EP0362797B2 - Method for the energy-saving operation of risk detectors in a risk detection arrangement - Google Patents
Method for the energy-saving operation of risk detectors in a risk detection arrangement Download PDFInfo
- Publication number
- EP0362797B2 EP0362797B2 EP89118338A EP89118338A EP0362797B2 EP 0362797 B2 EP0362797 B2 EP 0362797B2 EP 89118338 A EP89118338 A EP 89118338A EP 89118338 A EP89118338 A EP 89118338A EP 0362797 B2 EP0362797 B2 EP 0362797B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- detector
- time
- voltage
- detectors
- microcomputer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 16
- 238000001514 detection method Methods 0.000 title claims description 14
- 230000004044 response Effects 0.000 claims abstract description 10
- 125000004122 cyclic group Chemical group 0.000 claims abstract 2
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 5
- 229920000535 Tan II Polymers 0.000 claims description 3
- 230000009977 dual effect Effects 0.000 claims 1
- 230000011664 signaling Effects 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B26/00—Alarm systems in which substations are interrogated in succession by a central station
- G08B26/005—Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade
Definitions
- the invention relates to a method for energy saving Operation of hazard detectors in a hazard alarm system according to the preamble of claim 1.
- Such a hazard alarm system is from DE-PS 25 33 382 known.
- this alarm system especially fire alarm system, for the transmission of analog detector measured values the individual detectors are connected in a chain to the detection line.
- the measured values of the individual detectors polled cyclically from the central office and to the central office Evaluation device given to differentiate from there Fault or alarm messages from those to be linked To gain analog values.
- At the beginning of each polling cycle all detectors are switched off by a voltage change from the Detector line separated and then in the specified order in switched on again so that each detector after one time delay corresponding to its measured value by means of a in one of the wires of the detection line arranged switching transistor the subsequent detector in addition turns on.
- the detectors will operated from their energy stores during this time.
- the Energy storage will be in the so-called after the query Rest time with increased line tension.
- hazard detectors need high quality Sensor technology and transmission technology. Instead of a collective address individual addressing is required, as is the case with above is the case. It can Control commands from the control center to the individual detectors transmitted by the individual detectors be, as is already known from DE-PS 25 33 354. It can receive and receive data from each detector be reported, also in the form of pulse telegrams within certain time slots are transmitted.
- CMOS complementary metal-oxide-semiconductor
- special sensors e.g. pulsed the measuring part of an optical stray light smoke detector operate as described in EP-0 125 485-A1.
- the possibility of all or part of the required energy, e.g. over a own management, which is also the complexity and the cost of a hazard alarm system increases.
- EP 0 191 239 is a data transmission system for building management systems known, which also includes fire detectors.
- the sensors of the fire detectors include microcomputers who will retire if none Action of the microcomputer is required. There is none Specified when and how the microcomputer in the active state is switched. It is also not a clue contain about how the startup time of the microcomputer is taken into account which results from the fact that the clock generator must swing for several milliseconds before it is functional.
- EP 0 093 872 describes a method for transmitting measured values known in a surveillance system that on the principle the chain advance is based.
- the measuring points connected in series and identified by Counting corresponding advancement pulses.
- When assigning addresses is activated simultaneously with the locking of one detector switched through to the next detector. Actions that are different Detectors relate to one another in succession.
- the object of the invention is to avoid the above Disadvantages described a method for energy saving Operating hazard detectors of a hazard detection system, which is a relatively simple and reliable A microcomputer can be switched on and off.
- the cyclical query receives the A specific voltage (an activation voltage) after each detector, which turns on the microcomputer, but only after one the specified start-up time activates the detector. Then he follows data traffic with the head office, i.e. the detector receives and sends (reports) signals. Then will the microcomputer is switched off. Conveniently the switch-on voltage becomes the query voltage educated.
- the method according to the invention modifies the known one Chain modulation such that each detector after the Query voltage initially during a specified start-up time remains inactive and then its traffic in one certain reception time and response time with the head office unwinds.
- the microcomputer is then switched off again. So that is for the microprocessor switched on for an optimally short time and consequently less energy is consumed on average.
- the Start-up time for the microcomputer is made in a special way won without having a separate start-up time for each detector to have to provide. It will only be a first start-up time required for the microcomputer of the first detector. To the first detector switches on immediately after this start-up time second detector. In the subsequent reception and The first detector's transmission time follows the data traffic of the first detector with the head office. This reception and response time is at the same time the start-up time for the microcomputer of the second detector. This process continues until the last Report off. This procedure reduces the time required considerably and thus extends the available rest period in which the energy stores of the detectors are charged. So that is an increase in the sampling rate and / or an increased energy supply possible.
- the detector M shown in Figure 2 has in addition to the one Wire of the detection line ML switched-on transistor T the logic logic VL, which is the heart of the detector represents and is formed by a microcomputer.
