EP0018636B1 - Mosaikelementsatz - Google Patents

Mosaikelementsatz Download PDF

Info

Publication number
EP0018636B1
EP0018636B1 EP80102350A EP80102350A EP0018636B1 EP 0018636 B1 EP0018636 B1 EP 0018636B1 EP 80102350 A EP80102350 A EP 80102350A EP 80102350 A EP80102350 A EP 80102350A EP 0018636 B1 EP0018636 B1 EP 0018636B1
Authority
EP
European Patent Office
Prior art keywords
mosaic
rhombus
elements
rhombuses
mosaic elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80102350A
Other languages
English (en)
French (fr)
Other versions
EP0018636A1 (de
Inventor
Alan H. Schoen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT80102350T priority Critical patent/ATE3695T1/de
Publication of EP0018636A1 publication Critical patent/EP0018636A1/de
Application granted granted Critical
Publication of EP0018636B1 publication Critical patent/EP0018636B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C3/00Processes, not specifically provided for elsewhere, for producing ornamental structures
    • B44C3/12Uniting ornamental elements to structures, e.g. mosaic plates
    • B44C3/123Mosaic constructs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/10Two-dimensional jig-saw puzzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F3/00Designs characterised by outlines
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/0669Tesselation
    • A63F2009/0695Tesselation using different types of tiles
    • A63F2009/0697Tesselation using different types of tiles of polygonal shapes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/16Two dimensionally sectional layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/16Two dimensionally sectional layer
    • Y10T428/163Next to unitary web or sheet of equal or greater extent
    • Y10T428/168Nonrectangular

