EP0098909B1 - Leerlaufregler, insbesondere für Kraftfahrzeuge - Google Patents

Leerlaufregler, insbesondere für Kraftfahrzeuge Download PDF

Info

Publication number
EP0098909B1
EP0098909B1 EP83100686A EP83100686A EP0098909B1 EP 0098909 B1 EP0098909 B1 EP 0098909B1 EP 83100686 A EP83100686 A EP 83100686A EP 83100686 A EP83100686 A EP 83100686A EP 0098909 B1 EP0098909 B1 EP 0098909B1
Authority
EP
European Patent Office
Prior art keywords
amplifier
limiter
output
speed
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83100686A
Other languages
English (en)
French (fr)
Other versions
EP0098909A3 (en
EP0098909A2 (de
Inventor
Harald Collonia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mannesmann VDO AG
Original Assignee
Mannesmann VDO AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann VDO AG filed Critical Mannesmann VDO AG
Publication of EP0098909A2 publication Critical patent/EP0098909A2/de
Publication of EP0098909A3 publication Critical patent/EP0098909A3/de
Application granted granted Critical
Publication of EP0098909B1 publication Critical patent/EP0098909B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • F02D31/004Electric control of rotation speed controlling air supply for idle speed control by controlling a throttle stop

Definitions

  • the invention relates to an idle controller according to the preamble of claim 1.
  • a known idle controller of this type has a converter which converts the magnitude of the engine speed into a voltage.
  • a controller with PID time behavior is connected to the output of the converter.
  • the PID controller comprises a first differential amplifier with a resistance capacitor combination at an input and a second resistance capacitor combination between the output and the input of the differential amplifier, as a result of which a differential time behavior is generated.
  • the first differential amplifier is coupled via a resistor to a second differential amplifier, which is fed back to an input via a further resistor capacitor combination.
  • the second input is on a voltage divider.
  • the PI behavior is generated with the second differential amplifier. Both differential amplifiers thus represent a controller with PID behavior.
  • a line leads to an inverting input of a third differential amplifier, the non-inverting input of which is connected to the output of the converter and to a bias voltage divider.
  • the output of the third differential amplifier is led as a limiter to the non-inverting input of the second differential amplifier of the PID controller.
  • the opposite requirements are to be met that a sudden drop in speed, especially when the accelerator pedal is released or when an additional unit is switched on, is quickly absorbed, so that the speed when idling does not fall below the specified setpoint.
  • This requires a rapid reaction by the organ, which determines the mixture supply to the internal combustion engine.
  • the control should be as insensitive as possible to minor excitations from disturbances, in order not to move the organ controlling the mixture supply, in particular a throttle valve, unnecessarily and in order not to produce a so-called sawing control or a rocking oscillation, so-called bonanza effect.
  • the former case can occur, for example, in the case of a so-called lambda probe control for a correct mixture preparation, the latter by undesired actuation of the accelerator pedal by the driver when the motor vehicle is jerky.
  • the PID time portions of the idle controller must be carefully and individually adapted to the characteristics of the internal combustion engine to be controlled.
  • An idle controller for motor vehicles is also known, with which a solenoid valve is controlled in the by-pass path of a throttle valve.
  • the idle controller contains an engine speed sensor, which is connected via a pulse shaper to a monostable multivibrator, the response time of which is set to the period of the idle speed.
  • the pulse shaper and the monostable multivibrator each feed one input of an exclusive-OR element, the outputs of which are followed by a controller that shows at least integral behavior.
  • the controller is followed by a pulse generator that feeds the solenoid valve.
  • a throttle valve position sensor is connected to the control input of a switching element, which is connected between the controller output and a defined potential.
  • the output of the controller is connected to a constant potential in order to regulate. to limit idle.
  • a threshold value transmitter for a certain speed is connected to the controller.
  • the threshold value transmitter influences the controller in push mode in such a way that suitable exhaust emission values. occur (GB-A-2 007 878).
  • Another known controller contains a proportional element and an integrating element which are subjected to the control deviation on the input side and are connected to a summing element on the output side.
  • the change in the control deviation and the control signal over time are monitored with separate elements. If the change in the control deviation over time is negative, and if the control deviation is less than a predetermined value, the integral of the control deviation is influenced in such a way that the actual value of the control variable is less than a maximum value.
  • the control signal is influenced in the same way if the difference between a constant and the control signal is smaller than the product of the time derivative of the control deviation and a constant (GB-A-2 064 173).
  • a limiter circuit for a servo system which contains a PLL circuit with an active filter. If there is no input signal within the capture range of the PLL circuit, the limiter circuit maintains a particular filter output signal to shorten the capture time in the event that an input signal occurs within the capture range (US-A-4,031,483).
  • An idle controller for an internal combustion engine has also been proposed, which contains a control amplifier with a proportionally integral time component.
  • the PI controller is preceded by a non-linear element arranged in front of the comparison element.
  • the controller contains a minimum and a maximum limiter.
  • the minimum value limiter contains inputs which are each connected to the output of the control amplifier with the output of a speed signal reversing stage, with a throttle valve switch, with a switching stage setpoint switch and with a temperature signal evaluation stage.
  • An addition amplifier is provided in the minimum value limiter, in the feed-back branch of which a first resistor, a non-linear element, the PI controller and a second resistor are arranged.
  • a differential effect is achieved via the first resistor and a capacitor in the feedback branch of the control amplifier of the PI controller.
  • the limiter In the event of a speed drop, the limiter emits an oscillating output signal which oscillates within certain limits (DE-A-31 49 097).
  • the limiter which the known idle controller comprises, has the task of guiding the manipulated variable emitted by the second differential amplifier in a range between the overdrive limits of the second differential amplifier for each possible speed.
  • the limiter does not change the dynamic behavior of the idle controller.
  • the object of the present invention is to develop an idle controller of the type mentioned at the outset in such a way that it quickly absorbs or regulates relatively large speed drops with the least possible component outlay and uncritical adjustment or adaptation to the characteristics of the internal combustion engine to be regulated, but on the other hand with smaller ones Excitation in the range of the idle target speed is not unnecessarily excited by smaller disturbance variables.
  • the limiter is used in a novel way to change the timing behavior of the entire idle controller structure as a function of the input variable, the idle speed: in the case of smaller disturbance variables and corresponding speed fluctuations, only the actual idle controller with the control amplifier and its timing elements are decisive for forming the manipulated variable.
  • the timing elements can therefore be dimensioned so that the controller is insensitive to minor excitations caused by interference.
  • a time behavior has an effect, which is arranged by at least one further timing element in the branch between an input of the actual speed value and the output of the limiter.
  • This timing element can in particular be designed to generate a differential time component, so that the overall structure of the idle controller generates a manipulated variable which quickly counteracts a sudden drop in speed.
  • This connection of an additional or different time behavior to the time behavior of the actual control amplifier with its timing elements takes place in such a way that when the control amplifier is overdriven, the limiter becomes effective, which feeds an amplified limiting setpoint into one input of the control amplifier and thus carries it with the actual speed value, that the controller remains at the overload limit.
