EP0019370B1 - Plasma reactor apparatus and process for the plasma etching of a workpiece in such a reactor apparatus - Google Patents
Plasma reactor apparatus and process for the plasma etching of a workpiece in such a reactor apparatus Download PDFInfo
- Publication number
- EP0019370B1 EP0019370B1 EP80301301A EP80301301A EP0019370B1 EP 0019370 B1 EP0019370 B1 EP 0019370B1 EP 80301301 A EP80301301 A EP 80301301A EP 80301301 A EP80301301 A EP 80301301A EP 0019370 B1 EP0019370 B1 EP 0019370B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor apparatus
- plasma
- electrode
- electrodes
- reaction volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 18
- 230000008569 process Effects 0.000 title claims description 15
- 238000001020 plasma etching Methods 0.000 title claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 36
- 239000000376 reactant Substances 0.000 claims description 30
- 238000005530 etching Methods 0.000 claims description 15
- 239000007795 chemical reaction product Substances 0.000 claims description 11
- 238000009826 distribution Methods 0.000 claims description 10
- 238000009827 uniform distribution Methods 0.000 claims description 4
- 238000011068 loading method Methods 0.000 claims description 3
- 230000013011 mating Effects 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 26
- 239000007789 gas Substances 0.000 description 22
- 239000004065 semiconductor Substances 0.000 description 12
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 8
- 239000012212 insulator Substances 0.000 description 6
- 238000010849 ion bombardment Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000003486 chemical etching Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
Definitions
- This invention relates to a plasma reactor apparatus and more specifically to a plasma reactor apparatus which provides improved uniformity of etching and improved overetch control.
- Plasma processing is gaining rapid acceptance as a replacement for older conventional processing. This is especially true in the semiconductor industry but is becoming equally true in other manufacturing fields as well. Plasma etching is being used in place of wet chemical etching and plasma deposition is being used in place of high temperature thermal deposition. Plasma processing offers advantages in cost, environmental impact, and repeatability.
- Existing plasma reactors can be roughly divided into two types: barrel type reactors and parallel plate type reactors.
- barrel type reactor workpieces are loaded into a cylindrical reaction chamber and a reactant plasma is introduced into that chamber.
- the plasma is created by a field from an electrode which surrounds the workpiece.
- Gas flow is approximately axial along this type of reactor and may be improved by an injection manifold which injects gases more or less uniformly along the axis.
- This type of reactor suffers from two types of non-uniformities. One of these non-uniformities results from the external electrode which cannot provide a uniform field with respect to workpieces within the chamber. The other results from the gas flow kinetics.
- Parallel plate reactors provide a degree of improvement in uniformity over the barrel reactor by providing a more uniform and better defined field at the workpiece.
- the parallel plate reactor still suffers from non-uniformities resulting from a non-uniform and usually radial reactant gas flow.
- All of the aforementioned plasma reactors have an additional fault.
- the total reactor including a considerable amount of unused volume, is filled with the reactive plasma although the workpieces occupy only a limited amount of that volume.
- the total cylindrical chamber is filled with plasma.
- the parallel plate reactor even the volume outside the plates is filled with plasma. Filling this "dead space" with plasma is uneconomical because of wasted reactants and especially because of the extra power required to maintain this unused plasma.
- the power requirement is important because a given power supply must be large enough to generate both the used and unused plasma.
- the energy of the used plasma is unnecessarily limited because the power supply must also generate the unused or wasted plasma. More importantly, as the pressure in the reaction chamber changes the plasma volume changes, expanding unpredictably into the dead space. This presents problems with reproducibility from run to run.
- U.S. Specification No. 4 148 705 describes a process and apparatus for etching aluminium in the glow discharge of a gas plasma formed between a pair of closely spaced electrodes and a distributed impedance is provided in series with the plasma to ensure uniform distribution of the ionizing current and the glow discharge of the plasma throughout the region between the electrodes.
- a plasma reactor apparatus which comprises first and second electrodes configured to bound a reaction volume; said first electrode having integral therewith a gas distribution manifold defining a first array of orifices for the ingress of reactants uniformly to said reaction volume and a second array of orifices for the egress of reaction products from said reaction volume.
- a plasma reactor apparatus which has first and second metal electrodes electrically separated by an insulator. These two electrodes are essentially parallel, but are shaped and positioned so that the two electrodes and the insulator bound a reaction volume. The first of the electrodes is movable with respect to the second electrode to facilitate loading and unloading workpieces into the reaction volume.
- a gas distribution manifold is integral with the second, larger electrode and provides for the uniform distribution of reactants into the reaction volume through an array of orifices. The manifold further provides for the uniform exhausting of reactant products through a second array of orifices. The distribution of reactants is thus uniform, the fields between the plates are uniform, and the field and plasma are confined to the limited volume between the two electrodes.
- FIG. 1 shows a plasma reactor apparatus 10 in accordance with one embodiment of the invention.
- the apparatus includes a first electrode 12 and a second electrode 14.
- Second electrode 14 is movable in a vertical direction between the open position as shown and a closed position. When moved vertically upward to its closed position, second electrode 14 contacts an insulator 16 which provides electrical isolation between the first and second electrodes. In the closed position the two electrodes and the insulator bound a small, confined reaction volume as indicated by the numeral 18.
- 0-ring seals 20 serve to complete the seal between the electrodes and the insulator.
- a gas distribution manifold 22 allows a uniform injection of reactant gases into the reaction volume and also allows for the uniform extraction of reaction products from that volume.
- the manifold 22 which will be described in more detail below, consists of a first cavity 24 and a second cavity 26.