Definitions

  • the present invention relates to a mosaic element set of mutually different, polygonal mosaic elements for filling an area which is delimited by a regular polygon with an even number of pages 2n and for forming a basic shape for filling the Euclidean plane, where n means a natural number, the regular polygon can be broken down into a set of (n-1) n / 2 rhombuses and the set of rhombuses consists of a number of real subsets, each of which contains rhombuses of the same shape, but different from subsets to subsets.
  • Mosaic element sets made of mosaic elements or «mosaic stones» can be used for a wide variety of purposes, e.g. B. for street or floor paving, wall or floor tiles, also for games and for illustrative or educational purposes. In practice, the mosaic elements can therefore consist of a wide variety of materials.
  • the most well-known type of mosaic element set is probably the assembly game known as a puzzle, in which an area of very simple shape, e.g. B. a rectangle or circle, is designed with a variety of small pieces of cardboard with irregular and mostly different shapes.
  • An essential peculiarity of such a puzzle is that it can only be assembled in one way.
  • Newer assembly games contain similar pieces with which a variety of shapes can be formed, e.g. B. the so-called «polynominos».
  • composition game from a set of mosaic elements is e.g. B. from US-A-4, 133, 152 (Penrose) known.
  • US-A-3, 065, 970 is a combination game consisting of a set of 29 different "Pentacubes" and an additional Pentacube, which is identical to one of the 29 others, and can be assembled into four different cuboids, all of which Have a volume of 150 unit cubes.
  • the invention as characterized in the claims, creates a mosaic element set consisting of pairs of different mosaic elements, which are able to form the same regular polygon with an even number of sides in the most varied arrangements and also to form a basic shape for filling the Euclidean plane own.
  • the mosaic patterns that can be formed with the mosaic element set according to the invention are very diverse, which can have both aesthetic and practical advantages.
  • the mosaic element set according to the invention is simple to construct, the number of different arrangements that form the regular polygon increases rapidly with an increasing number of pages.
  • the invention can be used to form a hierarchy of composition games with very different levels of difficulty.
  • the mosaic element sets according to the invention can be used for a variety of purposes, e.g. B. as a game, for learning purposes, for test purposes, for tiles, plasters, parquet and. a. m.
  • a regular polygon with an even number of sides 2n is assumed, where n is a natural number.
  • This polygon is divided into rhombic partial areas in a known manner. This gives you a lot of diamonds, but not all of them are different.
  • the next step in determining the configuration of the mosaic elements of the set of mosaic elements according to the invention is now to select exactly one specimen of each type of rhombus from the set of rhombuses. These diamonds form a subset of the set of mosaic elements in the set of mosaic elements.
  • the remaining mosaic elements of the set of mosaic stones of the mosaic element set according to the invention are then formed by pairing the remaining rhombuses according to certain rules. This could also be achieved by using the selected rhombuses, which are different in pairs, as models for additional rhombuses and thus creating an ample supply of rhombuses for pairing.
  • the same amount of mosaic elements can also be used to form a closed surface which forms a basic shape for filling out the Euclidean plane.
  • This is a very remarkable property of the mosaic element set according to the invention, since the basic shape thus formed is not the regular polygon from which the mosaic element set was formed in only two cases.
  • the resulting simple design or covering of a surface is very useful for the production of parquet, tile and wallpaper patterns u. ⁇ .
  • a plurality of mosaic element sets according to the invention can not only be combined to form a corresponding plurality of regular polygons but also to such a polygon and one or more nested rings surrounding it.
  • a regular polygon from a set of mosaic elements according to the invention can be surrounded with three additional sets of mosaic elements so that a further, larger regular polygon is created, this in turn can be surrounded with five additional sets of mosaic elements, so that a further, even larger polygon is created, etc.
  • the mosaic element sets according to the invention also have many other interesting and useful properties.
  • FIG. 1 shows a set of mosaic elements or “mosaic stones” designed according to the invention, which are assembled into a regular polygon with 16 sides.
  • the mosaic elements are different in pairs.
  • the polygon shown can be assembled in a variety of ways using the mosaic element set. 1, more than 200 different arrangements of the mosaic elements are possible.