  • This is done in particular in such a way that the increased limiting setpoint is increased as the speed drops, which also increases the manipulated variable, which cannot fall below the value of the lower modulation limit.
  • the manipulated variable therefore follows the modulation limit in this operating state of the idle controller, namely the lower modulation limit, which regulates the actual speed fluctuations sensitively in accordance with the time behavior of the limiter branch with a differential time component.
  • a major advantage of the idle controller is that the relatively sluggish time behavior desired for controlling smaller speed fluctuations can be set uncritically on the timing element which is directly connected to the control amplifier, which thus shows in particular integral time behavior.
  • the time behavior in the limiter branch with a differential time component is also set non-critically for the interception of larger speed drops. This means that production, comparison and warehousing can be rationalized.
  • the total component expenditure for generating an idle controller is reduced, since in particular a differential amplifier with the associated coupling elements can be omitted.
  • control amplifier is designed exclusively with an integral time component.
  • a particularly useful embodiment of the idle controller is specified in claim 3, which is characterized by a low manufacturing cost.
  • the coupling of the limiter amplifier with the inverting input of the controller amplifier in conjunction with the diode ensures that only the lower modulation limit is shifted dynamically, so that this affects the manipulated variable in the event of sudden speed reductions.
  • an input is denoted by 1, in which there is a variable corresponding to the speed value x, is fed.
  • the input is connected to a control amplifier 3 via a comparator 2, in which the actual speed value is compared with a reference variable Wx .
  • the control amplifier only has an integral time response as an I controller. It outputs a manipulated variable y to an output 4, to which, for example, a throttle valve drive can be connected.
  • a branch 5 with a limiter 6 is also branched off from the input 1.
  • the limiter essentially consists of a limiter amplifier and comparison points 8, 9 which are connected upstream of an input of the amplifier 7. The difference between the actual speed value or a variable derived therefrom and a reference variable Yw is formed in the comparison point 8 and a limiting setpoint is thus generated. The limiting setpoint is compared with the manipulated variable y in the second comparison point 9.
  • the output of the amplifier 7 is connected via a non-linear element 10 to an input 11 of the control amplifier 3, which determines the lower clipping limit.
  • a timer 12 is also inserted, which is in Figure 1 in the signal flow direction of the actual speed value before the comparison points 8 and 9, but can also be arranged in equivalent embodiments behind these comparison points and can be directly coupled to the amplifier 7.
  • the manipulated variable y is plotted on a time axis as the abscissa between the upper constant modulation limit Y and the lower modulation limit Y 2 .
  • the actual speed x is shown above.
  • the limiter 6 acts in the following way:
  • the speed list signal which the timer 12 passes through is subtracted from a reference variable w (y) in the comparison point 8.
  • a reference value signal y i is subtracted from the difference formed therefrom as the limiting reference value y W in the comparison point 9.
  • This difference goes into the input of an amplifier 7 and via a non-linear element 10 as an amplified limiting setpoint into the input 11 of the control amplifier 3.
  • the amplified limiting setpoint initially has no direct effects here, since the manipulated variable generated by it between the upper one Dynamic limit Y, and the lower dynamic limit Y 2 .
  • the above behavior of the limiter changes as soon as a sudden drop in the speed of the actual speed value occurs at time t 1 , for example because the accelerator pedal is reset.
  • the rapidly decreasing speed is not only counteracted by the control amplifier 3, since, due to its slowly set integration process, it cannot briefly cause any significant change in the manipulated variable.
  • the manipulated variable at time t 1 increases almost suddenly, as can be seen in FIG. 3, as a result of the action of the limiter: in the timing element 12, the speed change is differentiated, so that after the subtraction of the setpoint and the manipulated variable described above, the amplifier 7 of the limiter with a correspondingly large pulse.
  • This amplified pulse reaches the input 11 of the control amplifier 3 via the non-linear element 10, which is switched in the sense of influencing the lower modulation limit.
  • the amplified limit setpoint at the input 11 calls the control amplifier 3 for a sudden rise in the lower modulation limit the differentiated temporal course of the actual speed. Since the manipulated variable cannot be less than the lower modulation limit, it is raised to a value which in FIG. 3 conforms to the course of the lower modulation limit. This means that the manipulated variable increases in leaps and bounds in accordance with the time behavior of the timing element 12 in order to compensate for the speed drop x. When the decreasing speed change disappears, the lower modulation limit also decreases, analogously to the timing behavior of the timing element 12.
  • the course of the manipulated variable separates again from the course of the lower modulation limit for the corresponding smaller output variables of the amplifier 7.
  • the manipulated variable is formed from the control deviation in accordance with the slowly integrating time behavior of the control amplifier 3, both short-term fluctuations in the actual speed or the control deviation not having an effect on the manipulated variable, since the integrating control amplifier has a smoothing function.
  • the timing element with differentiating time behavior 12 the small, short-term fluctuations in the actual speed value also have a strong effect on the output variable of amplifier 7, which supplies the amplified limiting setpoint.
  • the associated fluctuations in the amplified limiting setpoint have no influence on the manipulated variable, since while the actual speed value remains almost constant, the manipulated variable again runs at a distance from the lower modulation limit and is therefore not influenced by it.
  • a first differential amplifier 13 is provided as a control amplifier and a second differential amplifier 14 as a limiter amplifier. These differential amplifiers are used at the same time in addition to amplification for comparison and to form the time behavior.
  • an inverting input 15 of the first differential amplifier 13 is connected via a resistor 16 to the output of a converter 17, which converts the actual speed into a corresponding voltage.
  • the non-inver Turing input 18 of the first differential amplifier is connected to a voltage divider 19, on which a target value of the idle speed can be set.
  • the output of the amplifier 13 is fed back via a capacitor 20 to the inverting input 15 of the first differential amplifier.
  • the capacitor 20 forms the integrating time behavior of the first differential amplifier.
  • the second differential amplifier 14, the limiter amplifier, is connected with its inverting input 21 to a voltage divider 22 and to the output of the converter 17.
  • the voltage divider is used to specify the setpoint for the limitation.
  • the non-inverting input 23 of the second differential amplifier is also connected to the output of the converter 17, specifically via a capacitor 24 which, in conjunction with a resistor 25, produces a differentiating time behavior.
  • the resistor 25 connects the output of the amplifier 13 to the non-inverting input 23 of the amplifier 14.
  • the embodiment of the idle controller according to FIG. 2 has the same effect as the structure according to FIG. 1 described above.
  • the difference between the control deviation and the integral time component in the first differential amplifier 13 are formed, and the differential time component and the differences for generating the increased limiting setpoint are generated through the second differential amplifier 14.
  • a diode 26 connects the output of the second differential amplifier 14 to the inverting input 15 of the first differential amplifier 13 in such a way that the lower modulation limit is raised when the speed and thus the voltage at the output of the converter 17 drop.
  • the manipulated variable at output 4 of the first control amplifier is again forced to follow the lower modulation limit, while with only small and / or slow speed fluctuations, the manipulated variable is formed evenly regardless of the lower modulation limit, which differentiates and amplifies the speed fluctuations .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Feedback Control In General (AREA)