- the link logic operates the actual sensor part.
- the Linking logic VL is from the voltage measuring device MU which monitors the line voltage UL and switching signals according to the applied line voltage the logic logic VL there. This logic logic causes Signals to a control device ST and also signals for switching DS of the switching transistor T, so that subsequent detector is connected to the line voltage.
- Figure 3 it is illustrated how the individual detectors be turned on in sequence.
- the line tension UL plotted over time t for detectors M1 to M3.
- the ML line is on Quiescent voltage UR on.
- a query cycle then begins with the Disconnect the line from the line voltage UL, i.e. it will for the starting time ts the starting voltage US, which is preferred is zero.
- the interrogation voltage UA is preferably below this the value of the open circuit voltage UR.
- For the detector M2 it is shown that he only the after switching DS of the first detector M1 Query voltage UA receives. The same applies to detector M3.
- the data transmission to the detector generally takes place through Modulation of the line voltage UL in the center, during a Data transmission to the control center by modulating the line current IL is made in the detector.
- the line voltage UL is the profile of the line voltage UL over time t shown at the input of detectors M1, M2 and M3.
- the resting tension UR is on for the rest period tr.
- the interrogation voltage UA which is also the switch-on voltage UAN for the microcomputer is acted upon by the first detector which, after the start-up time tan1 is activated and thus receive signals E1 from the control center for received the reception time te1 and then response signals A1 can report to headquarters in time ta1.
- the detector M2 in turn activated within the start-up time tan2 and then begins with the data traffic to the head office. Is the primary reporting line ML is queried, the open-circuit voltage UR is sent to the detection line placed.
- the respective one Microcomputer only switched on for a short time.
- the microcomputer of the first begins at the interrogation voltage UA To start the detector. During this time, the detector receives received signals E0 from headquarters and could then reply Report A0 to the control center. But neither is possible because the microcomputer is still starting up and therefore not is functional.
- the functionality is only during of the response time ta0, so that the first notifier for received signal E1 determined him only after this start-up time can receive and edit tan1.
- the detector M1 With the receipt of the signals E1 from the control center switches the detector M1 immediately to the detector M2 through (DS). During the data traffic of the first detector M1 in the time te1 plus ta1 the start-up time tan2 for the second detector M2, which then switches through to the third detector M3 (DS) as soon as it receives data E2 from the control center.
- the received signals partly with the voltage level that corresponds to the quiescent voltage, run, which means the energy supply required time advantageously shortened and thus the Number of connectable detectors increased and / or the query is accelerated.
Landscapes
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Alarm Systems (AREA)
- Emergency Alarm Devices (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Verfahren zum energiesparenden
Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage
gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for energy saving
Operation of hazard detectors in a hazard alarm system
according to the preamble of
Eine derartige Gefahrenmeldeanlage ist aus der DE-PS 25 33 382 bekannt. Bei dieser Gefahrenmeldeanlage, insbesondere Brandmeldeanlage, zur Übertragung von analogen Meldermeßwerten sind die einzelnen Melder kettenförmig an der Meldelinie angeschlossen. Dabei werden die Meßwerte der einzelnen Melder zyklisch von der Zentrale aus abgefragt und zur zentralen Auswerteeinrichtung gegeben, um dort daraus differenzierte Störungs- bzw. Alarmmeldungen aus den zu verknüpfenden Analogwerten zu gewinnen. Zu Beginn eines jeden Abfragezyklus werden alle Melder durch eine Spannungsänderung von der Meldelinie abgetrennt und dann in vorgegebener Reihenfolge in der Weise wieder angeschaltet, daß jeder Melder nach einer seinem Meßwert entsprechenden Zeitverzögerung mittels eines in einer der Adern der Meldelinie angeordneten Durchschaltetransistors den jeweils nachfolgenden Melder zusätzlich anschaltet.Such a hazard alarm system is from DE-PS 25 33 382 known. With this alarm system, especially fire alarm system, for the transmission of analog detector measured values the individual detectors are connected in a chain to the detection line. The measured values of the individual detectors polled cyclically from the central office and to the central office Evaluation device given to differentiate from there Fault or alarm messages from those to be linked To gain analog values. At the beginning of each polling cycle all detectors are switched off by a voltage change from the Detector line separated and then in the specified order in switched on again so that each detector after one time delay corresponding to its measured value by means of a in one of the wires of the detection line arranged switching transistor the subsequent detector in addition turns on.
In der zentralen Auswerteeinrichtung wird die jeweilige Melderadresse aus der Anzahl der vorhergehenden Erhöhungen des Linienstroms und der analoge Meßwert aus der Länge der betreffenden Schaltverzögerungen abgeleitet. Die Melder werden während dieser Zeit aus ihren Energiespeichern betrieben. Die Energiespeicher werden nach der Abfrage in der sogenannten Ruhezeit mit erhöhter Linienspannung wieder aufgeladen.In the central evaluation device, the respective Detector address from the number of previous increases in Line current and the analog measured value from the length of the concerned Switching delays derived. The detectors will operated from their energy stores during this time. The Energy storage will be in the so-called after the query Rest time with increased line tension.