  • Each of the mosaic elements of the set shown in Figure 1 consists of one or two rhombuses. If one of the mosaic elements is formed from two rhombuses, then there are no collinear edges at any intersection. This allows each intersection at which two diamonds meet, i.e. H. Each joint between the ends of two sides of different rhombuses can be easily recognized by the resulting mosaic element, since the mosaic element has an angle or a corner there. It is therefore obvious that the mosaic elements 1, 2, 3 and 4 each consist of a single rhombus and the remaining mosaic elements each of a pair of rhombuses.
  • the mosaic elements 5, 6 and 7 consist of a square (a special rhombus shape) and another rhombus
  • the mosaic elements 8, 9 and 10 are formed from two identical rhombuses
  • the remaining mosaic elements 11, 12, 13, 14, 15 and 16 is composed of two different rhombuses.
  • the mosaic elements 11 and 15, 12 and 13, 14 and 16 can be called "dizygotic twins" because the rhombuses of each of these pairs match the rhombuses of the other pair, but the different arrangement of the rhombuses of the pairs results in two different mosaic elements.
  • a set of mosaic stones according to the invention can be constructed from each regular polygon with an even number of pages as follows:
  • the regular polygon with an even number of pages is first divided into a set of rhombuses, as shown, for example, in FIG.
  • the four sides of each rhombus are of course each as long as one side of the regular polygon. If the number p of the sides of the polygon is 4q, where q is an arbitrary natural number, the resulting set of rhombuses contains q different types of rhombuses with q squares and 2q rhombuses from each of the other (q-1) types. The total number of rhombuses is therefore q (2q-1). If one now forms the set of mosaic elements according to the invention, q 2 mosaic elements are obtained.
  • Each rhombus type can be uniquely determined by the acute angle, the acute angle must be an integer multiple of 360 ° / p, the integer being no greater than q.
  • the set of rhombuses from which the mosaic elements according to FIG. 1 are formed is shown in FIG. 2.
  • the squares are numbered 4, 5a, 6a and 7a.
  • the four squares therefore result because p is 16 for the polygon shown in FIG. 2 and therefore q must be 4.
  • the square is the extreme case in which the “acute” angle in the rhombus is 90 °.
  • 90 ° is also an integral multiple, namely four times (q times) 360 ° / p.
  • Mosaic elements are now formed from the remaining rhombuses by assembling each of these rhombuses with a rhombus of a different type in each of the two possible ways, thus forming two different «isotope» types of a dizygotic twin.
  • the mosaic element 11 in FIG. 1 consists of the rhombuses 11a and 11b, which are composed in such a way that the "short" shape of the dizygotic twin is created, whereas the mosaic element 1 in FIG. 1 is composed of the same rhombus type so that the "Long” form of the dizygotic twin results.
  • the mosaic element 14 is the “short” shape of a dizygotical twin, the “long” shape of which represents the mosaic element 16.
  • FIG. 1 Although the construction of the mosaic elements shown in FIG. 1 was explained with the aid of FIGS. 1 and 2, it can be seen from the above explanations that the formation of the mosaic elements from the set of rhombuses is easily possible, without relying on the regular polygon that forms the basis of the parquet or mosaic pattern (tessellation) is to be referred to.
  • the rules for a polygon with 4q sides were explained.
  • the other possible polygons with an even page number are those with a page number p equal to 4 (q + '/ 2 ).
  • the set of rhombuses q contains pairs of different rhombus types and (2q + 1) specimens of each type. The total number of all rhombuses is therefore q (2q + 1).
  • the set of mosaic elements which, according to the invention, is formed from this set of rhombuses therefore consists of q (q + 1) mosaic elements.
  • each rhombus type is clearly defined by its acute angle and this angle is an integral multiple of 360 ° / p, the integer being no greater than q. The largest possible such angle is therefore less than 90 ° and therefore none of the rhombuses is a square.
  • the amount of rhombuses required to form the mosaic elements is easy to form and that the mosaic elements can be obtained from the set of rhombuses in a simple manner, even without reference to the regular square that the The basis for the mosaic pattern or surface-filling pattern is. To construct the mosaic element set, it is therefore not necessary to solve the mosaic puzzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Finishing Walls (AREA)
  • Adornments (AREA)
  • Toys (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Mosaikelementsatz aus voneinander verschiedenen, polygonförmigen Mosaikelementen zum Ausfüllen einer Fläche, die durch ein reguläres Vieleck mit gerader Seitenzahl 2n begrenzt ist, und zum Bilden einer Grundform zum Ausfüllen der euklidischen Ebene, wobei n eine natürliche Zahl bedeutet, das reguläre Vieleck in eine Menge von (n-1 )n/2 Rhomben zerlegbar ist und die Menge der Rhomben aus einer Anzahl echter Teilmengen besteht, welche jeweils Rhomben unter sich gleicher, jedoch von Teilmenge zu Teilmenge verschiedener Form enthalten.