- the first cavity receives reactants from a gas inlet 28. Gases which enter the cavity 24 then are uniformly injected into the reaction volume through a first set of orifices 30 in the lower plate 32 of the manifold. Reaction products, that is, spent and unused reactants as well as the chemical products resulting from the plasma reaction, are exhausted to the second cavity 26 through a second set of orifices 34 in the lower plate 32. These reaction products are then exhausted from the second cavity by a vacuum pump (not shown) through an outlet 36.
- the electrodes can be cast of aluminium or other metal. In this embodiment the reaction volume is about 15 cm in diameter and has a height of about 3 cm.
- the second electrode 14 is provided with a recess 54 for centering a workpiece.
- the second electrode can further be provided with temperature control means (not shown) for either heating or cooling the workpiece.
- a radio frequency (rf) generator is provided which contacts the two electrodes and establishes an rf field between them.
- the manifold 22 is electrically common with the first electrode 12. Because the manifold and the second electrode are substantially parallel, the field established between them is fairly uniform. The field and the resulting plasma are confined to the region between the electrodes; there is no wasted "dead space".
- a detector 29 is used to monitor the end point of the plasma reaction.
- the gas manifold 22 with its two cavities 24, 26 is made up of three components. These are the lower plate 32, an intermediate piece 38 and a top cover 35. The details of the construction of the manifold are shown more clearly in Figures 2 to 4. Figures 2 and 3 show bottom and side views, respectively, of the intermediate piece 38.
- Piece 38 which can be machined from a single piece, cast, or built up from components, is essentially a flat plate 40 from which a series of posts 42 project. The posts 42 are arranged in a regular array. A hole 44 extends through each of the posts. Holes 44 mate with the orifices 34 in the lower plate 32 and provide a conduit for the passage of reaction products from the reaction volume 18 to second cavity 26 bounded by the intermediate piece and top cover 35.
- reaction gases enter through inlet 28, fill cavity 24, and then are injected into the reaction volume through the orifices 30 in lower plate 32.
- Orifices 30 are a regular array of holes through the lower plate 32 and provide for the uniform injection of reactant gases into the reaction volume.
- a semiconductor wafer 46 a portion of which is shown in cross-section in Figure 5. Overlying the semiconductor wafer is first a layer of silicon dioxide 48 and then a layer of polycrystalline silicon 50. During the processing of the semiconductor wafer it is desirous to etch through and pattern polycrystalline layer 50. This is done photolithographically by applying and patterning a layer of photoresist material 52. The pattern in the photoresist layer 52 is that pattern which it is desired to replicate in the underlying layer of polycrystalline silicon.
- reaction volume 18 is evacuated through exhaust 36 using a vacuum pump.
- Reactant gases such as a mixture including nitrogen, oxygen and carbon tetrafluoride are brought into the reactor through inlet 28 and cavity 24. These reactants are uniformly injected into the reaction volume through orifices 30 so that wafer 46 is subjected to a uniform flow of reactant.
- the pressure within the reaction volume is maintained at about 200 Pa (about 1.5 Torr) by balancing the reactant input and the evacuation through outlet 36.
- Wafer temperature is maintained at about 60°C by means of the heater in the second electrode 14.
- RF power Seventy-five watts of RF power are applied to the first electrode 12 and the second electrode is maintained at RF ground potential.
- the RF power creates a plasma of the reactant gases and this plasma chemically etches the polycrystalline silicon 50 which is exposed through the opening in the patterned photoresist layer 52.
- the reaction products are removed from the reaction volume 18 through the array of orifices 34.
- the reaction products pass through these orifices to cavity 26 from which they are swept out through exhaust 36 by the vacuum pump.
- a layer of polycrystalline silicon about 500 nanometers in thickness is patterned in approximately 2 minutes 15 seconds.
- Figure 6 shows the relationship between the patterned photoresist layer and the resulting etched polycrystalline silicon layer at the end of the process.
- the masking layer of photoresist tends to be undercut; that is, the resulting patterned polycrystalline silicon is narrower than the original photoresist mask.
- the width of the original photoresist mask is defined as A and the resulting width of the polycrystalline silicon is defined as B
- the amount of undercutting D can be defined as A-B.
- overetch Some amount of overetch is usually allowed to insure that the layers etch completely through, making allowane-s for variations in film thickness across the wafer and from workpiece to workpiece. Some overetch time can also be used to achieve desired, narrow line widths.
- the photographic mask used to expose the photoresist layer can be controlled to give line widths within about 10% of the desired width, with the usual tendency to be oversized. Normal photoresist processing and exposure further tends to oversize the photoresist mask. These two tendencies thus result in the necessity for some overetch to get the desired line width. If any overetch time is employed, however, it is desirable that there be a minimum spread in the amount of undercutting D with overetch time.
- Figure 7 shows the resultant undercutting as a function of overetch time for conventional processing and for processing in accordance with the invention.
- Each process leads to a linear relationship between undercutting and overetch time as indicated by the straight line.
- the spread increases rapidly with etch time in conventional processing, but the spread in D remains approximately constant and thus predictable with the process performed in the apparatus of the instant invention.
- the spread in D of the two different processes is indicated by the error bars shown in the graph of Figure 7. Minimizing the spread in D makes the process more predictable and reproducible.
- manifold 22 provides for uniform distribution of reactants across the area of the workpiece. This is accomplished by the uniform injection of reactants and by the uniform exhausting of reactant products.
- the closely spaced, substantially parallel electrodes provide for a uniform RF field within the reaction volume.
- the ratio of the areas of the two electrodes gives further added advantages.
- the apparatus is constructed to have the first electrode including the manifold larger than the second electrode. It is desirable that the ratio of electrode areas be greater than about 1.2; this results in a positive ion bombardment which appears to enhance the chemical etching.
