EP0082467B1 - Behälter für die Langzeitlagerung von abgebrannten Kernreaktorbrennelementen - Google Patents

Behälter für die Langzeitlagerung von abgebrannten Kernreaktorbrennelementen Download PDF

Info

Publication number
EP0082467B1
EP0082467B1 EP82111612A EP82111612A EP0082467B1 EP 0082467 B1 EP0082467 B1 EP 0082467B1 EP 82111612 A EP82111612 A EP 82111612A EP 82111612 A EP82111612 A EP 82111612A EP 0082467 B1 EP0082467 B1 EP 0082467B1
Authority
EP
European Patent Office
Prior art keywords
container
main body
closure cover
weld
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82111612A
Other languages
English (en)
French (fr)
Other versions
EP0082467A1 (de
Inventor
Franz-Wolfgang Dipl.-Ing. Dr. Popp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Original Assignee
Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH filed Critical Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Publication of EP0082467A1 publication Critical patent/EP0082467A1/de
Application granted granted Critical
Publication of EP0082467B1 publication Critical patent/EP0082467B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/12Closures for containers; Sealing arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/917Corrosion resistant container

Definitions

  • the invention relates to a container made of steel or cast steel for the long-term storage of spent nuclear reactor fuel elements or other radioactive materials, the front opening of which is closed by a welded-on sealing cap.
  • the container After such a container has been filled with the irradiated nuclear reactor fuel elements, the container must be tightly closed by a cover.
  • a cover In the case of a metallic container body, it is possible to close it tightly by welding in a metallic lid. If the main body of the container is made of graphite, the main body of the container can be closed at high temperature and high pressure with a sealing cover, which is also made of graphite.
  • Long-term storage containers must be mechanically stable, corrosion-resistant and tightly sealed. If the main body of the container is made of steel, the mechanical stability and tight sealing is guaranteed by welding the main body of the container and the sealing cover.
  • the corrosion resistance of the steel is, however, insufficient for the purpose of long-term storage, for example final storage in salt rock. It has therefore already been proposed to produce a container for long-term storage from graphite which has very good corrosion resistance. However, the mechanical stability compared to a steel container is lower.
  • the container were made of steel or cast steel to achieve mechanical stability and had a corrosion-resistant protective layer made of graphite, ceramic or enamel on the outside. So far this has stood in the way of the fact that after welding the container in the hot cell in this hot cell, a perfect corrosion coating can only be carried out with great technical effort by means of remotely operated handling devices.
  • the invention has for its object to provide a container of the type described above, the base material of which has mechanical stability and which is corrosion-resistant by means of an outer coating and which enables the container to be easily closed in the hot cell.
  • the object is achieved by the features specified in the characterizing part of claim 1.
  • the container body and the sealing cap are separately provided with the weld cladding before use in the hot cell.
  • the weld cladding is applied by build-up welding, which is a well-known technique (Handbuch der Sch spatechnik, J. Ruge, 2nd edition, vol. 1 "Materials", Springer Verlag, Berlin, Heidelberg, New York 1980, p. 170 ).
  • the container body and the sealing lid are coated separately with the corrosion protection layer. The invention has made it possible to carry out this coating outside the hot cell.
  • a cold-weldable material is understood to mean a material that can be welded without subsequent heat treatment. With such materials, no significant stresses or structural changes occur during welding, which have to be compensated for by an additional, subsequent heat treatment.
  • One such material is Ni Mo 16 Cr 16 Ti (trade name: Hastelloy C-4).
  • the approach of the respective welding plating on the sealing lid or on the container body is covered by the corrosion protection layer, so that the container is covered by a corrosion protection layer without a continuous gap.
  • a further advantageous embodiment of the invention is characterized by the features mentioned in claim 2.
  • the weld plating on the container base body is formed from a ring with an L-shaped cross section, which surrounds the container base body at its front end.
  • One end of the annular welding plating of the closure lid lies on an obliquely running annular surface, which lies opposite the joining surface of the container base body on the end face.
  • the fuel assembly container shown in FIG. 1 has a container body 1 which is cylindrical and is open at one end. This forms a receiving opening 2 for loading with the fuel elements, not shown here.
