EP0061596B1 - Machine d'impression avec moteurs de positionnement - Google Patents

Machine d'impression avec moteurs de positionnement Download PDF

Info

Publication number
EP0061596B1
EP0061596B1 EP82101616A EP82101616A EP0061596B1 EP 0061596 B1 EP0061596 B1 EP 0061596B1 EP 82101616 A EP82101616 A EP 82101616A EP 82101616 A EP82101616 A EP 82101616A EP 0061596 B1 EP0061596 B1 EP 0061596B1
Authority
EP
European Patent Office
Prior art keywords
servo
machine according
signal
servo motor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82101616A
Other languages
German (de)
English (en)
Other versions
EP0061596B2 (fr
EP0061596A1 (fr
Inventor
Udo Blasius
Karl-Heinz May
Anton Rodi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heidelberger Druckmaschinen AG
Original Assignee
Heidelberger Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6128503&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0061596(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Heidelberger Druckmaschinen AG filed Critical Heidelberger Druckmaschinen AG
Priority to AT82101616T priority Critical patent/ATE13995T1/de
Publication of EP0061596A1 publication Critical patent/EP0061596A1/fr
Application granted granted Critical
Publication of EP0061596B1 publication Critical patent/EP0061596B1/fr
Publication of EP0061596B2 publication Critical patent/EP0061596B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/16Programming systems for automatic control of sequence of operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F31/00Inking arrangements or devices
    • B41F31/02Ducts, containers, supply or metering devices
    • B41F31/04Ducts, containers, supply or metering devices with duct-blades or like metering devices
    • B41F31/045Remote control of the duct keys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S101/00Printing
    • Y10S101/47Automatic or remote control of metering blade position