  • Mosaikelementsätze aus Mosaikelementen oder «Mosaiksteinen» sind für die verschiedensten Zwekke verwendbar, z. B. für Strassen- oder Fussbodenpflaster, Wand- oder Bodenfliesen, ferner für Spiele undfürAnschauungs-oderLernzwecke. Die Mosaikelemente können daher in der Praxis aus den verschiedensten Werkstoffen bestehen.
  • Auf dem Gebiet der Spiele ist der wohl bekannteste Typ von Mosaikelementsatz das als Puzzle bekannte Zusammensetzspiel, bei dem eine Fläche sehr einfacher Form, z. B. ein Rechteck oder Kreis, mit einer Vielzahl von kleinen Pappestücken mit unregelmässigen und meistens verschiedenen Formen ausgelegt wird. Eine wesentliche Eigenart eines solchen Puzzles besteht darin, dass es nur auf eine einzige Weise zusammengesetzt werden kann.
  • Neuere Zusammensetzspiele enthalten gleichartige Stücke, mit denen eine Vielzahl von Formen gebildet werden kann, z. B. die sogenannten «Polynominos».
  • Ein neueres Zusammensetzspiel aus einem Satz von Mosaikelementen ist z. B. aus der US-A- 4, 133, 152 (Penrose) bekannt.
  • Aus der US-A- 3, 065, 970 ist ein Zusammensetzspiel aus einem Satz von 29 verschiedenen «Pentacubes» und einem zusätzlichen Pentacube, der mit einem der 29 anderen identisch ist, besteht und zu vier verschiedenen Quadern zusammengesetzt werden kann, die alle das Volumen von 150 Einheitswürfein haben.
  • Es ist selbstverständlich bekannt, eine Fläche, wie ein Quadrat, in Teilflächen unterschiedlicher Form aufzuteilen. Die Flächen selbst haben dabei jedoch im allgemeinen eine sehr einfache Form und die Teilflächen eignen sich nicht dazu, phantasievoll aussehende oder schwierig zuammensetzbare Mosaike zu bilden.
  • Durch die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, wird ein Mosaikelementsatz geschaffen, der aus paarweise verschiedenen Mosaikelementen besteht, die in den verschiedensten Anordnungen dasselbe reguläre Vieleck mit gerader Seitenanzahl zu bilden vermögen und sich ausserdem zum Bilden einer Grundform zum Ausfüllen der euklidschen Ebene eignen.
  • Die Mosaikmuster, die sich mit dem Mosaikelementsatz gemäss der Erfindung bilden lassen, sind sehr vielfältig, was sowohl ästhetische als auch praktische Vorteile haben kann. Der Mosaikelementsatz gemäss der Erfindung lässt sich einfach konstruieren, die Anzahl der verschiedenen Anordnungen, die das reguläre Vieleck bilden, erhöht sich rasch mit steigender Seitenzahl.
  • Die Erfindung kann zur Bildung einer Hierarchie von Zusammensetzspielen mit stark unterschiedlichem Schwierigkeitsgrad dienen. Die Mosaikelementsätze gemäss der Erfindung lassen sich für die verschiedensten Zwecke verwenden, z. B. als Spiel, zu Lernzwecken, zu Testzwecken, für Fliesen, Pflaster, Parkett u. a. m.
  • Zur Bildung eines Mosaikelementsatzes gemäss der Erfindung wird von einem regulären Vieleck mit gerader Seitenanzahl 2n ausgegangen, wobei n eine natürliche Zahl ist. Diese Vieleck wird in bekannter Weise in rhombische Teilflächen aufgeteilt. Hierdurch erhält man eine Menge von Rhomben, die jedoch nicht alle voneinander verschieden sind.
  • Der nächste Schritt zur Ermittlung der Konfiguration der Mosaikelemente des Mosaikelementsatzes gemäss der Erfindung wild nun aus der Rhombenmenge genau ein Exemplar von jedem Rhombentyp ausgewält. Diese Rhomben bilden eine Teilmenge der Menge der Mosaikelemente des Mosaikelementsatzes. Die restlichen Mosaikelemente der Menge der Mosaiksteine des Mosaikelementsatzes gemäss der Erfindung werden dann durch paarweises Zusammensetzen der verbliebenen Rhomben nach bestimmten Regeln gebildet. Dies könnte auch dadurch erreicht werden, dass man die schon ausgewählten Rhomben, die paarweise verschieden sind, als Modelle für zusätzliche Rhomben verwendet und somit einen reichlichen Vorrat an Rhomben zur Paarbildung erstellt. Sehr bemerkenswert ist jedoch, dass die Anzahl der restlichen Rhomben der Menge nach Auswahl der erwähnten einzelnen Rhomben genau mit der Anzahl der Modelle zur Bildung der Rhombenpaare gemäss den Lehren der Erfindung übereinstimmt. Dies ist vor allem deshalb bemerkenswert, weil, wie die nachfolgende ausführliche Beschreibung der Erfindung zeigen wird, die Regeln für die Paarbildung vollständig unabhängig von dem hierfür zur Verfügung stehenden Vorrat an Rhomben ist.
  • Über die Anordnung der Mosaikelemente des Mosaikelementsatzes gemäss der Erfindung zu einem regulären Vieleck hinaus kann dieselbe Menge von Mosaikelementen, also derselbe Mosaikelementsatz, auch dazu verwendet werden, eine geschlossene Fläche zu bilden, die eine Grundform zum Ausfüllen der euklidschen Ebene bildet. Dies ist eine sehr bemerkenswerte Eigenschaft des erfindungsgemässen Mosaikelementsatzes, da die so gebildete Grundform in nur zwei Fällen nicht das reguläre Vieleck ist, aus dem der Mosaikelementsatz gebildet wurde. Die hierdurch ermöglichte einfache Auslegung oder Bedeckung einer Fläche ist sehr nützlich für die Herstellung von Parkett-, Fliesen- und Tapetenmustern u. ä.