- the workpiece sits on the small electrode (cathode) in an RF diode system and receives the enhanced positive ion bombardment which is essential to certain high resolution etching. At these power levels and pressures no appreciable amount of either sputter etching or ion milling occurs, but the ion bombardment seems to catalyze the chemical etching.
- the area ratio provides an effective DC bias because of the mobility difference between electrons and positive ions within the plasma.
- An external DC bias cannot accomplish the same result because the workpiece is often insulated, for example, by an oxide layer, and thus is isolated from the second electrode.
- the area ratio further results in a high current density on the second electrode which provides for a thick plasma sheath.
- the thick sheath and the effective DC bias give a directed ion bombardment on the wafer. Because the ion bombardment is directed, it impinges only on those portions of the layer to be etched which are exposed by openings in the photoresist mask. Thus the enhanced chemical etching resulting from this bombardment occurs only in the exposed areas and undercut etching is minimized.
- the apparatus shown above is most suitable for the etching of a single workpiece.
- the apparatus can be automated as indicated schematically in Figure 8.
- a cassette filled with wafers can be loaded into the input 56 of an automatic apparatus. Wafers are then conveyed one at a time to the reactor apparatus 10 on belts, air bearing tracks, or the like. As the wafer arrives at the reactor, the second electrode is lowered to the open position, the wafer is loaded on that second electrode, and the chamber is closed. Automatic controls provide for the timely opening and closing of the chamber, inputting of reactant gases, and turning on and off of the RF power.
- the chamber again opens and the wafer is conveyed to another cassette in an output station 58.
- the entire operation can be accomplished with little operator interaction. Because of the uniformity of the etching, the etch time can be established for a particular process step and all of the wafers in the batch can be etched identically.
- the first electrode rather than the second electrode can be maintained at rf ground potential.
- the reactor apparatus can also be used for the implementation of related processes such as reactive ion etching which is carried out at lower pressures than plasma etching and combines chemical energy from the gas and physical energy from the ions to accomplish the etching.
- reactive ion etching which is carried out at lower pressures than plasma etching and combines chemical energy from the gas and physical energy from the ions to accomplish the etching.
- the apparatus can be further employed for the deposition of thin uniform films. Accordingly, it is intended that the invention embrace all such alternatives, modifications and variations as fall within the spirit and scope of the following claims.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Drying Of Semiconductors (AREA)
- ing And Chemical Polishing (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40604 | 1979-05-18 | ||
US06/040,604 US4209357A (en) | 1979-05-18 | 1979-05-18 | Plasma reactor apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0019370A1 EP0019370A1 (en) | 1980-11-26 |
EP0019370B1 true EP0019370B1 (en) | 1983-09-07 |
Family
ID=21911897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP80301301A Expired EP0019370B1 (en) | 1979-05-18 | 1980-04-23 | Plasma reactor apparatus and process for the plasma etching of a workpiece in such a reactor apparatus |
Country Status (4)
Country | Link |
---|---|
US (1) | US4209357A (enrdf_load_stackoverflow) |
EP (1) | EP0019370B1 (enrdf_load_stackoverflow) |
JP (1) | JPS55154585A (enrdf_load_stackoverflow) |
DE (1) | DE3064737D1 (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI478771B (zh) * | 2007-10-16 | 2015-04-01 | Applied Materials Inc | 多氣體同心注入噴頭 |
Families Citing this family (293)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4263088A (en) * | 1979-06-25 | 1981-04-21 | Motorola, Inc. | Method for process control of a plasma reaction |
JPS5623745A (en) * | 1979-08-01 | 1981-03-06 | Hitachi Ltd | Plasma etching device |
US4297162A (en) * | 1979-10-17 | 1981-10-27 | Texas Instruments Incorporated | Plasma etching using improved electrode |
JPS56105483A (en) * | 1980-01-25 | 1981-08-21 | Mitsubishi Electric Corp | Dry etching device |
US4313783A (en) * | 1980-05-19 | 1982-02-02 | Branson International Plasma Corporation | Computer controlled system for processing semiconductor wafers |
US4342901A (en) * | 1980-08-11 | 1982-08-03 | Eaton Corporation | Plasma etching electrode |
US4340461A (en) * | 1980-09-10 | 1982-07-20 | International Business Machines Corp. | Modified RIE chamber for uniform silicon etching |
DE3140675A1 (de) * | 1980-10-14 | 1982-06-16 | Branson International Plasma Corp., 94544 Hayward, Calif. | Verfahren und gasgemisch zum aetzen von aluminium |