Definitions

  • the invention relates to a printing press according to the preamble of claim 1.
  • a printing press is known from DE-A-2401 750.
  • the comparison device determines the deviation between the target values and the respective actual values and stores the determined differences in a counter assigned to the respective servomotor. While the servomotors are running, the individual counters are counted down by voltage pulses obtained from an alternating voltage, and as soon as they have reached the counter reading 0, the assigned servomotor is switched off. If a new actuating process is initiated at a later point in time, the comparison device again scans the actual values cyclically, resets the counters and initiates the actuating motors again.
  • the number of servomotors required in a printing press can be very large.
  • 32 adjusting cylinders are mounted eccentrically rotatably mounted in a row for setting the ink layer thickness profile in a row with a single inking unit.
  • 192 servomotors are therefore required for setting the different ink layer thickness profiles of the different printing inks.
  • DE-C-1 231 339 discloses a method for automatic register control, in particular for multi-color rotary printing presses, in which, when a register error exceeds a predetermined threshold value, a memory level is set which gives an adjustment pulse for the servomotor The memory level is not reset on the basis of a subsequent measurement, but when the counter determining the register deviation has been counted down by a preselectable frequency.
  • the desired position is entered into a register by a computer, and the register content is converted into a by a digital-to-analog converter analog size converted which is fed to an input of a comparator.
  • the output of the comparator controls the servomotor.
  • the actual position of the actuator is tapped via a potentiometer and fed to another input of the comparator.
  • Such an arrangement is provided for each of the measuring heads.
  • an adjusting device for the ink layer thickness profile of a printing press in which the individual servomotors are connected to actual value transmitters designed as potentiometers.
  • the wiper of the potentiometer is connected to one input of a comparator and the wiper is also connected to the other input of the same comparator via a sample and hold circuit.
  • the output signal of the comparator controls the servomotor.
  • the end connections of the potentiometer are connected to a controllable voltage source in order in this way to be able to take into account environmental influences, for example influences of temperature on the viscosity of the printing ink, by changing the supply voltage of the potentiometer.
  • the voltage on the grinder before a change in the supply voltage is stored in the sampling and holding circuit, then the supply voltage is changed, and the servomotor now runs until the voltage on the grinder has reached the original voltage value of the grinder again.
  • the arrangement described is provided for each individual servomotor.
  • the invention has for its object to design a machine of the type described above with relatively simple means so that the servomotors automatically reach the target positions specified for them.
  • the time interval between two successive scans of the same encoder by the comparison device is so short that the angle of rotation of the servomotor, including its stopping distance, which it still travels after being switched off, is at most half the tolerance angle, i.e. the angle by which the actual position of the motor may deviate from the theoretical target position in both directions of rotation, so that this deviation is still considered admissible for the application in question. If this scanning speed is correctly dimensioned taking into account the speed of the motor, the motor always comes to a standstill within the tolerance range when the actual value is scanned.
  • the motor can therefore not exceed the tolerance range, and therefore there is the advantage that it is not necessary to change the direction of rotation of the motor several times until it has reached its desired position.
  • Another advantage is that the comparison device can be constructed very simply because it does not have to determine the size of the deviation of the actual position of the motor from its target position that is present with each scanning operation, but only whether the motor is inside or is outside the tolerance range described above, and for this reason it is not necessary to determine and transmit data that represent the size of this deviation, but only the above-mentioned data, namely the control signals for forward run, reverse run and standstill.
  • the invention can also be used to adjust the wet layer thickness, e.g. B. be used by means of actuating cylinders, as well as for setting the ink lifter.
  • a manual control as described at the beginning can also be provided. During the setting process, servomotors that are assigned to different printing units can run simultaneously.
  • the actuating motor can be switched off with as little delay as possible, the actuating signals determined by the comparison device are expediently fed to the switching device immediately.
  • an electronic memory for storing the steep signal is assigned to each servomotor in the switching device.
  • a single flip-flop is not sufficient for the control signal to be able to assume three different values, and therefore two flip-flops are provided for each memory in the later exemplary embodiment.
  • the comparison device can be directly connected to each switching device assigned to a servomotor, but in one embodiment of the invention it is provided that the comparison device generates with each actuating signal an address signal that is assigned to the servomotor that has just been scanned, that the address signal is fed to an address decoder circuit. which supplies the control signal to the addressed memory, which is assigned to the corresponding servomotor, for storage.
  • This embodiment allows a relatively low outlay in terms of circuit technology, in particular in the case of the large number of servomotors, as are present in the printing machines described above.
  • the address decoding circuit can be switched over depending on an operating mode signal which is supplied to it and which represents two possible operating modes (half-bridge circuit, full-bridge circuit). in such a way that only one memory is assigned to one address in one mode (half-bridge circuit), and two memories are assigned to one address in the other mode (full-bridge circuit), which then store signals such that the servomotor in question turns on for forward and reverse operation its anchor terminals are supplied with different potentials.
  • this operating mode signal is set once by the manufacturer and can therefore be formed by a fixed potential.
  • this operating mode signal only fixes the address decoding circuit with regard to a small number of outputs of the switching device to a specific type of decoding, for example for only two outputs (two half-bridge circuits or a full-bridge circuit can optionally be implemented here), or for four outputs (four half-bridge circuits or two full-bridge circuits are possible here). It is possible to operate servomotors in a printing press, partly in full bridge circuit, partly in half bridge circuit.
  • the comparison device contains an analog comparator for comparing the target values and actual values.
  • the comparison device contains a digital comparator for this purpose; this can essentially be formed by a subtractor.
  • a brake logic circuit which, when the control signal for standstill is present, generates a control signal for a connected power stage with switches in full bridge circuit, which controls two switches connected to the same pole of the motor supply voltage source.
  • This braking device can be switchable as a function of the above-mentioned operating mode signal, so that, as in the later exemplary embodiment, the braking device is only effective with a full bridge circuit.
  • the servomotors for a printing machine described above require a current which can be approximately up to 0.5 A per servomotor. Did you want the above mentioned z. B. 192 servomotors all start at the same time, this would require such a large total current in the case of the parallel connection in question that the power supply unit required for this would be uneconomically large and expensive, especially considering the running time of the servomotors of only a few Hours a year. In the known printing press described above, generally only a few of the servomotors run simultaneously.
  • a control device is provided behind the memory, which supplies the electrical energy for driving the servomotors in succession to only one of a plurality of predetermined groups of the steep motors during a predetermined period of time.