  • a welding plating 3 made of an annular, cross-sectionally L-shaped strip made of cold-weldable and corrosion-resistant material is applied to the end-face joining surface 10.
  • a such a material is an alloy Ni Mo 16 Cr 16 Ti (trade name: Hastelloy C-4).
  • the ring-shaped material strip applied by build-up welding is L-shaped, the short leg 4 lying on the front end of the container body 1.
  • the longer leg 5 is located on the outside of the container body 1.
  • the container body 1 is closed by a welded closure cap 6.
  • This cover 6 has an upwardly projecting edge 7.
  • the closure cover 6 is chamfered in a circular shape, the width of the projected oblique ring surface 8 extending from the inside diameter to the outside diameter of the container body 1.
  • the sealing cover 6 is circumferentially surrounded by a weld cladding 9 of a cold-weldable material.
  • the weld-plated material strip 9 comprises the edge 7 at one end and the ring surface 8 of the closure cover 6 at the other end.
  • the sealing cover 6 and the container body 1 were each coated with a corrosion protection layer 11, 12 made of graphite after their welding plating. These corrosion protection layers 11, 12 leave the welding claddings 3, 9 free in the welding area. Only the ends of the weld cladding 3 and 9 facing away from the welding area are somewhat covered by the corrosion protection layers 11, 12. A continuous gap to the container body is avoided.
  • the oblique annular surface 8 of the cover 6 creates an outwardly opening wedge gap, which receives the V-shaped weld seam 13 made of corrosion-resistant metallic material.
  • the fuel assembly container shown in FIG. 2 has a modified arrangement of the weld cladding in the joining area between the container body and the closure cover.
  • the weld plating 23 consists of an annular layer welded onto the outside of the container base body 21. This welding cladding 23 closes at the end with the end of the container body 21.
  • the weld plating 29 of the closure cover 26 only extends to the lower end of the outer circumference of the closure cover.
  • the oblique ring surface 28 does not carry any welding cladding.
  • the joining surfaces 28 and 30 form a wedge gap, but have no weld cladding.
  • a second weld seam 37 is applied, which connects the two weld claddings 23 and 29 of the closure cover 26 and the container base body 21 to one another.
  • the welding material of the second weld 37 is also made of cold-weldable, corrosion-resistant material, such as. B. Hastelloy C-4. Both welds 36 and 37 are created in the hot cell after loading the fuel assembly container. The corrosion protection layers 31 and 32 remain intact.
  • This container body 42 has a cylindrical cross section and forms a receiving opening 43 through which the container body can be loaded with radioactive substances.
  • a closure cover 44 is arranged in the receiving opening 43.
  • This cap 44 has a peripheral edge 41 which rises from the flat surface 45 of the cap 44.
  • the closure cover 44 has a U-shaped configuration when viewed in cross section, the outer surface 48 of the edge 41 tending to the axis of the closure cover 44.
  • the closure lid 44 lies with a vertical part 46 of its peripheral surface 46, 48 on the inner surface 47 of the wall 40 of the container body 42.
  • the edge 41 of the closure lid 44 is inclined to the axis of the lid and thus forms a wedge gap with the wall 40 of the container body 42 for receiving a weld seam 50.
  • Sealing lid 44 and container, base body 42 have weld claddings 52 and 53 in their joining area.
  • the weld plating 52 of the closure lid 44 extends from the inclined surface 48 over the edge 41 to the cover surface 45.
  • the weld plating 53 of the container base body 42 encompasses the open wall end of the container base body 42, the weld plating 53 extending from the outer surface via the end face to the inner surface 47 extends: the container body 42 and the closure cover 44 are provided with corrosion protection layers 54 and 55, each of which covers the end of the weld cladding 52, 53 facing away from the weld seam 50.
  • closure lid 44 After loading the container body 42 with the spent nuclear fuel elements, the closure lid 44 is inserted.
  • the closure lid 44 and the container base body 42 are connected to one another by forming the weld seam 50.
  • the invention has the great advantage that the fuel assembly container is completely covered by an anti-corrosion layer after loading.
  • the container base body and the closure lid are provided with a corrosion-resistant, cold-weldable, metallic material applied by build-up welding, while the remaining outer surface is covered by known ceramic protective layers.
  • the ceramic protective layers do not suffer any damage when welded, since metallic corrosion protection layers are present in the joining area and are connected to one another. It is after loading the fuel assembly with the nuclear fuel only one welding process is required in the hot cell; a complex, remote-controlled application of a complete corrosion protection layer is no longer necessary.