In zunehmendem Maße benötigen Gefahrenmelder eine hochwertige Sensorik und Übertragungstechnik. Anstatt einer Kollektivadresse wird eine Einzeladressierung verlangt, wie dies bei der oben geschilderten Gefahrenmeldeanlage der Fall ist. Es können auch von der Zentrale aus Steuerbefehle an die einzelnen Melder übertragen werden, die von den einzelnen Meldern empfangen werden, wie bereits aus der DE-PS 25 33 354 bekannt ist. Es können die Daten, die von den einzelnen Meldern empfangen und gemeldet werden, auch in Form von Pulstelegrammen innerhalb bestimmter Zeitfenster übermittelt werden.Increasingly, hazard detectors need high quality Sensor technology and transmission technology. Instead of a collective address individual addressing is required, as is the case with above is the case. It can Control commands from the control center to the individual detectors transmitted by the individual detectors be, as is already known from DE-PS 25 33 354. It can receive and receive data from each detector be reported, also in the form of pulse telegrams within certain time slots are transmitted.
Wegen der hohen Kosten des Leitungsnetzes werden immer mehr Melder an einer Meldeprimärleitung betrieben. Alle diese Einflüsse vergrößern den Energiebedarf der einzelnen Melder und erst recht den Energiebedarf der mit mehreren Meldern bestückten Meldeprimärleitung. Besonders problematisch wird es, wenn die Funktionsanforderungen den Einsatz von schnellen Mikrorechnern mit ihrem erheblichen Energiebedarf auch in den Meldern erforderlich machen und wenn über dieselbe Leitung auch noch die notwendige Energie zugeführt wird, wie bisher üblich.Because of the high cost of the pipeline network, there are more and more Detector operated on a primary reporting line. All of these influences increase the energy requirements of the individual detectors and especially the energy requirements of those with several detectors equipped primary line. It becomes particularly problematic if the functional requirements the use of fast Microcomputers with their considerable energy requirements also in the Make detectors necessary and if via the same line too the necessary energy is still supplied, as was previously the case.
Es ist beispielsweise bekannt, stromsparende Schaltkreistechniken, z.B. CMOS zu verwenden und spezielle Sensoren, z.B. den Meßteil eines optischen Streulicht-Rauchmelders gepulst zu betreiben, wie dies in der EP - 0 125 485 - Al beschrieben ist. Ferner ist bekannt, um den Spannungsabfall auf der Meldelinie genügend klein zu halten, diese mit dickem Draht und kurz auszuführen, was natürlich die Kosten erhöht und/oder dem Wunsch zuwiderläuft, eine Vielzahl von Meldern auf einer Leitung zu betreiben. Ebenfalls bekannt ist die Möglichkeit, die nötige Energie ganz oder teilweise getrennt, z.B. über eine eigene Leitung zuzuführen, was ebenfalls die Komplexität und die Kosten einer Gefahrenmeldeanlage erhöht. For example, it is known to use low-power circuit technologies, e.g. Use CMOS and special sensors, e.g. pulsed the measuring part of an optical stray light smoke detector operate as described in EP-0 125 485-A1. It is also known to reduce the voltage drop across the Keep the detection line small enough, this with thick wire and short, which of course increases costs and / or runs counter to the desire to have a large number of detectors on one To operate the line. The possibility of all or part of the required energy, e.g. over a own management, which is also the complexity and the cost of a hazard alarm system increases.
Aus EP 0 191 239 ist ein Datenübertragungssystem für Gebäudemanagementsysteme bekannt, welches auch Feuerdetektoren umfaßt. Die Sensoren der Feuerdetektoren umfassen dabei Mikrorechner die in einen Ruhestand geschaltet werden, wenn keine Aktion des Mikrorechners erforderlich ist. Dabei ist keine Angabe darüber gemacht, wann und wie der Mikrorechner in den aktiven Zustand geschaltet wird. Es ist auch kein Hinweis darüber enthalten, wie die Anlaufzeit des Mikrorechners berücksichtigt wird, die daraus resultiert, daß der Taktgenerator mehrere Millisekunden lang anschwingen muß, bevor er funktionsfähig ist.From EP 0 191 239 is a data transmission system for building management systems known, which also includes fire detectors. The sensors of the fire detectors include microcomputers who will retire if none Action of the microcomputer is required. There is none Specified when and how the microcomputer in the active state is switched. It is also not a clue contain about how the startup time of the microcomputer is taken into account which results from the fact that the clock generator must swing for several milliseconds before it is functional.