  • Eine Vielzahl von Mosaikelementsätzen gemäss der Erfindung kann nicht nur zu einer entsprechenden Vielzahl von regulären Vielecken zusammengesetzt werden, sondern auch zu einem solchen Vieleck und einem oder mehreren, dieses umgebenden, verschachtelten Ringen. Somit kann z. B. ein reguläres Vieleck aus einem erfindungsgemässen Mosaikelementsatz mit drei zusätzlichen Mosaikelementsätzen so umgeben werden, dass ein weiteres, grösseres reguläres Vieleck entsteht, dieses kann wiederum mit fünf zusätzlichen Mosaikelementsätzen umgeben werden, so dass ein weiteres, noch grösseres Vieleck entsteht usw.
  • Die Mosaikelementsätze gemäss der Erfindung haben also ausser der einfachen Bildung eines regulären Vielecks auch noch viele andere interessante und nützliche Eigenschaften.
  • Im folgenden wird ein bevorzugtes Ausführungsbeispiel der Erfindung unter Bezugnahme auf die Zeichnung näher erläutert.
  • Es zeigen:
    • Figur 1 - einen Mosaikelementsatz gemäss einer Ausführungsform der Erfindung, dessen Mosaikelemente zu einem regulären Vieleck zusammengesetzt sind und
    • Figur 2 - die Menge von Rhomben, aus der die Mosaikelemente des Mosaikelementsatzes gemäss Figur 1 gebildet werden können.
  • In Figur 1 ist ein erfindungsgemäss ausgebildeter Satz von Mosaikelementen oder «Mosaiksteinen» dargestellt, die zu einem regulären Vieleck mit 16 Seiten zusammengesetzt sind. Die Mosaikelemente sind paarweise verschieden. Das dargestellte Vieleck kann mit dem Mosaikelementsatz auf die verschiedenste Weise zusammengesetzt werden. Bei dem Mosaikelementsatz gemäss Figur 1 sind mehr als 200 verschiedene Anordnungen der Mosaikelemente möglich.
  • Jedes der Mosaikelemente des in Figur 1 dargestellten Satzes besteht aus einem oder zwei Rhomben. Wird eines der Mosaikelemente aus zwei Rhomben gebildet, dann treten an keinem Schnittpunkt kollineare Kanten auf. Hierdurch lässt sich jeder Schnittpunkt, an dem zwei Rhomben zusammentreffen, d. h. jede Stossstelle zwischen den Enden zweier Seiten verschiedener Rhomben, leicht an dem sich ergebenden Mosaikelement erkennen, da das Mosaikelement dort einen Winkel oder eine Ecke aufweist. Es ist also offensichtlich, dass die Mosaikelemente 1, 2, 3 und 4 jeweils aus einem einzigen Rhombus und die restlichen Mosaikelemente aus jeweils einem Paar von Rhomben bestehen. Die Mosaikelemente 5, 6 und 7 bestehen aus einem Quadrat (eine spezielle Rhombusform) und einem anderen Rhombus, die Mosaikelemente 8, 9 und 10 sind aus zwei identischen Rhomben gebildet, und die übrigen Mosaikelemente 11, 12, 13, 14, 15 und 16 setzt sich aus zwei verschiedenen Rhomben zusammen. Die Mosaikelemente 11 und 15, 12 und 13, 14 und 16 können als «zweieiige Zwillinge» bezeichnet werden, da die Rhomben jedes dieser Paare mit den Rhomben des jeweils anderen Paares übereinstimmen, die unterschiedliche Anordnung der Rhomben der Paare ergibt jedoch zwei verschiedene Mosaikelemente.
  • Aus jedem regulären Vieleck mit gerader Seitenzahl kann ein Satz von Mosaiksteinen gemäss der Erfindung folgendermassen konstruiert werden:
  • Das reguläre Vieleck mit gerader Seitenzahl wird zuerst in eine Menge von Rhomben unterteilt, wie es beispielsweise in Figur 2 dargestellt ist. Die vier Seiten eines jeden Rhombus sind selbstverständlich jeweils so lang wie eine Seite des regulären Vielecks. Ist die Anzahl p der Seiten des Vielecks gleich 4q, wobei q eine beliebige natürliche Zahl ist, dann enthält die sich ergebende Menge von Rhomben q verschiedene Typen von Rhomben mit q Quadraten und 2q Rhomben von jeden der übrigen (q-1) Typen. Die Gesamtzahl der Rhomben ist somit gleich q(2q-1). Bildet man nun den Satz von Mosaikelementen gemäss der Erfindung so erhält man q2 Mosaikelemente. Jeder Rhombentyp kann durch den spitzen Winkel eindeutig bestimmt werden, der spitze Winkel muss dabei ein ganzzahliges Vielfaches von 360°/p sein, wobei die ganze Zahl nicht grösser als q ist.
  • Die Menge der Rhomben, aus der die Mosaikelemente gemäss Figur 1 gebildet sind, ist in Figur 2 dargestellt. Die Quadrate sind mit den Nummern 4, 5a, 6a und 7a bezeichnet. Die vier Quadrate ergeben sich deshalb, well für das in Figur 2 dargestellte Vieleck p gleich 16 ist und somit q gleich 4 sein muss. Das Quadrat ist der Extremfall, in dem der «spitze» Winkel im Rhombus gleich 90° ist. 90° ist ja auch ein ganzzahliges Vielfaches, nämlich das Vierfache (q-fache) von 360°/p. Nun müssen 2q (d. h. 8) Rhomben vorhanden sein, deren spitzer Winkel gleich 360°/p mal 3, also 67, 5 ist, diese Rhomben sind in Figur 2 mit den Number 3, 6b, 8a, 8b, 11 a, 12a, 13a und 15 bezeichnet. Weiterhin sind zwei 2q (d. h. 8) Rhomben vorhanden, deren spitzer Winkel gleich 360°/p mal 2 (45°) ist, dies sind in Figur 2 die Rhomben mit den Nummern 2, 5b, 9a, 9b, 11 b, 14a, 15b und 16a. Schliesslich müssen noch zwei 2q (d.h. 8) Rhomben vorliegen, deren spitzer Winkel gleich 360°/p mal 1 (22, 5°) ist, dies sind die Rhomben 1, 7b, 10a, 10b, 12b, 13b, 14b und 16b.