DE3039951A1 (de) * | 1980-10-23 | 1982-05-27 | Andreas Dipl.-Ing. 6420 Lauterbach Ahlbrandt | Vorrichtung zum behandeln der oberflaeche von gegenstaenden durch elektrische spruehentladung |
US4341582A (en) * | 1980-12-22 | 1982-07-27 | The Perkin-Elmer Corporation | Load-lock vacuum chamber |
US4340462A (en) * | 1981-02-13 | 1982-07-20 | Lam Research Corporation | Adjustable electrode plasma processing chamber |
US4369730A (en) * | 1981-03-16 | 1983-01-25 | Energy Conversion Devices, Inc. | Cathode for generating a plasma |
DE3272239D1 (en) * | 1981-03-16 | 1986-09-04 | Energy Conversion Devices Inc | Apparatus including improved cathode for continuous deposition of amorphous material |
EP0063273B1 (en) * | 1981-04-02 | 1986-02-12 | The Perkin-Elmer Corporation | Discharge system for plasma processing |
US4367114A (en) * | 1981-05-06 | 1983-01-04 | The Perkin-Elmer Corporation | High speed plasma etching system |
US4384938A (en) * | 1982-05-03 | 1983-05-24 | International Business Machines Corporation | Reactive ion etching chamber |
EP0095200B1 (en) * | 1982-05-21 | 1989-03-15 | Tegal Corporation | Plasma reactor removeable insert |
JPH0666299B2 (ja) * | 1983-05-10 | 1994-08-24 | 株式会社東芝 | プラズマエツチング方法 |
US4439261A (en) * | 1983-08-26 | 1984-03-27 | International Business Machines Corporation | Composite pallet |
DE3480573D1 (en) * | 1984-01-06 | 1989-12-28 | Tegal Corp | Single electrode, multiple frequency plasma apparatus |
US4547247A (en) * | 1984-03-09 | 1985-10-15 | Tegal Corporation | Plasma reactor chuck assembly |
US4539062A (en) * | 1984-03-12 | 1985-09-03 | Tegal Corporation | Modular plasma reactor with local atmosphere |
US4534816A (en) * | 1984-06-22 | 1985-08-13 | International Business Machines Corporation | Single wafer plasma etch reactor |
US4590042A (en) * | 1984-12-24 | 1986-05-20 | Tegal Corporation | Plasma reactor having slotted manifold |
US5021138A (en) * | 1985-01-17 | 1991-06-04 | Babu Suryadevara V | Side source center sink plasma reactor |
US4614639A (en) * | 1985-04-26 | 1986-09-30 | Tegal Corporation | Compound flow plasma reactor |
US4637853A (en) * | 1985-07-29 | 1987-01-20 | International Business Machines Corporation | Hollow cathode enhanced plasma for high rate reactive ion etching and deposition |
US4595484A (en) * | 1985-12-02 | 1986-06-17 | International Business Machines Corporation | Reactive ion etching apparatus |
DE3606959A1 (de) * | 1986-03-04 | 1987-09-10 | Leybold Heraeus Gmbh & Co Kg | Vorrichtung zur plasmabehandlung von substraten in einer durch hochfrequenz angeregten plasmaentladung |
DE3613181C2 (de) * | 1986-04-18 | 1995-09-07 | Siemens Ag | Verfahren zum Erzeugen von Gräben mit einstellbarer Steilheit der Grabenwände in aus Silizium bestehenden Halbleitersubstraten |
US4810322A (en) * | 1986-11-03 | 1989-03-07 | International Business Machines Corporation | Anode plate for a parallel-plate reactive ion etching reactor |
JPH0834205B2 (ja) * | 1986-11-21 | 1996-03-29 | 株式会社東芝 | ドライエツチング装置 |
US5006760A (en) * | 1987-01-09 | 1991-04-09 | Motorola, Inc. | Capacitive feed for plasma reactor |
JP2515775B2 (ja) * | 1987-02-18 | 1996-07-10 | 株式会社日立製作所 | 表面処理方法および装置 |
US4820371A (en) * | 1987-12-15 | 1989-04-11 | Texas Instruments Incorporated | Apertured ring for exhausting plasma reactor gases |
US4792378A (en) * | 1987-12-15 | 1988-12-20 | Texas Instruments Incorporated | Gas dispersion disk for use in plasma enhanced chemical vapor deposition reactor |
US5031571A (en) * | 1988-02-01 | 1991-07-16 | Mitsui Toatsu Chemicals, Inc. | Apparatus for forming a thin film on a substrate |
DD271776A1 (de) * | 1988-05-06 | 1989-09-13 | Elektromat Veb | Vorrichtung zur gaszufuehrung und -ableitung fuer die gasphasenbearbeitung von werkstuecken |
JPH0225577A (ja) * | 1988-07-15 | 1990-01-29 | Mitsubishi Electric Corp | 薄膜形成装置 |
JPH02101740A (ja) * | 1988-10-11 | 1990-04-13 | Anelva Corp | プラズマエッチング装置 |
US5458724A (en) * | 1989-03-08 | 1995-10-17 | Fsi International, Inc. | Etch chamber with gas dispersing membrane |
DE3914065A1 (de) * | 1989-04-28 | 1990-10-31 | Leybold Ag | Vorrichtung zur durchfuehrung von plasma-aetzverfahren |
EP0413239B1 (en) * | 1989-08-14 | 1996-01-10 | Applied Materials, Inc. | Gas distribution system and method of using said system |
JP2574899B2 (ja) * | 1989-08-30 | 1997-01-22 | 株式会社日立製作所 | プラズマエッチング装置 |
DE4011933C2 (de) * | 1990-04-12 | 1996-11-21 | Balzers Hochvakuum | Verfahren zur reaktiven Oberflächenbehandlung eines Werkstückes sowie Behandlungskammer hierfür |
DE4022708A1 (de) * | 1990-07-17 | 1992-04-02 | Balzers Hochvakuum | Aetz- oder beschichtungsanlagen |
US5180467A (en) * | 1990-08-08 | 1993-01-19 | Vlsi Technology, Inc. | Etching system having simplified diffuser element removal |
DE4025396A1 (de) * | 1990-08-10 | 1992-02-13 | Leybold Ag | Einrichtung fuer die herstellung eines plasmas |
US5074456A (en) | 1990-09-18 | 1991-12-24 | Lam Research Corporation | Composite electrode for plasma processes |
JP3252330B2 (ja) * | 1991-09-20 | 2002-02-04 | 東芝セラミックス株式会社 | プラズマエッチング用電極板 |