Aus EP 0 093 872 ist ein Verfahren zur Übertragung von Meßwerten in einem Überwachungssystem bekannt, daß auf dem Prinzip der Kettenfortschaltung beruht. Dabei werden die Meßstellen in Serie geschaltet und die Identifizierung erfolgt durch Zählen entsprechender Fortschalteimpulse. Bei der Adreßzuteilung wird gleichzeitig mit dem Verriegeln des einen Melders zum nächsten Melder durchgeschaltet. Aktionen, die unterschiedliche Melder betreffen, erfolgen somit aufeinanderfolgend. EP 0 093 872 describes a method for transmitting measured values known in a surveillance system that on the principle the chain advance is based. The measuring points connected in series and identified by Counting corresponding advancement pulses. When assigning addresses is activated simultaneously with the locking of one detector switched through to the next detector. Actions that are different Detectors relate to one another in succession.
Aufgabe der Erfindung ist es, unter Vermeidung der oben geschilderten Nachteile ein Verfahren zum energiesparenden Betreiben von Gefahrenmeldern einer Gefahrenmeldeanlage anzugeben, welches ein verhältnismäßig einfaches und zuverlässiges An- und Abschalten eines Mikrorechners gestattet.The object of the invention is to avoid the above Disadvantages described a method for energy saving Operating hazard detectors of a hazard detection system, which is a relatively simple and reliable A microcomputer can be switched on and off.
Diese Aufgabe wird bei einem eingangs beschriebenen Verfahren
mit den kennzeichnen den Merkmalen des Anspruchs 1 gelöst.This task is carried out in a method described at the beginning
solved with the characterize the features of
Das besondere bei diesem Verfahren besteht darin, daß keine zusätzlichen und aufwendigen Kriterien eigens geschaffen werden müssen. Vielmehr werden für das An- und Abschalten des Mikrorechners im jeweiligen Melder Schaltkriterien herangezogen, die für eine Gefahrenmeldeanlage spezifisch sind und bereits vorhanden sind, d.h. die in besonderer Weise hierfür genutzt und ausgestaltet werden.The special thing about this process is that none additional and complex criteria are created specifically have to. Rather, for turning on and off the Microcomputer used in the respective detector switching criteria, that are specific to a hazard detection system and already exist, i.e. the in a special way be used and designed for this.
So erhält in vorteilhafter Weise mit der zyklischen Abfrage der Reihe nach jeder Melder eine bestimmte Spannung (eine Anschaltspannung), die den Mikrorechner einschaltet, aber erst nach einer vorgegebenen Anlaufzeit den Melder aktiviert. Danach er folgt der Datenverkehr mit der Zentrale, d.h. der Melder empfängt und sendet (meldet) Signale. Anschließend wird der Mikrorechner abgeschaltet. Zweckmäßigerweise wird die Anschaltspannung von der Abfragespannung gebildet.In an advantageous manner, the cyclical query receives the A specific voltage (an activation voltage) after each detector, which turns on the microcomputer, but only after one the specified start-up time activates the detector. Then he follows data traffic with the head office, i.e. the detector receives and sends (reports) signals. Then will the microcomputer is switched off. Conveniently the switch-on voltage becomes the query voltage educated.
Das erfindungsgemäße Verfahren modifiziert die bekannte Kettenmodulation derart, daß jeder Melder nach dem Anlegen der Abfragespannung zunächst während einer vorgegebenen Anlaufzeit inaktiv bleibt und dann seinen Datenverkehr in einer bestimmten Empfangszeit und Antwortzeit mit der Zentrale abwickelt.The method according to the invention modifies the known one Chain modulation such that each detector after the Query voltage initially during a specified start-up time remains inactive and then its traffic in one certain reception time and response time with the head office unwinds.
Anschließend wird der Mikrorechner wieder abgeschaltet. Damit ist für eine optimal kurze Zeit der Mikrorechner eingeschaltet und demzufolge wird im Mittel weniger Energie verbraucht.The microcomputer is then switched off again. So that is for the microprocessor switched on for an optimally short time and consequently less energy is consumed on average.