  • the comparison device for determining the exceeding of several differently large minimum deviations is formed by the actual values, and that a switchover device is provided which, at the beginning of a setting process, allows predetermined servomotors to run at a first predetermined speed, these servomotors being stopped when the value falls below a first minimum deviation, and that Switching device then lets these servomotors run at a lower speed than the first speed and switches the comparison device to a smaller deviation than the first minimum deviation.
  • the minimum deviation can then be chosen smaller due to the reduced speed of the motors and with this fine adjustment the servomotors can then be set to the desired position be positioned.
  • the advantage here is that especially when setting all the servomotors of the machine for the first time, the setting process can be accelerated compared to those embodiments in which the servomotors can run at only a single speed.
  • the arrangement can be made in the simplest case so that the switching of the servomotors to the reduced speed only takes place when all the servomotors that can run at the increased speed described have been stopped when the temperature falls below the first minimum deviation.
  • the arrangement can expediently be such that not all servomotors run at the same speed at the same time, but, for example, only at most 16 servomotors each, so that the current consumption from a power supply device remains limited to relatively low values, as has already been explained above.
  • the reduced speed can be brought about by the timing described above.
  • the switching device contains at least one integrated circuit which has: Depending on the Control signals controllable power levels for connecting at least two servomotors, at least one address input for addressing the power levels, at least one data input for the control signals and at least one memory device for each power level for storing the control signals.
  • the integrated circuit has power levels for connecting a total of four servomotors in a half-bridge circuit or two servomotors in a full-bridge circuit; This embodiment can still be implemented without difficulty taking into account the external connections present in conventional housings for integrated circuits and the power loss. Protection is also claimed for the integrated circuit alone.
  • the integrated circuit is advantageous in bipolar technology, e.g. B. 1 2 L, or MOS technology. These techniques allow logic circuits and power stages to be implemented on the same die.
  • FIG. 1 shows a side view, partially broken off, of an offset printing press 1 with eight printing units, with five of the printing units not being visible.
  • a printing unit 8 In one of the machine parts visible in FIG. 1, some parts of a printing unit 8 are shown.
  • the printing unit has a plate cylinder 2, which carries the printing plate and cooperates with the blanket cylinder 3, which transfers the printing ink to the paper to be printed, which runs between the blanket cylinder 3 and an impression cylinder 4. From the associated inking unit, only the ink metering box 5 with duct 6 is visible.
  • a divided ink knife 7, which consists of a series of actuating cylinders 15 (FIG. 2), each of which is connected to a servomotor 9.
  • the printing unit 8 is also assigned a dampening unit 11 which has a water tank 12. Numerous other devices, in particular rollers for transporting the printing ink and water, and transport rollers are not shown for the sake of simplicity.
  • the servomotor 9 designed as a direct current motor drives a shaft 16 to which a potentiometer 17 is coupled.
  • the shaft 16 carries at its end a threaded section 18 on which an adjusting piece 19 is screwed, which is connected via a link 20 to a lever 21 rigidly connected to the actuating cylinder 15.
  • the lower base of the ink metering box 5 is formed by a plastic film 22, and depending on the position of the adjusting cylinder 15 having an eccentric twist 14, this plastic film 22 is pressed more or less close to the outer surface of the duct 6, thereby forming a more or less thick gap 23 through which the ink can reach the lower area of the duct roller.
  • the ink is then removed from other rollers of the inking unit in a manner not shown.
  • the adjustment cylinder 15 is thus displaced by a displacement of the adjustment piece 19 as a result of a rotary movement of the servomotor 9.
  • Two of the electrical connections of the potentiometer 17 are connected to a voltage source, and the wiper of the potentiometer 17 is led out via a third line.
  • the potentiometer 17 thus allows the respective position of the actuating cylinder 15 to be measured electrically precisely.
  • 32 actuating cylinders 15 are assigned to each of the printing units of the printing press 1, the press 1 therefore has a total of 256 actuating cylinders and the same number of actuating motors 9.
  • potentiometers 17 3 only two of the 256 potentiometers 17 are shown. In the upper one, the mechanical actuation by the servomotor 9 is indicated by a dashed connection.
  • any other adjustable memory for voltage values can also be used, in particular also a digital memory for digital values of the voltage, which is followed by a digital-to-analog converter, at the output of which a DC voltage corresponding to the stored digital value is generated.
  • An eight-digit binary counter 35 is provided, the counting input of which 36 pulses are supplied at regular intervals by a clock generator. The respective counter reading appears at outputs 37 as a binary number. 256 different meter readings are possible. The binary number appearing at the outputs 37 forms an address for the individual potentiometers 17.
  • a first decoding circuit 38 is provided, de Ren inputs are connected to the outputs 37. The first decoding circuit 38 has 256 outputs.
  • Each of the pairs of a potentiometer 17 and a potentiometer 30 assigned to each other is assigned a switch 40 which is connected to exactly one output line of the first decoding circuit 38.
  • a comparator circuit 44 which contains white individual comparators 45 and 46, each of which emits a positive output signal representing the logic value 1 when the signal supplied to its lower input on the left side is higher is the signal applied to its upper left input.
  • the voltage supplied by the wiper of the potentiometer 30 to the line 43 which represents the exact desired value of the rotational position of the associated servomotor 9, is increased somewhat via an adjustable resistor 47, the other end of which is connected to positive voltage, this increase in voltage permissible deviation of the rotary position of the servomotor 9 from the target value corresponds upwards. This raised voltage value is fed to the upper input of the comparator 45.
  • a voltage value is supplied to the lower input of the comparator 46, which is reduced by an amount that is twice the deviation compared to the voltage value supplied to the upper input of the comparator 45 by means of an adjustable resistor 48, which forms a voltage divider with a resistor 49 connected to ground corresponds to the rotary position of the servomotor 9 from the setpoint.
  • Line 42 is connected to the lower input of comparator 45 and the upper input of comparator 46.
  • a positive signal therefore appears at the output of the comparator 45 if the voltage on the line 42 is greater than a voltage which corresponds to the nominal value of this voltage plus the tolerance set by the resistor 47, and a positive signal then appears at the output of the comparator 46 if the voltage on line 42 is lower than the target voltage minus the allowable deviation from the target value.
  • the output voltages of the comparators are 45 and 46 0 V.
  • the six most significant outputs of the counter 35 are fed to a second decoding circuit 50 with 64 outputs, only one of these outputs assuming a low potential depending on the counter reading of the counter 35, which serves as a chip selection signal for selecting one of 64 integrated circuits 52.
  • the two least significant outputs of the counter 35 are fed to two address inputs of each of the integrated circuits 52.
  • the outputs of the comparators 45 and 46 are also fed via lines 51 and 53 to two data inputs of each integrated circuit 52.
  • Each integrated circuit 52 has four outputs, which allow the connection of four servomotors 9 in a half-bridge circuit or two servomotors 9 in a full-bridge circuit.
  • the logical circuit diagram of the integrated circuit 52 is shown in FIG. It contains inverters, AND gates, NAND gates, NOR gates and flip-flops, which are represented by the known symbols, and also four power stages 56 to 59, which are each of the same design. All connections for the operation of the logic circuits are shown on the left edge of FIG. 4.
  • a reset input R is used to reset all flip-flops when the power supply for the illustrated electronic circuits is switched on, in order to ensure defined output states.