  • Die anhand von Figur 2 beschriebene Aufteilung des regulären Vielecks in die Menge von Rhomben dient nur zur Erläuterung und ist nicht einschränkend auszulegen. Für die Konstruktion der Menge von Rhomben aus einem regulären Vieleck ist eine spezielle Anordnung der Rhomben nicht erforderlich, da die oben gegebenen Lehren zur Konstruktion der Menge der Rhomben unabhängig von der speziellen Anordnung der Rhomben ist.
  • Nachdem nun die erforderliche Menge von Rhomben vorliegt, wird der Satz der Mosaikelemente gemäss der Erfindung wie folgt konstruiert:
    • Zuerst wird von jedem der verschiedenen Rhombentypen genau ein einziger Rhombus ausgewählt und als Mosaikelement verwendet. Dies sind in Figur 1 die Mosaikelemente 1, 2, 3 und 4, die jeweils aus einem einzigen Rhombus bestehen und selbstverständlich eine Anzahl gleich der paarweise verschiedenen Rhombentypen in Figur 2 aufweisen. Die restlichen Mosaikelemente werden nun aus Paaren der übrigen Rhomben in Figur 2 gebildet, wobei zu beachten ist, dass beim Zusammensetzen zweier Rhomben an keinem der Schnittpunkte der Seiten der beiden Rhomben eine kollineare Kante, also ein gestreckter Winkel, auftritt. Hieraus folgt automatisch, dass man kein Mosaikelement aus zwei Quadraten bilden kann und man wird daher drei Mosaikelemente konstruieren, indem man ein Quadrat mit einem Exemplar eines anderen Rhombentyps an zwei Seiten zusammensetzt. In Figur 1 bestehen die Mosaikelemente 5, 6 und 7 jeweils aus einem Quadrat und einem anderen Rhombentyp.
      Dann werden drei weitere Mosaikelemente gebildet, indem man ein Exemplar aus jedem der nichtquadratischen Rhombentypen mit einem identischen Exemplar zusammensetzt und damit jeweils eine Konfiguration bildet, die oben als «eineiiger Zwilling» bezeichnet wurde. Dies sind die Mosaikelemente 8, 9 und 10 in Figur 1.
  • Aus den restlichen Rhomben werden nun dadurch Mosaikelemente gebildet, dass man jeden dieser Rhomben mit einem Rhombus anderen Typs auf jede der beiden möglichen Arten zusammensetzt und damit zwei verschiedene «isotope» Arten eines zweieiigen Zwillings bildet.
  • Z. B. besteht das Mosaikelement 11 in Figur 1 aus den Rhomben 11 a und 11b, die so zusammensetzt sind, dass die «kurze» Form des zweieiigen Zwillings entsteht, wogegen das Mosaikelement 1 in Figur 1 aus dem gleichen Rhombentyp so zusammensetzt ist, dass sich die «lange» Form des zweieiigen Zwillings ergibt. Das Mosaikelement 14 ist die «kurze» Form eines zweieiigen Zwillings, dessen «lange» Form das Mosaikelement 16 darstellt.
  • Obwohl die Konstruktion der in Figur 1 dargestellten Mosaikelemente unter Zuhilfenahme der Figuren 1 und 2 erläutert wurde, dürfte aus den obigen Ausführungen ersichtlich sein, dass die Bildung der Mosaikelemente aus der Menge der Rhomben leicht möglich ist, ohne auf das reguläre Vieleck, das die Grundlage des Parkett- oder Mosaikmusters (Tessellation) ist, Bezug zu nehmen.
  • Bemerkenswert ist, dass obwohl die Kombination eines Quadrates mit einem anderen Rhombentyp als zweieiiger Zwilling angesehen werden kann, der andere entsprechende zweieiige Zwilling das Spiegelbild des ersten ist und somit nur ein Mosaikelement aus der Verbindung eines Quadrats mit einem beliebigen anderen Rhombentyp gebildet wird.
  • Bei der obigen Beschreibung der Unterteilung des 16-seitigen Vielecks in Figur 1 und 2 wurden die Regeln für ein Vieleck mit 4q Seiten erläutert. Die anderen möglichen Vielecke mit gerader Seitenzahl sind die mit einer Seitenzahl p gleich 4 (q + '/2). In diesem Fall enthält die Menge der Rhomben q paarweise verschiedene Rhombentypen und (2q + 1) Exemplare eines jeden Typs. Die Gesamtzahl aller Rhomben ist somit gleich q (2q + 1). Die Menge von Mosaikelementen, die entsprechend der Erfindung aus dieser Rhombenmenge gebildet wird, besteht demnach aus q (q + 1) Mosaikelementen. Wie im Falle p = 4q ist jeder Rhombentyp durch seinen spitzen Winkel eindeutig festgelegt und dieser Winkel ist ein ganzzahliges Vielfaches von 360°/p, wobei die ganze Zahl nicht grösser als q ist. Der grösstmögliche derartige Winkel ist somit kleiner als 90° und deshalb ist keiner der Rhomben ein Quadrat.
  • Aus den vorhergehenden Ausführungen ist ersichtlich, dass die Menge der Rhomben, die zur Bildung der Mosaikelemente erforderlich ist, leicht zu bilden und dass man die Mosaikelemente auf einfache Weise aus der Menge der Rhomben gewinnen kann, auch ohne Bezug auf das reguläre Viereck, das die Basis für das Mosaikmuster oder Flächen erfüllende Muster ist. Zur Konstruktion des Mosaikelementsatzes ist es also nicht nötig, das Mosaik-Puzzle zu lösen.
  • Die Einschränkung in der Rhomben-Paarbildung gemäss den Lehren der Erfindung, d. h. die Bedingung, dass in keinem der Schnittpunkte kollineare Kanten auftreten dürfen, ist sehr wichting, da beim Vorhandensein eines derartigen Paares in einem Mosaikelement des Mosaikelementsatzes die Bildung des gewünschten regulären Vielecks nicht möglich ist.
  • Es war bereits erwähnt worden, dass man mit weiteren Mosaikelementsätzen konzentrische «Ringe» aus Mosaikelementen um das das Grundmuster bildende reguläre Vieleck bilden kann, wobei sich dann als äussere Begrenzung ein neues Vieleck mit einer grösseren Seitenzahl ergibt.

