ST immediately switch through via the OR link OR. The b-wire is connected through to the last detector Mn. All detectors are connected to the alarm line in parallel and all ZG timers start at the same time. Are all detectors in the idle state, they send their measuring current pulses Ii to In simultaneously at the time tR, as shown in FIG. 3b.

Im zweiten Zustandsabfragezyklus ZAZ2 sendet beispielsweise ein Melder Alarm, ein anderer Melder eine Störung, d.h. ein Meßstromimpuls I2 kommt bereits zum Zeitpunkt tA, ein anderer Meßstromimpuls I3 erst später, zum Zeitpunkt tS. Die übrigen Melder geben gleichzeitig ihre Ruhe-Stromimpulse zum Zeitpunkt tR ab. Dies ist in Fig.3b dargestellt. Die Auswerteeinrichtung in der Zentrale kann zwischen den Alarm-, Störungs- und Ruheimpulsen unterscheiden, sie kann jedoch nicht die Nummer des Melders (Melderadresse) erkennen.In the second status query cycle ZAZ2, for example, one detector sends an alarm, another detector a fault, i.e. A measuring current pulse I2 comes at time tA, another measuring current pulse I3 comes later, at time tS. The other detectors simultaneously emit their quiescent current pulses at time tR. This is shown in Fig.3b. The evaluation device in the control center can distinguish between the alarm, fault and Ruheim pulses, but it cannot recognize the number of the detector (detector address).

Dazu werden im nachfolgenden regulären Abfragezyklus RAZ1 die betreffenden Melderadressen ermittelt. Dieser reguläre Abfragezyklus ist ein ganz normaler Pulsmelderabfragezyklus mit der regulären Abfragespannung U2, die gegenüber der Abfragespannung U3 für die Zustandsänderung niedriger ist. Mit dieser Spannung an der Meldeleitung schalten die jeweiligen Komparatoren nicht, d.h. die einzelnen Schalter STi werden erst nach Ablauf der zugehörigen Zeitglieder ZGi geschlossen. Die Melder senden somit in bekannter Weise ihre Meßstromimpulse nacheinander. Bei dieser Abfrage können auch, z.B. zum Melder M2, Steuerbefehle übertragen werden, wie dies in bekannter Weise durch eine Spannungsabsenkung auf U1 geschieht.For this purpose, the relevant detector addresses are determined in the subsequent regular query cycle RAZ1. This regular polling cycle is a completely normal pulse detector polling cycle with the regular polling voltage U2, which is lower than the polling voltage U3 for the state change. The respective comparators do not switch with this voltage on the signal line, i.e. the individual switches STi are only closed after the associated time elements ZGi have expired. The detectors thus send their measuring current pulses one after the other in a known manner. With this query, e.g. Control signals are transmitted to the detector M2, as is done in a known manner by reducing the voltage to U1.

Die Ruhespannung UR wird in bekannter Weise nach der Abfragezeit AZ an die Linie geschaltet. Diese (UR) ist größer als die Abfragespannung U3 und dient der Energieversorgung der Melder, insbesondere auch der Aufladung der dort vorgesehenen Energiepufferkondensatoren.The open circuit voltage UR is connected to the line in a known manner after the query time AZ. This (UR) is greater than the interrogation voltage U3 and serves to supply energy to the detectors, in particular also Charging the energy buffer capacitors provided there.

Die Figur 4 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Melders. Während der kurzen Startzeit SZ mit dem Startsignal U0 = 0 entladen sich die Kondensatoren C1 und C2, der Transistor T3 ist gesperrt. Es werden also alle Melder von der Meldeleitung abgeschaltet.Figure 4 shows an embodiment of the detector according to the invention. During the short start time SZ with the start signal U0 = 0, the capacitors C1 and C2 discharge, the transistor T3 is blocked. So all detectors are switched off by the reporting line.

Das Zeitglied ZG besteht aus den Widerständen R1,R2,R3, dem Kondensator C1 und dem Transistor T1. Nach Anlegen der Abfragespannung beispielsweise U2 für den regulären Abfragezyklus RAZ an die Melderklemmen a,b lädt sich der Kondensator C1 im Ruhezustand des Melders über R3, im Alarmzustand AL, also wenn der Schalter S2 geschlossen ist, über die Parallelschaltung aus R3 und R2 auf. Der Transistor T1 wird verzögert leitend. Über den Impulsgeber IG, der aus dem Kondensator C2 und den Widerständen R4,R5 und dem Transistor T2 besteht, wird über den Widerstand R6 der Meßstromimpuls Ii erzeugt. Über die Diode D1 und den Widerstand R7 wird der (Durchschalte)Transistor T3 leitend, der die Leitung b nach b' zum nächsten Melder weiterschaltet. Bei der regulären Abfrage mit der niedrigeren Abfragespannung U2 bleibt die Zenerdiode ZD1 wirkungslos. Beim Anliegen der höheren Abfragespannung U3 für die Zustandsabfrage wird dagegen der Transistor T3 über die Zenerdiode ZD1 sofort nach Anliegen der Spannung leitend, also unabhängig von der Laufzeit des Zeitgliedes.The timing element ZG consists of the resistors R1, R2, R3, the capacitor C1 and the transistor T1. After applying the interrogation voltage, for example U2 for the regular interrogation cycle RAZ to the detector terminals a, b, the capacitor C1 charges in the idle state of the detector via R3, in the alarm state AL, i.e. when the switch S2 is closed, via the parallel connection of R3 and R2. The transistor T1 becomes conductive with a delay. Via the pulse generator IG, which consists of the capacitor C2 and the resistors R4, R5 and the transistor T2, the measuring current pulse Ii is generated via the resistor R6. Via the diode D1 and the resistor R7, the (switching) transistor T3 becomes conductive, which switches the line b to b 'to the next detector. With the regular interrogation with the lower interrogation voltage U2, the Zener diode ZD1 remains ineffective. In contrast, when the higher interrogation voltage U3 for the state interrogation is present, the transistor T3 becomes conductive via the Zener diode ZD1 immediately after the voltage is applied, that is to say regardless of the running time of the timing element.