Die Anlaufzeit für den Mikrorechner wird in einer besonderen Weise gewonnen, ohne dabei für jeden Melder eine eigene Anlaufzeit vorsehen zu müssen. Es wird lediglich eine erste Anlaufzeit für den Mikrorechner des ersten Melders benötigt. Nach dieser Anlaufzeit schaltet der erste Melder unmittelbar zum zweiten Melder durch. In der anschließenden Empfangs- und Sendezeit des ersten Melders er folgt der Datenverkehr des ersten Melders mit der Zentrale. Diese Empfangs- und Antwortzeit ist aber zugleich die Anlaufzeit für den Mikrorechner des zweiten Melders. Dieser Vorgang setzt sich bis zum letzten Melder fort. Dieses Verfahren verringert den Zeitbedarf erheblich und verlängert damit die verfügbare Ruhezeit, in der die Energiespeicher der Melder aufgeladen werden. Damit ist eine Erhöhung der Abtastrate und/oder eine erhöhte Energiezufuhr möglich. The Start-up time for the microcomputer is made in a special way won without having a separate start-up time for each detector to have to provide. It will only be a first start-up time required for the microcomputer of the first detector. To the first detector switches on immediately after this start-up time second detector. In the subsequent reception and The first detector's transmission time follows the data traffic of the first detector with the head office. This reception and response time is at the same time the start-up time for the microcomputer of the second detector. This process continues until the last Report off. This procedure reduces the time required considerably and thus extends the available rest period in which the energy stores of the detectors are charged. So that is an increase in the sampling rate and / or an increased energy supply possible.
Im folgenden wird das erfindungsgemäße Verfahren anhand der Zeichnung näher erläutert. Dabei wird zum besseren Verständnis zuerst das bekannte Pulsmeldesystem und danach an Ausführungsbeispielen die Erfindung beschrieben. Dabei zeigen
- Fig. 1
- eine schematische Darstellung einer Gefahrenmeldeanlage,
- Fig. 2
- schematisch einen Melder in der Melderprimärleitung,
- Fig. 3
- Linienspannungsdiagramme für drei Melder.
- Fig. 4
- ein Ausführungsbeispiel für das erfindungsgemäße Verfahren an einem Spannungsdiagramm.
- Fig. 1
- a schematic representation of a hazard detection system,
- Fig. 2
- schematically a detector in the primary detector line,
- Fig. 3
- Line voltage diagrams for three detectors.
- Fig. 4
- an embodiment of the method according to the invention on a voltage diagram.
Bekanntermaßen sind an eine Zentrale Z beispielsweise hier nur an einer Meldeprimärleitung ML eine Vielzahl von Meldern M1 bis Mn angeschlossen. Auf der Meldeleitung ML fließt der Linienstrom IL und es liegt die Linienspannung UL an, die auf verschiedene Werte umschaltbar ist (Fig.1).It is known that only one central Z is here, for example a plurality of detectors M1 to on a primary signal line ML Mn connected. The line current flows on the signal line ML IL and there is the line voltage UL, which is different Values can be switched (Fig. 1).
Der in Fig.2 gezeigte Melder M weist neben den in der einen Ader der Meldelinie ML eingeschalteten Durchschaltetransistor T die Verknüpfungslogik VL auf, die das Herzstück des Melders darstellt und von einem Mikrorechner gebildet ist. Die Verknüpfungslogik bedient das eigentliche Sensorteil. Die Verknüpfungslogik VL ist von der Spannungsmeßeinrichtung MU beaufschlagt, welche die Linienspannung UL überwacht und entsprechend der angelegten Linienspannung Schaltsignale an die Verknüpfungslogik VL gibt. Diese Verknüpfungslogik veranlaßt Signale an eine Steuereinrichtung ST und auch Signale zum Durchschalten DS des Durchschaltetransistors T, damit der nachfolgende Melder an die Linienspannung angeschlossen wird. The detector M shown in Figure 2 has in addition to the one Wire of the detection line ML switched-on transistor T the logic logic VL, which is the heart of the detector represents and is formed by a microcomputer. The link logic operates the actual sensor part. The Linking logic VL is from the voltage measuring device MU which monitors the line voltage UL and switching signals according to the applied line voltage the logic logic VL there. This logic logic causes Signals to a control device ST and also signals for switching DS of the switching transistor T, so that subsequent detector is connected to the line voltage.
Es ist noch durch einen Kondensator C im Melder der Energiespeicher angedeutet, der im Ruhezustand beim Anliegen einer Ruhespannung UR aufgeladen wird und im abgetrennten Zustand den Melder bei Bedarf mit Energie versorgt.It is still through a capacitor C in the detector of the energy storage indicated that at rest when a Quiescent voltage UR is charged and in the disconnected state Detector supplied with energy if required.
In Fig.3 ist veranschaulicht, wie die einzelnen Melder der Reihe nach angeschaltet werden. Dabei ist die Linienspannung UL über der Zeit t aufgetragen für die Melder M1 bis M3. Während der Ruhezeit tr liegt auf der Meldelinie ML die Ruhespannung UR an. Ein Abfragezyklus beginnt dann mit dem Abtrennen der Linie von der Linienspannung UL, d.h. es wird für die Startzeit ts die Startspannung US, die bevorzugt gleich Null ist, angelegt. Nach Ablauf der Startzeit ts beginnt die eigentliche Abfrage der gesamten Meldelinie für die Zeit tla. Die Abfragespannung UA liegt hierfür bevorzugt unter dem Wert der Ruhespannung UR. Für den Melder M2 ist gezeigt, daß er erst nach dem Durchschalten DS des ersten Melders M1 die Abfragespannung UA erhält. Gleiches gilt für den Melder M3.In Figure 3 it is illustrated how the individual detectors be turned on in sequence. Here is the line tension UL plotted over time t for detectors M1 to M3. During the idle time tr, the ML line is on Quiescent voltage UR on. A query cycle then begins with the Disconnect the line from the line voltage UL, i.e. it will for the starting time ts the starting voltage US, which is preferred is zero. After the start time ts begins the actual query of the entire zone for the time tla. The interrogation voltage UA is preferably below this the value of the open circuit voltage UR. For the detector M2 it is shown that he only the after switching DS of the first detector M1 Query voltage UA receives. The same applies to detector M3.