US6379466B1 (en) | 1992-01-17 | 2002-04-30 | Applied Materials, Inc. | Temperature controlled gas distribution plate |
DE4218196A1 (de) * | 1992-06-03 | 1993-12-09 | Fraunhofer Ges Forschung | Vorrichtung zur Oberflächenbehandlung von Bauteilen mittels Niederdruckplasma |
US5695568A (en) * | 1993-04-05 | 1997-12-09 | Applied Materials, Inc. | Chemical vapor deposition chamber |
EP0634778A1 (en) * | 1993-07-12 | 1995-01-18 | The Boc Group, Inc. | Hollow cathode array |
KR950020993A (ko) * | 1993-12-22 | 1995-07-26 | 김광호 | 반도체 제조장치 |
US6033480A (en) * | 1994-02-23 | 2000-03-07 | Applied Materials, Inc. | Wafer edge deposition elimination |
JPH07263427A (ja) * | 1994-03-25 | 1995-10-13 | Nippon Soken Inc | プラズマエッチング方法 |
US5441568A (en) * | 1994-07-15 | 1995-08-15 | Applied Materials, Inc. | Exhaust baffle for uniform gas flow pattern |
US5730801A (en) * | 1994-08-23 | 1998-03-24 | Applied Materials, Inc. | Compartnetalized substrate processing chamber |
US5558843A (en) * | 1994-09-01 | 1996-09-24 | Eastman Kodak Company | Near atmospheric pressure treatment of polymers using helium discharges |
IL116156A0 (en) * | 1994-12-05 | 1996-01-31 | Hughes Aircraft Co | Cooled gas distribution system for a plasma |
US20050236109A1 (en) * | 1995-03-16 | 2005-10-27 | Toshio Masuda | Plasma etching apparatus and plasma etching method |
JP3257328B2 (ja) * | 1995-03-16 | 2002-02-18 | 株式会社日立製作所 | プラズマ処理装置及びプラズマ処理方法 |
JP3360098B2 (ja) * | 1995-04-20 | 2002-12-24 | 東京エレクトロン株式会社 | 処理装置のシャワーヘッド構造 |
KR100427425B1 (ko) * | 1995-04-20 | 2005-08-01 | 가부시키 가이샤 에바라 세이사꾸쇼 | 박막증착장치 |
US5614026A (en) * | 1996-03-29 | 1997-03-25 | Lam Research Corporation | Showerhead for uniform distribution of process gas |
DE19727857C1 (de) * | 1997-06-30 | 1999-04-29 | Fraunhofer Ges Forschung | Plasmarektor mit Prallströmung zur Oberflächenbehandlung |
US6537418B1 (en) * | 1997-09-19 | 2003-03-25 | Siemens Aktiengesellschaft | Spatially uniform gas supply and pump configuration for large wafer diameters |
US6161500A (en) * | 1997-09-30 | 2000-12-19 | Tokyo Electron Limited | Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions |
US6210483B1 (en) | 1997-12-02 | 2001-04-03 | Applied Materials, Inc. | Anti-notch thinning heater |
EP1073779A4 (en) | 1998-04-13 | 2007-05-30 | Tokyo Electron Ltd | IMPEDANCE CHAMBER REDUCED |
US6148761A (en) * | 1998-06-16 | 2000-11-21 | Applied Materials, Inc. | Dual channel gas distribution plate |
US6499425B1 (en) * | 1999-01-22 | 2002-12-31 | Micron Technology, Inc. | Quasi-remote plasma processing method and apparatus |
US6245192B1 (en) | 1999-06-30 | 2001-06-12 | Lam Research Corporation | Gas distribution apparatus for semiconductor processing |
US6123775A (en) * | 1999-06-30 | 2000-09-26 | Lam Research Corporation | Reaction chamber component having improved temperature uniformity |
US6415736B1 (en) | 1999-06-30 | 2002-07-09 | Lam Research Corporation | Gas distribution apparatus for semiconductor processing |
US6451157B1 (en) | 1999-09-23 | 2002-09-17 | Lam Research Corporation | Gas distribution apparatus for semiconductor processing |
US6528947B1 (en) * | 1999-12-06 | 2003-03-04 | E. I. Du Pont De Nemours And Company | Hollow cathode array for plasma generation |
US6576202B1 (en) | 2000-04-21 | 2003-06-10 | Kin-Chung Ray Chiu | Highly efficient compact capacitance coupled plasma reactor/generator and method |
US6821910B2 (en) * | 2000-07-24 | 2004-11-23 | University Of Maryland, College Park | Spatially programmable microelectronics process equipment using segmented gas injection showerhead with exhaust gas recirculation |
AU2001288232A1 (en) * | 2000-08-10 | 2002-02-25 | Tokyo Electron Limited | Method and apparatus for tuning a plasma reactor chamber |
AU2002211730A1 (en) * | 2000-10-16 | 2002-04-29 | Tokyo Electron Limited | Plasma reactor with reduced reaction chamber |
JP3910821B2 (ja) * | 2000-10-26 | 2007-04-25 | 東京エレクトロン株式会社 | 基板の処理装置 |
FR2816726B1 (fr) * | 2000-11-16 | 2006-06-23 | Air Liquide | Installation dans laquelle est realisee une operation necessitant un controle de l'atmosphere a l'interieur d'une enceinte |
US6852167B2 (en) * | 2001-03-01 | 2005-02-08 | Micron Technology, Inc. | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US6709721B2 (en) | 2001-03-28 | 2004-03-23 | Applied Materials Inc. | Purge heater design and process development for the improvement of low k film properties |
US20040250763A1 (en) * | 2002-01-11 | 2004-12-16 | Ovshinsky Stanford R. | Fountain cathode for large area plasma deposition |
US7160577B2 (en) | 2002-05-02 | 2007-01-09 | Micron Technology, Inc. | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
WO2004019368A2 (en) * | 2002-08-26 | 2004-03-04 | Tokyo Electron Limited | Reduced volume plasma reactor |
US20040053514A1 (en) * | 2002-08-27 | 2004-03-18 | Ali Shajii | Apparatus for cooling a substrate through thermal conduction in the viscous regime |
US6963043B2 (en) * | 2002-08-28 | 2005-11-08 | Tokyo Electron Limited | Asymmetrical focus ring |
JP2004095770A (ja) * | 2002-08-30 | 2004-03-25 | Tokyo Electron Ltd | 処理装置 |