Description

  • Die Erfindung betrifft einen Behälter aus Stahl oder Stahlguß für die Langzeitlagerung von abgebrannten Kernreaktorbrennelemeriten oder anderen radioaktiven Stoffen, dessen stirnseitige Aufnahmeöffnung durch einen aufgeschweißten Verschlußdeckel verschlossen ist.
  • Nach dem Füllen eines derartigen Behälters mit den bestrahlten Kernreaktorbrennelementen muß der Behälter durch einen Verschlußdeckel dicht verschlossen werden. Bei einem metallischen Behältergrundkörper ist ein dichtes Verschließen an sich über das Einschweißen eines metallischen Deckels möglich. Besteht der Behältergrundkörper aus Graphit, kann der Behältergrundkörper mit einem Verschlußdeckel, der ebenfalls aus Graphit besteht, bei hoher Temperatur und hohem Druck verschlossen werden.
  • Behälter für die Langzeitlagerung müssen mechanisch stabil, korrosionsfest und dicht verschlossen sein. Besteht der Behältergrundkörper aus Stahl, ist zwar die mechanische Stabilität und ein dichtes Verschließen durch Verschweißen des Behältergrundkörpers und Verschlußdeckel gewährleistet. Die Korrosionsbeständigkeit des Stahles ist aber für den Zweck der Langzeitlagerung, beispielsweise einer Endlagerung im Salzgestein, ungenügend. Man hat daher bereits vorgeschlagen, einen Behälter für die Langzeitlagerung aus Graphit herzustellen, der eine sehr gute Korrosionsbeständigkeit aufweist. Allerdings ist hierbei die mechanische Stabilität gegenüber einem Stahlbehälter geringer.
  • Es wäre daher vorteilhaft, wenn der Behälter aus dem Grundwerkstoff Stahl oder Stahlguß zur Erreichung der mechanischen Stabilität wäre und außen eine korrosionsfeste Schutzschicht aus Graphit, Keramik oder Emaille tragen würde. Dem steht bisher entgegen, daß nach dem Verschweißen des Behälters in der Heißen Zelle in dieser Heißen Zelle eine einwandfreie Korrosionsbeschichtung nur unter hohem technischen Aufwand mittels fernbetätigter Hantierungseinrichtungen erfolgen kann.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Behälter der eingangs beschriebenen Art zu schaffen, dessen Grundwerkstoff die mechanische Stabilität aufweist und der über eine äußere Beschichtung korrosionsbeständig ist und der ein einfaches Verschließen des Behälters in der Heißen Zelle ermöglicht.
  • Die Aufgabe wird erfindungsgemäß durch die im Kennzeichen des Anspruches 1 angegebenen Merkmale gelöst. Der Behältergrundkörper und der Verschlußdeckel werden vor dem Einsatz in der Heißen Zelle separat mit den Schweißplattierungen versehen. Die Schweißplattierungen werden durch Auftragschweißen aufgebracht, wobei es sich um eine hinlänglich bekannte Technik handelt (Handbuch der Schweißtechnik, J. Ruge, 2. Auflage, Bd. 1 « Werkstoffe », Springer Verlag, Berlin, Heidelberg, New York 1980, S. 170). Nach dem Schweißplattieren werden der Behältergrundkörper und der Verschlußdeckel mit der Korrosionsschutzschicht separat beschichtet. Durch die Erfindung ist es möglich geworden, diese Beschichtung außerhalb der Heißen Zelle vorzunehmen.
  • Nach dem Beladen des Brennelementbehälters in der Heißen Zelle kann dieser mit dem Verschlußdeckel kalt verschweißt werden. Unter einem kaltschweißbaren Werkstoff wird ein Werkstoff verstanden, der ohne nachträgliche Wärmebehandlung schweißbar ist. Bei derartigen Werkstoffen treten beim Schweißen keine wesentlichen Spannungen oder Gefügeänderungen auf, die durch eine zusätzliche, nachträgliche Wärmebehandlung ausgeglichen werden müssen. Ein derartiger Werkstoff ist Ni Mo 16 Cr 16 Ti (Handelsname : Hastelloy C-4). Der Ansatz der jeweiligen Schweißplattierung auf dem Verschlußdeckel bzw. auf dem Behältergrundkörper wird durch die Korrosionsschutzschicht überdeckt, damit der Behälter ohne durchgehenden Spalt von einer Korrosionsschutzschicht bedeckt ist.