Die Datenübertragung zum Melder geschieht im allgemeinen durch Modulation der Linienspannung UL in der Zentrale, während eine Datenübertragung zur Zentrale durch die Modulation des Linienstroms IL im Melder vorgenommen wird.The data transmission to the detector generally takes place through Modulation of the line voltage UL in the center, during a Data transmission to the control center by modulating the line current IL is made in the detector.
In Fig. 4 ist der Verlauf der Linienspannung UL über der Zeit t am Eingang der Melder M1,M2 und M3 dargestellt. Die Ruhespannung UR liegt für die Ruhezeit tr an. Für die Startzeit ts wird die Linienspannung UL auf die Startspannung US = 0 gesetzt. Danach wird mit dem Anlegen der Abfragespannung UA, die zugleich die Anschaltespannung UAN für den Mikrorechner ist, der erste Melder beaufschlagt, der nach der Anlaufzeit tan1 aktiviert ist und somit Empfangssignale E1 von der Zentrale für die Empfangszeit te1 empfangen und anschließend Antwortsignale A1 in der Zeit ta1 zur Zentrale melden kann. Der Melder M2 wird seinerseits innerhalb der Anlaufzeit tan2 aktiviert und beginnt dann mit dem Datenverkehr zur Zentrale. Ist die Meldeprimärleitung ML abgefragt, so wird an die Meldelinie die Ruhespannung UR gelegt.4 is the profile of the line voltage UL over time t shown at the input of detectors M1, M2 and M3. The resting tension UR is on for the rest period tr. For the start time ts the line voltage UL becomes the starting voltage US = 0 set. Thereafter, with the application of the interrogation voltage UA, which is also the switch-on voltage UAN for the microcomputer is acted upon by the first detector which, after the start-up time tan1 is activated and thus receive signals E1 from the control center for received the reception time te1 and then response signals A1 can report to headquarters in time ta1. The detector M2 in turn activated within the start-up time tan2 and then begins with the data traffic to the head office. Is the primary reporting line ML is queried, the open-circuit voltage UR is sent to the detection line placed.
Dabei wird lediglich eine einzige Anlaufzeit für alle Melder einer Linie benötigt, wodurch in vorteilhafter Weise die Abfragezeit pro Melder reduziert wird. Dadurch kann die Zahl der anschließbaren Melder erhöht und/oder die Abfrage beschleunigt werden. In jedem Fall wird hier der jeweilige Mikrorechner nur für kurze Zeit eingeschaltet. Mit dem Anliegen der Abfragespannung UA beginnt der Mikrorechner des ersten Melders anzulaufen. In dieser Zeit empfängt der Melder Empfangssignale E0 von der Zentrale und könnte anschließend eine Antwort A0 an die Zentrale melden. Beides ist aber nicht möglich, weil der Mikrorechner noch beim Anlaufen und damit nicht funktionsfähig ist. Die Funktionsfähigkeit wird erst während der Antwortzeit ta0 erweckt, so daß der erste Melder das für ihn bestimmte Empfangssignal E1 erst nach dieser Anlaufzeit tan1 empfangen und bearbeiten kann. Mit dem Empfang der Signale E1 von der Zentrale schaltet der Melder M1 sogleich zum Melder M2 durch (DS). Während des Datenverkehrs des ersten Melders M1 in der Zeit te1 plus ta1 läuft die Anlaufzeit tan2 für den zweiten Melder M2, der dann zum dritten Melder M3 durchschaltet (DS), sobald er von der Zentrale die Daten E2 empfängt.There is only one start-up time for everyone Detector of a line is required, which advantageously Query time per detector is reduced. This allows the number the connectable detector increases and / or the query is accelerated become. In any case, the respective one Microcomputer only switched on for a short time. With the concern the microcomputer of the first begins at the interrogation voltage UA To start the detector. During this time, the detector receives received signals E0 from headquarters and could then reply Report A0 to the control center. But neither is possible because the microcomputer is still starting up and therefore not is functional. The functionality is only during of the response time ta0, so that the first notifier for received signal E1 determined him only after this start-up time can receive and edit tan1. With the receipt of the signals E1 from the control center switches the detector M1 immediately to the detector M2 through (DS). During the data traffic of the first detector M1 in the time te1 plus ta1 the start-up time tan2 for the second detector M2, which then switches through to the third detector M3 (DS) as soon as it receives data E2 from the control center.