US6936547B2 (en) * | 2002-10-31 | 2005-08-30 | Micron Technology, Inc.. | Gas delivery system for deposition processes, and methods of using same |
US20050011447A1 (en) * | 2003-07-14 | 2005-01-20 | Tokyo Electron Limited | Method and apparatus for delivering process gas to a process chamber |
US20050103265A1 (en) * | 2003-11-19 | 2005-05-19 | Applied Materials, Inc., A Delaware Corporation | Gas distribution showerhead featuring exhaust apertures |
US20050230350A1 (en) * | 2004-02-26 | 2005-10-20 | Applied Materials, Inc. | In-situ dry clean chamber for front end of line fabrication |
US7780793B2 (en) * | 2004-02-26 | 2010-08-24 | Applied Materials, Inc. | Passivation layer formation by plasma clean process to reduce native oxide growth |
US20060051966A1 (en) * | 2004-02-26 | 2006-03-09 | Applied Materials, Inc. | In-situ chamber clean process to remove by-product deposits from chemical vapor etch chamber |
US20060021703A1 (en) * | 2004-07-29 | 2006-02-02 | Applied Materials, Inc. | Dual gas faceplate for a showerhead in a semiconductor wafer processing system |
US20060100824A1 (en) * | 2004-10-27 | 2006-05-11 | Tokyo Electron Limited | Plasma processing apparatus, abnormal discharge detecting method for the same, program for implementing the method, and storage medium storing the program |
US7552521B2 (en) | 2004-12-08 | 2009-06-30 | Tokyo Electron Limited | Method and apparatus for improved baffle plate |
US20060130971A1 (en) * | 2004-12-21 | 2006-06-22 | Applied Materials, Inc. | Apparatus for generating plasma by RF power |
US7601242B2 (en) | 2005-01-11 | 2009-10-13 | Tokyo Electron Limited | Plasma processing system and baffle assembly for use in plasma processing system |
US7927948B2 (en) | 2005-07-20 | 2011-04-19 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
KR101218114B1 (ko) * | 2005-08-04 | 2013-01-18 | 주성엔지니어링(주) | 플라즈마 식각 장치 |
JP4674512B2 (ja) * | 2005-09-12 | 2011-04-20 | パナソニック株式会社 | プラズマ処理装置 |
US8664124B2 (en) | 2005-10-31 | 2014-03-04 | Novellus Systems, Inc. | Method for etching organic hardmasks |
US8110493B1 (en) | 2005-12-23 | 2012-02-07 | Novellus Systems, Inc. | Pulsed PECVD method for modulating hydrogen content in hard mask |
US7981810B1 (en) | 2006-06-08 | 2011-07-19 | Novellus Systems, Inc. | Methods of depositing highly selective transparent ashable hardmask films |
US7915166B1 (en) | 2007-02-22 | 2011-03-29 | Novellus Systems, Inc. | Diffusion barrier and etch stop films |
US8962101B2 (en) | 2007-08-31 | 2015-02-24 | Novellus Systems, Inc. | Methods and apparatus for plasma-based deposition |
WO2009091189A2 (en) * | 2008-01-16 | 2009-07-23 | Sosul Co., Ltd. | Substrate holder, substrate supporting apparatus, substrate processing apparatus, and substrate processing method using the same |
JP5179389B2 (ja) * | 2008-03-19 | 2013-04-10 | 東京エレクトロン株式会社 | シャワーヘッド及び基板処理装置 |
US7820556B2 (en) * | 2008-06-04 | 2010-10-26 | Novellus Systems, Inc. | Method for purifying acetylene gas for use in semiconductor processes |
US8435608B1 (en) | 2008-06-27 | 2013-05-07 | Novellus Systems, Inc. | Methods of depositing smooth and conformal ashable hard mask films |
US7955990B2 (en) * | 2008-12-12 | 2011-06-07 | Novellus Systems, Inc. | Method for improved thickness repeatability of PECVD deposited carbon films |
JP5221421B2 (ja) * | 2009-03-10 | 2013-06-26 | 東京エレクトロン株式会社 | シャワーヘッド及びプラズマ処理装置 |
JP5248370B2 (ja) * | 2009-03-10 | 2013-07-31 | 東京エレクトロン株式会社 | シャワーヘッド及びプラズマ処理装置 |
CN102598218B (zh) * | 2009-11-02 | 2015-04-01 | 东丽株式会社 | 等离子体cvd装置、及硅薄膜的制造方法 |
US9111729B2 (en) | 2009-12-03 | 2015-08-18 | Lam Research Corporation | Small plasma chamber systems and methods |
JP5444044B2 (ja) * | 2010-03-02 | 2014-03-19 | 東京エレクトロン株式会社 | プラズマ処理装置及びシャワーヘッド |
US8563414B1 (en) | 2010-04-23 | 2013-10-22 | Novellus Systems, Inc. | Methods for forming conductive carbon films by PECVD |
JP5591585B2 (ja) * | 2010-05-17 | 2014-09-17 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US9184028B2 (en) | 2010-08-04 | 2015-11-10 | Lam Research Corporation | Dual plasma volume processing apparatus for neutral/ion flux control |
US8869742B2 (en) * | 2010-08-04 | 2014-10-28 | Lam Research Corporation | Plasma processing chamber with dual axial gas injection and exhaust |
US9449793B2 (en) | 2010-08-06 | 2016-09-20 | Lam Research Corporation | Systems, methods and apparatus for choked flow element extraction |
US9155181B2 (en) | 2010-08-06 | 2015-10-06 | Lam Research Corporation | Distributed multi-zone plasma source systems, methods and apparatus |
US9967965B2 (en) | 2010-08-06 | 2018-05-08 | Lam Research Corporation | Distributed, concentric multi-zone plasma source systems, methods and apparatus |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US8771539B2 (en) | 2011-02-22 | 2014-07-08 | Applied Materials, Inc. | Remotely-excited fluorine and water vapor etch |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
JP2013012353A (ja) * | 2011-06-28 | 2013-01-17 | Hitachi High-Technologies Corp | プラズマ処理装置 |
KR101234594B1 (ko) * | 2011-07-25 | 2013-02-19 | 피에스케이 주식회사 | 배플 및 이를 포함하는 기판 처리 장치 |