  • the inputs AO and A1 are supplied with the address signals supplied by the two least significant outputs of the counter 35.
  • stepper motors can be connected in half-bridge circuit to the output stages 56 to 59. If the input FZ / RE is connected to a positive voltage of 5 volts in the example, 56 and 57 can be connected to the output stage pairs on the one hand and 58 and 59 on the other hand each a servomotor connected in full bridge circuit.
  • control signals appearing on lines 51 and 53 which can also assume the logical values 0 and 1, are fed to the data inputs D + and D-.
  • Two equal inputs P and SP make it possible to block the output stages 56 to 59 without influencing the memory, e.g. B. for pulse operation.
  • the integrated circuit 52 contains several functional units.
  • An operating mode-dependent pressure decoding 60 is provided which, depending on whether the integrated circuit 52 is switched to half-bridge circuit or full-bridge circuit, either assigns exactly one of the power stages 56 to 59 to one specific address supplied to the connections AO and A1 or one of the pairs 56, 57 or 58, 59 of the power levels.
  • a data interlock 61 ensures that only one of its two outputs can assume the value logic 1, or that both outputs have the value logic 0.
  • the data latch 61 provides security against interference in the event that the logic 1 signal occurs simultaneously on the lines 51 and 53 for some reason.
  • An operating mode-dependent data decoding 62 carries the data, namely the control signals, depending on whether the integrated circuit 52 is switched to a half-bridge circuit or a full-bridge circuit, in each case only to the memory assigned to a single power stage or to a pair of power stages 56, 57 or 58, 59 assigned memories.
  • the eight flip-flops 54, 55 provided are combined into a storage unit 63 by a dashed frame. Two of the flip-flops are one. Power amplifier assigned, this is also indicated by dashed lines.
  • Each of the flip-flops 54, 55 has a clock input T, a reset input R, a data input D and a non-inverting and inverting output Q and ⁇ .
  • the flip-flops 54, 55 are clock-controlled (latch) and store the information contained in them at the end of the clock pulse. During the application of the clock pulse, the memory content follows the input signal.
  • a functional unit pulse signal processing 64 evaluates the input signal fed to the inputs P and SP in order to block the power stages 56 to 59 in accordance with these signals.
  • This pulse signal processing 64 is connected downstream of the memory unit 63 and causes a mutual locking of the output signals of the two flip-flops 54 and 55 assigned to an output stage.
  • an operating mode-dependent braking logic 65 causes those pairs of power stages 56, 57 and 58, 59 which have no control signals for forward or reverse running of the respectively connected servomotor, the connections of the armature of the servomotor are at the same potential, in the example - 15 V. As a result, the armature of the servomotor is short-circuited and is therefore braked very quickly. If the armature is already at a standstill, undesired twisting of the armature, for example as a result of vibrations, is prevented.
  • the logic elements connected downstream of each pair of flip-flops 54 and 55, each of which together form a memory assigned to exactly one power level, and which are part of the pulse signal processing 64 and the operating mode-dependent braking logic 65, are connected in the same way in all cases.
  • These are three NAND gates 91, 92, 93, a NOT gate 94 and an AND gate 95.
  • the output of the NOT gate 94 is in each case connected to the upper input of the assigned power stage 56 to 59, that is to say the input E1 +, E2 + etc. connected.
  • the output of element 95 is connected to the other input of the power stage.
  • the input of link 94 is connected to the output of link 91.
  • One input of link 95 is connected to the output of link 93, the other input to the output of link 92.
  • the inputs of link 93 are to the outputs of links 91 and 92 and to the FZ / RE input of integrated circuit 52 connected.
  • the inputs of the gate 91 are connected on the one hand to the output of a NOR gate 96, the inputs of which are connected to the control inputs P and SP of the integrated circuit 52, the further inputs of the gate 91 are connected to the non-inverting output of the flip-flop 54 and the inverting one Output of the flip-flop 55 connected.
  • One input of the link 92 is again connected to the output of the link 96, the other two inputs are connected to the inverting output of the flip-flop 54 and the non-inverting output of the flip-flop 55.
  • the brake logic 65 which is formed by the elements 93, 94 and 95, ensures that when the memory contains the flip-flops 54 and 55 with the logical values 0; 0 in the case of a half-bridge circuit at the inputs of the assigned power stages 56 to 59, the signals 0; 1 are present and thus the two outputs M + and M- of this power level are switched off, whereas with a full bridge circuit with the same memory content 0; 0 at the inputs of the two mutually assigned power levels, for example 56 and 57, the logic level 0 is everywhere, so that the output M- is at the negative motor supply voltage at both power levels, so that electrical braking of the motor is possible as a result.
  • the direction of rotation of the motor which results when the respective power stage supplies a positive voltage to the motor in the case of a half-bridge circuit should be defined as the forward run, and should be defined as a forward run in the case of a full-bridge circuit when the upper of the two power stages in FIG. to which the motor is connected supplies positive voltage to it.
  • the information applies to full and half bridge switching. 0; 1 for forward run 1; 0 for reverse running; 0; 0 for standstill.
  • FIG. 5 shows in a simplified manner how four servomotors 9 can be connected to an integrated circuit 52 in a half-bridge circuit.
  • the two outputs of each power stage 56, 57, 58, 59, which are designated M1 +, M1- for example at power stage 56, are connected to one another, and a servomotor 9 is switched on between the connection point and ground.
  • the two outputs belonging to each of the power stages 56 to 59 could also be connected to one another within the integrated circuit 52. However, they are brought out so that a servomotor that is only operated in one direction of rotation or another consumer can be connected to each of the outputs if required. However, it is then appropriate to do so. ensure that the two outputs can be controlled independently of each other.
  • the logic input FZ / RE is connected to ground, that is to say to logic 0.
  • the logic input FZ / RE is at + 5 V, this voltage value represents the logic level 1.
  • the two outputs belonging to one of the output stages 56 to 59 are in turn connected to one another and a servomotor 9 is between the common ones Outputs of power level 56 and 57 switched on, another servomotor 9 between the interconnected outputs of power level 58 and power level 59.
  • FIG. 7 shows the circuit diagram of an exemplary embodiment of power stages which form a full bridge circuit. These power levels can form the power levels of the integrated circuit 52, and in individual cases changes due to the integrated circuit technology may be necessary.
  • the two power stages 56 and 57 of the integrated circuit according to FIG. 4 are shown in FIG. 7, and therefore in FIG. 7 they are also the same designations for the signal inputs E1 +, E2 +, E2- and the outputs Mi +, M1-. M2 +, M2- used. 7 are the connections for the positive and negative supply voltage for the motor, as well as the positive supply voltage for the logic (+ 5 V) and the ground connection for the logic (GND).
  • a pnp power transistor 70 has its emitter connected to the positive motor supply voltage and its collector to the M1 + output.
  • An npn power transistor 71 is connected with its collector to the output M1- and with its emitter to the negative pole of the motor supply voltage. Both collector-emitter paths are bridged by a diode 72, which is connected opposite to the polarity of the respective base-emitter diode. These diodes 72 serve to protect the transistors 70 and 71.
  • the collector of an npn transistor 78 is connected to the base of transistor 70, the emitter of which is connected via a resistor 79 to the connection for the ground potential of the logic (GND).
  • This connection is connected via a voltage source 80 to the base of the transistor " 78, which is also connected via a resistor 81 to the connection E1 +.
  • the voltage source 80 is formed by a series connection of four diodes.
  • the base of transistor 71 is connected to the collector of a pnp transistor 84, the emitter of which is connected via a resistor 85 to the connection for the positive supply voltage for logic, which is connected to the base of transistor 84 via a voltage source 86 which is also formed by a series connection of four diodes.