  • Eine weitere vorteilhafte Ausgestaltung der Erfindung ist durch die im Anspruch 2 genannten Merkmale gekennzeichnet. Die Schweißplattierung auf dem Behältergrundkörper wird aus einem im Querschnitt L-förmigen Ring geformt, der den Behältergrundkörper an seinem stirnseitigen Ende umfaßt. Die ringförmige Schweißplattierung des Verschlußdeckels liegt mit einem Ende auf einer schräg verlaufenden Ringfläche, die der stirnseitigen Fügefläche des Behältergrundkörpers gegenüberliegt. Dadurch bilden die beiden Schweißplattierungen nach dem Aufsetzen des Verschlußdeckels einen sich nach außen öffnenden Keilspalt, der zum Verschweißen von Deckel und Behältergrundkörper dient.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung werden in den Ansprüchen 3 und 4 gekennzeichnet.
  • Anhand der Zeichnung werden nachstehend drei Ausführungsbeispiele der Erfindung näher erläutert. Es zeigt
    • Figur 1 einen Schnitt durch einen verschweißten Behälter,
    • Figur 2 eine andere Ausführungsform der Schwei,ßplattierung und Verschweißung von Deckel und Behältergrundkörper,
    • Figur 3 eine weitere Variante der Ausbildung der Schweißplattierungen.
  • Der in Fig. 1 gezeigte Brennelementbehälter weist einen Behältergrundkörper 1 auf, der zylindrisch ausgebildet und an einem stirnseitigen Ende offen ist. Dadurch wird eine Aufnahmeöffnung 2 zum Beladen mit den hier nicht gezeigten Brennelementen gebildet. Am offenen Ende des Behältergrundkörpers 1 ist eine Schweißplattierung 3 aus einem ringförmigen, im Querschnitt gesehen L-förmigen Streifen aus kaltschweißbarem und korrosionsbeständigem Werkstoff auf die stirnseitige Fügefläche 10 aufgebracht. Ein derartiger Werkstoff ist eine Legierung Ni Mo 16 Cr 16 Ti (Handelsname : Hastelloy C-4). Der ringförmige, durch Auftragschweißen aufgebrachte Wersktoffstreifen ist L-förmig geformt, wobei der kurze Schenkel 4 auf dem stirnseitigen Ende des Behältergrundkörpers 1 liegt. Der längere Schenkel 5 befindet sich auf der Außenseite des Behältergrundkörpers 1.
  • Der Behältergrundkörper 1 ist durch einen aufgeschweißten Verschlußdeckel 6 verschlossen. Dieser Verschlußdeckel 6 weist einen nach oben abstehenden Rand 7 auf. Auf der dem Behältergrundkörper 1 zugewandten Seite ist der Verschlußdeckel 6 kreisringförmig abgeschrägt, wobei sich die Breite der projezierten schrägen Ringfläche 8 von dem Innendurchmesser bis zum Außendurchmesser des Behältergrundkörpers 1 erstreckt. Der Verschlußdeckel 6 ist umfangs--mäßig von einer Schweißplattierung 9 eines kaltschweißbaren Werkstoffes umgeben. Der schweißpiattierte Werkstoffstreifen 9 umfaßt mit einem Ende den Rand 7 und mit dem anderen Ende die Ringfläche 8 des Verschlußdeckels 6.
  • Der Verschlußdeckel 6 und der Behältergrundkörper 1 wurden nach ihrem Schweißplattieren jeweils mit einer Korrosionsschutzschicht 11, 12 aus Graphit beschichtet. Diese Korrosionsschutzschichten 11, 12 lassen die Schweißplattierungen 3, 9 im Schweißbereich frei. Lediglich die dem Schweißbereich abgewandten Enden der Schweißplattierungen 3 und 9 werden von den Korrosionsschutzschichten 11, 12 etwas überdeckt. Dadurch wird ein durchgehender Spalt zum Behältergrundkörper vermieden. Durch die schräge Ringfläche 8 des Deckels 6 ist ein sich nach außen öffnender Keilspalt entstanden, der die V-förmige Schweißnaht 13 aus korrosionsbeständigem metallischem Werkstoff aufnimmt.
  • Der in Fig. 2 gezeigte Brennelementbehälter weist eine geänderte Anordnung der Schweißplattierungen im Fügebereich zwischen Behältergrundkörper und Verschlußdeckel auf.