Claims (7)

1. Mosaikelementsatz aus voneinander verschiedenen polygonförmigen Mosaikelementen zum Ausfüllen einer Fläche, die durch ein reguläres Vieleck mit gerader Seitenzahl p = 2n begrenzt ist, zum Bilden einer Grundform zum Ausfüllen der euklidschen Ebene, wobei n eine natürliche Zahl bedeutet und das reguläre Vieleck in eine Menge von (n-1 ) n/2 Romben mit der Seitenläge des Vielecks zerlegbar ist und die Menge der Rhomben aus einer Anzahl von Teilmengen besteht, welche jeweils Rhomben unter sich gleicher, jedoch von Teilmenge zu Teilmenge verschiedener Form enthalten, dadurch gekennzeichnet, dass er aus Mosaikelementen (1 bis 4) besteht, die jeweils die Form eines Rhombus der verschiedenen Teilmengen haben, und ferner aus Mosaikelementen (5 bis 16) mit Formen, die sich ergeben, wenn man je zwei der verbleibenden Rhomben der Menge mit je einer Seite so aneinandersetzt, dass die mit ihren Enden aneinanderstossenden Seiten der beiden Rhomben keinen gestreckten Winkel bilden, wobei höchstens zwei (z. B. 11 und 15) der zusammengesetzten Mosaikelemente (5 bis 16) durch Zusammensetzen des gleichen Rhombenpaares (11 a = 1 5a, 11 b = 15b) gebildet sind, diese zwei Mosaikelemente sich aber dadurch unterscheiden, dass bei dem einen Mosaikelement (11) ein stumpfer bzw. ein spitzer Winkel des einen Rhombus (11 a) neben einem stumpfen bzw. einem spitzen Winkel des anderen Rhombus (11 b) liegt, wogegen bei dem anderen Mosaikelement (15) ein stumpfer bzw. ein spitzer Winkel des einen Rhombus (1 5a) neben einem spitzen bzw. einem stumpfen Winkel des anderen Rhombus (1 5b) liegt.
2. Mosaikelementsatz nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl der Seiten des Vielecks gleich 2n = 4q ist, wobei q eine natürliche Zahl bedeutet, so dass der spitze Winkel eines jeden Rhombus der Menge ein ganzzahliges Vielfaches von 360°/p ist; dass die ganze Zahl nicht grösser als q ist und dass die Menge von Rhomben q Quadrate und 2q Exemplare jedes der (q-1 ) anderen Rhombentypen enthält, derart, dass die Gesamtzahl der Mosaikelemente des Satzes gleich q2 ist.
3. Mosaikelementsatz nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl der Seiten des regulären Vielecks gleich 2n = 4 (q + 1/2) ist, wobei der spitze Winkel jedes Rhombus der Menge ein ganzzahliges Vielfaches von 360°/p und die ganze Zahl nicht grösser als p ist, und dass die Menge der Rhomben (2q + 1) Exemplare eines jeden Rhombentyps enthält, so dass die Gesamtzahl der Mosaikelemente des Satzes gleich q (q + 1) ist.
4. Mosaikelementsatz nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass er ein Spiel bildet.
5. Mosaikelementsatz nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Mosaikelemente aus Fliesen bestehen.
6. Mosaikelementsatz nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Mosaikelementsatz ein ornamentales Muster bildet.
7. Mosaikelementsatz nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Mosaikelemente ein Parkett bilden.
EP80102350A 1979-04-30 1980-04-30 Mosaikelementsatz Expired EP0018636B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80102350T ATE3695T1 (de) 1979-04-30 1980-04-30 Mosaikelementsatz.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34245 1979-04-30
US06/034,245 US4223890A (en) 1979-04-30 1979-04-30 Set of tiles for covering a surface