Die Erfindung hat darüberhinaus auch noch den Vorteil, daß bei herkömmlichen Pulsmeldeleitungen bei Ausfall der zentralen Auswerteeinrichtung auf einfache Weise noch eine Alarmerkennung sichergestellt werden kann. Es kann dabei lediglich auf Leitungsalarm erkannt werden, jedoch der alarmauslösende Melder nicht identifiziert werden. Mit dieser erfindungsgemäßen Zustandsabfrage kann auch ein Alarm erkannt werden, wenn einer der Durchschaltetransistoren T3 bzw. der Schalter ST beispielsweise aufgrund einer Blitzeinwirkung ständig geschlossen bliebe. Auch in diesem Fall ist eine Alarmerkennung der betreffenden Meldeleitung möglich.The invention also has the advantage that an alarm detection can be ensured in a simple manner in the case of conventional pulse signaling lines if the central evaluation device fails. It can are only recognized on line alarm, but the alarm triggering detector is not identified. With this status query according to the invention, an alarm can also be recognized if one of the switching transistors T3 or the switch ST remains closed, for example due to a lightning effect. In this case too, alarm detection of the relevant message line is possible.

Claims (3)

  1. Danger signalling system having the following features:
    a) a plurality of signal lines (ML), which each have a two-wire line (a, b), are connected to a central station (Z) with an evaluation device;
    b) connected in each signal line (ML) in the manner of a chain are a multiplicity (i) of individually identifiable detectors (Mi) which each have a controllable switch (STi) in one of the two wire lines (b);
    c) the detectors (Mi) of each signal line (ML) are cyclically interrogated by the central station for their respective detector status, each detector (Mi) connecting the following detector (Mi+1) with a time delay (ZG) to the signal line (ML) in accordance with its measured value and bringing about a current pulse (Ii) on the signal line;
    d) each interrogation cycle (AZi) consists of a short start time (SZ) with an interrogation voltage (U0) which approximately has the value 0, of an interrogation time (AZ) with a given interrogation voltage (U2) and of a rest time (RZ) with an open-circuit voltage (UR);
    e) the respective line current (IL) is measured in the central station (Z) in the evaluation device, the detector address and the detector measured value being determined from the respective instant of the current pulse (Ii), and alarm or fault signals being derived therefrom, characterized in that the danger signalling system is designed in such a way that:
    f) a plurality of successive status interrogation cycles (ZAZ) are carried out by the central station (Z), and in the event of a status change or if otherwise required, regular interrogation cycles (RAZ), in which also the detector address can be determined, are carried out;
    g) during the status interrogation cycle an interrogation voltage (U3) is generated which deviates from the interrogation voltage (U2) during the regular interrogation cycle (RAZ);
    h) and that, for the status interrogation (ZAZ), each detector (Mi) additionally has a comparing element (K) which connects the following detector (Mi+1) without delay.
  2. Danger signalling system according to Claim 1, characterized in that there is arranged in the detector (Mi), in addition to the timing element (ZG) and the pulse generator (IG), a comparator (K), at the first input of which a reference voltage (Uref) is present and at the second input of which the line voltage (UL) is present, and the output of which controls the switch (ST) via an OR element (OR).
  3. Danger signalling system according to Claim 1 or 2, characterized in that the interrogation voltage (U3) for the status interrogation (ZAZ) is greater than the interrogation voltage (U2) for the regular interrogation (RAZ), and in that the value of the reference voltage (Uref) lies between the two interrogation voltages (U2 and U3).
EP87109814A 1986-07-10 1987-07-07 Danger signalling system Expired - Lifetime EP0254125B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87109814T ATE60885T1 (en) 1986-07-10 1987-07-07 EMERGENCY ALERT SYSTEM.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3623295 1986-07-10
DE3623295 1986-07-10

Publications (2)

Publication Number Publication Date
EP0254125A1 EP0254125A1 (en) 1988-01-27
EP0254125B1 true EP0254125B1 (en) 1991-02-13