  • Im Fügebereich des Behältergrundkörpers 21 besteht die Schweißplattierung 23 aus einer außen auf den Behältergrundkörper 21 aufgeschweißten ringförmigen Schicht. Diese Schweißplattierung 23 schließt mit dem Ende des Behältergrundkörpers 21 stirnseitig ab. Die Schweißplattierung 29 des Verschlußdeckels 26 erstreckt sich nur bis zum unteren Ende des Außenumfanges des Verschlußdeckels. Die schräge Ringfläche 28 trägt keine Schweißplattierung. Die Fügeflächen 28 und 30 bilden einen Keilspalt, haben aber keine Schweißplattierung. Nach dem Beladen des Brennelementbehälters in der Heißen Zelle wird der Verschlußdeckel 26 aufgesetzt. Als erstes wird eine tulpenförmige Schweißnaht 36 zwischen den Fügeflächen 28 und 30 mittels eines Schutzgasschweißverfahrens erzeugt. Anschließend wird eine zweite Schweißnaht 37 aufgebracht, die die beiden Schweißplattierungen 23 und 29 des Verschlußdeckels 26 und des Behältergrundkörpers 21 miteinander verbindet. Das Schweißmaterial der zweiten Schweißnaht 37 ist ebenfalls aus kaltschweißbarem, korrosionsfestem Material, wie z. B. Hastelloy C-4. Beide Schweißnähte 36 und 37 werden nach dem Beladen des Brennelementbehälters in der Heißen Zelle erzeugt. Die Korrosionsschutzschichten 31 und 32 bleiben dabei unversehrt.
  • Die Ausführung gemäß Fig. 3 weist einen Behältergrundkörper 42 auf. Dieser Behältergrundkörper 42 hat einen zylindrischen Querschnitt und bildet eine Aufnahmeöffnung 43, durch die der Behältergrundkörper mit radioaktiven Stoffen beladen werden kann. Ein Verschlußdeckel 44 ist in der Aufnahmeöffnung 43 angeordnet. Dieser Verschlußdeckel 44 weist einen umfangsmäßigen Rand 41 auf, der sich von der ebenen Fläche 45 des Verschlußdeckels 44 erhebt. Der Verschlußdeckel 44 hat im Querschnitt gesehen eine U-förmige Ausbildung, wobei sich die äußere Fläche 48 des Randes 41 zur Achse des Verschlußdeckels 44 neigt.
  • Der Verschlußdeckel 44 liegt,mit einem senkrechten Teil 46 seiner Umfangsfläche 46, 48 an der inneren Oberfläche 47 der Wand 40 des Behältergrundkörpers 42. Der Rand 41 des Verschlußdeckels 44 ist zur Deckelachse geneigt angeordnet und bildet somit mit der Wand 40 des Behältergrundkörpers 42 einen Keilspalt zur Aufnahme einer Schweißnaht 50.
  • Verschlußdeckel 44 und Behälter,grundkörper 42 weisen in ihrem Fügebereich Schweißplattierungen 52 und 53 auf. Die Schweißplattierung 52 des Verschlußdeckels 44 erstreckt sich von der schrägen Fläche 48 über den Rand 41 bis auf die Deckelfläche 45. Die Schweißplattierung 53 des Behältergrundkörpers 42 umfaßt das offene Wandende des Behältergrundkörpers 42, wobei sich die Schweißplattierung 53 von der Außenoberfläche über die Stirnseite zur Innenoberfläche 47 erstreckt : Behältergrundkörper 42 und Verschlußdeckel 44 sind mit Korrosionsschutzschichten 54 und 55 versehen, die jeweils das der Schweißnaht 50 abgewandte Ende der Schweißplattierungen 52, 53 überdecken.
  • Nach dem Beladen des Behältergrundkörpers 42 mit den abgebrannten Kernbrennelementen wird der Verschlußdeckel 44 eingesetzt. Der Verschlußdeckel 44 und der Behältergrundkörper 42 werden durch Bildung der Schweißnaht 50 miteinander verbunden.
  • Die Erfindung hat den großen Vorteil, daß der Brennelementbehälter nach dem Beladen vollständig von einer Korrosionsschutzschicht bedeckt ist. Im Fügebereich sind Behältergrundkörper und Verschlußdeckel von einem korrosionsfesten, kaltschweißbaren, durch Auftragschweißen angebrachten, metallischen Werkstoff versehen, während die übrige Außenfläche von bekannten keramischen Schutzschichten bedeckt ist. Die keramischen Schutzschichten erleiden bei einer Verschweißung keinen Schaden, da im Fügebereich metallische Korrosionsschutzschichten vorhanden sind und miteinander verbunden werden. Es ist nach dem Beladen des Brennelementbehälters mit den kernbrennstoffelementen in der Heißen Zelle nur ein Schweißvorgang notwendig ; eine aufwendige, fernbediente Aufbringung einer kompletten Korrosionsschutzschicht ist nicht mehr notwendig.