Publications (2)

Publication Number Publication Date
EP0018636A1 EP0018636A1 (de) 1980-11-12
EP0018636B1 true EP0018636B1 (de) 1983-06-08

Family

ID=21875196

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80102350A Expired EP0018636B1 (de) 1979-04-30 1980-04-30 Mosaikelementsatz

Country Status (5)

Country Link
US (1) US4223890A (de)
EP (1) EP0018636B1 (de)
JP (1) JPS55151977A (de)
AT (1) ATE3695T1 (de)
DE (1) DE3063659D1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083681U (ja) * 1983-11-16 1985-06-10 吉本 直貴 平行4辺形玩具
US4561097A (en) * 1984-10-09 1985-12-24 Florence Siegel Puzzle formed of geometric pieces having an even number of equilateral sides
US4620998A (en) * 1985-02-05 1986-11-04 Haresh Lalvani Crescent-shaped polygonal tiles
JPS61242255A (ja) * 1985-04-16 1986-10-28 加藤 俊彌 正六面体形モザイクタイルの施工方法
JPS6439787U (de) * 1987-09-05 1989-03-09
US5314183A (en) * 1993-03-17 1994-05-24 Schoen Alan H Set of tiles for covering a surface
USD423691S (en) * 1997-02-18 2000-04-25 Peer van Neerven Construction element set
US6203879B1 (en) * 1997-10-24 2001-03-20 Mannington Carpets, Inc. Repeating series of carpet tiles, and method for cutting and laying thereof
US6309716B1 (en) 1999-09-24 2001-10-30 Adrian Fisher Tessellation set
US6439571B1 (en) 1999-11-26 2002-08-27 Juan Wilson Puzzle
ATE378097T1 (de) * 2000-05-04 2007-11-15 Bernhard Geissler Strukturelemente und kachelsätze
US7721776B2 (en) * 2004-11-16 2010-05-25 Justin Louis K Tiles and apparatus, system and method for fabricating tiles and tile patterns
US9162139B2 (en) * 2010-02-01 2015-10-20 Mordechai Lando Cube puzzle
US9070300B1 (en) * 2010-12-10 2015-06-30 Yana Mohanty Set of variably assemblable polygonal tiles with stencil capability
US20160303472A1 (en) * 2014-01-28 2016-10-20 Rebecca Klemm Polygon puzzle and related methods
US11498357B2 (en) * 2019-06-20 2022-11-15 Certainteed Llc Randomized surface panel kit and surface panel system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1495576A (en) * 1922-04-07 1924-05-27 Crehore Albert Cushing Puzzle
DE1699722U (de) * 1955-02-28 1955-06-02 Plastik Werk Fiedler & Podey Ornament - mosaik - zusammensetzspiel.
DE1809445U (de) * 1960-01-05 1960-04-07 Richard Lehmann Mosaik-stein.
US3065970A (en) * 1960-07-06 1962-11-27 Besley Serena Sutton Three dimensional puzzle
DE1880258U (de) * 1963-06-25 1963-10-03 And Klein Fassfabrik Lammelle zur herstellung von mosaikparkett.
FR2039506A5 (en) * 1969-04-01 1971-01-15 Michalopoulos Spiridion Mosaic floors with joints of thermoplastic - material
DE1961945A1 (de) * 1969-12-10 1971-06-16 Brent Metal Works Ltd Tuerschliessermechanismus
US3637217A (en) * 1970-02-13 1972-01-25 Sherman Kent Puzzle with pieces in the form of subdivided rhombuses
US3665617A (en) * 1970-02-13 1972-05-30 Ina Gilbert Design elements for creating artistic compositions
JPS5317387B2 (de) * 1973-01-17 1978-06-08
GB1385913A (en) * 1974-02-26 1975-03-05 Robinson A K Puzzle apparatus for recreational educational mind training or like purposes
US4063736A (en) * 1975-06-04 1977-12-20 Alexander Kennedy Robinson Puzzle apparatus
GB1548164A (en) * 1975-06-25 1979-07-04 Penrose R Set of tiles for covering a surface
JPS5317387U (de) * 1976-07-22 1978-02-14
JPS54118282U (de) * 1978-02-03 1979-08-18

Also Published As

Publication number Publication date
ATE3695T1 (de) 1983-06-15
US4223890A (en) 1980-09-23
JPH037395B2 (de) 1991-02-01
DE3063659D1 (en) 1983-07-14
EP0018636A1 (de) 1980-11-12
JPS55151977A (en) 1980-11-26

Similar Documents

Publication Publication Date Title
EP0018636B1 (de) Mosaikelementsatz
EP1280587B1 (de) Strukturelemente und kachelsätze
DE69419429T2 (de) Dreidimensionales puzzle
DE602004008747T2 (de) Würfelförmiges logik-spielzeug
DE2521764B2 (de) Puzzlering
EP0183906B1 (de) Puzzle-Würfel
DE2260679A1 (de) Farbordnungs- und auswahlsystem
DE2901472A1 (de) Baukastenelemente zum zusammenbau einer gesamtheit von vertikalen oder horizontalen rauminhalten in nur einer ebene oder in versetzten ebenen
DE19617526A1 (de) Baustein
DE69821901T2 (de) Zufallszahlengenerator zum Spielen eines Spieles
DE1961430A1 (de) Spiel mit auf einer Spielunterlage anzuordnenden Spielsteinen
DE69030769T2 (de) Puzzle mit ineinandergefügten, ein graphisches display bildenden elementen
DE901389C (de) Plattenfoermiger Spielbaustein mit Zinken und Einschnitten von gleich grosser quadratischer Gestalt
DE3700147C2 (de)
DE60109628T2 (de) Spielbaustein und spielsteinbausatz mit diesem stein
DE1478652C (de) Steckbaustein fur Bauspiele und Mosaiken
DE847276C (de) Schiebespiel, bestehend aus mit Aufdrucken versehenen und in einem Aufnahmebehaelter, z. B. Rahmen, gegeneinander verschieblich angeordneten Spielsteinen
DE3320174C2 (de) Bauelemente
DE69511721T2 (de) Puzzles
DE498575C (de) Bilderbaukasten mit Bildteilen auf mehr oder weniger stabfoermigen Bauelementen
DE2521764C (de) Puzzlering
DE3436107A1 (de) Geduldspiel
DE2050599A1 (de) Bauelementensatz, insbesondere zu Spielzwecken
DE7526175U (de) Lehrspiel
DE2202444A1 (de) Moebelsatz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19810505

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19830608

Ref country code: NL

Effective date: 19830608

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19830608

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19830608

Ref country code: BE

Effective date: 19830608

REF Corresponds to:

Ref document number: 3695

Country of ref document: AT

Date of ref document: 19830615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3063659

Country of ref document: DE

Date of ref document: 19830714

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19840430

Ref country code: LI

Effective date: 19840430

Ref country code: CH

Effective date: 19840430

Ref country code: AT

Effective date: 19840430

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840629

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118