US8771536B2 (en) | 2011-08-01 | 2014-07-08 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
US8679982B2 (en) | 2011-08-26 | 2014-03-25 | Applied Materials, Inc. | Selective suppression of dry-etch rate of materials containing both silicon and oxygen |
US8679983B2 (en) | 2011-09-01 | 2014-03-25 | Applied Materials, Inc. | Selective suppression of dry-etch rate of materials containing both silicon and nitrogen |
US8927390B2 (en) | 2011-09-26 | 2015-01-06 | Applied Materials, Inc. | Intrench profile |
US8808563B2 (en) | 2011-10-07 | 2014-08-19 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
WO2013070436A1 (en) | 2011-11-08 | 2013-05-16 | Applied Materials, Inc. | Methods of reducing substrate dislocation during gapfill processing |
US9177762B2 (en) | 2011-11-16 | 2015-11-03 | Lam Research Corporation | System, method and apparatus of a wedge-shaped parallel plate plasma reactor for substrate processing |
US10283325B2 (en) | 2012-10-10 | 2019-05-07 | Lam Research Corporation | Distributed multi-zone plasma source systems, methods and apparatus |
SG195494A1 (en) | 2012-05-18 | 2013-12-30 | Novellus Systems Inc | Carbon deposition-etch-ash gap fill process |
US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9088085B2 (en) | 2012-09-21 | 2015-07-21 | Novellus Systems, Inc. | High temperature electrode connections |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US8765574B2 (en) | 2012-11-09 | 2014-07-01 | Applied Materials, Inc. | Dry etch process |
US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US9064816B2 (en) | 2012-11-30 | 2015-06-23 | Applied Materials, Inc. | Dry-etch for selective oxidation removal |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US9362133B2 (en) | 2012-12-14 | 2016-06-07 | Lam Research Corporation | Method for forming a mask by etching conformal film on patterned ashable hardmask |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9304396B2 (en) | 2013-02-25 | 2016-04-05 | Lam Research Corporation | PECVD films for EUV lithography |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US8801952B1 (en) | 2013-03-07 | 2014-08-12 | Applied Materials, Inc. | Conformal oxide dry etch |
US10170282B2 (en) | 2013-03-08 | 2019-01-01 | Applied Materials, Inc. | Insulated semiconductor faceplate designs |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US8895449B1 (en) | 2013-05-16 | 2014-11-25 | Applied Materials, Inc. | Delicate dry clean |
US9114438B2 (en) | 2013-05-21 | 2015-08-25 | Applied Materials, Inc. | Copper residue chamber clean |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US8956980B1 (en) | 2013-09-16 | 2015-02-17 | Applied Materials, Inc. | Selective etch of silicon nitride |
US9589799B2 (en) | 2013-09-30 | 2017-03-07 | Lam Research Corporation | High selectivity and low stress carbon hardmask by pulsed low frequency RF power |
US9320387B2 (en) | 2013-09-30 | 2016-04-26 | Lam Research Corporation | Sulfur doped carbon hard masks |
US8951429B1 (en) | 2013-10-29 | 2015-02-10 | Applied Materials, Inc. | Tungsten oxide processing |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US9236265B2 (en) | 2013-11-04 | 2016-01-12 | Applied Materials, Inc. | Silicon germanium processing |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9117855B2 (en) | 2013-12-04 | 2015-08-25 | Applied Materials, Inc. | Polarity control for remote plasma |
US9263278B2 (en) | 2013-12-17 | 2016-02-16 | Applied Materials, Inc. | Dopant etch selectivity control |
US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
US9190293B2 (en) | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9499898B2 (en) | 2014-03-03 | 2016-11-22 | Applied Materials, Inc. | Layered thin film heater and method of fabrication |
US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9136273B1 (en) | 2014-03-21 | 2015-09-15 | Applied Materials, Inc. | Flash gate air gap |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9269590B2 (en) | 2014-04-07 | 2016-02-23 | Applied Materials, Inc. | Spacer formation |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9847289B2 (en) | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US9159606B1 (en) | 2014-07-31 | 2015-10-13 | Applied Materials, Inc. | Metal air gap |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9165786B1 (en) | 2014-08-05 | 2015-10-20 | Applied Materials, Inc. | Integrated oxide and nitride recess for better channel contact in 3D architectures |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
US9355862B2 (en) | 2014-09-24 | 2016-05-31 | Applied Materials, Inc. | Fluorine-based hardmask removal |
US9368364B2 (en) | 2014-09-24 | 2016-06-14 | Applied Materials, Inc. | Silicon etch process with tunable selectivity to SiO2 and other materials |
US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US9299583B1 (en) | 2014-12-05 | 2016-03-29 | Applied Materials, Inc. | Aluminum oxide selective etch |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US9502258B2 (en) | 2014-12-23 | 2016-11-22 | Applied Materials, Inc. | Anisotropic gap etch |