Claims (4)

1. Behälter aus, Stahl oder Stahlguß für die Langzeitlagerung von abgebrannten Kernreaktorbrennelementen oder anderen radioaktiven Stoffen, dessen stirnseitige Aufnahmeöffnung . durch einen, aufgeschweißten Verschlußdeckel verschlossen ist, dadurch gekennzeichnet, daß der Behältergrundkörper (1, 21, 42) und der Verschlußdeckel (6, 26, 44) im Bereich der einander zugewandten Fügeflächen (8, 10; 28, 30 ; 47, 48) jeweils eine Schweißplattierung (3, 9 ; 23, 29 ; 52, 53) aus einem kaltschweißbaren, korrosionsfesten Werkstoff aufweisen, daß der Behältergrundkörper (1, 21, 42) und der Verschlußdeckel (6, 26, 44) außen mit einer Korrosionsschutzschicht (11, 12 ; 31, 32 ; 54, 55) aus Graphit oder Keramik bis auf die sich gegenüberliegenden Bereiche der Schweißplattierungen (3, 9 ; 23, 29 ; 52, 53) von Behältergrundkörper (1, 21, 42) und Verschlußdeckel (6, 26, 44) beschichtet sind und daß der Behältergrundkörper (1, 21, 42) mit dem Verschlußdeckel (6, 26, 44) über die Schweißplattierungen (3, 9 ; 23, 29 ; 52, 53) zum dichten Verschließen des Behälters verschweißt ist.
2. Behälter nach Anspruch 1, dadurch gekennzeichnet, daß die Schweißplattierung (3) des Behältergrundkörpers (1) aus einem im Querschnitt gesehen L-förmigen Ring besteht, dessen einer Schenkel (4) auf der.stirnseitigen Fügefläche (10) und dessen anderer Schenkel (5) an der Außenfläche des Behältergrundkörpers (1) liegt, daß die Schweißplattierung (9) des Verschlußdeckels (6), einen abstehenden Rand (7) des Verschlußdeckels (6) umfaßt, an der Deckelaußenfläche anliegt und auf einer sich von außen schräg zum Behälterinnendurchmesser in Richtung Behältergrundkörper (1) geneigten Ringfläche (8) aufgebracht ist.
3. Behälter nach Anspruch 1, dadurch gekennzeichnet, daß die Schweißplattierung, (23) des Behältergrundkörpers (21) an der Außenoberfläche des Behältergrundkörpers (21) an dessen stirnseitig offenen Ende liegt, daß die Schweißplattierung (29) des Verschlußdeckels (26) einen abstehenden Rand des Verschlußdeckels (26) umfaßt und an der Deckelaußenfläche anliegt, daß der Verschlußdeckel (26) oder der Behältergrundkörper (21) an ihren gegenüberliegenden Flächen (28, 30) eine sich von außen schräg zum Behälterinnendurchmesser erstreckende Ringfläche (28) aufweisen, daß der Grundwerkstoff des Verschlußdeckels (26) und der Grundwerkstoff des Behältergrundkörpers (21) mit einer ersten Schweißnaht (36) miteinander verschweißt sind, und daß die sich gegenüberliegenden Enden der Schweißplattierungen (23 und 29) mittels einer zweiten Schweißung (37) miteinander verbunden sind.
4. Behälter nach Anspruch 1, dadurch gekennzeichnet, daß die Schweißplattierung (53) des --Behältergrundkörpers (42) das offene Ende (40) -der Behälterwand (57) umfaßt, daß die Schweißpiattierung (52) des Verschlußdeckels (44) einen abstehenden Rand (41) des Verschlußdeckels (44) umfaßt, der in die Aufnahmeöffnung (43) des Behältergrundkörpers (42) eingesetzt ist, daß der abstehende Rand (41) eine schräg zu der Deckelachse geneigte Außenfläche aufweist, die von der Schweißplattierung (52) bedeckt ist.
EP82111612A 1981-12-17 1982-12-14 Behälter für die Langzeitlagerung von abgebrannten Kernreaktorbrennelementen Expired EP0082467B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813149945 DE3149945A1 (de) 1981-12-17 1981-12-17 Behaelter fuer die langzeitlagerung von abgebrannten kernreaktorbrennelementen
DE3149945 1981-12-17

Publications (2)

Publication Number Publication Date
EP0082467A1 EP0082467A1 (de) 1983-06-29
EP0082467B1 true EP0082467B1 (de) 1985-08-07

Family

ID=6148942

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82111612A Expired EP0082467B1 (de) 1981-12-17 1982-12-14 Behälter für die Langzeitlagerung von abgebrannten Kernreaktorbrennelementen

Country Status (7)