Description

  • Die Erfindung betrifft einen Leerlaufregler nach dem Oberbegriff des Anspruchs 1.
  • Ein deratiger bekannter Leerlaufregler weist einen Umsetzer auf, der die Größe der Motordrehzahl in eine Spannung umsetzt. An den Ausgang des Umsetzers ist ein Regler mit PID-Zeitverhalten angeschlossen. Der PID-Regler umfaßt einen ersten Differenzverstärker mit einer Widerstandskondensatorkombination an einem Eingang und einer zweiten Widerstandskondensatorkombination zwischen dem Ausgang und dem Eingang des Differenzverstärkers, wodurch ein differentiales Zeitverhalten erzeugt wird. Der erste Differenzverstärker ist über einen Widerstand mit einem zweiten Differenzverstärker gekoppelt, der über eine weitere Widerstandskondensatorkombination zu einem Eingang rückgekoppelt ist. Der zweite Eingang liegt an einem Spannungsteiler. Mit dem zweiten Differenzverstärker wird das PI-Verhalten erzeugt. Beide Differenzverstärker stellen somit einen Regler mit PID-Verhalten dar. Von dem Ausgang des zweiten Differenzverstärkers führt eine Leitung zu einem invertierenden Eingang eines dritten Differenzverstärkers, dessen nicht-invertierender Eingang mit dem Ausgang des Umsetzers sowie mit einem Vorspannungsteiler in Verbindung steht. Der Ausgang des dritten Differenzverstärkers ist als Begrenzer zu dem nicht-invertierenden Eingang des zweiten Differenzverstärkers des PID-Reglers geführt.
  • Mit diesem Leerlaufregler sollen die gegensätzlichen Forderungen erfüllt sein, daß ein plötzlicher Drehzahlsturz, insbesondere bei Loslassen des Gaspedals oder bei Einschalten eines Zusatzaggregats schnell abgefangen wird, so daß die Drehzahl im Leerlauf möglichst nicht unter den vorgegebenen Sollwert absinkt. Hierzu ist eine rasche Reaktion des Organs notwendig, welches die Gemischzufuhr zu dem Verbrennungsmotor bestimmt. Andererseits soll die Regelung möglichst unempfindlich gegen kleinere Anregungen durch Störungen sein, um das die Gemischzufuhr steuernde Organ, insbesondere eine Drosselklappe nicht in unnötiger Weise zu bewegen und um nicht eine sogenannte sägende Regelung oder eine sich aufschaukelnde Schwingung, sogenannter Bonanza-Effekt, zu erzeugen. Ersterer Fall kann beispielsweise bei einer sogenannten Lambda-Sondenregelung für eine vorschriftsmäßige Gemischzubereitung geschehen, letzteres durch unerwünschtes Betätigen des Gaspedals durch den Fahrer, wenn das Kraftfahrzeug ruckelt. Um diese widersprüchlichen Anforderungen trotz des ungünstigen dynamischen Verhaltens des Verbrennungsmotors möglichst zu erfüllen, müssen die PID-Zeitanteile des Leerlaufreglers sorgfältig und individuell an die Charakteristik des zu regelnden Verbrennungsmotors angepaßt werden.
  • Infolge des verhältnismäßig hohen Bauteileaufwands und der kritischen Dimensionierung und Anpassung des Zeitverhaltens des Leerlaufreglers ist dessen Herstellung verhältnismäßig aufwendig. Trotzdem wird durch den Einsatz dieses bekannten Leerlaufreglers nur ein Kompromiß zwischen einem guten Abfangen der Drehzahl bei großen Drehzahlstürzen und einer ruhigen Drehzahlregelung bei kleinen Anregungen möglich sein.
  • Bekannt ist auch ein Leerlaufregler für Kraftfahrzeuge, mit dem ein Magnetventil im By-Pass-Weg einer Drosselklappe gesteuert wird. Der Leerlaufregler enthält einen Motordrehzahlgeber, der über einen Impulsformer mit einem monostabilen Multivibrator verbunden ist, dessen Ansprechzeit auf die Periode der Leerlaufdrehzahl eingestellt ist. Der Impulsformer und der monostabile Multivibrator speisen je einen Eingang eines Exklusiv-Oder-Glieds, dessen Ausgängen ein Regler nachgeschaltet ist, der wenigstens integrales Verhalten zeigt. Dem Regler ist ein Impulsgenerator nachgeschaltet, der das Magnetventil speist. Ein Drosselklappenstellungsgeber ist mit dem Steuereingang eines Schaltelementes verbunden, das zwischen den Reglerausgang und ein definiertes Potential gelegt ist. Bei einem bestimmten Öffnungswinkel der Drosselklappe wird der Ausgang des Reglers an gleichbleibendes Potential gelegt, um die Regelung auf . den Leerlauf zu beschränken. Ein Schwellwertgeber für eine bestimmte Drehzahl ist mit dem Regler verbunden. Der Schwellwertgeber beeinflußt im Schiebebetrieb den Regler derart, daß geeignete Abgasemmisionswerte. auftreten (GB-A-2 007 878).
  • Ein weiterer bekannter Regler enthält ein Proportionalglied und ein Integrierglied, die eingangsseitig von der Regelabweichung beaufschlagt und ausgangsseitig mit einem Summierglied verbunden sind. Die zeitliche Änderung der Regelabweichung und des Stellsignals werden mit gesonderten Elementen überwacht. Wenn die zeitliche Änderung der Regelabweichung negativ ist, und wenn die Regelabweichung kleiner als ein vorgegebener Wert ist, wird das Integral der Regelabweichung derart beeinflußt, daß der Istwert der Regelgröße kleiner als ein Maximalwert ist. In gleicher Weise wird das Stellsignal beeinflußt, wenn die Differenz einer Konstanten und des Stellsignals kleiner als das Produkt aus der zeitlichen Ableitung der Regelabweichung und einer Konstanten ist (GB-A-2 064 173).