Family

ID=6304878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87109814A Expired - Lifetime EP0254125B1 (en) 1986-07-10 1987-07-07 Danger signalling system

Country Status (3)

Country Link
EP (1) EP0254125B1 (en)
AT (1) ATE60885T1 (en)
DE (1) DE3768019D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534344C1 (en) * 1995-09-15 1997-02-27 Siemens Ag Hazard indicator system, esp. for fire alarm

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0404976B1 (en) * 1989-06-28 1994-02-16 Siemens Aktiengesellschaft Method for data transmission in an alarm signalling device
EP0491216B1 (en) * 1990-12-18 1996-10-09 Siemens Aktiengesellschaft Hazard detection system
FR2717287B1 (en) * 1994-03-09 1996-05-15 Sicli Automatismes Monitoring installation.
DE102011018630B4 (en) * 2011-04-21 2013-02-07 Phoenix Contact Gmbh & Co. Kg Security communication system for signaling system states
EP3010000B1 (en) * 2014-10-17 2017-09-27 Siemens Schweiz AG System for controlling actuated security devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR78472E (en) * 1960-09-30 1962-07-27 Constr Telephoniques Improvements to remote signaling and remote control systems
DE2533382C2 (en) * 1975-07-25 1980-07-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Method and device for the transmission of measured values in a fire alarm system
DE2533354C3 (en) * 1975-07-25 1979-08-30 Siemens Ag, 1000 Berlin Und 8000 Muenchen Device for transmitting control commands in a fire protection system
EP0185175B1 (en) * 1984-10-31 1991-09-04 Siemens Aktiengesellschaft Method for the identification transmission of the detectors in a risk-signalling system
GB8431883D0 (en) * 1984-12-18 1985-01-30 Gent Ltd Transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534344C1 (en) * 1995-09-15 1997-02-27 Siemens Ag Hazard indicator system, esp. for fire alarm

Also Published As

Publication number Publication date
ATE60885T1 (en) 1991-02-15
DE3768019D1 (en) 1991-03-21
EP0254125A1 (en) 1988-01-27

Similar Documents

Publication Publication Date Title
EP0485878B1 (en) Method for determining the detectors&#39; configuration of an alarm system
DE2817089B2 (en) Alarm system
EP0067339A2 (en) Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems
EP0489346B1 (en) Method for the automatic ranging of detector addresses by an alarm system
EP0042501B1 (en) Device for the transmission of measured values in a fire warning system
EP0004909B1 (en) Annunciator of danger
EP0254125B1 (en) Danger signalling system
CH660927A5 (en) MONITORING SYSTEM.
EP0295593B1 (en) Individual identification
EP0004912B1 (en) Annunciator of danger
DE2602197B2 (en) Switching method and circuit arrangement for carrying out the method for telecommunications switching systems, in particular telephone switching systems with searchers for receiving information
EP0098554A1 (en) Method and device for automatically demanding signal measure values and signal identification in an alarm installation
DE1297008B (en) Signaling system with detectors connected in parallel in a two-wire loop
EP0710931A2 (en) Method and vehicle data logger for checking a vehicle data logger registering and vehicle aggregate actuation, indicating message
EP0243928A2 (en) Danger signalling system
DE2732392C3 (en) Circuit arrangement for time-dependent monitoring of the condition of lines
DE3225032C2 (en) Method and device for the optional automatic query of the detector identification or the detector measured value in a hazard alarm system
DE3036029C2 (en) Circuit arrangement for monitoring a connecting line
EP0224819B1 (en) Danger-signalling system
EP0178474B1 (en) Method and arrangement for the detector identification of a hazard detection system
DE2842350C2 (en) Circuit arrangement for monitoring clock pulse trains
AT397591B (en) MEASURING DEVICE FOR DETECTING AND DISPLAYING VARIOUS MEASURED VALUES, ESPECIALLY FOR MEASURING VALUES IN NETWORKS OF DIALING SYSTEMS
DE3510524A1 (en) DEVICE FOR SELF-MONITORING A CIRCUIT ARRANGEMENT WITH A MICROCOMPUTER
DE2600798B2 (en) METHOD AND CIRCUIT ARRANGEMENT FOR FUNCTIONAL TESTING OF GEOPHONES ARRANGED IN MONITORING SYSTEMS OR FOR THE FUNCTIONAL CHECK OF THE MONITORING SYSTEMS
DE3301821C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19880224

17Q First examination report despatched

Effective date: 19900511

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 60885

Country of ref document: AT

Date of ref document: 19910215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3768019

Country of ref document: DE

Date of ref document: 19910321

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940616

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940622

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940714

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940725

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940731

Year of fee payment: 8

Ref country code: NL

Payment date: 19940731

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940915

Year of fee payment: 8

EAL Se: european patent in force in sweden

Ref document number: 87109814.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950707

Ref country code: AT

Effective date: 19950707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950731

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950707

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960402

EUG Se: european patent has lapsed

Ref document number: 87109814.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050707