Country Link
US (1) US4596688A (de)
EP (1) EP0082467B1 (de)
JP (1) JPS58144800A (de)
BR (1) BR8207346A (de)
CA (1) CA1187632A (de)
DE (2) DE3149945A1 (de)
ES (1) ES8404554A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3231747A1 (de) * 1982-08-26 1984-03-01 Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen mbH, 3000 Hannover Trockenlagerbuechse fuer abgebrannte kernreaktorbrennelemente
JPS60158399A (ja) * 1984-01-09 1985-08-19 ウエスチングハウス エレクトリック コ−ポレ−ション 鋳鉄製容器
DE3447278A1 (de) * 1984-12-22 1986-06-26 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Langzeitbestaendige korrosionsschutzumhuellung fuer dicht verschlossene gebinde mit hochradioaktivem inhalt
GB2176925A (en) * 1985-06-19 1987-01-07 Us Energy Waste disposal package
US4700863A (en) * 1986-01-09 1987-10-20 The United States Of America As Represented By The United States Department Of Energy Seal welded cast iron nuclear waste container
DE3632270A1 (de) * 1986-09-23 1988-04-07 Wiederaufarbeitung Von Kernbre Verfahren und vorrichtung zum beladen und verschliessen eines doppelbehaeltersystems fuer die lagerung von radioaktivem material sowie verschluss fuer das doppelbehaeltersystem
DE4204527C2 (de) * 1992-02-15 1993-12-23 Siempelkamp Gmbh & Co Verfahren zum Herstellen eines Abschirm-Transportbehälters für bestrahlte Kernreaktorbrennelemente
US5391887A (en) * 1993-02-10 1995-02-21 Trustees Of Princeton University Method and apparatus for the management of hazardous waste material
US5995573A (en) * 1996-09-18 1999-11-30 Murray, Jr.; Holt A. Dry storage arrangement for spent nuclear fuel containers
US6823034B1 (en) * 1999-03-31 2004-11-23 The United States Of America As Represented By The United States Department Of Energy Closure mechanism and method for spent nuclear fuel canisters
JP4064646B2 (ja) 2001-06-29 2008-03-19 三菱重工業株式会社 放射性物質の密閉容器、密閉容器の密閉溶接方法、および密閉溶接方法に用いる排気装置
AU2002367740A1 (en) * 2002-03-06 2003-09-16 Yuri Sergeyevich Alexeyev Protective container
ES2361832T3 (es) * 2002-10-17 2011-06-22 Mallinckrodt Inc. Contenedor farmacéutico de polímero y procedimiento asociado de uso y procedimiento asociado de producción.
US20050286674A1 (en) * 2004-06-29 2005-12-29 The Regents Of The University Of California Composite-wall radiation-shielded cask and method of assembly
US8437444B2 (en) * 2005-01-13 2013-05-07 Nac International, Inc. Apparatus and methods for achieving redundant confinement sealing of a spent nuclear fuel canister
EP2340932B1 (de) * 2008-09-24 2019-05-22 JFE Steel Corporation Rostfreies stahlblech und verfahren zu seiner herstellung
US11373774B2 (en) 2010-08-12 2022-06-28 Holtec International Ventilated transfer cask
US11887744B2 (en) 2011-08-12 2024-01-30 Holtec International Container for radioactive waste
CN104272398A (zh) 2012-04-18 2015-01-07 霍尔泰克国际股份有限公司 高放射性废料的存储和/或运输
US9779843B2 (en) 2012-12-26 2017-10-03 Holtec International, Inc. Radioactive material storage canister
JP2015088644A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 電子デバイスの製造方法、電子デバイス、電子機器、移動体、および蓋体
JP2015088643A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 電子デバイスの製造方法、電子デバイス、電子機器、移動体、および蓋体
JP2015087282A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 電子デバイスの製造方法、電子デバイス、電子機器、移動体、および蓋体
CN105957573B (zh) * 2016-06-27 2018-01-30 中电投远达环保工程有限公司重庆科技分公司 放射性废水处理工艺的袋式滤料换料装置
US10494825B2 (en) * 2018-01-12 2019-12-03 Ping Kun Wang Joint compound container

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3016463A (en) * 1958-04-28 1962-01-09 Smith Corp A O Multi-layer vessel having a neutron absorbing layer
US3046403A (en) * 1959-04-17 1962-07-24 Babcock & Wilcox Co Device for the storage of a heat evolving material
FR1278475A (fr) * 1961-01-26 1961-12-08 Récipients pour la destruction ou l'emmagasinage des déchets radioactifs
US3163501A (en) * 1961-10-13 1964-12-29 Bbc Brown Boveri & Cie Process for the production of welded seams in niobium and vanadium steels, and welded joints produced thereby
DE1752606A1 (de) * 1968-06-21 1971-07-08 Mannesmann Ag Verfahren zum Verschweissen von sich stumpf stossenden titanplattierten Stahlblechen
GB1288298A (de) * 1968-12-28 1972-09-06
DE1947398C3 (de) * 1969-09-19 1975-01-23 Alfa-Laval Bergedorfer Eisenwerke Gmbh, 2050 Hamburg Verfahren zum druckfesten, IdtrIBfrelen Verschweißen von Messinglegierungen
US4106179A (en) * 1973-07-16 1978-08-15 Richard Bleckmann Method of cold-joining metal parts
FR2375695A1 (fr) * 1976-12-21 1978-07-21 Asea Ab Procede pour le traitement de dechets radioactifs
SE406131B (sv) * 1977-06-10 1979-01-22 Asea Ab Sett att omge en keramisk kapsel med ett gastett holje
DE7737499U1 (de) * 1977-12-09 1978-05-24 Steag Kernenergie Gmbh, 4300 Essen Abschirmtransport- und/oder abschirmlagerbehaelter fuer radioaktive abfaelle
DE2804828A1 (de) * 1978-02-04 1979-08-09 Nukem Gmbh Stahlbehaelter zur aufnahme abgebrannter brennelemente
US4245698A (en) * 1978-03-01 1981-01-20 Exxon Research & Engineering Co. Superalloys having improved resistance to hydrogen embrittlement and methods of producing and using the same
DE2930991C2 (de) * 1979-07-31 1984-04-05 Nukem Gmbh, 6450 Hanau Behälter zur Aufnahme und Lagerung abgebrannter Brennelemente
HU179174B (en) * 1979-09-14 1982-08-28 Eroemue Es Halozattervezoe Process and apparatus for transferring and housing radioactive and/or other dangerous materials
DE2942092C2 (de) * 1979-10-18 1985-01-17 Steag Kernenergie Gmbh, 4300 Essen Endlagerbehälter für radioaktive Abfallstoffe, insbesondere bestrahlte Kernreaktorbrennelemente
DE3012256A1 (de) * 1980-03-29 1981-10-15 Transnuklear Gmbh, 6450 Hanau Behaelter zum transport und/oder lagerung radioaktiver stoffe
US4354133A (en) * 1980-08-29 1982-10-12 The United States Of America As Represented By The Secretary Of The Army Hermetically sealed container