Es wird pro Meldelinie nur eine erste Anlaufzeit tan0, bestehend aus te0 und ta0, in der Daten auf die Meldelinie gegeben werden, die jedoch keine Wirkung haben, zur Aktivierung des ersten Melders gegeben, der jedoch danach sogleich mit dem Empfang der Signale von der Zentrale zum nächsten Melder durchschaltet. Die Empfangs- und Sendezeit für den Datenverkehr des ersten Melders bildet zugleich die Anlaufzeit für den Mikrorechner des zweiten Melders, usw. Jeder Melder schaltet dabei im Gegensatz zum bisherigen Verfahren in der Pulsmeldetechnik sogleich mit dem Empfang der ersten Signale seitens der Zentrale zum nächsten Melder durch. Dieser Vorgang wiederholt sich gleichartig bei den weiteren Meldern der Linie, bis nach der Bearbeitung des letzten Melders die Linie wieder an Ruhespannung gelegt wird.There is only one first start-up time tan0 per zone from te0 and ta0, in the data on the reporting line be given, but have no effect, for activation given by the first notifier, who, however, immediately thereafter with the Receiving signals from the control panel to the next detector switches through. The receive and send time for data traffic of the first detector forms the start-up time for the Microcomputer of the second detector, etc. Each detector switches in contrast to the previous method in pulse detection technology immediately upon receipt of the first signals from the Central to the next detector. This process is repeated similar in the other detectors of the line until after processing of the last detector, the line is again at idle voltage is placed.
In Weiterführung der Erfindung können die Empfangssignale teilweise mit dem Spannungspegel, der der Ruhespannung entspricht, ausgeführt werden, wodurch die zur Energieversorgung benötigte Zeit in vorteilhafter Weise verkürzt und damit die Zahl der anschließbaren Melder erhöht und/oder die Abfrage beschleunigt wird.In a continuation of the invention, the received signals partly with the voltage level that corresponds to the quiescent voltage, run, which means the energy supply required time advantageously shortened and thus the Number of connectable detectors increased and / or the query is accelerated.
Claims (2)
- Method for the energy-saving operation of hazard detectors in a hazard detection arrangement, which operates in accordance with the pulse detection system on the principle of chain synchronization, having a control station (Z) with a plurality of dual primary detection lines (ML), to which a multiplicity of detectors (Mn) are connected in chain configuration, which detectors are cyclically driven regularly from the control station (Z) and are interrogated for their respective analog detector parameter, in which each detector (Mn) exhibits a voltage measuring device (MU) which monitors the applied line voltage (UL), downstream combination logic (VL) with an associated sensor part (S), a downstream control device (St), an energy store (C) and a through-connect transistor (T), in which the combination logic (VL) is essentially formed by a microcomputer, which is switched on with the application of an energization voltage (UAN) and, after the expiry of a required start-up time (tan), activates the relevant detector (M1, M2...) for the data traffic, in which in each instance a specific reception time (te) is provided for the reception (E1, E2...) and in each instance a specific response time (ta) is provided for the response (A1, A2...), and in which, furthermore, in the inactive state of the detector, the microcomputer is switched into a current-saving quiescent condition,
characterizedin that the energization voltage (UAN) switches on the microcomputer of the first detector (M1) at the beginning of the cyclic interrogation,in that a first reception and response time (teO and taO) is provided, which forms the start up time (tan1) for the first detector (M1),in that after this start-up time (tan1) the first detector (M1) receives received data (E1) from the control station (Z) in the reception time (te1) and communicates data (A1) to the control station (Z) in the response time (ta1),in that upon the reception of these received data a through-connection (DS) is made to the second detector (M2), whereby the microcomputer of the second detector is switched on,in that the reception and response time (te1 and ta1) of the first detector (M1) is at the same time the start-up time (tan2) for the microcomputer of the second detector (M2),and in that this procedure is repeated until the last detector of a detection line (ML). - Method according to Claim 1, characterized in that the received signals (E0, E1,...) exhibit in some cases the voltage level which corresponds to the quiescent voltage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3834043 | 1988-10-06 | ||
DE3834043 | 1988-10-06 |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0362797A2 EP0362797A2 (en) | 1990-04-11 |
EP0362797A3 EP0362797A3 (en) | 1991-01-16 |
EP0362797B1 EP0362797B1 (en) | 1994-12-28 |
EP0362797B2 true EP0362797B2 (en) | 2000-05-17 |
Family
ID=6364534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89118338A Expired - Lifetime EP0362797B2 (en) | 1988-10-06 | 1989-10-03 | Method for the energy-saving operation of risk detectors in a risk detection arrangement |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0362797B2 (en) |
AT (1) | ATE116464T1 (en) |
DE (1) | DE58908831D1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4030298A1 (en) * | 1990-09-25 | 1992-03-26 | Siemens Ag | DANGER REPORTING SYSTEM |
