EP0067369B1 - Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen - Google Patents

Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen Download PDF

Info

Publication number
EP0067369B1
EP0067369B1 EP82104851A EP82104851A EP0067369B1 EP 0067369 B1 EP0067369 B1 EP 0067369B1 EP 82104851 A EP82104851 A EP 82104851A EP 82104851 A EP82104851 A EP 82104851A EP 0067369 B1 EP0067369 B1 EP 0067369B1
Authority
EP
European Patent Office
Prior art keywords
fuel
injection system
valve
pump piston
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82104851A
Other languages
English (en)
French (fr)
Other versions
EP0067369A3 (en
EP0067369A2 (de
Inventor
Konrad Dr. Eckert
Hermann Dr. Eisele
Helmut Laufer
Max Dr. Straubel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0067369A2 publication Critical patent/EP0067369A2/de
Publication of EP0067369A3 publication Critical patent/EP0067369A3/de
Application granted granted Critical
Publication of EP0067369B1 publication Critical patent/EP0067369B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/128Varying injection timing by angular adjustment of the face-cam or the rollers support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/125Variably-timed valves controlling fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/34Varying fuel delivery in quantity or timing by throttling of passages to pumping elements or of overflow passages, e.g. throttling by means of a pressure-controlled sliding valve having liquid stop or abutment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically

Definitions

  • the invention is based on a fuel injection device according to the preamble of the independent claim.
  • a fuel injection device known from DE-A-19 19 969
  • the amount of fuel which is to be injected during the delivery stroke of the pump piston of an injection pump is metered in during the suction stroke of the pump piston by means of a solenoid valve which is clocked or controlled analogously.
  • the volume is determined by the opening time of the solenoid valve, whereby the opening phase of this valve lies exclusively in the suction stroke area of the pump piston.
  • the pressure conditions in the working space and the valve cross section of the fuel injection pump influence the metering quantity.
  • the speed and the injection timing must be taken into account in this known device for dimensioning the opening times of the solenoid valve.
  • the pressure fluctuations in the work area during the filling process must also be taken into account.
  • Further disadvantages result from the limited switching speed of a solenoid valve.
  • the two switching operations of the solenoid valve that occur during the metering phase during the suction stroke thus influence the accuracy of the metering result.
  • the speed or the injection pump speed are limited by the switching time of the solenoid valve.
  • the start of the solenoid valve begins with the suction stroke of the associated pump pistons.
  • a spray start adjustment requires a change in the suction stroke start, so that this suction stroke start must be entered exactly when calculating the opening time of the solenoid valve.
  • the dynamic conditions at the reversal point of the pump piston during the transition from the delivery stroke to the suction stroke are difficult to control. Due to the double pump system in this fuel injection pump, the device is still very expensive.
  • the fuel injection device with the characterizing features of the independent claim has the advantage that a flushing phase follows the delivery phase, that is to say the period in which fuel is delivered into the injection lines.
  • this flushing phase which also includes the remaining pressure stroke of the pump piston, the pump workspace of the fuel injection pump is constantly filled with fuel via the electrically actuable valve and, if necessary, via the relief line, if this leads to the pump suction chamber usually present in a fuel injection pump, which fuel is below that in the pump suction chamber or the delivery pressure in the fuel supply source.
  • the opening time of the valve in relation to the speed or the opening phase over a certain suction stroke length of the pump piston is a precise measure of the injection quantity. Since z. B. following the delivery stroke of the pump piston, the electrically operable metering valve is already open, the closing time of the relief channel through the control edge advantageously determines the metering start. This closing takes place without the loss of time to be taken into account in the solenoid valve, so that the metering quantity can only be influenced by the closing time of the valve at the end of the metering phase.
  • FIG. 1 shows the exemplary embodiment in a basic illustration
  • FIG. 2a shows a diagram of the switching time of the metering valve via the angle of rotation
  • FIG. 2b shows the stroke course of the pump piston in association with the switching times of the metering valve
  • FIG. 3 shows a development 1 with a measuring device for recording the control times of the relief channel
  • Fig. 4 is an enlarged view of the device for recording the switching times of the relief channel
  • Fig. 5 shows a first modified form of the device according to Fig. 4
  • Fig. 6 shows a 4
  • FIG. 7 a device for determining the stroke movement of the pump piston
  • FIG. 8 a modification of the embodiment according to FIG. 1 with a modified spray timing device
  • FIG. 9 a development of the exemplary embodiment with supply of several cylinders by a Magnetic valve.
  • a pump piston 3 includes a pump working space 4.
  • the pump piston is driven by means of a cam disc 5, which runs on a roller ring 6, by means not shown, and during its rotary movement executes a reciprocating pump movement with an intake stroke and a delivery stroke.
  • the fuel supply to the pump work chamber takes place via a fuel inlet channel 8, which leads from a pump suction chamber 9.
  • This suction chamber is supplied with fuel from a fuel tank 12 by means of a fuel feed pump 11, the pressure in the pump suction chamber 9 being adjusted with the aid of a pressure control valve 14 which is connected in parallel with the fuel feed pump 11.
  • an electrically actuated valve 16 which, for. B. can be a solenoid valve, used as a fuel metering device.
  • a check valve 17, which opens in the direction of the fuel inflow into the pump work chamber 4, is also provided downstream of this valve.
  • a blind bore 18, which is arranged in the pump piston 3, leads from the pump work chamber 4, from the end of which a radio bore 19 leads to the outside. Another .
  • Radial bore 20 connects the blind bore 18 with a distributor groove 21, through which delivery lines 22 are connected in succession to the pump work chamber 4 during the rotation of the pump piston and its delivery stroke.
  • the delivery lines are distributed according to the number of cylinders to be supplied to the associated internal combustion engine on the circumference of the bore 2 and each contain a relief valve 23 and are each connected to an injection valve 24.
  • an annular groove 26 is also provided, which is connected to the pump suction chamber 9 via at least one bore 27.
  • the annular groove 26 is arranged so that the radial bore 19 in the pump piston 2 is opened from a maximum delivery stroke, so that the fuel delivered from this point during the further stroke movement of the pump piston 2 via the blind bore 18 serving as a relief channel 18, the radial bore 19 and the Bore 27 can flow into the suction chamber 9 and thus the pressure delivery in the delivery line 22 is interrupted.
  • a spray adjustment piston 29 is also provided, which is coupled to the cam ring 5 and is adjustable against the force of a spring 30.
  • the injection adjustment piston includes a pressure chamber 31, which is connected to the pump suction chamber via a throttle 32 and is therefore acted upon by the speed-dependent pressure in the pump suction chamber.
  • the injection timing piston is used to adjust the injection timing to early by rotating the cam ring with increasing speed.
  • the pressure chamber 31 is also connected to the suction side of the feed pump 11 via a solenoid valve 34 and can be relieved with the aid of this valve.
  • the solenoid valve 34 is controlled by a control device 36, which also serves to control the electrically actuable valve 16 in the fuel inlet duct.
  • the control unit works depending on parameters that must be taken into account for the dimensioning and timing of the fuel injection quantity.
  • the control unit can, for. B. contain at least one map in which target values for the amount of fuel to be injected are contained in indirect or direct form. In a manner known per se, the speed, the temperature, the air pressure and the load can be taken into account as parameters.
  • signals of a needle stroke transmitter in the injection valve 24 can be detected as further parameters for determining the actual start of injection and the actual fuel injection duration.
  • control signals can also be used via a pressure transmitter 38, which is suitably arranged on the high-pressure side of the fuel injection pump, to determine the start of delivery or the delivery period.
  • a pressure transmitter 38 which is suitably arranged on the high-pressure side of the fuel injection pump, to determine the start of delivery or the delivery period.
  • an encoder 39 z. B. in the form of an inductive sensor on the cam disc 5 are provided.