  • the diodes of the voltage sources 80 and 86 are each poled in the same direction as the base-emitter diode of the associated transistor. In conjunction with the resistors 81 and 82, these diodes 80 and 86 maintain the base voltage of the transistors 78 and 84 even when the values of E1 + are different. E1-. if this z. B.
  • the voltages + 5 V and the voltages 0 V must be supplied to the signal inputs E1 + and E1- and the signal inputs E2 + and E2-.
  • the voltage values just mentioned have to be exchanged.
  • This current can flow through the collector-emitter path of the transistor 71, since this is controlled to be conductive at its base. With a customary dimensioning of the base voltage of the transistors 71 of the two power stages, however, the current could not flow through the transistor 71 of the power stage 57 because this is an npn transistor. In this case, the current flows through the diode 72 connected in parallel with this transistor. Since a voltage of approximately 0.7 V to 1 V drops across this diode, an armature current flows in the motor 9 only until its terminal voltage has just been mentioned If the voltage drops, the motor is no longer braked electrically, but only by the frictional forces that it has to overcome.
  • the resistor 85 in both output stages 56 and 57 is so small that the transistor 84 supplies the base of the transistor 71 with a base current which is at least about 30 times as large as is required for the normal switching operation of the transistor.
  • the servomotor 9 is therefore electrically braked to a considerably lower terminal voltage and therefore comes to a standstill considerably faster than if the armature current could only flow through the diode 72 during the braking process within the power stage 57. In the direction of the armature current shown in FIG.
  • the transistor 71 of the power stage 56 it would not be necessary for the transistor 71 of the power stage 56 to be supplied with the aforementioned high base current, but the dimensioning of the resistors 85 described makes it superfluous to each of the transistors 71 if necessary switching on a higher base voltage and thereby simplifying the circuit. It goes without saying that the arrangement could also be such that the two transistors 71 are blocked for braking the motor 9 and the two transistors 70 are controlled to be conductive; these latter transistors would then have to be supplied in the manner described with the base current which is higher than in normal operation. In the exemplary embodiment described, however, the resistors 79 are larger than the resistors 85, so that the transistors 70 can only conduct a current flowing from the emitter to the collector.
  • FIG. 7 Another advantage of the circuit shown in FIG. 7 is that although it has to switch large positive and negative voltages compared to the logic levels, it has the level 0 V at one of its control inputs. The other control input receives a positive or a negative potential for switching depending on the circuit. In the example, the logic levels 0 V and + 5 V are used.
  • This advantage applies to each of the two output stages 56 and 57 alone, each of which forms a half-bridge circuit when the servomotor 9 connecting the two output stages is removed in FIG. 7. Then a servomotor can be switched on between the connection point of the connections M1 + and M1- and a fixed potential, in particular ground.
  • the advantage with these Half-bridge circuits lie in the fact that a positive or negative voltage can optionally be switched at their circuit output formed by the connection of the connections M1 + and M1-.
  • the cycle time that is to say the time period which is available for the detection of the actual values by the comparison device and the forwarding of the control signals up to the power levels, is approximately 50 ⁇ s.
  • the servomotors 9 are each operated in pulsed fashion via the pulse input P, the current flow time in the motor in the exemplary embodiment being 30 ms and the pause between two pulses being 270 ms. Different groups of servomotors are supplied with the current pulses at different times from each other.
  • the time required for a servomotor to run through the entire adjustment range is 8 seconds.
  • the entire adjustment range is divided into 256 intervals, which should be accessible individually. Each of these intervals or increments has a length of approximately 30 ms.
  • the electronic device 600 described above can query the actual values, together with the corresponding determination of the steep signals. Since the printing press with eight printing units described above as an example requires around 24 additional servomotors for the registers, i.e. a total of 280 servomotors, in addition to the actuators for the ink zone setting, two inquiries are made for each servomotor within each of its individually approachable 256 increments. There is thus a high level of security against accidents which could occur because one of the queries is disturbed for some reason.
  • FIG. 8 shows an overall circuit which can be provided instead of the circuit arrangement shown in FIG. 3 and which has a digital comparison device.
  • the actual values are also recorded here by the potentiometer 17, of which only two are shown, one for the actual value 1 and one for the actual value 256.
  • 64 integrated circuits 52 are provided, which additionally with the designations IS 1 (integrated circuit 1) to IS 64. Only four of these integrated circuits are shown in FIG. 8.
  • the analog signals for the actual values generated by the potentiometers 17 are fed to an analog multiplexer 120.
  • the signals appearing at the eight most significant outputs 142 to 149 are used as address signals, which are supplied among other things to address inputs of the analog multiplexer 120.
  • the actual value selected by the address present in each case is fed from the analog multiplexer 120 to an input of an analog-digital converter 150 which converts this analog signal into a binary. Converts 8-bit information that are fed in parallel to a group of inputs 152 of a binary comparator 151.
  • the analog-digital converter 150 also receives its start command for conversion from the least significant output 141 of the binary counter 135. Since the pulse repetition frequency appearing at this output 141 is twice as high as the switching frequency of the addresses appearing at the outputs 142 to 149, it is ensured that that between the generation of two successive addresses, the analog-to-digital converter 150 receives a start signal.
  • a second group 153 of inputs of the binary comparator 151 are supplied with digital setpoints from a digital setpoint memory, to which the address signals from the binary counter 135 are also fed and which in each case connects through the setpoint to the binary comparator that has just been switched through by the analog multiplexer 120 Value is assigned.
  • the digital nominal values supplied to the inputs 156 of the nominal value memory 155 can be generated with the aid of an analog-digital converter from analog signals which are supplied, for example, by potentiometers. However, these target values can also be entered into the target value memory 155 by means of a keyboard or from a computer or from a data medium on which they are stored in binary form.
  • the binary comparator 151 is a subtracting circuit. It performs the subtraction of the signals fed to the inputs 152 from the signals fed to the inputs 153 whenever an output Data Ready of the analog-digital converter 150 outputs a signal to the binary comparator 151. Depending on the result of the subtraction, the binary comparator 151 then outputs an output 160 (if the signal at the inputs 152 was larger than at the inputs 153) or 161 (in the opposite case), assuming that the two values are the same have to distinguish the minimum deviation described at the outset, or the binary comparator 151 does not output an output signal.
  • the outputs 160 and 161 are connected to the data inputs D + and D- of the integrated circuit 52.
  • the two least significant bits of the address present at the analog multiplexer are applied to the address inputs AO and A1 of the integrated circuits 52 and thus cause a preselection of the output stages of the individual integrated circuits.
  • the chip selection itself is carried out with the aid of a decoder 165 with 5 inputs and 32 outputs and with the aid of the most significant address bit.
  • the 64 integrated circuits 52 are divided into two groups IS1 to IS32 and IS33 to IS64.
  • An integrated circuit of each group receives the CS 2 signal from decoder 165.
  • One of the groups 1 to 32 or 33 to 64 is then selected by the most significant AdreBbit, which in the first group is directly inverted to the CS1 inputs and in the second group by a non-song 170 to the CS 1 -Inputs is created.
  • exactly one of the integrated circuits 52 is selected.
  • the integrated circuits 52 in FIG. 8 are the same as those described with reference to FIG. 4. has been.