  • Schließlich ist eine Begrenzerschaltung für ein Servosystem bekannt, das eine PLL-Schaltung mit einem aktiven Filter enthält. Wenn kein Eingangssignal innerhalb des Fangbereichs der PLL-Schaltung vorhanden ist, hält die Begrenzerschaltung ein bestimmtes Filterausgangssignal aufrecht, um die Fangzeit für den Fall zu verkürzen, daß ein Eingangssignal innerhalb des Fangbereichs auftritt (US-A-4,031,483).
  • Es ist auch bereits ein Leerlaufregler für eine Brennkraftmaschine vorgeschlagen worden, der einen Regelverstärker mit proportionalintegralem Zeitanteil enthält. Dem PI-Regler ist ein vor dem Vergleichsglied angeordnetes nicht lineares Glied vorgeschaltet. Der Regler enthält einen Minimal-und einen Maximalwertbegrenzer. Der Minimalwertbegrenzer enthält Eingänge, die jeweils mit dem Ausgang des Regelverstärkers mit dem Ausgang einer Drehzahlsignalumkehrstufe, mit einem Drosselklappenschalter, mit einem Schaltstufe-Sollwert-Schalter und mit einer Temperatursignalauswertestufe verbunden sind. Im Minimalwertbegrenzer ist ein Additionsverstärker vorgesehen, in dessen Mitkopplungszweig ein erster Widerstand, ein nichtlineares Glied, der PI-Regler und ein zweiter Widerstand angeordnet sind. Eine differentielle Wirkung wird über den ersten Widerstand und einen Kondensator im Rückkopplungszweig des Regelverstärkers des PI-Reglers erreicht. Bei einem Drehzahlsturz gibt der Begrenzer ein oszillierendes Ausgangssignal ab, das innerhalb bestimmter Grenzen oszilliert (DE-A-31 49 097).
  • Der Begrenzer, den der eingangs beschriebene, bekannte Leerlaufregler umfaßt, hat die Aufgabe, für jede mögliche Drehzahl die von dem zweiten Differenzverstärker abgegebene Stellgröße in einem Bereich zu führen, der zwischen den Übersteuerungsgrenzen des zweiten Differenzverstärkers liegt. Das dynamische Verhalten des Leerlaufreglers wird durch den Begrenzer nicht verändert.
  • Zu der vorliegenden Erfindung gehört die Aufgabe, einen Leerlaufregler der eingangs genannten Gattung so weiterzubilden, daß er bei einem möglichst geringen Bauteileaufwand und unkritischen Abgleich bzw. Anpassung an die Charakteristik des zu regelnden Verbrennungsmotors verhältnismäßig große Drehzahlstürze rasch abfängt bzw. ausregelt, andererseits aber bei kleineren Anregung im Bereich der Leerlaufsolldrehzahl nicht unnötig durch kleinere Störungsgrößen angeregt wird.
  • Diese Aufgabe wird durch die in dem kennzeichnenden Teil des Anspruchs 1 angegebene Erfindung gelöst.
  • Erfindungsgemäß wird der Begrenzer in neuartiger Weise dazu eingesetzt, das Zeitverhalten der gesamten Leerlaufreglerstruktur in Abhängigkeit von der Eingangsgröße, der Leerlaufdrehzahl zu ändern: Bei kleineren Störgrößen und dementsprechend Drehzahlschwankungen ist nur der eigentliche Leerlaufregler mit dem Regelverstärker und dessen Zeitglieder zur Bildung der Stellgröße maßgeblich. Die Zeitglieder können deswegen so dimensioniert werden, daß der Regler gegen kleinere Anregungen durch Störungen unempfindlich ist. Bei größeren Veränderunge der Drehzahl, insbesondere sogenannten Drehzahlstürzen, wirkt sich dagegen ein Zeitverhalten aus, das durch mindestens ein weiteres Zeitglied in dem Zweig zwischen einem Eingang des Drehzahlistwerts und dem Ausgang des Begrenzers angeordnet ist. Dieses Zeitglied kann insbesondere zur Erzeugung eines differentialen Zeitanteils ausgebildet sein, so daß die Gesamtstruktur des Leerlaufreglers eine Stellgröße erzeugt, die einem plötzlichen Abfall der Drehzahl rasch entgegenwirkt. Diese Aufschaltung eines zusätzlichen oder anderen Zeitverhaltens zu dem Zeitverhalten des eigentlichen Regelverstärkers mit seinen Zeitgliedern geschieht in der Weise, daß bei einer Übersteuerung des Regelverstärkers der Begrenzer wirksam wird, der einen verstärkten Begrenzungssollwert in den einen Eingang des Regelverstärkers einspeist und so mit dem Drehzahlistwert mitführt, daß der Regler an der Übersteuerungsgrenze bleibt. Dies erfolgt insbesondere so, daß bei abfallender Drehzahl der verstärkte Begrenzungssollwert angehoben wird, der damit auch die Stellgröße anhebt, die nicht Unter den Wert der unteren Aussteuerungsgrenze fallen kann. Die Stellgröße folgt daher in diesem Betriebszustand des Leerlaufreglers der Aussteuerungsgrenze, und zwar der unteren Aussteuerungsgrenze, die entsprechend dem Zeitverhalten des Begrenzerzweigs mit differentialem Zeitanteil Drehzahlistwertschwankungen feinfühlig ausregelt.