  • FIGS. 2a and 2b shows the elevation curve of the pump piston over the angle of rotation ⁇ .
  • This curve part B of the elevation curve runs very flat and is linear except for the border area at the reversal points of the pump piston.
  • the pressure stroke part A The curve in Fig. 2b is divided into three sections.
  • the fuel present in the pump work chamber 4 is compressed until the delivery pressure which causes the nozzle 24 to open is reached.
  • the second part of the curve now extends between FB and EO. In this area, fuel is delivered into the delivery channel 22.
  • the check valve 17 continues to be closed by the delivery pressure, possibly supported by the spring installed there. So that the electrically actuated valve 16, which is here z. B. is designed as a slide valve, relieved of pressure.
  • the effective suction stroke of the pump piston begins from ES. Fuel is drawn in until the solenoid valve on MS closes.
  • the effective suction stroke length et2 is thus determined on the one hand by the geometric design of the fuel injection pump or by the position of the control edge delimiting the annular groove 26 and on the other hand by the switching time of the solenoid valve.
  • the switching times of the solenoid valve are recorded in FIG. 2a, where a is the total opening time of the solenoid valve and U2 denotes the time effective for the metering.
  • the solenoid valve can be opened much earlier than the actual effective suction stroke begins and since there is still a rinsing phase between the effective delivery stroke and the effective suction stroke of the pump piston (EO-ES), when the solenoid valve is opened, the spraying time within the possible spray timing adjustment range does not need to be taken into account will.
  • the fuel metering control does not influence or hinder the spray timing adjustment options. Due to the flat cam profile during the suction stroke, there is also the advantage that the pump piston can constantly follow the cam even at high speed without the pump piston jumping off within the effective suction stroke length and thus influencing the amount of fuel drawn in.
  • the cam pitch is advantageously linear over the possible length of the effective suction stroke, which has a particularly advantageous effect in the case of correction interventions.
  • the type of metering is not dependent on the linearity of the survey curve, but it does facilitate accurate metering.
  • the effective suction stroke length you get a very good metering accuracy of the amount of fuel to be metered.
  • the effective suction stroke length for the metering can be controlled directly without feedback of the amount of fuel actually injected being necessary. Very good control results are obtained if the actual fuel injection quantity is detected in a manner known per se by means of the control unit and compared in a comparison device of the control unit with a target fuel quantity signal formed there.
  • the actual fuel quantity can be determined by a needle stroke transmitter or by a correspondingly evaluated pressure signal from the pressure transmitter 38.
  • the target fuel quantity is formed from the parameters mentioned at the beginning with the load as a reference variable.
  • the actual opening time of the solenoid valve is then corrected in accordance with the comparison result when the actual fuel quantity deviates from the target value.
  • the basic opening duration signal of the valve 16 is formed in accordance with the target fuel quantity signal.
  • a transmitter 40 is advantageously provided, as shown in FIG. 3, for the precise detection of the collection point at which the relief channel 19 is closed again (ES). 3 corresponds to that of FIG. 1.
  • Such an encoder is shown larger in FIG. 4.
  • the bore 2T in this refinement of the fuel injection device also leads from the annular groove 26 and via the transmitter 40 with complete pressure relief to the suction side of the fuel delivery pump 11 or to the fuel reservoir 12.
  • the transmitter 40 is thus in a pressure-relieved space 41.
  • the bore exits 27 'in the pressure-relieved space 41 is controlled by a valve closing part 43 which is fastened on a leaf spring 45. This is attached at the other end via an insulating piece 46 on the pump housing, which also represents the ground connection.
  • An electrical line 42 leads from the leaf spring, which in another embodiment can also be a membrane or spider in a suitable configuration, to the control device 36.
  • a throttle bore 48 is provided coaxially with the axis of the bore 27 ′ in the valve closing part, via which the bore 27 'is constantly connected to the space 41 even when the valve closing member 43 is in the closed position.
  • Throttle bore can build up pressure in the bore 27 'as long as fuel continues to flow from the pump work chamber 4 via the blind bore 18. This is the case as long as the radial bore 19 is in connection with the annular groove 26 and as long as the solenoid valve 16 is open. This condition applies to the area of the suction stroke B between OT and ES.
  • valve closing part 43 Under the resulting pressure, the valve closing part 43 lifts off its seat on the bore 27 'and thus interrupts the circuit to ground. However, as soon as the connection between the radial bore 19 and the bore 27 'is interrupted again in the course of the suction stroke of the pump piston, the valve closing part 43 returns to its seat and closes the circuit. This is the signal that the effective suction stroke has started. Accordingly, the signal is processed in control unit 36, which can advantageously be done with the aid of an integrating device.
  • the integrating device With the closing signal of the transmitter 14, the integrating device is set and as soon as the output value of the integrating device has reached the setpoint value for the fuel quantity given by the control device 36, a switching signal from a comparison device of the two values is sent to the solenoid valve for closing the fuel inlet channel.
  • the integration runtime In order for the switching time of the valve 16 to be purely related to the stroke length, the integration runtime must be corrected by an integration time constant adapted to the speed. This can be done with known methods, on the one hand by making the design of the integrator itself speed-dependent in an analogous manner or by integrating the integrator in constant integration steps with speed-dependent frequency.
  • a correction signal can be generated from an TDC signal, which is achieved with the aid of the transmitter 39, and the closing signal, which is output by the transmitter 40, which corrects the opening phase of the valve, which is switched in synchronism with the speed.
  • the configuration of the transmitter 40 according to FIGS. 3 and 4 also allows the formation of an opening signal for opening the bore 27 '. With this opening signal, for example, an opening signal for the valve 16 could be formed.
  • 5 shows an alternative embodiment of the transmitter for opening or closing the bore 2T.
  • the throttle bore 48 provided in FIG. 4 in the closing part 43 is provided in this embodiment as a throttle 50 in a branch duct 49 ′, which leads to the pressure-relieved space 41.
  • a throttle 51 is provided at the outlet of the bore 27 'in the pressure-relieved space 41 and upstream of this throttle 51 in the wall of the bore 27' a pressure sensor 52 is arranged.
  • the pressure signal emitted by this is preferably converted into the closing signal or the opening signal via a threshold switch.
  • a stroke sensor 54 is assigned to the pump piston, which is shown in FIG. 7.
  • a pulse generator 55 is provided with the pump piston 3 parallel to the pump piston axis, which a transducer, for. B. an inductive pickup 56 is assigned.
  • the pulse generator can e.g. B. consist of magnetized parts lying one behind the other or be designed as a toothed rack. Such pulse generators are known in principle and need not be described in more detail here.
  • the signals emitted by the transmitter 56 are then integrated in an integrator, the speed or the lifting speed of the pump piston no longer having to be taken into account.
  • FIG. 8 shows a pump piston 60 as one of the pump pistons of the in-line pump.
  • This pump piston can be moved up and down in a cylinder 61 for the purpose of suction and fuel delivery and can also be rotated at the same time. It encloses a pump working chamber 62 in the pump cylinder, from which a fuel injection nozzle is supplied with fuel.
  • a fuel inlet duct 8 ′ also opens into the working chamber 62 and, as in FIG. 1, contains a check valve 17 * and an electrically actuated metering valve 16.
  • the pump piston has an oblique control edge 63 which delimits a partial annular groove 64 in the outer surface of the pump piston.
  • the partial ring groove is connected to the pump work chamber 62 via a longitudinal groove 65 or via a corresponding bore.
  • the oblique control edge works together with a relief channel 27 ′′, through which the displaced fuel can flow out of the working space 62 during a remaining stroke of the pump piston 60.
  • the relief channel 27 becomes Sooner or later opened or closed again, the rotary position of the piston can thus achieve an injection adjustment, ie a variable delivery end.
  • the correction signal is taken into account by a corresponding control device when forming the opening pulse of the electrically actuated valve.
  • FIG. 9 shows, it is also possible to supply a plurality of pump pistons with fuel via an electrically actuated metering valve.
  • a check valve 67, 68 is advantageously supplied to each individual pump piston arranges.
  • the condition for such an embodiment is that the cam descent flank, ie the stroke profile of the pump piston, is the same for both pistons during the effective suction stroke.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Kraftstoffeinspritzeinrichtung nach der Gattung des unabhängigen Patentanspruchs. Bei einer solchen durch die DE-A-19 19 969 bekannten Einspritzeinrichtung wird die Kraftstoffmenge, die beim Förderhub des Pumpenkolbens einer Einspritzpumpe eingespritzt werden soll, durch ein Magnetventil, das getaktet oder analog gesteuert wird, beim Saughub des Pumpenkolbens zugemessen. Die ZumeBmenge wird dabei durch die Öffnungszeit des Magnetventils bestimmt, wobei die Öffnungsphase dieses Ventils ausschließlich im Saughubbereich des Pumpenkolbens liegt. Bei dieser bekannten Einrichtung beeinflussen die Druckverhältnisse im Arbeitsraum und der Ventilquerschnitt der Kraftstoffeinspritzpumpe die Zumeßmenge. Für eine genaue Zumessung der Kraftstoffeinspritzmenge müssen bei dieser bekannten Einrichtung zur Bemessung der Öffnungszeiten des Magnetventils die Drehzahl und der Spritzzeitpunkt berücksichtigt werden. Es sind weiterhin die Druckschwankungen im Arbeitsraum während des Füllvorgangs zu beachten. Weitere Nachteile ergeben sich durch die begrenzte Schaltgeschwindigkeit eines Magnetventils. Die während der Zumeßphase beim Saughub erfolgenden zwei Schaltvorgänge des Magnetventits beeinflussen somit die Genauigkeit des ZumeBergebnisses. Weiterhin sind der Drehzahl bzw. der Einspritzpumpendrehzahl durch die Schaltzeit des Magnetventils Grenzen gesetzt.
  • Bei einer anderen durch die die DE-A-1919 707 bekannten Kraftstoffeinspritzpumpe wurde der begrenzten Schaltgeschwindigkeit von Magnetventilen dadurch Rechnung getragen, daß bei dieser Verteilerpumpe im Verteiler zwei Pumpsysteme untergebracht sind, die über jeweils ein Magnetventil mit Kraftstoff versorgt werden. Auf diese Weise kann eine höhere Pumpendrehzahl erreicht werden. Weiterhin ist bei dieser Einspritzpumpe der Nockenantrieb der Pumpenkolben so ausgestaltet, daß die Hubgeschwindigkeit des Pumpenkolbens während des Saughubs wesentlich geringer als die während des Förderhubs der Pumpenkolben ist. Das Magnetventil eines jeden Pumpensystems dieser Radialkolbenpumpe ist ebenfalls ausschließlich während des Saughubs der Pumpenkolben geöffnet, wobei die Öffnungsdauer des Magnetventils die Zumeßmenge bestimmt. Auch hier müssen die Drehzahl und die Spritzzeitpunktverstellung bei der Steuerung der Magnetventile berücksichtigt werden. Bei der Auslegung dieser Pumpe beginnt der ZumeBtakt des Magnetventils mit dem Saughub der zugehörigen Pumpenkolben. Eine Spritzbeginnverstellung bedingt eine Änderung des Saughubbeginns, so daß dieser Saughubbeginn exakt bei der Berechnung der Öffnungszeit des Magnetventils eingegeben werden muß. Es sind ferner die dynamischen Verhältnisse im Umkehrpunkt des Pumpenkolbens beim Übergang vom Förderhub zum Saughub schwer beherrschbar. Durch das doppelt vorhandene Pumpsystem bei dieser Kraftstoffeinspritzpumpe ist die Einrichtung weiterhin sehr aufwendig.
  • Vorteile der Erfindung.
  • Die erfindungsgemäße Kraftstoffeinspritzeinrichtung mit den kennzeichnenden Merkmalen des unabhängigen Patentanspruchs hat demgegenüber den Vorteil, daß sich an die Förderphase, also an den Zeitabschnitt, in dem Kraftstoff in die Einspritzleitungen gefördert wird, eine Spülphase anschließt. In dieser Spülphase, die auch den restlichen Druckhub des Pumpenkolbens umfaßt, wird der Pumpenarbeitstraum der Kraftstoffeinspritzpumpe über das elektrisch betätigbare Ventil und gegebenenfalls über die Entlastungsleitung, falls diese zum üblicherweise bei einer Kraftstoffeinspritzpumpe vorhandenen Pumpensaugraum führt, ständig mit Kraftstoff gefüllt, der unter dem im Pumpensaugraum oder in der Kraftstoffversorgungsquelle anstehenden Förderdruck steht. Zum Zeitpunkt des SchlieBens des Entlastungskanals herrschen somit ausgeglichene Druckverhältnisse, so daß bei ausreichend großem Zumeßquerschnitt am Ventil die Öffnungszeit des Ventils bezogen auf die Drehzahl oder die Öffnungsphase über eine bestimmte Saughublänge des Pumpenkolbens ein genaues Maß für die Einspritzmenge ist. Da während der Spülzeit z. B. im Anschluß an den Förderhub des Pumpenkolbens das elektrisch betätigbare Zumeßventil bereits geöffnet ist, bestimmt in vorteilhafter Weise der Schließzeitpunkt des Ent- ' lastungskanals durch die Steuerkante den Zumeß beginn. Dieses Schließen erfolgt ohne den beim Magnetventil einzurechnenden Zeitverlust, so daß die Zumeßmenge nur noch durch die Schlie-Bzeit des Ventils am Ende der Zumeßphase beeinflußt werden kann.
  • Durch die in den abhängigen Patentansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im unabhängigen Patentanspruch angegebenen Lösung gekennzeichnet.
  • Zeichnung
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigen Fig. 1 das Ausführungsbeispiel in prinzipieller Darstellung, Fig. 2a ein Diagramm der Schaltzeit des Zumeßventils über den Drehwinkel, Fig. 2b den Hubverlauf des Pumpenkolbens in Zuordnung zu den Schaltzeiten des Zumeßventils, Fig. 3 eine Weiterbildung der Ausgestaltung nach Fig. 1 mit einer Meßeinrichtung zur Erfassung der Steuerzeiten des Entlastungskanals, Fig. 4 eine vergrößerte Darstellung der Einrichtung zur Erfassung der Schaltzeiten des Entlastungskanals, Fig. 5 eine erste abgewandelte Form der, Einrichtung nach Fig. 4, Fig. 6 eine zweite abgewandelte Form der Einrichtung nach Fig. 4, Fig. 7 eine Einrichtung zur Ermittlung der Hubbewegung des Pumpenkolbens, Fig. 8 eine Abwandlung der Ausführungsform nach Fig. 1 mit geänderter Spritzzeitpunktstelleinrichtung, Fig. 9 eine Weiterbildung des Ausführungsbeispiels mit Versorgung mehrerer Zylinder durch ein Magnetventil.
  • Beschreibung des Ausführungsbeispiels
  • Bei dem in Fig. 1 dargestellten Ausführungsbei- spiel ist in einem Pumpengehäuse 1 eine Bohrung 2 vorgesehen, in der ein Pumpenkolben 3 einen Pumpenarbeitsraum 4 einschließt. Der Pumpenkolben wird über eine Nockenscheibe 5, die auf einem Rollenring 6 läuft, durch nicht weiter dargestellte Mittel angetrieben und führt dabei bei seiner Drehbewegung eine hin- und hergehende Pumpenbewegung mit einem Ansaughub und einem Förderhub aus. Die Kraftstoffversorgung des Pumpenarbeitsraums erfolgt über einen Kraftstoffeinlaßkanal 8, der von einem Pumpensaugraum 9 führt. Dieser Saugraum wird mittels einer Kraftstofförderpumpe 11 aus einem Kraftstoffbehälter 12 mit Kraftstoff versorgt, wobei der Druck im Pumpensaugraum 9 mit Hilfe eines Drucksteuerventils 14 eingestellt wird, das parallel zur Kraftstofförderpumpe 11 geschaltet ist.