Landscapes

  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Control Of Multiple Motors (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Epoxy Resins (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Rotary Presses (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Control Of Direct Current Motors (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Claims (20)

1. Machine d'impression, de préférence machine d'impression offset (1), dans laquelle une multiplicité de moteurs de positionnement pouvant être commutés individuellement (9), de préférence pour le réglage du profil d'épaisseur de couche d'encre, est prévue, chaque moteur de positionnement (9) étant relié à un transmetteur (17) qui produit des signaux électriques caractéristiques de la position instantanée intéressée du moteur de positionnement (9) (valeurs instantanées), un dispositif de comparaison électronique (35, 44) étant prévu, auquel sont appliquées les valeurs instantanées et en outre les valeurs nominales pour la position d'un moteur de positionnement (9) et qui compare la valeur instantanée à la valeur nominale et, en fonction du résultat de la comparaison, provoque la marche avant ou la marche arrière ou l'arrêt du moteur de positionnement (9), tandis qu'au dispositif de comparaison (35, 44) sont appliquées les valeurs instantanées et les valeurs nominales des moteurs de positionnement individuels (9) et le dispositif de comparaison interroge de façon répétée cycli- quement en succession dans le temps les valeurs instantanées, caractérisée en ce que le dispositif de comparaison (35, 44) interroge de façon répétée les valeurs instantanées pour une opération de réglage d'un moteur de positionnement (9), en ce que le dispositif de comparaison (35, 44) lors du dépassement d'un écart minimum positif ou négatif prédéterminé engendre des signaux de réglage pour la marche avant ou la marche arrière du moteur de positionnement (9) associé et dans le cas contraire un signal de réglage pour l'arrêt de ce moteur de positionnement (9), et en ce que les signaux de réglage sont appliqués à un dispositif de commutation (52) qui est réalisé de telle sorte que le moteur de positionnement (9) intéressé, jusqu'à l'apparition du signal de réglage immédiatement suivant qui lui est associé, est entraîné avec une vitesse de rotation prédéterminée dans le sens de rotation déterminé par le dernier signal de réglage qui lui est associé, ou reste arrêté.
2. Machine suivant la revendication 1, caractérisée en ce que dans le dispositif de commutation (52), à chaque moteur de positionnement (9) est associée une mémoire électronique (54, 55) pour la mémorisation du signal de réglage.
3. Machine suivant la revendication 1 ou 2, caractérisée en ce que le dispositif de comparaison (35, 44, 135, 151) engendre avec chaque signal de réglage, un signal d'adresse qui est associé au moteur de positionnement (9) exploré à l'instant et en ce que le signal d'adresse est appliqué à un circuit décodeur d'adresse (50, 60, 165), qui envoie le signal de réglage à la mémoire (54, 55) associée au moteur de positionnement (9) correspondant.
4. Machine suivant la revendication 3, caractérisée en ce que le circuit décodeur d'adresse (60) peut être commuté en fonction d'un signal de mode d'exploitation qui lui est appliqué, représentant deux modes d'exploitation (montage en demi-pont, montage en pont complet), de telle sorte que pour un mode d'exploitation (montage en demi-pont), à une adresse n'est associée qu'une mémoire (54, 55), et pour l'autre mode d'exploitation (montage en pont complet), à une adresse sont associées deux mémoires (54, 55).
5. Machine suivant l'une des revendications 1 à 4, caractérisée en ce que le dispositif de comparaison (35, 44) présente un comparateur analogique (45, 46) pour la comparaison des valeurs nominales et des valeurs instantanées.
6. Machine suivant l'une quelconque des revendications 1 à 4, caractérisée en ce que le dispositif de comparaison (135, 151) présente un comparateur numérique (151) pour la comparaison des valeurs nominales et des valeurs instantanées.
7. Machine suivant l'une des revendications précédentes, caractérisée en ce qu'un circuit logique de frein (65) est prévu, qui produit lors de la présence du signal de réglage pour l'arrêt, un signal de commande pour un étage de puissance (56, 57) raccordé avec des commutateurs (70, 71) en un montage en pont complet, qui rend conducteur deux commutateurs reliés au même pôle de la source de tension d'alimentation de moteur.
8. Machine suivant les revendications 4 et 7, caractérisée en ce que le circuit logique de frein (65) peut être mis en service par le signal de mode d'exploitation pour le montage en pont complet.
9. Machine suivant l'une des revendications 2 à 8, caractérisée en ce qu'un dispositif de commande disposé après la mémoire (54, 55) est prévu, qui applique l'énergie électrique pour l'entraînement des moteurs de positionnement successivement à une partie seulement du nombre total des moteurs de positionnement (9) pendant une période de temps prédéterminée.
10. Machine suivant l'une des revendications précédentes, caractérisée en ce que le dispositif de comparaison est réalisé pour la détermination du dépassement de plusieurs écarts minimum de valeur différente par les valeurs instantanées, et en ce qu'un dispositif de commutation est prévu, qui laisse tourner au début d'une opération de réglage, des moteurs de positionnement (9) prédéterminés avec une première vitesse de rotation prédéterminée, ces moteurs de positionnement (9) lors de la chute en dessous d'un premier écart minimum étant arrêtés, et en ce que le dispositif de commutation laisse ensuite tourner ces moteurs de positionnement (9) avec une vitesse de rotation inférieure par rapport à la première vitesse de rotation et le dispositif de comparaison commute à un écart minimum inférieur par rapport au premier écart minimum.
11. Machine suivant l'une des revendications 1 à 9, caractérisée en ce que le dispositif de commutation comporte au moins un circuit intégré (52) qui présente sur la même puce au moins un étage de puissance (56, 57) pour le raccordement d'un moteur (9) et une logique de commande (60 à 65) pour la commande de l'étage de puissance (56, 57).
12. Machine suivant la revendication 11, caractérisée en ce que le circuit intégré (52) présente : des étages de puissance (56 à 59) pouvant être commandés en fonction des signaux de réglage, pour le raccordement d'au moins deux moteurs de positionnement (9), au moins une entrée d'adresse pour l'adressage des étages de puissance (56, 57), au moins une entrée de données pour les signaux de réglage, et au moins un dispositif de mémoire (54, 55) pour chaque étage de puissance (56, 57) pour la mémorisation des signaux de réglage.
13. Machine suivant la revendication 12, caractérisée en ce que le circuit intégré (52) présente des étages de puissance (56, 57) pour le raccordement de quatre moteurs de positionnement (9) au total.
14. Machine suivant l'une des revendications précédentes, caractérisée en ce qu'elle présente un étage de puissance (56, 57) pour un moteur de positionnement (9), l'étage de puissance (56, 57) présentant quatre transistors (70, 71) en un montage en pont complet, dont les intervalles collecteur-émetteur sont reliés, d'une part, aux pôles d'une source de tension d'alimentation et, d'autre part, aux connexions pour l'induit du moteur de positionnement (9) et en ce qu'aux connexions de base de deux transistors (70 ou 71) reliés au même pôle de la source de tension d'alimentation est appliqué au moins pendant le freinage du moteur (9), un courant de base permettant un fonctionnement inverse des transistors.
15. Machine suivant la revendication 14, caractérisée en ce qu'aux transistors prévus pour le fonctionnement inverse est appliquée pour la conduction en fonctionnement normal pour la marche avant et la marche arrière du moteur de positionnement (9), un courant de base dont la valeur est égale au courant de base pour le fonctionnement inverse.
16. Machine suivant l'une des revendications précédentes, caractérisée en ce qu'elle présente un étage de puissance (56, 57) pour un moteur de positionnement (9) qui présente deux commutateurs commandés (70, 71) qui sélectivement laissent passer une tension d'alimentation positive ou négative par rapport à un potentiel de référence vers une sortie de commutation ou sont tous deux bloqués.
17. Machine suivant la revendication 16, caractérisés en ce que pour commander les commutateurs (70, 71), deux transistors (78, 84) sont prévus, en ce que l'émetteur d'un transistor (78) est ramené à un premier potentiel fixe et la base de ce transistor peut recevoir une tension positive par rapport à celui-ci en tant que signal de commande, et en ce que l'émetteur de l'autre transistor (84) est ramené à un second potentiel fixe positif par rapport au premier potentiel et à la base de l'autre transistor (84) peut être appliquée une tension négative par rapport au second potentiel en tant que signal de commande.
18. Machine suivant la revendication 17, caractérisée en ce qu'au pôle positif d'une source de tension d'alimentation pour le moteur de positionnement (9) est raccordé l'émetteur d'un transistor pnp (70), dont la base est reliée au collecteur d'un transistor npn (78), dont la base est couplée à une première entrée de commande et dont l'émetteur est couplé à une connexion d'un premier potentiel fixe, en ce que l'émetteur d'un transistor npn (71) est relié au pôle négatif de la source de tension d'alimentation pour le moteur de positionnement (9), en ce que la base est reliée au collecteur d'un transistor pnp (84), dont la base est couplée à une seconde entrée de commande et dont l'émetteur est couplé à une connexion d'un second potentiel fixe, et en ce que les collecteurs du transistor pnp (70) et du transistor npn (71) forment les sorties de l'étage de puissance (56, 57).
19. Machine suivant la revendication 17 ou 18, caractérisée en ce qu'en tant que signaux de commande, on prévoit des tensions avec le niveau du premier et du second potentiel fixe.
EP82101616A 1981-03-27 1982-03-03 Machine d'impression avec moteurs de positionnement Expired - Lifetime EP0061596B2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82101616T ATE13995T1 (de) 1981-03-27 1982-03-03 Druckmaschine mit stellmotoren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3112189A DE3112189A1 (de) 1981-03-27 1981-03-27 Druckmaschine mit stellmotoren
DE3112189 1981-03-27