  • Ein wesentlicher Vorteil des Leerlaufreglers besteht darin, daß das zur Ausregelung kleinerer Drehzahlschwankungen erwünschte relativ träge Zeitverhalten unkritisch an dem Zeitglied eingestellt werden kann, welches direkt mit dem Regelverstärker in Verbindung steht, der damit insbesondere integrales Zeitverhalten zeigt. Für das Abfangen größerer Drehzahlstürze wird dagegen das Zeitverhalten durch das Zeitglied in dem Begrenzerzweig mit differentialem Zeitanteil ebenfalls unkritisch eingestellt. Dadurch können Fertigung, Abgleich und Lagerhaltung rationalisiert werden. Darüber hinaus ist der gesamte Bauteileaufwand zur Erzeugung eines Leerlaufreglers herabgesetzt, da insbesondere ein Differenzverstärker mit den zugehörigen Koppelgliedern entfallen kann.
  • In besonders vorteilhafter Weise ist der Regelverstärker ausschließlich mit integralem Zeitanteil ausgebildet.
  • Dadurch wird bei kleineren Störungsgrößen im Unterschied zu dem bischer notwendigen PID-Regler als Leerlaufregler eine ruhige gleichmäßige Regelung erzielt.
  • Eine besonders zweckmäßige Ausführungsform des Leerlaufreglers ist in Anspruch 3 angegeben, die sich durch einen geringen Herstellungsaufwand auszeichnet. Durch die in Anspruch 3 angegebene Kopplung des Begrenzerverstärkers mit dem invertierenden Eingang des Reglerverstärkers in Verbindung mit der Diode wird erreicht, daß nur die untere Aussteuergrenze dynamisch verschoben wird, so daß diese bei plötzlichen Drehzahlabsenkungen auf die Stellgröße auswirkt.
  • Die Erfindung wird im folgenden anhand einer Zeichnung mit drei Figuren beschrieben. Es zeigen:
    • Fig. 1 ein Blockschaltbild des Leerlaufreglers,
    • Fig. 2 ein Schaltbild einer Ausführungsform des Leerlaufreglers und
    • Fig. 3 ein Zeitdiagramm, welches die Abhängigkeit der unteren Aussteuerungsgrenze und der Stellgröße von der Drehzahl darstellt.
  • In Figur 1 ist ein Eingang mit 1 bezeichnet, in den eine Größe entsprechend dem Drehzahlistwert x, eingespeist wird. Der Eingang steht über einen Vergleicher 2, in dem der Drehzahlistwert mit einer Führungsgröße Wx verglichen wird, mit einem Regelverstärker 3 in Verbindung. Der Regelverstärker weist ausschließlich integrales Zeitverhalten als I-Regler auf. Er gibt eine Stellgröße y, an einen Ausgang 4 ab, an den beispielsweise ein Antrieb einer Drosselklappe angeschlossen werden kann.
  • Von dem Eingang 1 ist ferner ein Zweig 5 mit einem Begrenzer 6 abgezweigt. Der Begrenzer besteht im wesentlichen aus einem Begrenzerverstärker und Vergleichsstellen 8,9, die einem Eingang des Verstärkers 7 vorgeschaltet sind. In der _ Vergleichsstelle 8 wird die Differenz zwischen dem Drehzahlistwert bzw. einer hieraus abgeleiteten Größe und einer Führungsgröße Yw gebildet und damit ein Begrenzungssollwert erzeugt. Der Begrenzungssollwert wird mit der Stellgröße y, in der zweiten Vergleichsstelle 9 verglichen.
  • Der Ausgang des Verstärkers 7 steht über ein nichtlineares Glied 10 mit einem Eingang 11 des Regelverstärkers 3 in Verbindung, der die untere Übersteuerungsbegrenzung bestimmt.
  • In den Zweig 5 mit dem Begrenzer 6 ist weiterhin ein Zeitglied 12 eingefügt, welches in Figur 1 in Signalflußrichtung des Drehzahlistwerts vor den Vergleichsstellen 8 und 9 liegt, aber auch in äquivalenten Ausführungsformen hinter diesen Vergleichsstellen angeordnet und mit dem Verstärker 7 unmittelbar gekoppelt sein kann.
  • Die Funktion des Leerlaufreglers nach Figur 1 wird im folgenden unter Bezugnahme auf Figur 3 erläutert.
  • In Figur 3 ist über einer Zeitachse als Abszisse die Stellgröße y aufgetragen zwischen der oberen konstanten Aussteuerungsgrenze Y, und der unteren Aussteuerungsgrenze Y2. Darüber ist die Istdrehzahl x, dargestellt.
  • In dem Zeitintervall to bis t, liegt ein verhältnismäßig hoher Drehzahlistwert vor, der - im eingeschwungene Zustand - eine entsprechend kleine Stellgröße y hervorruft. Der Begrenzer 6 wirkt dabei in folgender Weise: Das Drehzahlistsignal, welches das Zeitglied 12 durchläuft, wird in der Vergleichsstelle 8 von einer Führungsgröße w (y) abgezogen. Aus der hieraus gebildeten Differenz als Begrenzungssollwert yW wird in der Vergleichsstelle 9 ein Sollwertsignal y, subtrahiert. Diese Differenz gelangt in den Eingang eines Verstärkers 7 und über ein nicht-lineares Glied 10 als verstärkter Begrenzungssollwert in den Eingang 11 des Regelverstärkers 3. In dem Regelverstärker hat der verstärkte Begrenzungssollwert hier zunächst keine unmittelbaren Auswirkungen, da die von ihm erzeugte Stellgröße zwischen der oberen Aussteuerungsgrenze Y, und der unteren Aussteuerungsgrenze Y2 liegt.
  • Das voranstehende Verhalten des Begrenzers ändert sich sobald zu dem Zeitpunkt t1 ein plötzlicher Drehzahlsturz des Drehzahlistwerts eintritt, beispielsweise weil sich das Gaspedal zurückstellt. In diesem Fall wird der rasch abfallenden Drehzahl nicht nur durch den Regelverstärker 3 entgegengewirkt, da dieser infolge seines langsam eingestellten Integrationsvorgangs kurzfristig keine nennenswerte Änderung der Stellgröße hervorrufen kann. Trotzdem steigt die Stellgröße zum Zeitpunkt t,, wie aus Figur 3 ersichtlich, fast sprungartig an, und zwar infolge der Wirkung des Begrenzers: In dem Zeitglied 12 wird die Drehzahländerung differenziert, so daß nach der voranstehend geschilderten Subtraktion des Sollwerts und der Stellgröße der Verstärker 7 des Begrenzers mit einem entsprechend großen Impuls beaufschlagt wird. Dieser verstärkte Impuls gelangt über das nicht-lineare Glied 10, welches im Sinne einer Beeinflussung der unteren Aussteuerungsgrenze geschaltet ist, zu dem Eingang 11 des Regelverstärkers 3. Der verstärkte Begrenzungssollwert an dem Eingang 11 ruft in dem Regelverstärker 3 ein plötzliches Ansteigen der unteren Aussteuerungsgrenze entsprechend dem differenzierten zeitlichen Verlauf der Istdrehzahl hervor. Da die Stellgröße nicht kleiner als die untere Aussteuerungsgrenze sein kann, wird sie auf einen Wert angehoben, der sich in Figur 3 an den Verlauf der unteren Aussteuerungsgrenze anschmiegt. Dies bedeutet, daß die Stellgröße entsprechend den Zeitverhalten des Zeitglieds 12 sprunghaft ansteigt, um den Drehzahlsturz x, auszugleichen. Wenn die abfallende Drehzahländerung verschwindet, geht auch die untere Aussteuerungsgrenze zurück, analog zu dem Zeitverhalten des Zeitglieds 12. Der Verlauf der Stellgröße trennt sich bei den entsprechenden kleineren Ausgangsgrößen des Verstärkers 7 wieder von dem Verlauf der unteren Aussteuerungsgrenze. Die Stellgröße wird entsprechend dem langsam integrierenden Zeitverhalten des Regelverstärkers 3 aus der Regelabweichung gebildet, wobei sich beide kurzfristige Schwankungen der Istdrehzahl bzw. der Regelabweichung nicht auf die Stellgröße auswirken, denn der integrierende Regelverstärker hat eine glättende Funktion. Infolge des Zeitglieds mit differenzierendem Zeitverhalten 12 wirken sich auch die kleinen kurzfristigen Schwankungen des Drehzahlistwerts stark auf die Ausgangsgröße des Verstärkers 7 aus, welche den verstärkten Begrenzungssollwert liefert. Die damit einhergehenden Schwankungen des verstärkten Begrenzungssollwertes haben aber keinen Einfluß auf die Stellgröße, da während annähernd gleichbleibendem Drehzahlistwert die Stellgröße wiederum im Abstand von der unteren Aussteuerungsgrenze verläuft und somit von dieser nicht beeinflußt ist.
  • In einer wenig aufwendigen Realisierung des Leerlaufreglers gemäß Figur 2 ist ein erster Differenzverstärker 13 als Regelverstärker und ein zweiter Differenzverstärker 14 als Begrenzerverstärker vorgesehen. Diese Differenzverstärker dienen gleichzeitig außer zur Verstärkung zur Vergleichsbildung und zur Bildung des Zeitverhaltens.
  • Hierzu ist ein invertierender Eingang 15 des ersten Differenzverstärkers 13 über einen Widerstand 16 mit dem Ausgang eines Umsetzers 17 verbunden, der die Istdrehzahl in eine entsprechende Spannung umsetzt. Der nicht-invertierende Eingang 18 des ersten Differenzverstärkers steht mit einem Spannungsteiler 19 in Verbindung, an dem ein Sollwert der Leerlaufdrehzahl eingestellt werden kann. Der Ausgang des Verstärkers 13 ist über einen Kondensator 20 zu dem invertierenden Eingang 15 des ersten Differenzverstärkers gegengekoppelt. Der Kondensator 20 bildet in Verbindung mit dem Widerstand 16 das integrierende Zeitverhalten des ersten Differenzverstärkers.
  • Der zweite Differenzverstärker 14, der Begrenzerverstärker, steht mit seinem invertierenden Eingang 21 mit einem Spannungsteiler 22 sowie mit dem Ausgang des Umsetzers 17 in Verbindung. Der Spannungsteiler dient zur Vorgabe des Sollwerts für die Begrenzung. Der nichtinvertierende Eingang 23 des zweiten Differenzverstärkers ist ebenfalls an den Ausgang des Umsetzers 17 angeschlossen, und zwar über einen Kondensator 24, der in Verbindung mit einem Widerstand 25 ein differenzierendes Zeitverhalten erzeugt. Der Widerstand 25 verbindet den Ausgang des Verstärkers 13 mit dem nicht-invertierenden Eingang 23 des Verstärkers 14.
  • Die Ausführungsform des Leerlaufreglers nach Figur 2 wirkt wie die voranstehend beschriebene Struktur nach Figur 1. Dabei erfolgt die Differenzbildung der Regelabweichung und die Bildung des integralen Zeitanteils an dem ersten Differenzverstärker 13, und die Bildung des differentialen Zeitanteils sowie die Differenzbildungen zur Erzeugung des verstärkten Begrenzungssollwertes erfolgen durch den zweiten Differenzverstärker 14.
  • Eine Diode 26 verbindet den Ausgang des zweiten Differenzverstärkers 14 derart mit dem invertierenden Eingang 15 des ersten Differenzverstärkers 13, daß die untere Aussteuerungsgrenze angehoben wird, wenn die Drehzahl und damit die Spannung am Ausgang des Umsetzers 17 abfällt. Bei starken Drehzahlstürzen ist auch hier wieder die Stellgröße an dem Ausgang 4 des ersten Regelverstärkers gezwungen, der unteren Aussteuerungsgrenze zu folgen, während bei nur kleinen und/oder langsamen Drehzahlschwankungen die Stellgrößenbildung gleichmäßig unabhängig von der unteren Aussteuerungsgrenze erfolgt, welche die Drehzahlschwankungen differenziert und verstärkt wiedergibt.

Claims (3)

1. Leerlaufregler, insbesondere für Kraftfahrzeuge, mit einem Regelverstärker mit integralem Zeitanteil (3) sowie mit einem Begrenzer (6) mit proportionalem Zeitanteil, dessen Eingänge mit der Stellgröße von dem Ausgang des Regelverstärkers (3) sowie mit einer mit dem Drehzahlistwert gebildeten Begrenzerführungsgröße beaufschlagt werden und dessen Ausgang zu einem Eingang des Regelverstärkers (3) zurückgeführt ist, dadurch gekennzeichnet, daß in dem Zweig (5) zwischen einem Eingang (1) des Drehzahlistwerts und dem Ausgang des Begrenzers (6) mindestens ein Zeitglied (12) mit differentialem Zeitanteil vorgesehen ist und daß der Begrenzer (6) derart bemessen und mit dem Ausgang des Regelverstärkers (3) gekoppelt ist, daß bei einem Drehzahlsturz über einen vorgegebenen Wert hinaus die Stellgröße (y) entlang der Ausgangsgröße des Begrenzers (6) (Aussteuerungsgrenze Y2) geführt wird.
2. Leerlaufregler nach Anspruch 1, dadurch gekennzeichnet, daß der Regelverstärker (3) ausschließlich mit integralem Zeitanteil ausgebildet ist.
3. Leerlaufregler mit einem ersten Differenzverstärker als Regelverstärker und einem zweiten Differenzverstärker als Begrenzerverstärker nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein nicht-invertierender Eingang (23) des Begrenzerverstärkers (Differenzverstärker 14) über einen Kondensator (24) mit dem Drehzahlistwert beaufschlagt wird und ein invertierender Eingang (21) mit einem Vorspannungsteiler (22) verbunden ist, daß der Ausgang des Regelverstärkers (Differenzverstärker 13) über einen Widerstand (25) mit dem nicht-invertierenden Eingang (23) des Begrenzerverstärkers (Differenzverstärker 14) in Verbindung steht und daß der Ausgang des Begrenzerverstärkers (Differenzverstärker 14) über eine Diode (26) an einen invertierenden Eingang (15) des Regelverstärkers (Differenzverstärker 13) angeschlossen ist.
EP83100686A 1982-07-14 1983-01-26 Leerlaufregler, insbesondere für Kraftfahrzeuge Expired EP0098909B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3226283 1982-07-14
DE19823226283 DE3226283A1 (de) 1982-07-14 1982-07-14 Leerlaufregler, insbesondere fuer kraftfahrzeuge

Publications (3)

Publication Number Publication Date
EP0098909A2 EP0098909A2 (de) 1984-01-25
EP0098909A3 EP0098909A3 (en) 1984-07-25
EP0098909B1 true EP0098909B1 (de) 1987-05-27

Family

ID=6168388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83100686A Expired EP0098909B1 (de) 1982-07-14 1983-01-26 Leerlaufregler, insbesondere für Kraftfahrzeuge

Country Status (3)

Country Link
US (1) US4471735A (de)
EP (1) EP0098909B1 (de)
DE (2) DE3226283A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3226283A1 (de) * 1982-07-14 1984-01-19 Vdo Adolf Schindling Ag, 6000 Frankfurt Leerlaufregler, insbesondere fuer kraftfahrzeuge

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3235186A1 (de) * 1982-09-23 1984-03-29 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur regelung der leerlauf-drehzahl von brennkraftmaschinen
DE3337260A1 (de) * 1983-10-13 1985-04-25 Atlas Fahrzeugtechnik GmbH, 5980 Werdohl Leerlaufregelung fuer einen ottomotor
DE3343854A1 (de) * 1983-12-03 1985-06-13 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur beeinflussung eines stellregelkreises bei einer brennkraftmaschine mit selbstzuendung
JPS60153440A (ja) * 1984-01-20 1985-08-12 Honda Motor Co Ltd 内燃エンジンのアイドル回転数フイ−ドバツク制御方法
DE3403750A1 (de) * 1984-02-03 1985-08-08 Vdo Adolf Schindling Ag, 6000 Frankfurt Einrichtung zur elektrischen leerlaufregelung von verbrennungsmotoren
DE3408002A1 (de) * 1984-03-03 1985-09-12 Vdo Adolf Schindling Ag, 6000 Frankfurt Einrichtung zur herabsetzung von fahrzeuglaengsdynamik-instabilitaeten
US4629980A (en) * 1985-05-28 1986-12-16 International Business Machines Corporation Testing limits of speed variations in motors
KR910001692B1 (ko) * 1987-01-20 1991-03-18 미쓰비시 뎅끼 가부시끼가이샤 내연기관의 회전수 제어장치
DE3744222A1 (de) * 1987-12-24 1989-07-06 Bosch Gmbh Robert Verfahren und einrichtung zur beeinflussung der luftzumessung bei einer brennkraftmaschine, insbesondere im leerlauf und schubbetrieb
US4875448A (en) * 1988-09-23 1989-10-24 Briggs & Stratton Corporation Cyclic responding electronic speed governor
JPH0739818B2 (ja) * 1989-08-31 1995-05-01 富士通テン株式会社 内燃機関のアイドル回転速度制御装置
US5105331A (en) * 1990-01-18 1992-04-14 Briggs & Stratton Corporation Idling system for devices having speed controllers
DE4215959C2 (de) * 1991-05-15 1997-01-16 Toyoda Automatic Loom Works Verstärkungsfaktor-Einstelleinrichtung für PID-Regler
US5353762A (en) * 1993-05-10 1994-10-11 Briggs & Stratton Corporation Modular automatic speed changing system
JP2002295291A (ja) * 2001-03-29 2002-10-09 Denso Corp 内燃機関のアイドル回転速度制御方法
US6870345B1 (en) * 2003-09-26 2005-03-22 Texas Instruments Incorporated Servo loop PID compensator with embedded rate limit

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031483A (en) * 1976-01-15 1977-06-21 Sperry Rand Corporation Limiter circuit for servosystems
DE2654455A1 (de) * 1976-12-01 1978-06-08 Vdo Schindling Einrichtung zum regeln der fahrgeschwindigkeit eines kraftfahrzeugs
DE2732905C3 (de) * 1977-07-21 1994-02-24 Vdo Schindling Einrichtung zum Regeln der Fahrgeschwindigkeit eines Kraftfahrzeugs
US4134373A (en) * 1977-10-03 1979-01-16 General Motors Corporation Engine speed limiting control circuit
DE2749369C2 (de) * 1977-11-04 1985-06-13 Robert Bosch Gmbh, 7000 Stuttgart Regelsystem für ein Stellglied im zusatzluftzuführenden Umgehungskanal einer Drosselklappe bei Brennkraftmaschinen
DE2755338C2 (de) * 1977-12-12 1985-05-23 Vdo Adolf Schindling Ag, 6000 Frankfurt Elektrische Stellvorrichtung für Geschwindigkeitsregeleinrichtungen
DE2839382A1 (de) * 1978-09-11 1980-03-20 Vdo Schindling Einrichtung zum regeln der fahrgeschwindigkeit eines kraftfahrzeugs
DE2918135C3 (de) * 1979-05-05 1981-08-06 Volkswagenwerk Ag, 3180 Wolfsburg Verfahren zum Betrieb einer fremdgezündeten Brennkraftmaschine und Anordnung zur Durchführung des Verfahrens
DE2925580C2 (de) * 1979-06-25 1984-09-13 Vdo Adolf Schindling Ag, 6000 Frankfurt Einrichtung zum Regeln der Fahrgeschwindigkeit eines Kraftfahrzeuges
FR2469830B1 (fr) * 1979-11-13 1985-09-27 Snecma Procede pour changer la fonction de reponse d'un integrateur, circuit pour la mise en oeuvre de ce procede, et procede et circuit d'asservissement faisant application desdits procede et circuit susmentionnes
DE2949884C2 (de) * 1979-12-12 1985-05-30 Vdo Adolf Schindling Ag, 6000 Frankfurt Ventilanordnung zur Regelung der Leelaufdrehzahl von Otto-Motoren
DE3171164D1 (en) * 1980-01-30 1985-08-08 Lucas Ind Plc Closed loop control of i.c. engine idling speed
DE3031682A1 (de) * 1980-08-22 1982-04-01 Vdo Adolf Schindling Ag, 6000 Frankfurt Schaltung fuer eine ventilanordnung mit elektromechanischem stellglied zur regelung der leerlaufdrehzahl
DE3039435C2 (de) * 1980-10-18 1984-03-22 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur Regelung der Leerlauf-Drehzahl von Brennkraftmaschinen
DE3149097A1 (de) * 1981-12-11 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum regeln der leerlaufdrehzahl bei einer brennkraftmaschine
DE3226283A1 (de) * 1982-07-14 1984-01-19 Vdo Adolf Schindling Ag, 6000 Frankfurt Leerlaufregler, insbesondere fuer kraftfahrzeuge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3226283A1 (de) * 1982-07-14 1984-01-19 Vdo Adolf Schindling Ag, 6000 Frankfurt Leerlaufregler, insbesondere fuer kraftfahrzeuge

Also Published As

Publication number Publication date
DE3226283A1 (de) 1984-01-19
EP0098909A3 (en) 1984-07-25
EP0098909A2 (de) 1984-01-25
US4471735A (en) 1984-09-18
DE3371824D1 (en) 1987-07-02

Similar Documents

Publication Publication Date Title
EP0098909B1 (de) Leerlaufregler, insbesondere für Kraftfahrzeuge
DE3023350C2 (de)
DE69029894T2 (de) Selbstanpassendes Steuerungssystem für Fahrzeuge
DE3028940C2 (de)
DE19756053B4 (de) Drosselklappensteuervorrichtung
EP0015281B1 (de) Verfahren und vorrichtung zur digitalen regelung der fahrgeschwindigkeit eines kraftfahrzeugs
DE2458387A1 (de) Fahrzeuggeschwindigkeitssteuer- bzw. -regelsystem
DE2839382A1 (de) Einrichtung zum regeln der fahrgeschwindigkeit eines kraftfahrzeugs
DE3714137C2 (de)
DE3408002A1 (de) Einrichtung zur herabsetzung von fahrzeuglaengsdynamik-instabilitaeten
DE4112848C2 (de) System zur Regelung der Leerlaufdrehzahl einer Brennkraftmaschine
DE2233151A1 (de) Steueroszillatorschaltung
DE2702774B2 (de) Vorrichtung zur Drehzahlregelung von Turbo-Luftstrahltriebwerken
EP0076965A1 (de) Regelvorrichtung für ein druckgesteuertes Stellglied
DE3343854A1 (de) Einrichtung zur beeinflussung eines stellregelkreises bei einer brennkraftmaschine mit selbstzuendung
DE3020088A1 (de) Drehzahl-begrenzersystem fuer einen verbrennungsmotor
DE3329800C2 (de)
DE4015293A1 (de) System zur regelung eines betriebsparameters einer brennkraftmaschine eines kraftfahrzeugs
DE3938378A1 (de) System zur elektronischen steuerung und/oder regelung der leistung einer brennkraftmaschine eines kraftfahrzeugs
EP0473914B1 (de) System zur Regelung eines Stellwerks in einem Kraftfahrzeug
DE2600427A1 (de) Selbstanpassendes regelungssystem, das sich entsprechend den eigenschaften seines regelkreises auf eine optimale ausbildung selbsttaetig einstellt
EP0014369A1 (de) Bremsdruckregler für pneumatische Bremsen von Fahrzeugen, insbesondere von Schienenfahrzeugen
EP0460126B1 (de) System zur elektronischen steuerung und/oder regelung der leistung einer brennkraftmaschine eines kraftfahrzeugs
DE1798196A1 (de) Regeleinrichtung
DE2816613A1 (de) Einrichtung zum regeln der fahrgeschwindigkeit eines kraftfahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19840829

17Q First examination report despatched

Effective date: 19860205

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3371824

Country of ref document: DE

Date of ref document: 19870702

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19890131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890131

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900126

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961210

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001