Also Published As

Publication number Publication date
DE3265299D1 (en) 1985-09-12
DE3149945A1 (de) 1983-07-21
ES518748A0 (es) 1984-04-16
JPS58144800A (ja) 1983-08-29
BR8207346A (pt) 1983-10-18
JPH0226760B2 (de) 1990-06-12
US4596688A (en) 1986-06-24
CA1187632A (en) 1985-05-21
ES8404554A1 (es) 1984-04-16
EP0082467A1 (de) 1983-06-29

Similar Documents

Publication Publication Date Title
EP0082467B1 (de) Behälter für die Langzeitlagerung von abgebrannten Kernreaktorbrennelementen
EP0083024B1 (de) Behälter zum Langzeitlagern von bestrahlten Kernreaktorbrennelementen
DE3503641C2 (de)
DE1675307C3 (de) Verfahren zum Zusammenbau und Verschließen eines Druckbehälters
DE3015494C2 (de)
DE2949469B1 (de) Sicherheitselement
DE3142646C2 (de) Brennelementbehälter zum Transportieren und/oder Lagern von Kernreaktorbrennelementen
DE1115320B (de) Akkumulatorenbehaelter
DE2325844A1 (de) Hydropneumatischer druckspeicher
DE2333988C3 (de) Verfahren zum Wiederinstandsetzen eines Behälters
DE2915776A1 (de) Verbundbehaelter fuer schwefelelektrode und verfahren zu dessen herstellung
DE2930991C2 (de) Behälter zur Aufnahme und Lagerung abgebrannter Brennelemente
DE2759036C2 (de) Verfahren zum Transport und zur Teilmontage von Teilen eines Druckbehälters großen Durchmessers
DE3447278C2 (de)
DE3920402A1 (de) Verfahren zum abdecken eines rohres mit einer folie und danach hergestellte elektrische zuendelemente
DE1096512B (de) Umhuellung oder Patrone fuer Kernbrennstoff
EP3582231B1 (de) Behälter zur aufnahme von radioaktiven abfallstoffen und behälteraggregat
DE2918376A1 (de) Behaelter fuer ein elektrochemisches element
DE2828973C2 (de) Aus einem Tragdeckel und einem Dichtdeckel bestehende Verschlußvorrichtung für eine große Behälterdurchführung
DE3247085A1 (de) Behaelter fuer die langzeitlagerung von abgebrannten kernreaktorbrennelementen
DE2249981A1 (de) Verfahren und durchfuehrungsanordnung zur herstellung von koerpern durch isostatisches warmpressen von pulver
DE7013701U (de) Elektrischer kondensator.
EP0104398A1 (de) Trockenlagerbüchse für abgebrannte Kernreaktorbrennelemente
DE2823172A1 (de) Verfahren zum umhuellen einer keramischen kapsel mit einer gasdichten huelle
DE2501021A1 (de) Verschluss fuer eine oeffnung eines behaelters mit einem stopfen o.dgl.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19830921

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 3265299

Country of ref document: DE

Date of ref document: 19850912

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901114

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19901127

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901213

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910215

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910308

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911231

Ref country code: CH

Effective date: 19911231

Ref country code: BE

Effective date: 19911231

BERE Be: lapsed

Owner name: DEUTSCHE G- FUR WIEDERAUFARBEITUNG VON KERNBRENNS

Effective date: 19911231

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82111612.6

Effective date: 19920704