US9343272B1 (en) | 2015-01-08 | 2016-05-17 | Applied Materials, Inc. | Self-aligned process |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9373522B1 (en) | 2015-01-22 | 2016-06-21 | Applied Mateials, Inc. | Titanium nitride removal |
US9449846B2 (en) | 2015-01-28 | 2016-09-20 | Applied Materials, Inc. | Vertical gate separation |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
JP7176860B6 (ja) | 2017-05-17 | 2022-12-16 | アプライド マテリアルズ インコーポレイテッド | 前駆体の流れを改善する半導体処理チャンバ |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US11149350B2 (en) | 2018-01-10 | 2021-10-19 | Asm Ip Holding B.V. | Shower plate structure for supplying carrier and dry gas |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
TWI716818B (zh) | 2018-02-28 | 2021-01-21 | 美商應用材料股份有限公司 | 形成氣隙的系統及方法 |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
CN109303537A (zh) * | 2018-11-26 | 2019-02-05 | 珠海格力电器股份有限公司 | 一种新型洗碗机及其控制方法 |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
US11837441B2 (en) | 2019-05-29 | 2023-12-05 | Lam Research Corporation | Depositing a carbon hardmask by high power pulsed low frequency RF |
CN110296939A (zh) * | 2019-06-11 | 2019-10-01 | 江苏大学 | 一种能提供等离子体环境的原位漫反射红外光谱反应池 |
CN115938972A (zh) * | 2021-08-18 | 2023-04-07 | 北京北方华创微电子装备有限公司 | 半导体腔室及半导体工艺设备 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3816198A (en) * | 1969-09-22 | 1974-06-11 | G Babcock | Selective plasma etching of organic materials employing photolithographic techniques |
JPS5378170A (en) * | 1976-12-22 | 1978-07-11 | Toshiba Corp | Continuous processor for gas plasma etching |
JPS5291650A (en) * | 1976-01-29 | 1977-08-02 | Toshiba Corp | Continuous gas plasma etching apparatus |
IT1203089B (it) * | 1976-03-03 | 1989-02-15 | Int Plasma Corp | Procedimento ed apparecchiatura per eseguire reazioni chimiche nella regione della scarica luminescente di un plasma |
JPS53121469A (en) * | 1977-03-31 | 1978-10-23 | Toshiba Corp | Gas etching unit |
JPS5421175A (en) * | 1977-07-18 | 1979-02-17 | Tokyo Ouka Kougiyou Kk | Improvement of plasma reaction processor |
US4158589A (en) * | 1977-12-30 | 1979-06-19 | International Business Machines Corporation | Negative ion extractor for a plasma etching apparatus |
-
1979
- 1979-05-18 US US06/040,604 patent/US4209357A/en not_active Expired - Lifetime
-
1980
- 1980-04-23 DE DE8080301301T patent/DE3064737D1/de not_active Expired
- 1980-04-23 EP EP80301301A patent/EP0019370B1/en not_active Expired
- 1980-05-13 JP JP6329780A patent/JPS55154585A/ja active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI478771B (zh) * | 2007-10-16 | 2015-04-01 | Applied Materials Inc | 多氣體同心注入噴頭 |
Also Published As
Publication number | Publication date |
---|---|
US4209357A (en) | 1980-06-24 |
DE3064737D1 (en) | 1983-10-13 |
JPS6122032B2 (enrdf_load_stackoverflow) | 1986-05-29 |
JPS55154585A (en) | 1980-12-02 |
EP0019370A1 (en) | 1980-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0019370B1 (en) | Plasma reactor apparatus and process for the plasma etching of a workpiece in such a reactor apparatus | |
US4382099A (en) | Dopant predeposition from high pressure plasma source | |
CN101689492B (zh) | 处理基板边缘区域的装置与方法 | |
EP0776032B1 (en) | Plasma etching method | |
US4673456A (en) | Microwave apparatus for generating plasma afterglows | |
KR100583418B1 (ko) | 플라스마 에칭 챔버 | |
EP0730532B1 (en) | Topology induced plasma enhancement for etched uniformity improvement | |
US6511577B1 (en) | Reduced impedance chamber | |
US7138067B2 (en) | Methods and apparatus for tuning a set of plasma processing steps | |
US20070107661A1 (en) | Methods, systems, and apparatus for uniform chemical-vapor depositions | |
GB2093266A (en) | A plasma processing chamber | |
KR20090127323A (ko) | 고효율의 비플라즈마 처리를 실행하기 위한 처리 시스템 및 방법 | |
EP0367289B1 (en) | Plasma chemical vapor deposition apparatus | |
EP0047395B1 (en) | System for reactive ion etching | |
JP2001308079A (ja) | プラズマ処理装置及びプラズマ処理方法 | |
US4424102A (en) | Reactor for reactive ion etching and etching method | |
KR100256462B1 (ko) | 플라즈마 증강 화학 기상 증착 공정 | |
US5387289A (en) | Film uniformity by selective pressure gradient control | |
US4474621A (en) | Method for low temperature ashing in a plasma | |
US4736087A (en) | Plasma stripper with multiple contact point cathode | |
US7578945B2 (en) | Method and apparatus for tuning a set of plasma processing steps | |
US7858155B2 (en) | Plasma processing method and plasma processing apparatus | |
JPS63227021A (ja) | ドライエツチング装置 | |
KR100323598B1 (ko) | 플라즈마에칭방법 | |
KR102618464B1 (ko) | 반도체 제조장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19810130 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 3064737 Country of ref document: DE Date of ref document: 19831013 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990315 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990406 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990430 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20000422 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Effective date: 20000422 |