Publications (3)

Publication Number Publication Date
EP0061596A1 EP0061596A1 (fr) 1982-10-06
EP0061596B1 true EP0061596B1 (fr) 1985-06-26
EP0061596B2 EP0061596B2 (fr) 1998-08-26

Family

ID=6128503

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82101616A Expired - Lifetime EP0061596B2 (fr) 1981-03-27 1982-03-03 Machine d'impression avec moteurs de positionnement

Country Status (12)

Country Link
US (1) US4573410A (fr)
EP (1) EP0061596B2 (fr)
JP (1) JPH0624850B2 (fr)
AT (1) ATE13995T1 (fr)
AU (1) AU528600B2 (fr)
CA (1) CA1194966A (fr)
DE (2) DE3112189A1 (fr)
DK (1) DK150656C (fr)
ES (1) ES510388A0 (fr)
MX (1) MX152382A (fr)
NO (1) NO151032C (fr)
ZA (1) ZA821598B (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3148947A1 (de) * 1981-12-10 1983-06-23 Heidelberger Druckmaschinen Ag, 6900 Heidelberg Vorrichtung zur steuerung einer vielzahl von stellmotoren an druckmaschinen
AU579864B2 (en) * 1984-07-03 1988-12-15 Heidelberger Druckmaschinen Aktiengesellschaft Procedure for determining the operating status of an actuating drive of a printing machine and device for implementing the procedure
DE3424349C2 (de) * 1984-07-03 1995-05-04 Heidelberger Druckmasch Ag Vorrichtung zur Erfassung der Stellung eines Stellelements einer Druckmaschine
DE3914831C3 (de) * 1989-05-05 1999-05-20 Roland Man Druckmasch Vorrichtung zum zonenweisen Einstellen eines Dosierspaltes einer Farbdosieranlage einer Druckmaschine
FI103395B1 (fi) * 1991-03-21 1999-06-30 Wifag Maschf Menetelmä rasteripistekoon säätämiseksi offsetrotaatiopainokonetta varten
DE4137979B4 (de) * 1991-11-19 2004-05-06 Heidelberger Druckmaschinen Ag Antrieb für eine Druckmaschine mit mindestens zwei mechanisch voneinander entkoppelten Druckwerken
DE4233866A1 (de) * 1992-10-08 1994-04-14 Heidelberger Druckmasch Ag Einrichtung zum Positionieren von Stellantrieben an einer Druckmaschine
DE4328170A1 (de) * 1993-08-21 1995-02-23 Heidelberger Druckmasch Ag Einrichtung zum Positionieren eines Stellantriebes an einer Druckmaschine
JPH08230168A (ja) * 1995-02-27 1996-09-10 Mitsubishi Heavy Ind Ltd 印刷機の見当調整装置
DE10056246B4 (de) * 1999-12-07 2010-03-11 Heidelberger Druckmaschinen Ag Verfahren zum Steuern der Farbmenge in einer Druckmaschine
US7271554B2 (en) * 2003-07-30 2007-09-18 Canon Kabushiki Kaisha Motor-driving circuit and recording apparatus including the same
US7355358B2 (en) * 2003-10-23 2008-04-08 Hewlett-Packard Development Company, L.P. Configurable H-bridge circuit
JP4578936B2 (ja) * 2004-11-02 2010-11-10 リョービ株式会社 インキ供給制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3774536A (en) * 1971-08-09 1973-11-27 Rockwell International Corp Printing press control system
DE2233188A1 (de) * 1972-07-06 1974-01-24 Kiepe Bahn Elektrik Gmbh Schaltungsanordnung fuer einen gleichstrom-nebenschlussmotor mit impulssteuerung und umkehrbarer drehrichtung
US3835777A (en) * 1973-01-16 1974-09-17 Harris Intertype Corp Ink density control system
GB1474166A (en) * 1973-07-13 1977-05-18 Harris Corp Controlling actuators for adjusting elements
US3930447A (en) * 1974-07-22 1976-01-06 Harris Corporation Dual purpose display for printing presses
CA1010949A (en) * 1975-04-17 1977-05-24 Robert L. Parr Control circuit for direct current motor
US4193345A (en) * 1977-04-01 1980-03-18 Roland Offsetmaschinenfabrik Faber & Schleicher Ag Device for adjustment of the ink flow on printing press inking units
DE2728738B2 (de) * 1977-06-25 1979-05-10 Roland Offsetmaschinenfabrik Faber & Schleicher Ag, 6050 Offenbach Eulrichtung zur Kontrolle und Regelung der Farbgebung an Druckmaschinen
DD132576A1 (de) * 1977-08-15 1978-10-11 Hartmut Heiber Einrichtung zur speicherung von einstelldaten
GB2006680B (en) * 1977-10-27 1982-04-21 Ricoh Kk Offset printing machine control system
GB2024457B (en) * 1978-06-07 1983-01-06 Harris Corp Printing press ready and control system
DE2830085C3 (de) * 1978-07-08 1986-07-10 Heidelberger Druckmaschinen Ag, 6900 Heidelberg Verfahren und Vorrichtung zum Anzeigen von Stellgrößen
DD150026A1 (de) * 1980-04-10 1981-08-12 Max Janicki Steuereinrichtung fuer soll-und/oder istwerte zur farbwerksvoreinstellung
DD150027A1 (de) * 1980-04-10 1981-08-12 Max Janicki Regeleinrichtung fuer stellglieder an druck-und buchbindereimaschinen
DD159255A3 (de) * 1980-04-10 1983-03-02 Helmut Schuck Steuereinrichtung fuer schrittmotore mit bipolaren wicklungen an druckmaschinen
DE3028025C2 (de) * 1980-07-24 1983-04-14 Miller-Johannisberg Druckmaschinen Gmbh, 6200 Wiesbaden Verfahren zur Veränderung des Farbflusses durch unterschiedliches Verstellen einzelner Breitenzonen eines Farbmessers oder einzelner Farbdosierelemente bei Druckmaschinen-Farbwerken