DE102009050692B4 (en) * | 2009-10-26 | 2011-12-01 | Phoenix Contact Gmbh & Co. Kg | Security communication system for signaling system states |
DE102011018630B4 (en) * | 2011-04-21 | 2013-02-07 | Phoenix Contact Gmbh & Co. Kg | Security communication system for signaling system states |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2131991B (en) * | 1982-11-12 | 1986-05-29 | Robert Philp | Telemetry and like signaling systems |
DE3313137A1 (en) * | 1983-04-12 | 1984-10-18 | Siemens AG, 1000 Berlin und 8000 München | CIRCUIT ARRANGEMENT FOR CANCELING NOISE IN OPTICAL SMOKE DETECTORS |
KR910008738B1 (en) * | 1987-02-20 | 1991-10-19 | 닛본 덴기 가부시기가이샤 | Portable radio apparatus having battery saved channel scanning function |
-
1989
- 1989-10-03 AT AT89118338T patent/ATE116464T1/en not_active IP Right Cessation
- 1989-10-03 DE DE58908831T patent/DE58908831D1/en not_active Expired - Fee Related
- 1989-10-03 EP EP89118338A patent/EP0362797B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0362797B1 (en) | 1994-12-28 |
EP0362797A2 (en) | 1990-04-11 |
DE58908831D1 (en) | 1995-02-09 |
ATE116464T1 (en) | 1995-01-15 |
EP0362797A3 (en) | 1991-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4036639C2 (en) | ||
EP1206765B1 (en) | Method and device for automatically allocating detector addresses in an alarm system | |
DE68924615T2 (en) | Monitoring system for radio communication apparatus. | |
EP0093872A1 (en) | Method for the transmission of measured values in a control system | |
EP0067339A2 (en) | Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems | |
DE2817089B2 (en) | Alarm system | |
DE2533354C3 (en) | Device for transmitting control commands in a fire protection system | |
EP0042501B1 (en) | Device for the transmission of measured values in a fire warning system | |
DE2533330B2 (en) | PROCEDURE AND EQUIPMENT FOR TRANSMISSION OF MEASURED VALUES IN A FIRE DETECTION SYSTEM | |
EP0362797B2 (en) | Method for the energy-saving operation of risk detectors in a risk detection arrangement | |
DE3128796C2 (en) | ||
DE69310431T2 (en) | Fire alarm system | |
DE4017533A1 (en) | Control-supervisory signal transmission system - employs shared data line for bidirectional traffic between controller and controlled devices or device state monitors | |
DE3150313C2 (en) | Arrangement for determining and reporting the position of a number of switches and for monitoring the connection line | |
DE3424294A1 (en) | Interrogation device for identification of the position of switches | |
DE3614692C2 (en) | ||
EP0362798B1 (en) | Method for the energy-saving operation of risk detectors in a risk detection arrangement | |
EP0212106B1 (en) | Measured value transmission method | |
DE3225032C2 (en) | Method and device for the optional automatic query of the detector identification or the detector measured value in a hazard alarm system | |
DE3415819C2 (en) | Fire alarm system | |
EP0450119B1 (en) | Device for connecting additional elements to an existing alarm line | |
EP0098553B1 (en) | Method and device for automatically demanding signal measure values and/or signal identification in an alarm installation | |
EP2515553B1 (en) | Security communication system for signalling system conditions | |
EP0054643B1 (en) | Remote monitoring installation with at least one arrangement for the transmission of messages according to a time division multiplex-frequency division multiplex procedure | |
DE60114746T2 (en) | ELECTRICAL DEVICES AND SYSTEM FOR PERFORMING AT LEAST ONE ACTION AT A TEMPORARY TIME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19901205 |
|
17Q | First examination report despatched |
Effective date: 19931105 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 116464 Country of ref document: AT Date of ref document: 19950115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 58908831 Country of ref document: DE Date of ref document: 19950209 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950303 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: PREUSSAG AG Effective date: 19950926 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: PREUSSAG AG |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19971013 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981003 |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20000517 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM |
|
NLR2 | Nl: decision of opposition | ||
ITF | It: translation for a ep patent filed | ||
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
ET3 | Fr: translation filed ** decision concerning opposition | ||
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20021004 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20021010 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20021016 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20021021 Year of fee payment: 14 Ref country code: BE Payment date: 20021021 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021023 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20021216 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20030115 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031003 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 |
|
BERE | Be: lapsed |
Owner name: *SIEMENS A.G. Effective date: 20031031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040501 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031003 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051003 |