  • In dem Kraftstoffeinlaßkanal ist ein elektrisch betätigbares Ventil 16, das z. B. ein Magnetventil sein kann, als Kraftstoffmengendosiereinrichtung eingesetzt. Stromabwärts dieses Ventils ist ferner ein in Richtung Kraftstoffzuflußrichtung in den Pumpenarbeitsraum 4 öffnendes Rückschlagventil 17 vorgesehen. Vom Pumpenarbeitsraum 4 führt eine im Pumpenkolben 3 angeordnete Sackbohrung 18 ab, von deren Ende eine Radiabohrung 19 nach außen führt. Eine weitere . Radialbohrung 20 verbindet die Sackbohrung 18 mit einer Verteilernut 21, durch die bei der Drehung des Pumpenkolbens und dessen Förderhub nacheinander Förderkleitungen 22 mit dem Pumpenarbeitsraum 4 verbunden werden. Die Förderleitungen sind entsprechend der Zahl der zu versorgenden Zylinder der zugehörigen Brennkraftmaschine am Umfang der Bohrung 2 verteilt und enthalten je ein Entlastungsventil 23 und sind mit je einem Einspritzventil 24 verbunden. In der Wand der Bohrung 2 ist weiterhin eine Ringnut 26 vorgesehen, die über wenigstens eine Bohrung 27 mit dem Pumpensaugraum 9 verbunden ist. Die Ringnut 26 ist dabei so angeordnet, daß die Radialbohrung 19 im Pumpenkolben 2 ab einem maximalen Förderhub aufgesteuert wird, so daß der ab diesem Punkt bei der weiteren Hubbewegung des Pumpenkolbens 2 geförderte Kraftstoff über die als Entlastungskanal dienende Sackbohrung 18, die Radialbohrung 19 und die Bohrung 27 in den Saugraum 9 abströmen kann und somit die Druckförderung in die Förderleitung 22 unterbrochen wird.
  • Zur Änderung des Spritzzeitpunktes ist weiterhin ein Spritzverstellkolben 29 vorgesehen, der mit dem Nockenring 5 gekuppelt ist und entgegen der Kraft einer Feder 30 verstellbar ist. Der Spritzverstellkolben schließt dabei einen Druckraum 31 ein, der über eine Drossel 32 mit dem Pumpensaugraum verbunden ist und somit vom drehzahlabhängigen Druck im Pumpensaugraum beaufschlagt wird. Entsprechend diesem drehzahlabhängigen Druck wird mit Hilfe des Spritzverstellerkolbens der Spritzzeitpunkt durch Verdrehen des Nockenrings mit zunehmender Drehzahl auf früh verstellt. Zur Beeinflussung der Spritzverstellerzeit ist der Druckraum 31 ferner über ein Magnetventil 34 mit der Saugseite der Förderpumpe 11 verbunden, und kann mit Hilfe dieses Ventils entlastet werden. Das Magnetventil 34 wird von einem Steuergerät 36 gesteuert, das weiterhin auch der Steuerung des elektrisch betätigbaren Ventils 16 im Kraftstoffeinlaßkanal dient. .Das Steuergerät arbeitet dazu in Abhängigkeit von Parametern, die für die Bemessung und die Zeitsteuerung der Kraftstoffeinspritzmenge zu berücksichtigen sind. Das Steuergerät kann dabei z. B. wenigstens ein Kennfeld enthalten, in dem Sollwerte für die einzuspritzende Kraftstoffmenge in mittelbarer oder unmittelbarer Form enthalten sind. In an sich bekannter Weise können hierbei als Parameter die Drehzahl, die Temperatur, der Luftdruck und die Last berücksichtigt werden. Speziell für die Ansteuerung des Magnetventils können als weitere Parameter Signale eines Nadelhubgebers im Einspritzventil 24 für die Ermittlung des tatsächlichen Spritzbeginns und der tatsächlichen Kraftstoffeinspritzdauer erfaßt werden. Alternativ hierzu kann auch über einen Druckgeber 38, der in geeigneter Weise auf der Hochdruckseite der Kraftstoffeinspritzpumpe angeordnet ist, Steuersignale zur Ermittlung des Förderbeginns bzw. der Förderdauer verwendet werden. Zur Ermittlung der Hubstellung des Pumpenkolbens und/oder seiner Drehzahl kann ein Geber 39 z. B. in Form eines Induktivgebers an der Nockenscheibe 5 vorgesehen werden.
  • Die Arbeitsweise der in Fig. 1 gezeigten Kraftstoffeinspritzeinrichtung wird nun unter Zuhilfenahme der Diagramme Fig. 2a und Fig. 2b erläutert. Fig. 2b zeigt dabei die Erhebungskurve des Pumpenkolbens über den Drehwinkel α. Durch entsprechende Ausgestaltung der Nockenscheibe 5 ist hierbei erzielt worden, daß die Hubänderung pro Drehwinkel a beim Druck- bzw. Förderhub des Pumpenkolbens wesentlich größer ist als die Hubänderung während des Saughubs des Pumpenkolbens. Dieser Kurventeil B der Erhebungskurve verläuft sehr flach und bis auf den Grenzbereich bei den Umkehrpunkten des Pumpenkolbens linear. Der Druckhubteil A der Kurve in Fig. 2b teilt sich auf in drei Streckenabschnitte. Zwischen dem unteren Totpunkt UT des Pumpenkolbens bei Beginn des Druckhubs bis zu dem Punkt FB wird der im Pumpenarbeitsraum 4 vorhandene Kraftstoff soweit komprimiert bis der Förderdruck, der ein Öffnen der Düse 24 bewirkt, erreicht ist. Der zweite Teil der Kurve erstreckt sich nun zwischen FB und EO. In diesem Bereich wird Kraftstoff in den Förderkanal 22 gefördert. Durch den Förderdruck wird weiterhin das Rückschlagventil 17, gegebenenfalls unterstützt durch die dort eingebaute Feder, geschlossen. Damit ist das elektrisch betätigbare Ventil 16, das hier z. B. als Schieberventil ausgebildet ist, druckentlastet.
  • Bei Erreichen des Punktes EO der Erhebungskurve wird die Radialbohrung 19 in Verbindung mit der Ringnut 26 gebracht, so daß der Druckraum 4 in den Saugraum 9 entlastet wird. Die restliche vom Pumpenkolben verdrängte Kraftstoffmenge fließt dorthin ab. Dies erfolgt im Bereich zwischen dem Öffnen des Entlastungskanals (EO) und dem oberen Totpunkt (OT). Spätestens bei Erreichen des Punktes OT wird das Magnetventil 16 geöffnet. Das Öffnen kann bereits früher geschehen, da während des Druckhubs der Kraftstoffeinlaßkanal 8 durch das Rückschlagventil 17 verschlossen ist. Im Bereich zwischen OT und dem Schließpunkt des Entlastungskanals ES wird nun über den großen Öffnungsquerschnitt des Ventils 16 Kraftstoff angesaugt. Der Druckausgleich im Pumpenarbeitsraum kann ferner auch über den Entlastungskanal 18, die Radialbohrung 19 und die Bohrung 27 erfolgen. Im Bereich zwischen EO und ES ist gewährleistet, daß der Druck im Arbeitsraum 4 ausgeglichen ist und der Arbeitsraum 4 ständig gefüllt und gespült ist. Ab ES beginnt der wirksame Saughub des Pumpenkolbens. Bis zum Schließen des Magnetventils bei MS wird Kraftstoff angesaugt. Die wirksame Saughublänge et2 wird somit einerseits durch die geometrische Gestaltung der Kraftstoffeinspritzpumpe bzw. durch die Lage der die Ringnut 26 begrenzenden Steuerkante bestimmt und andererseits durch die Schaltzeit des Magnetventils. In Fig. 2a sind die Schaltzeiten des Magnetventils aufgezeichnet, wobei a, die gesamte Öffnungszeit des Magnetventils ist und U2 die für die Zumessung wirksame Zeit bezeichnet.
  • Da das Magnetventil bereits wesentlich früher geöffnet werden kann als der eigentliche wirksame Saughub beginnt und da weiterhin zwischen dem wirksamen Förderhub und dem wirksamen Saughub des Pumpenkolbens eine Spülphase liegt (EO-ES) braucht beim Öffnen des Magnetventils der Spritzzeitpunkt innerhalb des möglichen Spritzzeitpunktverstellbereichs nicht weiter beachtet werden. Die Kraftstoffzumeßsteuerung beeinflußt oder behindert die Spritzzeitpunktverstellmöglichkeiten nicht. Durch den flachen Nockenverlauf während des Saughubes ergibt sich weiterhin der Vorteil, daß der Pumpenkolben auch bei hoher Drehzahl ständig dem Nocken folgen kann, ohne daß ein Abspringen des Pumpenkolbens innerhalb der wirksamen Saughublänge und damit eine Beeinflussung der angesaugten Kraftstoffmenge auftritt.
  • Vorteilhaft wird die Nockensteigung über die mögliche Länge des wirksamen Saughubs linear ausgebildet, was sich bei Korrektureingriffen als besonders vorteilhaft auswirkt. Grundsätzlich ist jedoch die Art der Zumessung nicht von der Linearität der Erhebungskurve abhängig, erleichtert aber eine genaue Zumessung. Durch Festlegung der wirksamen Saughublänge erhält man hier eine sehr gute Zumeßgenauigkeit der zuzumessenden Kraftstoffmenge. Im einfachsten Fall kann die wirksame Saughublänge für die Zumessung direkt gesteuert werden, ohne daß eine Rückmeldung der tatsächlich eingespritzten Kraftstoffmenge erforderlich wäre. Sehr gute Steuerergebnisse erhält man, wenn mittels des Steuergerätes die Ist-Kraftstoffeinspritzmenge in an sich bekannter Weise erfaßt wird und in einer Vergleichseinrichtung des Steuergerätes mit einem dort gebildeten Soll-Kraftstoffmengensignal verglichen wird. Die Ist-Kraftstoffmenge kann dabei, wie eingangs erwähnt, durch einen Nadelhubgeber oder durch ein entsprechend ausgewertetes Drucksignal des Druckgebers 38 ermittelt werden. Die Soll-Kraftstoffmenge wird aus den eingangs genannten Parametern mit der Last als Führungsgröße gebildet. Entsprechend dem Vergleichsergebnis wird dann die Ist-Öffnungszeit des Magnetventils bei vom Sollwert abweichender Kraftstoff-Ist-Menge korrigiert. Das Grund-Öffnungsdauersignal des Ventils 16 wird entsprechend dem Soll-Kraftstoffmengensignal gebildet.
  • Zur genauen Erfassung des Erhebungspunktes, bei dem der Entlastungskanal 19 wieder geschlossen wird (ES), wird in vorteilhafter Weise wie in Fig. 3 dargestellt ein Geber 40 vorgesehen. Im übrigen entspricht die Kraftstoffeinspritzeinrichtung gemäß Fig. 3 der von Fig. 1. In Fig. 4 ist ein solcher Geber größer herausgezeichnet. Die Bohrung 2T bei dieser Weiterbildung der Kraftstoffeinspritzeinrichtung führt ebenfalls von der Ringnut 26 ab und über den Geber 40 unter völliger Druckentlastung zur Saugseite der Kraftstofförderpumpe 11 bzw. zum Kraftstoffvorratsbehälter 12. Der Geber 40 befindet sich somit in einem druckentlasteten Raum 41. Der Austritt der Bohrung 27' in den druckentlasteten Raum 41 wird durch ein Ventilschließteil 43 kontrolliert, das auf einer Blattfeder 45 befestigt ist. Diese ist am anderen Ende über ein Isolierstück 46 am Pumpengehäuse, das gleichzeitig die Masseverbindung darstellt, angebracht. Von der Blattfeder, die in anderer Ausführungsform auch eine Membran oder Spinne in geeigneter Ausgestaltung sein kann, führt eine elektrische Leitung 42 zum Steuergerät 36. Weiterhin ist koaxial zur Achse der Bohrung 27' in dem Ventilschließteil eine Drosselbohrung 48 vorgesehen, über die die Bohrung 27' auch bei in Schließstellung befindlichem VentilschlieBglied 43 ständig mit dem Raum 41 verbunden ist. An dieser Drosselbohrung kann sich in der Bohrung 27' solange ein Druck aufbauen, solange Kraftstoff aus dem Pumpenarbeitsraum 4 über die Sackbohrung 18 nachfließt. Dies ist der Fall, solange die Radialbohrung 19 in Verbindung mit der Ringnut 26 ist und solange das Magnetventil 16 geöffnet ist. Für den Bereich des Saughubs B zwischen OT und ES ist diese Bedingung gegeben. Unter dem sich dabei einstellenden Druck hebt das Ventilschließteil 43 von seinem Sitz an der Bohrung 27' ab und unterbricht somit den Stromkreis zur Masse. Sobald jedoch die Verbindung zwischen Radialbohrung 19 und der Bohrung 27' im Laufe des Saughubs des Pumpenkolbens wieder unterbrochen wird, kehrt der Ventilschließteil 43 auf seinen Sitz zurück und schließt den Stromkreis. Dies ist das Signal dafür, daß der wirksame Saughub begonnen hat. Entsprechend wird das Signal in dem Steuergerät 36 verarbeitet, was vorteilhaft mit Hilfe einer Integriereinrichtung erfolgen kann.
  • Mit dem Schließsignal des Gebers 14 wird die Integriereinrichtung gesetzt und sobald der Ausgangswert der Integriereinrichtung dem vom Steuergerät 36 gegebenen Sollwert für die Kraftstoffmenge erreicht hat, wird von einer Vergleichseinrichtung beider Werte ein Schaltsignal an das Magnetventil zum Schließen des Kraftstoffeinlaßkanals abgegeben. Damit die Schaltzeit des Ventils 16 rein hublängenbezogen wird, muß bei der Integration die Laufzeit des Integrators durch eine drehzahlangepaßte Integrationszeitkonstante korrigiert werden. Dies kann mit bekannten Verfahren gemacht werden, indem einerseits die Auslegung des Integrators selbst in analoger Weise drehzahlabhängig gemacht wird oder indem der Integrator in konstanten Integrationsschritten mit drehzahlabhängiger Frequenz integriert.
  • In anderer Ausgestaltung kann auch aus einem OT-Signal, das mit Hilfe des Gebers 39 erzielt wird und dem Schließsignal, das vom Geber 40 abgegeben wird, ein Korrektursignal erzeugt werden, das die Öffnungsphase des drehzahlsynchron geschalteten Ventils korrigiert.
  • Die Ausgestaltung des Gebers 40 gemäß Fig. 3 und 4 läßt ferner die Bildung eines Öffnungssignal für das Öffnen der Bohrung 27' zu. Mit diesem Öffnungssignal könnte beispielsweise ein Öffnungssignal für das Ventil 16 gebildet werden. In Fig. 5 ist eine alternative Ausgestaltung des Gebers für das Öffnen bzw. das Schließen der Bohrung 2T dargestellt. Die bei Fig. 4 im Schließteil 43 vorgesehene Drosselbohrung 48 ist bei dieser Ausgestaltung in einem Abzweigkanal 49', der zum druckentlasteten Raum 41 führt, als Drossel 50 vorgesehen. Bei der Ausgestaltung nach Fig. 6 ist eine Drossel 51 am Austritt der Bohrung 27' in den druckentlasteten Raum 41 vorgesehen und stromaufwärts dieser Drossel 51 in der Wand der Bohrung 27' ein Druckgeber 52 angeordnet. Das von diesem abgegebene Drucksignal wird vorzugsweise über einen Schwellwertschalter in das Schließsignal bzw. das Öffnungssignal umgewandelt.
  • Statt der obenbeschriebenen drehzahlkompensierten Integration ist es ferner möglich, dem Pumpenkolben einen Hubgeber 54 zuzuordnen, der in Fig. 7 dargestellt ist. Dazu ist mit dem Pumpenkolben 3 ein Impulserzeuger 55 parallel zur Pumpenkolbenachse vorgesehen, dem ein Aufnehmer, z. B. ein Induktivaufnehmer 56 zugeordnet ist. Der Impulserzeuger kann z. B. aus magnetisierten hintereinanderliegenden Teilen bestehen oder als Zahnleiste ausgebildet sein. Solche Impulsgeber sind in Prinzip bekannt und brauchen hier nicht näher beschrieben werden. Die vom Geber 56 abgegebenen Signale werden dann in einem Integrator aufintegriert, wobei die Drehzahl bzw. die Hubgeschwindigkeit des Pumpenkolbens nicht mehr berücksichtigt werden braucht.
  • Das bei den vorstehend beschriebenen Ausbildungen der Kraftstoffeinspritzeinrichtung und deren Weiterbildungen verwandte Prinzip läßt sich gleichfalls auch auf eine Kraftstoffeinzpritzpumpe anwenden, die in der Art Reihenpumpe aufgebaut ist. Fig. 8 zeigt dazu einen Pumpenkolben 60 als einen der Pumpenkolben der Reihenpumpe. Dieser Pumpenkolben ist in einem Zylinder 61 zum Zwecke des Ansaugens und der Kraftstofförderung auf- und abbewegbar und kann gleichzeitig auch gedreht werden. Er schließt in den Pumpenzylinder einen Pumpenarbeitsraum 62 ein, von dem aus eine Kraftstoffeinspritzdüse mit Kraftstoff versorgt wird. In den Arbeitsraum 62 mündet ferner ein Kraftstoffeinlaßkanal 8', der wie bei Fig. 1 ein Rückschlagventil 17* und ein elektrisch betätigbares Zumeßventil 16 enthält. Zur Erzielung einer Spülphase in der Art wie zuvor beschrieben, weist der Pumpenkolben eine schräge Steuerkante 63 auf, die eine Teilringnut 64 in der Mantelfläche des Pumpenkolbens begrenzt. Die Teilringnut ist über eine Längsnut 65 oder über eine entsprechende Bohrung mit dem Pumpenarbeitsraum 62 verbunden. Die schräge Steuerkante arbeitet mit einem Entlastungskanal 27" zusammen, durch den während eines Resthubs des Pumpenkolbens 60 der verdrängte Kraftstoff aus dem Arbeitsraum 62 abfließen kann. Je nach Drehlage des Pumpenkolbens, eingestellt durch z. B. durch eine Zahnstange 70, wird der Entlastungskanal 27' früher oder später aufgesteuert bzw. wieder verschlossen. Durch die Drehstellung des Kolbens kann somit eine Spritzverstellung, d. h. ein variables Förderende erzielt werden. Zur Erfassung des Beginns des wirksamen Saughubs kann hier in relativ einfacher Weise ein die Drehstellung des Pumpenkolbens 60 z. B. an der Zahnstange 70 erfassender Geber 71 verwendet werden, dessen Korrektursignal durch ein entsprechendes Steuergerät bei der Bildung des Öffnungsimpulses des elektrisch betätigbaren Ventils berücksichtigt wird.
  • Wie Fig. 9 zeigt, ist es möglich, über ein elektrisch betätigbares Zumeßventil auch mehrere Pumpenkolben mit Kraftstoff zu versorgen. Jedem einzelnen Pumpenkolben wird dabei vorteilhafterweise ein Rückschlagventil 67, 68 zugeordnet. Bedingung für eine derartige Ausgestaltung ist, daß die Nockenabstiegsflanke, d. h. der Hubverlauf des Pumpenkolbens während des wirksamen Saughubs bei beiden Kolben gleich ist.

Claims (21)

1. Kraftstoffeinspritzeinrichtung mit wenigstens einem von einem Pumpenkolben (3) in einem Zylinder (2) eingeschlossenen Arbeitsraum (4), der über wenigstens eine Förderleitung (22) mit der Kraftstoffeinspritzstelle (24) verbindbar ist und während des Saughubs mit einem eine von einem Steuergerät (36) elektrisch betätigbare Kraftstoffmengendosiereinrichtung (16) aufweisenden und zu einer Kraftstoffversorgungsquelle (9) führenden Kraftstoffeinlaßkanal (8) verbunden ist, dadurch gekennzeichnet, daß vom Pumpenarbeitsraum (4, 62) ein Entlastungskanal (18, 19, 27 ; 65, 64, 27") abführt, dessen Durchgangsquerschnitt durch eine im Pumpenkolben (3) angebrachte Steuerkante (63) ab einer einstellbaren Stellung des Pumpenkolbens während des Druckhubs des Pumpenkolbens geöffnet wird und ab einer einstellbaren Stellung des Pumpenkolbens während des nachfolgenden Saughubs des Pumpenkolbens verschlossen wird, und daß die Kraftstoffmengendosiereinrichtung (16) als elektrisch betätigbares Ventil ausgebildet ist, das je nach Ansteuerung in eine Offenstellung oder eine Schließstellung gebracht wird und durch das Steuergerät (36) so geschaltet wird, daß es vor dem SchlieBen des Entlastungskanals bereits geöffnet ist und je nach Größe der einzuspritzenden Kraftstoffmenge nach dem Schließen des Entlastungskanals früher oder später während des Saughubs des Pumpenkolbens (2) geschlossen wird.
2. Kraftstoffeinspritzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Pumpenkolben (2, 60) periodisch durch eine Kurvenbahn (5) betätigt wird, die so ausgebildet ist, daß die Hubänderung des Pumpenkolbens pro Bewegungseinheit der Kurvenbahn während des Saughubs des Pumpenkolbens wesentlich geringer ist als während des Druckhubs des Pumpenkolbens.
3. Kraftstoffeinspritzeinrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Kurvenbahn so ausgebildet ist, daß die Hubänderung des Pumpenkolbens pro Bewegungseinheit (Drehwinkel) der Kurvenbahn im Bereich des wirksamen Saughubs des Pumpenkolbens konstant ist.
4. Kraftstoffeinspritzeinrichtung nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß das Steuergerät (36) eine Einrichtung zur Vergleichbildung enthält, die zur Vergleichsbildung einerseits mit einem Geber (24, 38) für die Ist-Kraftstoffeinspritzmenge und andererseits mit einer Sollwertgebereinrichtung für einen entsprechend Betriebsparametern gegebenen momentanen Sollwert der Kraftstoffeinspritzmengen verbunden ist, und die zur Durchführung einer Korrektur mit dem Resultatausgang mit einer ausgangsseitig mit dem Ventil verbundenen Einrichtung zur Bildung von entsprechend dem Sollwert gebildeten die Öffnungsdauer steuernden Signalen verbunden ist.
5. Kraftstoffeinspritzeinrichtung nach Anspruch 4, dadurch gekennzeichnet, daß das Steuergerät mit einem Schließsignalgeber (40) verbunden ist, der ein das Schließen des Entlastungskanals und den Beginn der wirksamen KraftstoffzumeBphase während des Saughubs des Pumpenkolbens erfassendes Signal abgibt und der mit einer Einrichtung des Steuergeräts verbunden ist, die der Steuerung der Lage der Öffnungsphase des Ventils (16) dient.
6. Kraftstoffeinspritzeinrichtung nach Anspruch 4, dadurch gekennzeichnet, daß als Ist-Kraftstoffeinspritzmengengeber ein die Förderphase erfassender Druckgeber (38) vorgesehen ist.
7. Kraftstoffeinspritzeinrichtung nach Anspruch 4, dadurch gekennzeichnet, daß als Ist-Kraftstoffmengengeber ein den Nadelhub der Einspritzdüse (24) erfassender Geber vorgesehen ist.
8. Kraftstoffeinspritzeinrichtung . nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß das Steuergerät (36) mit einem Schließsignalgeber (40) verbunden ist, der ein das Schließen des Entlastungskanals oder den Beginn der wirksamen Saughublänge kennzeichnendes Signal abgibt, und der mit der Einrichtung zur Bildung der die wirksame Saughublänge bestimmenden, die Öffnungsdauer des Ventils steuernden Signale verbunden ist.
9. Kraftstoffeinspritzeinrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der SchlieBsignalgeber für die sich wiederholende Bildung von Istwerten der Kraftstoffzumeßmenge mit der Setzeinrichtung einer Integrationseinrichtung verbunden ist, deren Ausgang mit einer im Steuergerät enthaltenen Einrichtung zur Vergleichsbildung verbunden ist, die andererseits mit einer Sollwertgebereinrichtung für einen entsprechend Betriebsparametern gegebenen momentanen Sollwert der Kraftstoffeinspritzmenge verbunden ist und die wiederum mit einer ausgangsseitig mit dem Ventil verbundenen Einrichtung zur Steuerung der Öffnungsdauer des Ventils verbunden ist.
10. Kraftstoffeinspritzeinrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der Integrator mit einer Einrichtung zur Änderung der Integrationskonstanten abhängig von der Drehzahl verbunden ist.
11. Kraftstoffeinspritzeinrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Einrichtung zur Änderung der Integrationskonstanten ein Taktgeber ist zur drehzahlabhängigen Taktung mit konstanter Taktdauer.
12. Kraftstoffeinspritzeinrichtung nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß zur Bildung der die Öffnungsdauer des Ventils steuernden Signale das Steuergerät mit einem Hublängengeber (54) verbunden ist.
13. Kraftstoffeinspritzeinrichtung nach Anspruch 12, dadurch gekennzeichnet, daß der Hublängengeber entlang des Hubes des Pumpenkolbens äquidistante Impulse erzeugt und mit einer Integrationseinrichtung verbunden ist, deren Setzeinrichtung für die sich wiederholende Bildung von Istwerten der Kraftstoffzumeßmenge aus der Addition der äquidistanten Impulse mit einem SchlieBsignalgeber zur Erzeugung eines Signals beim Schließen des Entlastungskanals verbunden ist und deren Ausgang mit einer Einrichtung zur Vergleichsbildung des Steuergerätes verbunden ist, die andererseits mit einer Sollwertgebereinrichtung für einen entsprechend Betriebsparametern gegebenen momentanen Sollwert der Kraftstoffeinspritzmenge verbunden ist und wiederum ausgangsseitig mit einer mit dem Ventil verbundenen Einrichtung des Steuergeräts zur Steuerung der Öffnungsdauer des Ventils verbunden ist.
14. Kraftstoffeinspritzeinrichtung nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, daß in dem zu einem Raum (41) mit niedrigem Druck führenden Entlastungskanal (27") stromabwärts der Steuerkante (26) eine Drossel (48, 50, 51) angeordnet ist und einen Druckgeber (45, 43 ; 52) vorgesehen ist, der dem Druck in der Entlastungsleitung (27') stromaufwärts der Drosselstelle ausgesetzt ist und daß aus dem Ausgangssignal des Druckgebers ein Signal für den Aufsteuerzustand und den SchlieBzustand des Entlastungskanals bildbar ist.
15. Kraftstoffeinspritzeinrichtung nach Anspruch 14, dadurch gekennzeichnet, daß der Druckgeber aus einer Feder (45) besteht, die elektrisch gegenüber ihrer Befestigungsstelle isoliert ist und ein als Schließorgan der Entlastungsleitung (27') ausgebildetes Schließteil (43) aufweist, das durch die Vorspannung der Feder gegen die Austrittsöffnung der Entlastungsleitung gepreßt wird.
16. Kraftstoffeinspritzeinrichtung nach Anspruch 15, dadurch gekennzeichnet, daß im Überdeckungsbereich des Schließteils (43) mit der Austrittsöffnung der Entlastungsleitung (27') die Drossel als Durchgangsbohrung (48) durch das Schließteil (43) angeordnet ist.
17. Kraftstoffeinspritzeinrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zur Spritzzeitpunktverstellung eine Einrichtung zur Verstellung der Pumpenkolbendrehstellung relativ zum Pumpenkolbenantrieb vorgesehen ist.
18. Kraftstoffeinspritzeinrichtung nach einem der vorstehenden Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die Steuerkante (63) schräg verläuft und zur Spritzzeitpunktverstellung die Steuerkante quer verstellbar ist.
19. Kraftstoffeinspritzeinrichtung nach Anspruch 18, dadurch gekennzeichnet, daß mit einer Stellvorrichtung (70) für die Drehstellung der Steuerkante ein Stellungsgeber (71) verbunden ist, durch den ein Signal für die Erfassung des wirksamen Saughubbeginns ableitbar ist.
20. Kraftstoffeinspritzeinrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zwischen dem elektrisch betätigbaren Ventil (16) im Kraftstoffeinlaßkanal (8) und dem Arbeitsraum der Kraftstoffeinspritzpumpe ein Rückschlagventil angeordnet ist, das in Richtung Arbeitsraum öffnet.
21. Kraftstoffeinspritzeinrichtung nach Anspruch 20, dadurch gekennzeichnet, daß das Ventilschließglied des elektrisch betätigbaren Ventils bei stromlosem Ventil durch den Förderdruck im Arbeitsraum der Kraftstoffeinspritzpumpe in Schließstellung gehalten wird.
EP82104851A 1981-06-12 1982-06-03 Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen Expired EP0067369B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813123325 DE3123325A1 (de) 1981-06-12 1981-06-12 Kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen
DE3123325 1981-06-12

Publications (3)

Publication Number Publication Date
EP0067369A2 EP0067369A2 (de) 1982-12-22
EP0067369A3 EP0067369A3 (en) 1984-01-11
EP0067369B1 true EP0067369B1 (de) 1986-09-10

Family

ID=6134541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82104851A Expired EP0067369B1 (de) 1981-06-12 1982-06-03 Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen

Country Status (4)

Country Link
US (1) US4655184A (de)
EP (1) EP0067369B1 (de)
JP (1) JPS57212361A (de)
DE (2) DE3123325A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017868A1 (de) * 1990-06-02 1990-10-31 Siegfried Dipl Phys Stiller Mischkammer zur verduennung und haemolyse von blut

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3318236A1 (de) * 1983-05-19 1984-11-22 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3336871A1 (de) * 1983-10-11 1985-04-25 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer mehrzylindrige brennkraftmaschinen
DE3633107A1 (de) * 1986-04-10 1987-10-15 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung fuer brennkraftmaschinen
US4884549A (en) * 1986-04-21 1989-12-05 Stanadyne Automotive Corp. Method and apparatus for regulating fuel injection timing and quantity
DE3719831A1 (de) * 1987-06-13 1988-12-22 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
DE3722263C2 (de) * 1987-07-06 1995-05-04 Bosch Gmbh Robert Kraftstoffeinspritzanlage für Brennkraftmaschinen
DE4002612A1 (de) * 1990-01-30 1991-08-01 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
DE4206882A1 (de) * 1992-03-05 1993-09-09 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
EP0816672B1 (de) * 1996-07-05 2003-04-09 Nippon Soken, Inc. Hochdruckpumpe
JP2001221118A (ja) * 2000-02-07 2001-08-17 Bosch Automotive Systems Corp 燃料噴射装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE840477C (de) * 1941-11-16 1952-06-03 Bosch Gmbh Robert Einspritzpumpe, insbesondere fuer Brennkraftmaschinen
DE1913808C3 (de) * 1969-03-19 1976-01-08 Robert Bosch Gmbh, 7000 Stuttgart Überdrehsicherung für Einspritzpumpen von Brennkraftmaschinen
DE1917927A1 (de) * 1969-04-09 1970-10-29 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer Brennkraftmaschinen
DE1919707A1 (de) * 1969-04-18 1970-11-12 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer mehrzylindrige Brennkraftmaschinen
DE1919969C2 (de) * 1969-04-19 1983-10-27 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe für Brennkraftmaschinen
JPS5339528B1 (de) * 1971-03-06 1978-10-21
GB1603415A (en) * 1977-04-30 1981-11-25 Lucas Industries Ltd Liquid fuel injection pumps
JPS53131325A (en) * 1978-01-31 1978-11-16 Nippon Denso Co Ltd Distrubution type fuel injection pump
ES487024A1 (es) * 1979-01-25 1980-06-16 Bendix Corp Perfeccionamientos en inyectores de combustible para motoresde combustion interna
JPS5641438A (en) * 1979-09-10 1981-04-18 Diesel Kiki Co Ltd Load timer for electronically controlled distribution type fuel injection pump
DE2942010A1 (de) * 1979-10-17 1981-05-07 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE2945484A1 (de) * 1979-11-10 1981-05-21 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzumpe
JPS5675928A (en) * 1979-11-26 1981-06-23 Isuzu Motors Ltd Fuel injection device
DE3017275A1 (de) * 1980-05-06 1981-11-12 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer selbstzuendende brennkraftmaschinen
DE3148688A1 (de) * 1981-12-09 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum erzeugen eines kraftstoffmengensignales

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017868A1 (de) * 1990-06-02 1990-10-31 Siegfried Dipl Phys Stiller Mischkammer zur verduennung und haemolyse von blut

Also Published As

Publication number Publication date
JPH0263105B2 (de) 1990-12-27
JPS57212361A (en) 1982-12-27
EP0067369A3 (en) 1984-01-11
US4655184A (en) 1987-04-07
EP0067369A2 (de) 1982-12-22
DE3123325A1 (de) 1982-12-30
DE3273144D1 (en) 1986-10-16

Similar Documents

Publication Publication Date Title
DE3125466C2 (de) Vorrichtung zum Einspritzen von Kraftstoff in einen Zylinder einer Brennkraftmaschine
EP0323984B1 (de) Kraftstoffeinspritzanlage für brennkraftmaschinen
EP0078983B1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP0067369B1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE3619899C2 (de)
DE3243348C2 (de)
DE2748280A1 (de) Steuersystem fuer eine einspritzpumpe
EP2659117A1 (de) Verfahren zum betrieb einer einspritzanlage für eine brennkraftmaschine
DE3420345C2 (de)
DE3123138C2 (de)
DE3318236C2 (de)
EP0178487B1 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE4104742A1 (de) Verfahren zum einspritzen von kraftstoff fuer eine mehrzylinder-brennkraftmaschine und kraftstoffeinspritzeinrichtung
DE3338297C2 (de)
DE4004110C2 (de) Verfahren und Einrichtung zur Steuerung einer magnetventilgesteuerten Kraftstoffpumpe
DE3150805A1 (de) Kraftstoffeinspritzanlage
DE3247788C3 (de) Kraftstoffeinspritzsystem für Brennkraftmaschinen mit mehreren Zylindern
EP0407736B1 (de) Verfahren zur Steuerung der Kraftstoffzumessung in einer Brennkraftmaschine
DE4120463C2 (de) Verfahren und Einrichtung zur Steuerung eines magnetventilgesteuerten Kraftstoffzumeßsystems
DE3148688C2 (de)
DE3617329C2 (de)
DE4120461A1 (de) Verfahren und einrichtung zur steuerung eines magnetventilgesteuerten kraftstoffzumesssystems
DE3412834C2 (de)
EP0368954A1 (de) Steuersystem für eine dieselbrennkraftmaschine.
DE3922231A1 (de) Kraftstoffeinspritzpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820603

AK Designated contracting states

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3273144

Country of ref document: DE

Date of ref document: 19861016

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991230

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010622

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010630

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020602

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20020602