Also Published As

Publication number Publication date
DK150656C (da) 1987-11-30
NO151032B (no) 1984-10-22
JPH0624850B2 (ja) 1994-04-06
ATE13995T1 (de) 1985-07-15
EP0061596B2 (fr) 1998-08-26
EP0061596A1 (fr) 1982-10-06
ES8302544A1 (es) 1983-02-01
ES510388A0 (es) 1983-02-01
NO821023L (no) 1982-09-28
AU528600B2 (en) 1983-05-05
DE3112189A1 (de) 1982-10-14
DE3264365D1 (en) 1985-08-01
JPS57170760A (en) 1982-10-21
NO151032C (no) 1985-01-30
ZA821598B (en) 1983-01-26
DK150656B (da) 1987-05-18
DK119882A (da) 1982-09-28
DE3112189C2 (fr) 1989-06-22
MX152382A (es) 1985-07-09
AU8174082A (en) 1982-09-30
CA1194966A (fr) 1985-10-08
US4573410A (en) 1986-03-04

Similar Documents

Publication Publication Date Title
EP0061596B1 (fr) Machine d'impression avec moteurs de positionnement
DE2151264C2 (de) Anordnung zur kombinierten Längs- und Seitenregisterregelung bei Rotationsdruckmaschinen
DE3836310C2 (de) Verfahren zum Einstellen einer Wendeeinrichtung an einer Druckmaschine mit mehreren Druckwerken
DE2909842A1 (de) Drucker-steuerungssystem
DE2520541A1 (de) Druckanordnung mit sich bewegendem druckkopf
DE2161038C3 (de) Verfahren zur Herstellung von gerasterten Druckformen
DE2157278A1 (de) Ausrichtungsmechanismus für Druckerpressen
DE2341510A1 (de) Druckerpresse, insbesondere steuerungsanlage zum antrieb mehrerer druckeinheiten einer druckerpresse
EP1243414A1 (fr) Méthode d'impression
DE1803925C3 (de) Steuereinrichtung eines Vervielfältigungsgerätes
DE2312244A1 (de) Vorrichtung zur registerkontrolle in einer maschine zur bearbeitung von material in band- oder bogenform
DE2735943C2 (de) Vorrichtung zur Überprüfung der Druckgüte von mehrfarbig bedruckten, in einem Stapel abgelegten Bogen
DE2451901A1 (de) Vervielfaeltigungsverfahren und vorrichtung zur durchfuehrung des verfahrens
EP0080667B1 (fr) Dispositif et méthode pour régler un nombre de vérins dans une machine à imprimer
DE2236662C3 (de) Elektronisch gesteuertes Hammerdruckwerk
EP0196539B1 (fr) Circuit de réglage numérique de vitesse pour un moteur à courant continu
DE2213198B2 (de) Vollelektronische einrichtung zum steuern eines punktschrift-schnelldruckers, unter verwendung eines permutationscodesignals
DE2044663B2 (de) Vorrichtung zum Ablesen von Marken auf der Druckform einer Offsetdruckmaschine
EP0529376B1 (fr) Dispositif pour régler les vis de zone d'encrage des encriers dans une machine d'impression
DE1816007A1 (de) Anordnung zum Bestimmen des Abweichfehlers zwischen dem Auftreten zweier Steuerimpulse,insbesondere zum Bestimmen des Registerfehlers bei Druckbogenschneidvorrichtungen
DE3030266C2 (fr)
DE2557944C3 (de) Anordnung zur Erzeugung von Austastsignalen für die Registerregelung
DE1462709B2 (de) Verfahren und schaltungsanordnung zum erkennen von informationsimpulsen gegenueber fehlerimpulsen kleinerer amplitude
DE2902868A1 (de) Vorrichtung zur bestimmung des druckenden flaechenanteiles von druckformen
DE846403C (de) Registersteuerung an Mehrfarben-Druckmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19821210

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 13995

Country of ref document: AT

Date of ref document: 19850715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3264365

Country of ref document: DE

Date of ref document: 19850801

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: VEB KOMBINAT POLYGRAPH WERNER LAMBERZ

Effective date: 19860326

Opponent name: MASCHINENFABRIK WIFAG

Effective date: 19860326

NLR1 Nl: opposition has been filed with the epo

Opponent name: VEB KOMBINAT POLYGRAPH 'WERNER LAMBERZ'

Opponent name: MASCHINENFABRIK WIFAG

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HEIDELBERGER DRUCKMASCHINEN AKTIENGESELLSCHAFT

ITTA It: last paid annual fee
PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: MASCHINENFABRIK WIFAG * 860326 VEB KOMBINAT POLYGR

Effective date: 19860326

R26 Opposition filed (corrected)

Opponent name: MASCHINENFABRIK WIFAG * 860326 KBA - PLANETA AG

Effective date: 19860326

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: PAT.BUL.11/86 CORR.:KBA-PLANETA AG TE RADEBEUL, GERMANY

EAL Se: european patent in force in sweden

Ref document number: 82101616.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960304

Year of fee payment: 15

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19970303

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980304

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980701

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980702

Year of fee payment: 17

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980713

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980721

Year of fee payment: 17

27A Patent maintained in amended form

Effective date: 19980826

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition
ET3 Fr: translation filed ** decision concerning opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

BERE Be: lapsed

Owner name: HEIDELBERGER DRUCKMASCHINEN A.G.

Effective date: 19990331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010321

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010420

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020302

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20020302

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO