EP0012345A1 - Kraftstoffe und ihre Verwendung - Google Patents

Kraftstoffe und ihre Verwendung Download PDF

Info

Publication number
EP0012345A1
EP0012345A1 EP79104931A EP79104931A EP0012345A1 EP 0012345 A1 EP0012345 A1 EP 0012345A1 EP 79104931 A EP79104931 A EP 79104931A EP 79104931 A EP79104931 A EP 79104931A EP 0012345 A1 EP0012345 A1 EP 0012345A1
Authority
EP
European Patent Office
Prior art keywords
ethylene oxide
acid amide
adduct
fuel
moles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79104931A
Other languages
English (en)
French (fr)
Other versions
EP0012345B1 (de
Inventor
Günther Dr. Boehmke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to AT79104931T priority Critical patent/ATE1247T1/de
Publication of EP0012345A1 publication Critical patent/EP0012345A1/de
Application granted granted Critical
Publication of EP0012345B1 publication Critical patent/EP0012345B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/328Oil emulsions containing water or any other hydrophilic phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/01Wetting, emulsifying, dispersing, or stabilizing agents

Definitions

  • the invention relates to fuels for Vorhrcnnungskraftmaschinen such as gasoline and diesel engines as well as rotary piston machines and turbines, which contain emulsifiers or emulsifier mixtures and water and optionally alcohols in the fuels customary for the respective units.
  • Fuels for internal combustion engines have now been found which contain a nonionic emulsifier, water and optionally an alcohol, which are characterized in that they contain, as emulsifier, an adduct of ethylene oxide or propylene oxide with a carboxamide having 8-22 carbon atoms.
  • the hydrocarbons contained in the fuels according to the invention are generally the mixtures customary for this purpose, such as those with their physical data in DIN regulation 51 600 or in the United States Federal Specification VV-M-561 a-2, October 30, 1954 , Marked are. They are aliphatic hydrocarbons from gaseous, dissolved butane to C 20 hydrocarbons (as a residual fraction of diesel oil), e.g. cycloaliphatic, olefinic and / or aromatic hydrocarbons, natural naphthenic or refined technical hydrocarbons.
  • the compositions according to the invention preferably contain no lead alkyls and similarly toxic additives.
  • the nonionic emulsifier is preferably a fatty acid amide, which is to be thought of by adding 1 to 50 mol of ethylene oxide or propylene oxide to a fatty acid amide, with the formula in which R, R 2 and n have the meaning given above.
  • the radical R generally means the radical of a saturated or unsaturated carboxylic acid, which can be varied within the broadest limits with regard to its molecular structure.
  • fatty acids such as Octanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, arachidic acid or oleic acid, erucic acid, ricinoleic acid or mixtures thereof, as described e.g. in coconut oil, palm oil, sunflower oil, safflower oil, soybean oil, castor oil, whale oil, fish oil, tallow fat, pork fat.
  • the proposed emulsifiers of the formula (I) are already known (cf. M.J. Schick, Nonionic Surfactans, Volume 1, pages 209-211; M.Dekker, New York 1976); they are physiologically very compatible (use in hand washing detergents) and biodegradable.
  • the raw materials from the fat side are available in large quantities and can also be multiplied for a long time, since they are independent of fossil deposits.
  • synthetic acids can also be used, such as those formed in the paraffin oxidation or in the oxidation of ⁇ -olefins or tri- and tetrapropylene. If the amides are produced from the natural triglycerides, the monoglycerides of these fats can still be present if only two of the fatty acid residues of the triglyceride are used for the amide formation.
  • the degree of oxyethylation, i.e. The type and number of groupings Y of the formula (I) can be varied within wide limits.
  • the emulsifiers used are compounds of the formula (I) which are adducts of 1-3 moles of ethylene oxide with 1 mole of carboxylic acid amide and / or of 5-25 moles of ethylene oxide and / or propylene oxide with 1 mole of carboxylic acid amide.
  • the 1-3: 1 adduct content can be 15-70% by weight and the 5-25: 1 adduct content can be 30-85% by weight of the fuel according to the invention.
  • the emulsifier is particularly preferably the adduct of 1-2 moles of ethylene oxide with 1 mole of fatty acid amide (optionally mixed with production-related proportions of a fatty acid monoglyceride) and / or the adduct of 5-10 moles of ethylene oxide and / or propylene oxide with 1 mole of fatty acid amide and optionally the adduct of 20 - 30 moles of ethylene oxide with 1 mole of fatty acid amide.
  • the emulsifiers are most advantageously produced via the fatty acids and ethanolamine (cf. M. Schick, Nonionic Surfactants, loc. Cit., Pp. 213-214). These components can be used to produce a fatty acid amide according to the invention containing 1 mole of ethylene oxide and having a very high degree of purity by elimination of water at 160-180 ° C. in about 60-90 minutes. If one starts from the fatty acid amide (see M.Schick, Nonionic Surfactants, loc. Cit., P.213), 1 mol of ethylene oxide is added, advantageously at elevated temperature, for example at 100 - 140 o C, possibly with weakly acidic or weakly basic catalysis.
  • the customary oxyalkylation catalysts such as sodium hydroxide, sodium methylate, potassium hydroxide, from 1: 1 adduct and add the desired amount of ethylene oxide under pressure. If natural fat is assumed, this is reacted with 2 moles of ethanolamine. After about 2 - 5 hours and about 140 - 180 ° C reaction temperature generally no ethanolamine and no triglyceride can be detected.
  • This 1: 2 molar mixture of fatty acid mono- g lycerid.und fatty acid amide 1: 1 ethylene oxide adduct can be advantageously used in an amount of 15-70 wt .-% of the nonionic emulsifier can be used.
  • the non-ionic emulsifiers can contain impurities from the industrial production, which result from impurities in the preliminary product, e.g. come from the ethylene oxide, are caused by moisture or come from the oxyethylation catalyst.
  • impurities in the preliminary product e.g. come from the ethylene oxide
  • These are preferably polyethylene glycols, which can be responsible for the deterioration in the emulsion quality and for the formation of an aqueous sediment. If they are present in the emulsifiers in amounts of more than 1%, it is advisable to remove them by one of the known cleaning operations for nonionic emulsifiers, e.g. according to DE-PS 828 839.
  • a new cleaning method as proposed in patent application P 28 54 541.7, is preferably suitable on an industrial scale.
  • the lower alcohols are used in the fuels according to the invention in order to control the spontaneity of the emulsion, the low-temperature stability and the temperature dependence in the emulsification of the water.
  • the spontaneity can generally be brought about with the aid of mixed emulsifiers of different ionogenicity. Since only nonionic and residue-free combustible emulsifiers can be used in motor fuel for corrosion reasons without difficulty, it must be used as are said to be extremely surprising that spontaneous water-in-oil emulsions are obtained with the emulsifiers according to the invention.
  • the fuels according to the invention have a considerably improved stability to cold, which consists not only in preventing the formation of ice crystals, but also in the failure to form gel structures which can cause an uncontrolled increase in viscosity.
  • Alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tert-butanol, amyl alcohol, iso-amyl alcohol, hexyl alcohol, 1,3-dimethyl-butanol, cyclohexanol, methylcyclohexanol, Octanol, 2-ethylhexanol. Mixtures of these alcohols can also be used well. Alcohols which are readily available industrially are preferably used, e.g. Methanol, ethanol, isopropanol, isobutanol, 2-ethylhexanol.
  • the fuel emulsion according to the invention is produced by stirring the water into the solution of the emulsifier in the hydrocarbon which may contain alcohol, preferably no further machines providing distribution energy being used.
  • the emulsifier optionally also the alcohol, can be distributed over petrol and / or water.
  • the viscosity of the emulsion After formation of the emulsion, it is expedient not to allow the viscosity of the emulsion to rise to much higher values than 1 0 mPa s (vgl.DIN regulation 9040), as a viscosity of about 100 PA s can already lead to the normal Filters, pumps and nozzles of motor vehicles can no longer be passed without problems. It is therefore advisable to maintain a viscosity of 5 m PA s for the fuels according to the invention, for example for gasoline emulsions below 2 m PA s. The viscosity should not increase significantly even when it cools down to approx. -15 ° C, and the emulsion should remain stable.
  • the monoamides to be used as emulsifiers for the fuels according to the invention have a pronounced rust protection effect.
  • methylpolyether amides previously used, for example are largely ineffective.
  • the other emulsifiers described so far for use in fuels show a rather increased rust formation in the presence of water - probably due to their degreasing effect.
  • the type of emulsifier according to the invention does not lead to increased swelling or detachment, neither in the plastic parts coming into contact with the fuel system nor in the paint surfaces, as can be observed with the esters of the polyethers.
  • Another advantage of the fuels according to the invention is that the use of lead tetraalkylene with the required extremely low value for the maximum workplace concentration (MAK value) of 0.01 ppm can be avoided. Furthermore, the "fluids" (or so-called scavenger, cf. Chemiker-Zeitung 97 (1973) No. 9, p. 463) necessary for removing the lead oxide in the engine can be omitted, which are classified in Class III B in the last accident prevention regulations (accident prevention regulations of the professional association of the chemical industry, appendix 4, list of MAK values from 01.10.1978).
  • the lowering of the temperature of the combustion process reduces the amount of pollutants in the exhaust gas (e.g. the NO content) and because of this "built-in cooling", the "lean" mixture can be used economically. It is no longer necessary to lower the combustion chamber temperature by means of a "rich” mixture, which corresponds to an unnecessarily increased fuel consumption. Since the additives are emulsifiers, aggregate contamination due to their detergent effect is also avoided.
  • Fuel-water emulsion according to the invention is particularly suitable for achieving a more favorable specific consumption and for solving the heat and exhaust gas problems.
  • Another advantage of the fuels according to the invention which contain emulsifiers and water and, if appropriate, alcohols is that their electrostatic charge is greatly reduced, so that a substantial danger when handling fuels is reduced (cf. Haase, static electricity as a danger, Verlag Chemie, Weinheim / Bergstrasse 1968, especially pages 69, 96 - 99, 114 and 115).
  • the electrostatic charge of the fuels according to the invention is so low that dangerous discharges can no longer occur.
  • the normal gasoline used shows values around 1.10 12 ⁇ .am for the specific volume resistance at 20 ° C, whereas the fuel according to the invention generally has a volume resistance of less than 1.10 10 ⁇ .cm, for example 1 . 10 7 to 1.10 10 ⁇ cm, on.
  • the specific volume resistance of the fuels according to the invention is 1.10 to 9.10 9 ⁇ ⁇ cm. At values below 10 10 ⁇ ⁇ cm there is no longer any danger from electrostatic charging when filling, decanting and draining.
  • the ignition of the fuel emulsions of the invention is in no way impaired, so that vehicles even after he sauwöchi g, jump when starting outdoor verbrachter break without delay.
  • This operational safety is also achieved by the excellent storage stability of the emulsions to be used according to the invention, which do not settle water in the carburetor, in the gasoline pump or in the tank - not even in small quantities.
  • Previously known emulsifier systems tend - particularly because of the by-products they contain - to form these so-called water sumps.
  • the viscosity at 20 ° C was 0.96 m PA s and the throughput times through a Bosch gasoline filter did not differ from that of an equal amount of gasoline.
  • An Opel Kadett with an output of 45 hp and a displacement of 1.1 liters was tested on an HPA tester (roller test bench) for 15 minutes at 100 km / h speed and with a resistance of 20 kg on the rollers.
  • the fuel was fed to the carburetor separately from a measuring vessel. In accordance with the higher surface viscosity and higher density, the idle and full load nozzles have been slightly enlarged.
  • the outside temperature temperature was 14 ° C. The following consumption was determined from the measured fuel quantity and the number of kilometers traveled at approx. 100 km / h:
  • the car could be driven with one tank of the fuel emulsion and restarted immediately after being left standing.
  • the CO exhaust gas values were 2.5 vol%.
  • This emulsion can be used for carburetor engines at temperatures above 15 ° C.
  • This fuel was used to fuel a Fiat 128 motor vehicle with 55 hp and a displacement of 1180 cc that had previously been run on super fuel. With a slight increase in the suction pressure in the carburetor by partially activating the choke, the vehicle could be used for lively city traffic without any noticeable loss of driving characteristics. An accelerating knock (ringing), as is found in gasoline of insufficient quality, was not observed when the engine was cold or warm. The low contamination of the candles after the short-distance traffic was striking.
  • the fuel opal formed a milky water-in-oil emulsion, and had a viscosity of 1.1 mPa s, which showed no gel-like Schlieren also at -15 0 C.
  • Example 5 For better handling of the highly viscous emulsifier mixture from Example 5, the 3% emulsifier with 3% gasoline and 3% water are formed into a clear, low-viscosity solution. This can then be easily dissolved in 64% petrol, possibly using mechanical dosing devices, and immediately emulsified with 22% water. The fuel of Example 5 is obtained in the same composition and quality.
  • This emulsion can be used directly or can be mixed with 5% methanol if low outside temperatures are expected.
  • a car with a 2-liter diesel engine could be operated without impairment.
  • the fuel could be obtained in the same quality with the castor fatty acid amide with 1 mol of ethylene oxide, which can be produced in technical quality from 1 mol of castor oil and 2 mol of ethanolamine at 160 - 180 ° C in about 5 hours, if this instead of the coconut fatty acid amide with 1 Mol ⁇ O was used.
  • This fuel can be used in a diesel powered vehicle without the difficulties of an unstable and stratified fuel.
  • a regular gasoline which is free from lead alkylene and its "fluids", is used with a share of 79%; 1.2% addition product of 1 mol oleic acid amide and 7 mol ethylene oxide (containing less than 0.8% PEG (polyethylene glycol) and less than 0.07% salts by purification) and 1.8% coconut fatty acid diethanolamide are dissolved therein.
  • An opal emulsion is prepared by stirring in a mixture of 15% water and 4% methanol. The density is 0.778. This fuel was run in a 1.7 1 Opel record; the services corresponded to those prescribed for this vehicle. The consumption is the same as for the usual (water and emulsifier free) fuels.
  • Example 10 The fuel of Example 10 according to the invention was measured in a 3-year-old vehicle for the CO content in the exhaust gas with the engine at operating temperature while idling. The value was 0.3% CO. Regular gasoline gave 3.0% CO. Mixtures of this gasoline with 15% methanol or 15% ethanol led to CO values that deviate less than 0.3% from the value of normal gasoline (details in DE-OS 2 806 673, Figure 2, confirm our measurements for ethanol) .
  • Lead-free regular gasoline was processed into a fuel according to the invention as follows: 80% normal gasoline, 1.2% adduct from 1 mol oleic acid amide + 7 mol AIO, 1.8% coconut fatty acid diethanolamide (made from coconut oil and diethanolamine) were mixed; then 15% water, 2% methanol and 1% ethanol were emulsified in with stirring.
  • This opal fuel brings the top speed in a Mercedes 250 with 95 kW (130 HP) engine power.
  • the main nozzle was adapted to the slightly changed behavior of the fuel by expanding from 97.5 to 105.
  • the consumption was worth, on a reel stand under high load (180 kp), to be equated with premium gasoline. No engine knock was observed despite the normal use of petrol.
  • the following diesel fuel was formulated for the operation of a small truck: in 82.5% diesel oil with 0.9% addition product from 1 mol oleic acid amide + 7 mol ⁇ O, 2.1% coconut fatty acid diethanolamide (made from coconut fat and diethanolamine) and 0.5% 2- Ethylhexanol was emulsified with 14% water.
  • This fuel satisfactory driving and consumption values could be achieved in short-haul traffic.
  • Compared to conventional diesel fuel however, only a barely noticeable contamination was observed within 3 minutes when a partial flow was removed from the exhaust gases over a white filter paper, while the diesel fuel without emulsifiers and water caused the filter to become very black.
  • This opal fuel emulsion was used in a VW vehicle ( ⁇ 1.6 liter engine, 62 kw (85 PS)) under DIN consumption conditions 8.4 liters / 100 km. In short-haul traffic, this value was 9.1 1/100 km. The same consumption values were measured with normal gasoline under the same conditions.
  • Example 14 In 75% of the gasoline mixture of Example 14, 2% of a coconut fatty acid ethanol amide which had been reacted with one mole of ethylene oxide under the usual oxyethylation conditions and 1% oleic acid amide with 7 ⁇ O were dissolved. A mixture of 10% water and 2% ethanol was emulsified therein. The same values as in Example 14 were achieved with the fuel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Catalysts (AREA)
  • Magnetic Heads (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

Die Erfindung betrifft Kraftstoffe für Verbrennungsmaschinen wie Otto- und Dieselmotoren sowie Rotationskolbenmaschinen und Turbinen, die in den für die jeweiligen Aggregate üblichen Treibstoffen Emulgatoren bzw. Emulgatormischungen und Wasser sowie gegebenenfalls Alkohole enthalten.

Description

  • Die Erfindung betrifft Kraftstoffe für Vorhrcnnungskraftmaschinen wie Otto- und Dieselmotoren sowie Rotationskolbenmaschinen und Turbinen, die in den für die jeweiligen Aggregate üblichen Treibstoffen Emulgatoren bzw. Emulgatormischungen und Wasser sowie gegebenenfalls Alkohole enthalten.
  • Die Verwendung von Wasser und Emulgatoren in Kraftstoffen zur Förderung der Verbrennung ist bereits bekannt geworden (DOS 1 545 509 und DOS 2 633 452). So wird z.B. das Klopfverhalten von Benzin in höherverdichteten Motoren durch Wasser stärker positiv beeinflußt als durch den vielfach vorrgeschlesenen Methanolzusatz (Motorzeitschrift, Jahrg. 37, Kr.5, S 187 (1976); SAE-Veröffentlichung 750 123). Bei den dabei bisher eingesetzten Emulgatoren muste jedoch eine Reihe von zum Teil erheblichen Nachteilen in Kauf genommen werden, insbesondere die mangelhafte Kältestabilität.
  • Es wurden nun Kraftstoffe für Verbrennungskraftmaschinen, die einen nichtionischen Emulgator, Wasser und gegebenenfalls einen Alkohol enthalten, gefunden, die dadurch gekennzeichnet sind, daß sie als Emulgator ein Anlagerungsprodukt von Äthylenoxid oder Propylenoxid an ein Carbonsäureamid mit 8 - 22 Kohlenstoffatomen enthalten.
  • Bevorzugt enthalten die erfindungsgemäßen Kraftstoffe 40 - 95 Gew.-% Kohlenwasserstoffe, 0,5 - 6 Gew.-% eines nichtionischen Emulgators der Formel
    Figure imgb0001
    in der
    • R für einen gegebenenfalls substituierten, geradkettigen oder verzweigten oder cyclischen, gesättigten oder ungesättigten Kohlenwasserstoffrest steht,
    • Y die Gruppierung
      Figure imgb0002
      bedeutet, wobei
    • R2 Wasserstoff oder Methyl bedeutet, und in der
    • n für eine ganze Zahl von 1 bis 50 steht, und
    • R1 Wasserstoff darstellt oder die Bedeutung der Gruppierung (̵Y)̵nH hat,
    • 0 - 20 Gew.-% eines 1 - 8 Kohlenstoffatome enthaltenden Alkohols, der geradkettig oder verzweigt, gesättigt oder ungesättigt sein kann, und
    • 0,5 - 35 Gew.=% Wasser.
  • Besonders bevorzugt ist eine Kraftstoffzusammensetzung mit 60 - 95 Gew.-% eines Kohlenwasserstoffs oder Kohlenwasserstoffgemisches, 1,0 - 3,5 Gew.-% eines oder mehrerer Emulgatoren der Formel (I), gegebenenfalls 0,5 - 10 Gew.-% eines C1-C8-Alkohols und Wasser als Rest.
  • Die in den erfindungsgemäßen Kraftstoffen enthaltenen Kohlenwasserstoffe sind im allgemeinen die für diesen Zweck üblichen Gemische, wie sie mit ihren physikalischen Daten in der DIN-Vorschrift 51 600 oder in der United States Federal Specification VV-M-561 a-2, 30. Oktober 1954, gekennzeichnet sind. Es sind aliphatische Kohlenwasserstoffe vom gasförmigen, gelösten Butan bis zu C20-Kohlenwasserstoffen (als Restfraktion des Dieselöls), z.B. cycloaliphatische, olefinische und/oder aromatische Kohlenwasserstoffe, natürliche naphthenbasische oder raffinierte technische Kohlenwasserstoffe. Bevorzugt enthalten die erfindungsgemäßen Zusammensetzungen keine Bleialkyle und ähnlich giftige Additive.
  • Der nichtionische Emulgator stellt vorzugsweise ein Fettsäureamid dar, das durch Anlagerung von 1 bis 50 Mol Äthylenoxid oder Propylenoxid an ein Fettsäureamid zustandegekommen zu denken ist, mit der Formel
    Figure imgb0003
    in welcher R, R2 und n die oben angegebene Bedeutung haben.
  • Der Rest R bedeutet im allgemeinen den Rest einer gesättigten oder ungesättigten Carbonsäure, die hinsichtlich ihres Molekülaufbaus in weitesten Grenzen variiert werden kann. Beispielsweise seien Fettsäuren genannt, wie z.B. Octan-, Decan-, Laurin-, Myristin-, Palmitin-, Stearin-, Behen-, Arachinsäure oder Ölsäure, Erucasäure, Rizinolsäure oder deren Gemische, wie sie z.B. im Kokosfett, Palmöl, Sonnenblumenöl, Safloröl, Sojaöl, Rizinusöl, Walöl, Fischöl, Talgfett, Schweinefett vorkommen.
  • Die vorgeschlagenen Emulgatoren der Formel (I) sind bereits bekannt (vgl. M.J.Schick, Nonionic Surfactans, Volume 1, Seite 209-211; M.Dekker, New York 1976); sie sind physiologisch sehr verträglich (Verwendung in Handwaschmitteln) und biologisch abbaubar. Die Rohstoffe von der Fettseite her sind in großer Menge vorhanden und auf lange Zeit auch vermehrbar, da sie von fossilen Lagerstätten unabhängig sind. Selbstverständlich sind auch synthetische Säuren einsetzbar, wie sie bei der Paraffinoxidation oder bei der Oxidation von α- Olefinen oder Tri- und Tetrapropylen entstehen. Werden die Amide aus den natürlichen Triglyceriden hergestellt, so können die Monoglyceride dieser Fette noch enthalten sein, wenn nur zwei der Fettsäurereste des Triglycerids für die Amidbildung genutzt werden.
  • Der Oxiäthylierungsgrad, d.h. Art und Zahl der Gruppierungen Y der Formel (I), ist in weiten Grenzen variierbar. Vorteilhafterweise werden als Emulgatoren Verbindungen der Formel (I) eingesetzt, die Addukte von 1 - 3 Mol Äthylenoxid an 1 Mol Carbonsäureamid und/oder von 5 - 25 Mol Äthylenoxid und/oder Propylenoxid an 1 Mol Carbonsäureamid darstellen. Beispielsweise kann dabei der Gehalt an 1-3:1-Addukt 15 - 70 Gew.-% und der Gehalt an 5-25:1-Addukt 30 - 85 Gew.-% des erfindungsgemäßen Kraftstoffs betragen. Besonders bevorzugt ist der Emulgator das Addukt von 1 - 2 Mol Äthylenoxid an 1 Mol Fettsäureamid (gegebenenfalls vermischt mit herstellungsbedingten Anteilen eines Fettsäuremonoglycerids) und/oder das Addukt von 5 - 10 Mol Äthylenoxid und/oder Propylenoxid an 1 Mol Fettsäureamid und gegebenenfalls das Addukt von 20 - 30 Mol Äthylenoxid an 1 Mol Fettsäureamid.
  • Die Herstellung der Emulgatoren geschieht am vorteilhaftesten über die Fettsäuren und Äthanolamin (vgl. M.Schick, Nonionic Surfactants, a.a.0, S. 213 - 214). Aus diesen Komponenten läßt sich durch Wasserebspaltung bei 160-180°C in etwa 60 - 90 Minuten ein erfindungsgemäßes, 1 Mol Äthylenoxid enthaltendes Fettsäureamid mit sehr hohem Reinheitsgrad herstellen. Wenn man vom Fettsäureamid ausgeht, (vgl. M.Schick, Nonionic Surfactants, a.a.O.,S.213) addiert man 1 Mol Äthylenoxid, vorteilhaft bei erhöhter Temperatur, z.B. bei 100 - 140oC, eventuell unter schwach saurer oder schwach basischer Katalyse. Zur Erzielung einer größeren Gleichmäßigkeit der Produkte kann es zweckmäßig sein, erst vom 1:1 Addukt an mit den üblichen Oxialkylierungskatalysatoren, wie Natriumhydroxid, Natriummethylat, Kaliumhydroxid,zu arbeiten und die gewünschte Menge Äthylenoxid unter Druck zu addieren. Wenn van natürlichen Fett ausgegangen wird, setzt man dieses mit 2 Mol Äthanolamin um. Nach etwa 2 - 5 Stunden und ca. 140 - 180°C Reaktionstemperatur können im allgemeinen kein Äthanolamin und kein Triglycerid mehr nachgewiesen werden. Diese 1:2 Mol-Mischung von Fettsäure-mono- glycerid.und Fettsäureamid-1:1-Äthylenoxid-Addukt kann vorteilhafterweise in einer Menge von 15 - 70 Gew.-% des nichtionischen Emulgators eingesetzt werden.
  • Die nichtionischen Emulgatoren können von der technischen Herstellung her Verunreinigungen enthalten, die aus Verunreinigungen im Vorprodukt, z.B. aus dem Äthylenoxid stammen, durch Feuchtigkeit bedingt sind oder aus dem Oxiäthylierungskatalysator herrühren. Es handelt sich dabei bevorzugt um Polyäthylenglykole, die für die Verschlechterung der Emulsionsqualität und für die Bildung eines wäßrigen Bodensatzes verantwortlich sein können. Falls sie in Mengen von über 1 % in den Emulgatoren vorliegen, empfiehlt es sich, sie durch eine der bekannten Reinigungsoperationen für nichtionische Emulgatoren zu entfernen z.B. gemäß DE-PS 828 839. Hierfür eignet sich im technischen Maßstab vorzugsweise eine neuartige Reinigungsmethode, wie sie in Patentanmeldung P 28 54 541.7 vorgeschlagen wird.
  • Von den niederen Alkoholen wird in den erfindungsgemäßen Kraftstoffen Gebrauch gemacht, um die Spontanität der Emulsion, die Kältestabilität und die Temperaturabhängigkeit bei der Emulgierung des Wassers zu steuern. Die Spontanität läßt sich im allgemeinen mit Hilfe von Mischemulgatoren verschiedener Ionogenität hervorrufen. Da in einem Motorentreibstoff aus Korrosicnsgründen nur nichtionische und rückstandsfrei verbrennbare Emulgatoren ohne Schwierigkeiten verwendet werden können, muß es als ausgesprochen überraschend bezeichnet werden, daß mit den erfindungsgemäßen Emulgatoren spontane Wasser-in-öl-Emulsionen erhalten werden. Die erfindungsgemäßen Kraftstoffe weisen infolgedessen eine erheblich verbesserte Kältestabilität auf, die nicht nur darin besteht, daß die Bildung von Eiskristallen verhindert wird, sondern auch auf das Nichtzustandekommen von Gelstrukturen, die einen unkontrollierten Viskositätsanstieg verursachen können, zurückzuführen ist.
  • Als Alkohole seien geradkettige oder verzweigte aliphatische Alkohole sowie cycloaliphatische Alkohole genannt wie Methanol, Äthanol, Propanol, Isopropanol, Butanol, iso-Butanol, tert.-Butanol, Amylalkohol, isoAmylalkohol, Hexylalkohol, 1,3-Dimethyl-butanol, Cyclohexanol, Methylcyclohexanol, Octanol, 2-Äthyl-hexanol. Auch Gemische dieser Alkohole sind gut verwendbar. Bevorzugt werden technisch gut zugängliche Alkohole eingesetzt, z.B. Methanol, Äthanol, Isopropanol, iso-Butanol, 2-Äthylhexanol.
  • Die erfindungsgemäße Kraftstoff-Emulsion wird durch Verrühren des Wassers in die Lösung des Emulgators in dem gegebenenfalls Alkohol enthaltenden Kohlenwasserstoff hergestellt, wobei vorzugsweise keine weitere Verteilungsenergie liefernden Maschinen eingesetzt werden. In einer Abwandlung hiervon kann der Emulgator, wahlweise auch der Alkohol, auf Benzin und/ oder Wasser verteilt werden.
  • Nach Bildung der Emulsion ist es zweckmäßig, die Viskosität der Emulsion nicht auf wesentlich höhere Werte als 10 mPA s (vgl.DIN-Vorschrift 9040) ansteigen zu lassen, denn eine Viskosität von über 100 PA s kann bereits dazu führen, daß die normalen Filter, Pumpen und Düsen der Kraftfahrzeuge nicht mehr störungsfrei passiert werden können. Vorzugsweise empfiehlt es sich daher, für die erfindungsgemäßen Kraftstoffe eine Viskosität von 5 m PA s,z.B. für Benzinemulsionen unter 2 m PA s, einzuhalten. Die Viskosität sollte auch bei Abkühlung auf ca. -15°C nicht wesentlich ansteigen, und die Emulsion soll stabil bleiben.
  • Die für die erfindunasaemäßen Kraftstoffe als Emulgatoren einzusetzenden Monoamide, insbesondere solche der Formel (II), zeigen eine ausgeprägte Rostschutzwirkung. Bislang beispielsweise eingesetzte Methylpolyätheramide sind demgegenüber weitgehend wirkungslos. Die übrigen bisher für den Einsatz in Kraftstoffen beschriebenen Emulgatoren zeigen - wahrscheinlich aufgrund ihrer entfettenden Wirkung - in Gegenwart von Wasser eine eher vermehrte Rostbildung.
  • Weiterhin führt der erfindungsgemäße Emulgatortyp weder bei den mit dem Kraftstoffsystem in Berührung kommenden Kunststoffteilen noch den Lackflächen zu vermehrten Quellungen oder Ablösungen, wie dies bei den Estern der Polyäther beobachtet werden kann.
  • Ein weiterer Vorteil der erfindungsgemäßen Kraftstoffe besteht darin, daß der Einsatz von Bleitetraalkylen mit dem dafür geforderten extrem niedrigen Wert für die Maximale Arbeitsplatz-Konzentration (MAK-Wert) von 0,01 ppm vermieden werden kann. Es können weiterhin die zur Entfernung des Bleioxids im Motor notwendigen "Fluide" (oder sog. Scavenger, vgl. Chemiker-Zeitung 97 (1973) Nr. 9, S. 463) entfallen, die in den letzten Unfallverhütungsvorschriften in die Klasse III B eingestuft worden sind (Unfallverhütungsvorschriften der Berufsgenossenschaft der chemischen Industrie, Anlage 4, MAK-Werte-Liste vom 01.10.1978).
  • Weiterhin vermindert die Erniedrigung der Temperatur des Verbrennungsvorganges die Schadstoffmengen im Ab-gas (z.B. den NO-Gehalt) und wegen dieser "eingebauten Kühlung" kann mit dem "abgemagerten" Gemisch sparsam gefahren werden. Es ist nicht mehr notwendig, die Brennraumtemperatur durch ein "fettes" Gemisch, das einem unnötig erhöhten Treibstoffverbrauch entspricht, herabzusetzen. Da die Zusätze Emulgatoren sind, wird auch die Aggregatverschmutzung durch ihre Detergent-Wirkung vermieden.
  • Das Verhältnis von genutztem und nur maschinen-technisch notwendigem Treibstoff ist natürlich bei schnelllaufenden Antriebsaggregaten besonders ungünstig, wie z.B. beim Wankelmotor und bei Turbinen, die ihre Antriebskraft nur bei hohen Umdrehungszahlen entfalten. Außerdem führen die notwendigen Verbrennungswärmen hier schnell zu Wärmestauproblemen und damit auch zu ungünstigen Abgaswerten. Hier ist der Einsatz der erfindungsgemäßen Treibstoff-Wasser-Emulsion besonders dazu geeignet, einen günstigeren spezifischen Verbrauch zu erzielen und die Wärme- und Abgasprobleme zu lösen.
  • Ein weiterer Vorteil der Emulgatoren und Wasser sowie gegebenenfalls Alkohole enthaltenden erfindungsgemäßen Kraftstoffe besteht darin, daß ihre elektrostatische Aufladung stark herabgesetzt ist, so daß eine wesentliche Gefahr beim Umgang mit Treibstoffen herabgesetzt wird (vgl. Haase, Statische Elektrizität als Gefahr, Verlag Chemie, Weinheim/Bergstraße 1968, insbesondere Seite 69, 96 - 99, 114 und 115). Die elektrostatische Aufladung der erfindungsgemäßen Treibstoffe ist so gering, daß keine gefährlichen Entladungen mehr auftreten können. Das verwendete Normalbenzin zeigt bei 20°C für den spezifischen Durchgangswiderstand Werte um 1.1012 Ω.am, der erfindungsgemäße Treibstoff dagegen weist im allgemeinen einen spezifischen Durchgangswiderstand von kleiner als 1.1010Ω·cm, beispielsweise 1.10 7 bis 1.1010·Ωcm, auf. Bevorzugt beträgt der spezifische Durchgangswiderstand der erfindungsgemäßen Kraftstoffe 1.10 bis 9.109Ω·cm. Bei Werten von unter 1010Ω·cm findet keine Gefährdung durch elektrostatische Aufladung beim Abfüllen, Umfüllen und Auslaufen mehr statt.
  • überraschenderweise bleibt trotz des zum Teil erheblichen Wassergehalts die Brennbarkeit des Treibstoffes - sogar unter Herabsetzung der Rußentwicklung - erhalten. Für erfindungsgemäß zusammengesetzte Dieselkraftstoffe wird die Toleranzgrenze im Treibstoff-LuftVerhältnis bis zum stark belästigenden, rußigen Qualmen der Dieselfahrzeuge weit nach oben verschoben.
  • Die Zündwilligkeit der erfindungsgemäßen Treibstoffemulsionen ist in keiner Weise beeinträchtigt, so daß Fahrzeuge auch nach vielwöchiger, im Freien verbrachter Pause ohne Verzögerung beim Starten anspringen. Diese Betriebssicherheit wird auch durch die hervorragende Lagerstabilität der erfindungsgemäß einzusetzenden Emulsionen erreicht, die weder im Vergaser noch in der Benzinpumpe oder im Tank Wasser - auch nicht in geringen Mengen - absetzen. Die bekannten Schwierigkeiten beim Starten und die Zündaussetzer beim Fahrbetrieb entfallen infolgedessen. Bisher bekannte Emulgatorsysteme neigen - insbesondere wegen der in ihnen enthaltenen Nebenprodukte - zur Bildung dieser sog. Wassersümpfe.
  • Schließlich wird durch den Einsatz der erfindungsgemäßen Kraftstoffe auch noch eine Verbesserung der Oktanzahl erreicht.
  • Die in den folgenden Beispielen enthaltenen Prozentangaben sind, soweit nichts anderes gesagt ist, Gewichtsprozent.
  • Beispiel 1
  • In einem Normaltreibstoff käuflicher Qualität (spe-zifischer Durchgangswiderstand 1.1012S2. cm) werden 2,4 % eines nichtionischen, von Polyäthylenglykol gereinigten ölsäureamids mit 7 Mol Äthylenoxid (Addukt aus 7 Mol Äthylenoxid an 1 Mol ölsäureamid), 0,6 % eines Kokosfettsäureamids mit 1 Mol Äthylenoxid (frei von Esteranteilen) und 1,5 % Isobutanol gelöst.
  • Unter Rühren mit einem Rührwerk (ca. 200 - 300 U/Min.) läßt man in die Benzin-Emulgator-Lösung (70,5 % Normalbenzin) 25 % Wasser einlaufen. Wenn die Emulsion durch und durch umgewälzt worden ist, ist ein opalmilchiger Treibstoff zur Verwendung fertig. Unter dem Mikroskop sind bei 900-facher Vergrößerung nur gleichmäßige, feinste Tröpfchen und keine, vom Objektträger breitgedrückten Wasserinseln sichtbar. Der so hergestellte Kraftstoff besitzt einen spezifischen Durchgangswiderstand von 3.109Ω·cm.
  • Die Viskosität bei 20°C betrug 0,96 m PA s und die Durchlaufzeiten durch ein Boschbenzinfilter unterschieden sich nicht von der einer gleichen Menge Benzin. Ein Opel Kadett von der Leistung 45 PS mit 1,1 Liter Hubraum wurde auf einem HPA-Testgerät (Rollenprüfstand) 15 Minuten bei 100 km/h Geschwindigkeit und mit einem Widerstand von 20 kg auf den Rollen geprüft.
  • Der Treibstoff wurde dem Vergaser separat aus einem Meßgefäß zugeführt. Der höheren Oberflächenviskosität und höheren Dichte entsprechend wurden die Leerlauf-und die Vollastdüse etwas vergrößert. Die Außentemperatur betrug 14°C. Aus der gemessenen Treibstoffmenge und der bei ca. 100 km/h zurückgelegten Kilometerzahl wurde folgender Verbrauch ermittelt:
    Figure imgb0004
  • Mit einer Tankfüllung der Treibstoffemulsion konnte der Wagen gefahren und nach beliebigem Stehenlassen direkt wieder gestartet werden. Die CO-Abgaswerte lagen bei 2,5 Vol-%.
  • Beispiel 2
  • 3 % des in Beispiel 1 verwendeten Emulgators Ölsäureamid mit 7 Mol ÄO (= Äthylenoxid) wird in 72 % Normalbenzin gelöst und durch langsames Einrühren von 25 % Wasser zu einer Emulsion der gleichen Qualität wie in Beispiel 1 verarbeitet. Diese Emulsion ist bei Temperaturen über 15°C für Vergasermotoren einsatzfähig.
  • Beispiel 3
  • Werden der Treibstoffemulsion aus Beispiel 2 noch 0,3 % des 1:1-Addukts aus Rizinusölsäureamid und Äthylenoxid (ÄO) zugegeben, so bleibt die Gebrauchsfähigkeit bei 0°C erhalten.
  • Beispiel 4
  • Zur Herstellung eines Treibstoffes wurden in eine Mischung aus 70 % bleifreiem Normal-Benzin, 2,4 % Ölsäureamid mit 7 Mol Äthylenoxid, 0,6 % technischem Kokosfettsäureamids mit 1 Mol ÄO (hergestellt durch Erhitzen von 1 Mol Kokosfett mit 2 Mol Äthanolamin auf 1600C bis kein freies Amin mehr titriert werden konnte) und 5 % eines Gemisches aus Methanol und iso- Butanol (4:1) unter gutem Rühren bei Außentemperaturen von ca. 15°C 22 % Wasser einemulgiert.
  • Es wurde eine stabile, opal-milchige Emulsion erhalten, die eine Viskosität von unter 1 m PA s aufwies und auch bei -100C noch keine gelartigen Schlieren bildete.
  • Mit diesem Treibstoff wurde ein Kraftfahrzeug vom Typ Fiat 128, mit 55 PS Leistung und 1180 ccm Hubraum, betankt, das bis dahin mit Superkraftstoff gefahren worden war. Bei leichter Erhöhung des Saugdruckes im Vergaser durch eine teilweise Betätigung des Chokes konnte mit dem Fahrzeug ein lebhafter Stadtverkehr ohne nennbare Einbußen der Fahreigenschaften absolviert werden. Ein Beschleunigungsklopfen (Klingeln), wie es bei Benzin ungenügender Qualität festgestellt wird, ließ sich weder bei kaltem noch betriebswarmem Motor beobachten. Auffallend war die geringe Verschmutzung der Kerzen nach dem Kurzstreckenverkehr.
  • Beispiel 5
  • Mit dem wie folgt hergestellten Treibstoff wurde ein 1,7 Liter-Opel Rekord gefahren:
    • Eine Mischung aus 67 % eines bleifreien Normalkraftstoffes, 2,25 % ölsäureamid mit 7 Mol Äthylenoxid (gereinigt), 0,75 % eines technischen Kokosfettsäureamids mit 1 Mol Äthylenoxid (hergestellt durch Amidierung von 1 Mol Kokosfett mit 2 Mol Äthanolamin bei 160 - 170°C) und 5 % eines Alkoholgemisches aus Methanol, Isobutanol, 2-Äthylhexanol (17:2:1) wurde bei 11 - 14°C (Erdtanktemperatur) mit 25 % Wasser unter Rühren emulgiert.
  • Der Treibstoff bildete eine opal-milchige Wasser-in- Öl-Emulsion und hatte eine Viskosität von 1,1 m PA s, die auch bei -150C keine gelartigen Schlieren zeigte.
  • Im Vergaser des Fahrzeugs wurden die Leerlauf- und die Hauptdüse durch Düsen mit ca. 10 % und 15 % erweitertem Durchmesser ersetzt. Bei normalem Mischbetrieb von.Stadtverkehr und Autobahn wurde ein Verbrauch von 10,7 - 11,7 1 ermittelt. Dieser Verbrauch wurde vorher auch mit Benzin gemessen. Das Fahrverhalten und die Höchstgeschwindigkeit entsprach der vorher mit verbleitem Benzin gemessenen. Die Beobachtung des Zustandes der Kerzen wies auf eine saubere, rückstandsfreie Verbrennung bei diesem gemischten Verkehr hin. Abgasmessungen zeigten einen CO-Wert von 0,5 - 1,0 % an, während das gleiche Fahrzeug mit Superbenzin bei CO-Werten von 3,5 - 4,5 % lag. Beim Dauerbetrieb konnte eine weniger starke Aufheizung des Motors beobachtet werden, als beim Fahren mit vorgeschriebenem Benzin gemessen wird.
  • Beispiel
  • Zur besseren Handhabung der hochviskosen Emulgatormischung aus Beispiel 5 werden die 3 % Emulgator mit 3 % Benzin und 3 % Wasser zu einer klaren, niedrigviskosen Lösung formiert. Diese kann dann leicht, eventuell unter Verwendung mechanischer Dosiervorrichtungen, in 64 % Benzin klar gelöst werden und direkt anschließend mit 22 % Wasser emulgiert werden. Man erhält den Treibstoff nach Beispiel 5 in der gleichen Zusammensetzung und Qualität.
  • Beispiel 7
  • Für den Betrieb eines Dieselmotors wurde der folgende Treibstoff hergestellt:
    • 70,5 % handelsübliches Dieselöl, 2,3 % Stearinsäureamid und 5 Mol Äthylenoxid (gereinigte Ware), 0,7 % Kokosfettsäureamid und 1 Mol Äthylenoxid und 1,5 % Isobutanol werden miteinander gelöst, und sodann werden 25 % Wasser einemulgiert. Es genügt die Anwendung eines einfachen Rührwerkes.
  • Diese Emulsion kann direkt verwendet werden oder bei Erwartung von tiefen Außentemperaturen noch mit 5 % Methanol vermischt werden. Ein Wagen mit einem 2-Liter-Dieselmotor konnte ohne Beeinträchtigung betrieben werden.
  • Der Treibstoff ließ sich mit dem Rizinusfettsäureamid mit 1 Mol Äthylenoxid, das in technischer Qualität aus 1 Mol Rizinusöl und 2 Mol Äthanolamin bei 160 - 180°C in etwa 5 Stunden herstellbar ist, in der gleichen Qualität erhalten, wenn dies anstelle des Kokosfettsäureamids mit 1 Mol ÄO eingesetzt wurde.
  • Beispiel 8
  • Es wird wie in Beispiel 7 verfahren, wobei jedoch ein Dieselöl der folgenden Zusammensetzung eingesetzt wird:
    Figure imgb0005
  • Ohne die Schwierigkeiten, wie sie durch einen instabilen und sich in Schichten trennenden Treibstoff entstehen können, ist dieser Treibstoff in einem dieselbetriebenen Fahrzeug verwendbar.
  • Beispiel 9
  • 67 % Normalbenzin wurden mit 1,8 % Kokosfettsäureamid + 2 Mol ÄO (hergestellt aus Kokosfettsäuren und Diäthanolamin im Verhältnis 1:1), 1,2 % ölsäureamid und 7 Mol ÄO (gereinigt) und 5 % Alkoholgemisch (84 % Methanol, 10 % Isobutanol, 6 % 2-Äthylhexanol) vermischt und anschließend mit 25 % Wasser versetzt, das eingerührt wurde. Mit diesem niedrigviskosen und stabilen Treibstoff lassen sich die in Beispiel 4, 5 und 6 beschriebenen Fahrzeuge in gleicher Weise wie dort beschrieben, betreiben.
  • Die gleichen guten Ergebnisse werden erzielt, wenn anstelle des Alkoholgemisches 1,5% Isopropanol verwendet werden (unter Erhöhung des Benzinanteils auf 70,5%).
  • Beispiel 10 -
  • Ein Normalbenzin, das frei von Bleialkylen und dessen "Fluiden" ist, wird mit einem Anteil von 79 % eingesetzt; darin werden 1,2 % Additionsprodukt aus 1 Mol ölsäureamid und 7 Mol Äthylenoxid (durch Reinigung weniger als 0,8 % PEG (Polyethylenglykol) und weniger als 0,07 % Salze enthaltend) und 1,8 % Kokosfettsäurediäthanolamid gelöst. Durch Einrühren von einer Mischung aus 15 % Wasser und 4 % Methanol stellt man eine opale Emulsion her. Die Dichte liegt bei 0,778. Dieser Treibstoff wurde in einem 1,7 1 Opel Rekord gefahren; die Leistungen entsprachen dabei den für dieses Fahrzeug vorgeschriebenen. Der Verbrauch ist der gleiche wie für die üblichen (Wasser- und Emulgator-freien) Kraftstoffe. Nach einer Nacht im Freien, bei der die Morgentemperatur -19°C betrug, ließ sich der Motor nach wenigen Sekunden problemlos starten. Eine Vergleichsmessung des Abgaswertes lag für Wasser-und Emulgator-freies Benzin bei 1,5 % CO, für den erfindungsgemäßen Kraftstoff bei 0,1 % CO (gemessen bei betriebswarmem Motor im Leerlauf). Dabei wurde keine Erhöhung des N02-Wertes gemessen.
  • Beispiel 11
  • Der erfindungsgemäße Kraftstoff des Beispiels 10 wurde in einem 3 Jahre alten Fahrzeug auf den CO-Gehalt im Abgas bei betriebswarmem Motor im Leerlauf gemessen. Der Wert betrug 0,3 % CO. Normalbenzin ergab 3.0 % CO. Mischungen dieses Benzins mit 15 % Methanol bzw. 15 % Äthanol führten zu CO-Werten, die weniger als 0,3 % vom Wert des Normalbenzins abweichen (Angaben in der DE-OS 2 806 673, Figur 2, bestätigen unsere Messungen für Äthanol).
  • Beispiel 12
  • Bleifreies Normalbenzin wurde zu einem erfindungsgemäßen Kraftstoff wie folgt verarbeitet: 80 % Normalbenzin, 1,2 % Addukt aus 1 Mol Ölsäureamid + 7 Mol ÄO, 1,8 % Kokosfettsäurediäthanolamid (aus Kokosfett und Diäthanolamin hergestellt) wurden vermischt; sodann wurden unter Rühren 15 % Wasser, 2 % Methanol und 1 % Äthanol einemulgiert. Dieser opale Treibstoff bringt in einem Mercedes 250 mit 95 kw (130 PS) Motorleistung die Höchstgeschwindigkeit. Dafür wurde die Hauptdüse dem etwas veränderten Verhalten des Treibstoffes durch Erweiterung von 97,5 auf 105 angepaßt. Der Verbrauchswert war, auf einem Rollenstand bei hoher Belastung (180 kp) ermittelt, dem Superbenzin gleichzusetzen. Ein Motorklopfen war trotz des Normalbenzineinsatzes nicht zu beobachten.
  • Es wurden die gleichen Ergebnisse erzielt, wenn ein oxyalkyliertes ölsäureamid (aus ölsäure, Aminopropanolamin durch Wasserabspaltung und anschließende Oxy- äthylierung mit 6,5 Mol Äthylenoxid hergestellt) verwendet wurde anstelle der 1,2 % des ölsäureamids mit 7 Äthylenoxideinheiten.
  • Beispiel 13
  • Für den Betrieb eines Kleinlastwagens wurde folgender Dieselkraftstoff formuliert: In 82,5 % Dieselöl mit 0,9 % Additionsprodukt aus 1 Mol ölsäureamid + 7 Mol ÄO, 2,1 % Kokosfettsäurediäthanolamid (aus Kokosfett und Diäthanolamin hergestellt) und 0,5 % 2-Äthylhexanol wurden 14 % Wasser einemulgiert. Mit diesem Kraftstoff konnten im Kurzstreckenverkehr befriedigende Fahr- und Verbrauchswerte erzielt werden. Gegenüber dem üblichen Dieselkraftstoff wurde jedoch beim Entnehmen eines Teilstroms aus den Abgasen über ein weißes Filterpapier innerhalb von 3 Minuten nur eine kaum merkliche Anschmutzung beobachtet, während der Dieselkraftstoff ohne Emulgatoren und Wasser eine starke Schwärzung des Filters verursachte.
  • Beispiel 14
  • Einem Aromaten- und Additiv-freiem Benzin wurden 2o % Toluol zugemischt. In 85 % dieser Mischung wurden 1,8 % Kokosfettsäurediäthanolamid und 1,2 % Ölsäureamid mit 7 ÄO gelöst; darin wurden 10 % Wasser und 2 % Äthanol emulgiert.
  • Mit dieser opalen Kraftstoffemulsion wurde in einem VW-Fahrzeug (̵1,6 Liter Motor, 62 kw (85 PS)) unter DIN-Verbrauchsbedingungen 8,4 Liter/1oo km verbraucht. Im Kurzstreckenverkehr lag dieser Wert bei 9,1 1/100 km. Mit Normalbenzin wurden unter den gleichen Bedingungen dieselben Verbrauchswerte gemessen.
  • Wenn der in diesem Beispiel beschriebene Kraftstoff direkt nach der Herstellung mit dem genannten Benzingemisch im Verhältnis 1 : 1 verdünnt wurde, ließen sich dieselben Werte bei einem störungsfreien Fahrverhalten erzielen.
  • Beispiel 15
  • In 75 % der Benzinmischung des Beispiels 14 wurden 2 % eines Kokosfettsäureäthanolamids, das unter den üblichen Oxyäthylierungsbedingungen mit einem Mol Äthylenoxid zur Reaktion gebracht worden war, und 1 % Ölsäureamid mit 7 ÄO gelöst. Darin wurde eine Mischung aus 10 % Wasser und 2 % Äthanol emulgiert. Mit dem Kraftstoff wurden dieselben Werte wie in Beispiel 14 erreicht.

Claims (7)

1. Kraftstoffe für Verbrennungskraftmaschinen, die einen nichtionischen Emulgator, Wasser und gegebenenfalls einen Alkohol enthalten, dadurch gekennzeichnet, daß sie als Emulgator ein Anlagerungsprodukt von Äthylenoxid oder Propylenoxid an ein Carbonsäureamid mit 9 - 21 Kohlenstoffatomen enthalten.
2. Kraftstoffe gemäß Anspruch 1, enthaltend
40 - 95 Gew.-% Kohlenwasserstoffe,
0,5 - 6 Gew.-% eines nichtionischen Emulgators
der Formel
Figure imgb0006
in der
R für einen gegebenenfalls substituierten, geradkettigen oder verzweigten oder cyclischen, gesättigten oder ungesättigten Kohlenwasserstoffrest steht,
Y die Gruppierung bedeutet, wobei
Figure imgb0007
R2 Wasserstoff oder Methyl bedeutet, und in der
n für eine ganze Zahl von 1 bis 50 steht, und
R1 Wasserstoff darstellt oder die Bedeutung der Gruppierung (̵Y)̵nH hat,
O - 20 Gew.-% eines 1 - 8 Kohlenstoffatome enthaltenden Alkohols, der geradkettig oder verzweigt, gesättigt oder ungesättigt sein kann, und
0,5 - 35 Gew.-% Wasser.
3. Kraftstoffe gemäß Anspruch 1 und 2, dadurch gekennzeichnet, daß sie als nichtionischen Emulgator das Addukt von 1 - 3 Mol Äthylenoxid an 1 Mol Carbonsäureamid und/oder das Addukt von 5 - 25 Mol Äthylenoxid und/oder Propylenoxid an 1 Mol Carbonsäureamid enthalten.
4. Kraftstoffe gemäß Anspruch 1 - 3, dadurch gekennzeichnet, daß sie als nichtionischen Emulgator das Addukt von 1 - 2 Mol Äthylenoxid an 1 Mol Fettsäureamid und/oder das Addukt von 5 - 10 Mol Äthylenoxid und/ oder Propylenoxid an 1 Mol Fettsäureamid und gegebenenfalls das Addukt von 20 - 30 Mol Äthylenoxid an 1 Mol Fettsäureamid enthalten.
5. Kraftstoffe gemäß Anspruch 1 - 4, enthaltend als Kohlenwasserstoff-Bestandteil gesättigte oder ungesättigte, lineare oder verzweigte aliphatische Kohlenwasserstoffe, naphthenbasische Kohlenwasserstoffe oder aromatische Kohlenwasserstoffe, die vorzugsweise frei von Bleitetraalkylen und deren Lösungsvermittlern sind.
6. Kraftstoffe gemäß Anspruch 1 - 5, gekennzeichnet durch einen spezifischen Durchgangswiderstand von < 1.1010Ω. cm.
7. Verwendung von Kraftstoffen gemäß Anspruch 1 für Ottomotoren, Dieselmotoren, Rotationskolbenmaschinen oder Turbinen.
EP79104931A 1978-12-16 1979-12-05 Kraftstoffe und ihre Verwendung Expired EP0012345B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79104931T ATE1247T1 (de) 1978-12-16 1979-12-05 Kraftstoffe und ihre verwendung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2854540 1978-12-16
DE19782854540 DE2854540A1 (de) 1978-12-16 1978-12-16 Kraftstoffe

Publications (2)

Publication Number Publication Date
EP0012345A1 true EP0012345A1 (de) 1980-06-25
EP0012345B1 EP0012345B1 (de) 1982-06-23

Family

ID=6057488

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79104931A Expired EP0012345B1 (de) 1978-12-16 1979-12-05 Kraftstoffe und ihre Verwendung

Country Status (10)

Country Link
US (1) US4297107A (de)
EP (1) EP0012345B1 (de)
JP (1) JPS5582191A (de)
AT (1) ATE1247T1 (de)
AU (1) AU5392579A (de)
BR (1) BR7908185A (de)
CA (1) CA1137751A (de)
DD (1) DD147854A5 (de)
DE (2) DE2854540A1 (de)
ZA (1) ZA796799B (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2480775A1 (fr) * 1980-04-16 1981-10-23 Elf France Procede pour ameliorer les caracteristiques physico-chimiques de combustion des gasoils
EP0049921A1 (de) * 1980-10-09 1982-04-21 Stamicarbon B.V. Klares, flüssiges Kraftstoffgemisch für Verbrennungsmotoren
US4465494A (en) * 1981-02-17 1984-08-14 Societe Nationale Elf Aquitaine Microemulsion of water in a liquid fuel
DE3628504A1 (de) * 1985-08-28 1987-03-12 Liqui Moly Gmbh Korrosionsinhibitor und diesen enthaltender treibstoff
WO1988004311A1 (en) * 1986-12-10 1988-06-16 Dyno Industrier A/S A method for upgrading of waxy oils to products that can be used as light fuel oils, diesel fuel and other upgraded oils, the products so obtained and an application of the products as substitutes
GB2276175A (en) * 1993-03-17 1994-09-21 Kao Corp Heavy oil fuel emulsion
WO1998056878A1 (en) * 1997-06-09 1998-12-17 Donald Murray Craig Additives enabling blending of polar and non-polar fuel components
WO1999052994A1 (en) * 1998-04-09 1999-10-21 Coval Technologies Limited Solubilising compositon
WO1999052996A1 (en) * 1998-04-09 1999-10-21 Coval Technologies Limited Solubilising process
EP0957152A1 (de) * 1996-01-26 1999-11-17 Kao Corporation Zusatz für dieselöl und dieselölzusammensetzung
WO2000069999A1 (en) * 1999-05-14 2000-11-23 Bertha Andras Additive for stabilizing water-containing fuels and a fuel stabilized with this additive
EP1273652A1 (de) * 2001-07-06 2003-01-08 Chevron Texaco Japan Ltd. Kraftstoffzusatz und denselben enthaltende Kraftstoffzusammensetzung
EP1344756A1 (de) * 2002-03-11 2003-09-17 Kanazawa Institute of Technology Verbundstoff für Baumaterial und Verfahren zur Herstellung von Baumaterial mit diesem Verbundstoff
EP3425517B1 (de) * 2017-07-04 2023-05-31 STMicroelectronics (Grand Ouest) SAS Kommunikationsverfahren zwischen einem master-gerät und n slave-geräten, die über einen synchronen datenbus vom typ spi verbundenen sind, und entsprechendes gerät

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398919A (en) * 1981-11-04 1983-08-16 Akzona Incorporated Polyethoxylated compounds as coal-water slurry surfactants
US4526586A (en) * 1982-09-24 1985-07-02 The United States Of America As Represented By The Secretary Of Agriculture Microemulsions from vegetable oil and aqueous alcohol with 1-butanol surfactant as alternative fuel for diesel engines
US4867752A (en) * 1982-11-30 1989-09-19 Mobil Oil Corporation N-alkyl amides as friction-reducers for lubricants and fuels
JPS59149988A (ja) * 1983-02-16 1984-08-28 Nippon Oil & Fats Co Ltd 燃料油用流動性向上剤
DE3403880A1 (de) * 1984-02-04 1985-08-08 Hoechst Ag, 6230 Frankfurt Fluoralkylgruppen enthaltende salze von ss-alkylaminopropionsaeureestern, verfahren zu ihrer synthese und deren verwendung zur herstellung waessriger, fluoralkylgruppenhaltiger polyacrylatdispersionen
US4505716A (en) * 1984-02-15 1985-03-19 Itt Corporation Combustible coal/water mixture for fuels and methods of preparing same
FR2577141B1 (fr) * 1985-02-13 1993-11-12 Elf France Protection des hydrocarbures contre l'action de microorganismes
US4631071A (en) * 1985-12-18 1986-12-23 Mobil Oil Corporation Cold flow improving fuel additive compound and fuel composition containing same
US4657562A (en) * 1985-10-21 1987-04-14 Mobil Oil Corporation Cold flow improving fuel additive compound and fuel composition containing same
US4639256A (en) * 1985-12-18 1987-01-27 Mobil Oil Corporation Cold flow improving additive compound and fuel composition containing same
US5081333A (en) * 1989-03-17 1992-01-14 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining fluid with a fatty acid amide additive for rust inhibition
USRE35237E (en) * 1989-11-22 1996-05-14 Gunnerman Rudolf W Aqueous fuel for internal combustion engine and method of combustion
AU1900092A (en) * 1991-04-25 1992-12-21 Nalco Fuel Tech Process for reducing nitrogen oxides emissions and improving the combustion efficiency of a turbine
US5344306A (en) * 1991-08-28 1994-09-06 Nalco Fuel Tech Reducing nitrogen oxides emissions by dual fuel firing of a turbine
US5284492A (en) * 1991-10-01 1994-02-08 Nalco Fuel Tech Enhanced lubricity fuel oil emulsions
US5743922A (en) * 1992-07-22 1998-04-28 Nalco Fuel Tech Enhanced lubricity diesel fuel emulsions for reduction of nitrogen oxides
US5453257A (en) * 1992-10-14 1995-09-26 Nalco Fuel Tech Process for adjusting the optimum effluent temperature of a nitrogen oxides reducing treatment agent
US5992354A (en) * 1993-07-02 1999-11-30 Massachusetts Institute Of Technology Combustion of nanopartitioned fuel
US6302929B1 (en) 1994-04-04 2001-10-16 Rudolf W. Gunnerman Aqueous fuel for internal combustion engine and method of preparing
US5725609A (en) * 1996-02-09 1998-03-10 Intevep, S.A. Water in viscous hydrocarbon emulsion combustible fuel for diesel engines and process for making same
US6017369A (en) * 1998-11-23 2000-01-25 Pure Energy Corporation Diesel fuel composition
EP1137743A1 (de) 1998-11-23 2001-10-04 Pure Energy Corporation Dieselbrennstoffzusammensetzung
US6524353B2 (en) * 2000-09-07 2003-02-25 Texaco Development Corporation Method of enhancing the low temperature solution properties of a gasoline friction modifier
SE523228C2 (sv) * 2000-12-15 2004-04-06 Akzo Nobel Nv Bränslekomposition innehållande en kolvätefraktion, etanol och ett additiv med vattensolubiliserande förmåga
US7279017B2 (en) 2001-04-27 2007-10-09 Colt Engineering Corporation Method for converting heavy oil residuum to a useful fuel
WO2002090469A1 (en) * 2001-05-07 2002-11-14 Victorian Chemicals International Pty Ltd Fuel blends
US20040118036A1 (en) * 2002-12-20 2004-06-24 Graskow Brian R. Method of reducing particulate emissions in internal combustion engines
JP2004210984A (ja) * 2003-01-06 2004-07-29 Chevron Texaco Japan Ltd 燃料油組成物および燃料添加剤
US7790924B2 (en) * 2004-11-19 2010-09-07 Chevron Oronite Company Llc Process for preparing alkylene oxide-adducted hydrocarbyl amides
US7341102B2 (en) 2005-04-28 2008-03-11 Diamond Qc Technologies Inc. Flue gas injection for heavy oil recovery
US7744661B2 (en) * 2005-05-13 2010-06-29 Chevron Oronite Company Llc Fuel composition containing an alkylene oxide-adducted hydrocarbyl amide having reduced amine by-products
DE602007011124D1 (de) 2006-02-07 2011-01-27 Colt Engineering Corp Mit Kohlendioxid angereicherte Rauchgaseinspritzung zur Kohlenwasserstoffgewinnung
US7374135B2 (en) * 2006-04-13 2008-05-20 Melanie J. N. Romero Method and apparatus for collecting yard debris
BRPI0710806A2 (pt) * 2006-04-27 2011-08-16 New Generation Biofuels Inc composição de biocombustìvel, método para preparar uma composição de combustìvel emulsificado, combustìvel emulsificado, mistura de combustìvel emulsificado, e, método para preparação de uma mistura de combustìvel emulsificado
DE102009048223A1 (de) 2009-10-05 2011-06-16 Fachhochschule Trier Verfahren zur In-Situ-Herstellung von Treibstoff-Wasser-Gemischen in Verbrennungsmotoren
RU2461605C1 (ru) * 2011-04-11 2012-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кузбасский государственный технический университет имени Т.Ф.Горбачева" (КузГТУ) Многофункциональная присадка к дизельному топливу
DE102014225815A1 (de) 2014-12-15 2016-06-16 Fachhochschule Trier In-situ-Herstellung von Treibstoff-Wasser-Gemischen in Verbrennungsmotoren
EP3931287B1 (de) * 2020-04-27 2024-05-01 Hindustan Petroleum Corporation Limited Wasser-kohlenwasserstoff-brennstoffemulsion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876391A (en) * 1969-02-28 1975-04-08 Texaco Inc Process of preparing novel micro emulsions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2520381A (en) * 1946-06-18 1950-08-29 American Cyanamid Co Condensation of ethylene oxide with carboxylic acid amides
US2736641A (en) * 1952-02-01 1956-02-28 Union Oil Co Fuel oil additive
US4084940A (en) * 1974-12-23 1978-04-18 Petrolite Corporation Emulsions of enhanced ignitibility
US4173455A (en) * 1978-10-11 1979-11-06 The United States Of America As Represented By The Secretary Of The Army Fire-safe hydrocarbon fuels

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876391A (en) * 1969-02-28 1975-04-08 Texaco Inc Process of preparing novel micro emulsions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPANESE PATENTS GAZETTE, Teil I Chemical, Woche X25, 28. Juli 1976 Derwent Publ. Ltd. London, GB, MITSUBISHI OIL K.K.: "Smoke inhibiting fuel compsn-contg dispersed phase aq hydrocarbond acid monionic surfactant" & JP-A-49 124102. *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2480775A1 (fr) * 1980-04-16 1981-10-23 Elf France Procede pour ameliorer les caracteristiques physico-chimiques de combustion des gasoils
EP0049921A1 (de) * 1980-10-09 1982-04-21 Stamicarbon B.V. Klares, flüssiges Kraftstoffgemisch für Verbrennungsmotoren
US4465494A (en) * 1981-02-17 1984-08-14 Societe Nationale Elf Aquitaine Microemulsion of water in a liquid fuel
DE3628504A1 (de) * 1985-08-28 1987-03-12 Liqui Moly Gmbh Korrosionsinhibitor und diesen enthaltender treibstoff
WO1988004311A1 (en) * 1986-12-10 1988-06-16 Dyno Industrier A/S A method for upgrading of waxy oils to products that can be used as light fuel oils, diesel fuel and other upgraded oils, the products so obtained and an application of the products as substitutes
GB2276175A (en) * 1993-03-17 1994-09-21 Kao Corp Heavy oil fuel emulsion
US5437693A (en) * 1993-03-17 1995-08-01 Kao Corporation Heavy oil emulsion fuel composition
EP0957152A1 (de) * 1996-01-26 1999-11-17 Kao Corporation Zusatz für dieselöl und dieselölzusammensetzung
EP0957152A4 (de) * 1996-01-26 2000-01-19 Kao Corp Zusatz für dieselöl und dieselölzusammensetzung
WO1998056878A1 (en) * 1997-06-09 1998-12-17 Donald Murray Craig Additives enabling blending of polar and non-polar fuel components
WO1999052994A1 (en) * 1998-04-09 1999-10-21 Coval Technologies Limited Solubilising compositon
WO1999052996A1 (en) * 1998-04-09 1999-10-21 Coval Technologies Limited Solubilising process
WO2000069999A1 (en) * 1999-05-14 2000-11-23 Bertha Andras Additive for stabilizing water-containing fuels and a fuel stabilized with this additive
EP1273652A1 (de) * 2001-07-06 2003-01-08 Chevron Texaco Japan Ltd. Kraftstoffzusatz und denselben enthaltende Kraftstoffzusammensetzung
EP1344756A1 (de) * 2002-03-11 2003-09-17 Kanazawa Institute of Technology Verbundstoff für Baumaterial und Verfahren zur Herstellung von Baumaterial mit diesem Verbundstoff
EP3425517B1 (de) * 2017-07-04 2023-05-31 STMicroelectronics (Grand Ouest) SAS Kommunikationsverfahren zwischen einem master-gerät und n slave-geräten, die über einen synchronen datenbus vom typ spi verbundenen sind, und entsprechendes gerät

Also Published As

Publication number Publication date
JPS5582191A (en) 1980-06-20
ATE1247T1 (de) 1982-07-15
DE2963192D1 (en) 1982-08-12
CA1137751A (en) 1982-12-21
ZA796799B (en) 1980-12-31
BR7908185A (pt) 1980-07-22
DD147854A5 (de) 1981-04-22
AU5392579A (en) 1980-06-19
EP0012345B1 (de) 1982-06-23
US4297107A (en) 1981-10-27
DE2854540A1 (de) 1980-06-26

Similar Documents

Publication Publication Date Title
EP0012345B1 (de) Kraftstoffe und ihre Verwendung
EP0012292B1 (de) Kraftstoffe und Heizöle, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0289785B1 (de) Verfahren zur Verhinderung oder Verminderung von Ablagerungen in Gemischaufbereitungssystemen von Motoren
EP0356726B1 (de) Kraftstoffzusammensetzungen, die Polycarbonsäureester langkettiger Alkohole enthalten
EP0398100B1 (de) Kraftstoffzusammensetzungen mit einem Gehalt an Alkoxylierungsprodukten
EP0464489A1 (de) Ester enthaltende Kraftstoffe für Ottomotoren und Dieselmotoren
DE3814601A1 (de) Detergenz fuer kohlenwasserstoff-brennstoffe
WO2001038463A1 (de) Verwendung von fettsäuresalzen von alkoxylierten oligoaminen als schmierfähigkeitsverbesserer für mineralölprodukte
DE102018133587B4 (de) Kraftstoffadditiv-mischungen und kraftstoffe, die diese enthalten
DE69115894T2 (de) Motorbrennstoffzusatzmittelzusammensetzung und methode zu ihrer herstellung
GB2336120A (en) Solubilising water and fuel oil
EP0006527A1 (de) Kraftstoffe für Ottomotoren, die Additivmischungen enthalten
DE60023749T2 (de) Temperaturstabiler emulsionsbrennstoff
DE3709195A1 (de) Lagerstabile emulgatoren
DE2102559A1 (de) Neue Imidverbindungen, Verfahren zu deren Herstellung, sowie ihre Anwendung als Kraftstoffzusatzmittel
DE69117442T2 (de) Verfahren zur Herstellung von Reinigungszusatz für Kraftstoffe
DE1520891B2 (de) Schmiermittel
EP0081744B1 (de) Kraftstoffzusätze für Ottomotoren
WO2004041975A1 (de) Kraftstoffe mit verbesserter additivwirkung
DE10143021A1 (de) Schmierfähigkeitsverbesserer für Dieselöl
DE2456598C3 (de) Motorenbenzin
DE69825885T2 (de) Verbesserte ölzusammensetzung
DE2417788A1 (de) Verwendung von amiden von cyclischen polycarbonsaeuren als zusatz zu treibstoffen
DE2645235A1 (de) Treibstoffe fuer ottomotoren
DE102022114815A1 (de) Verfahren zum Entfernen von Ablagerungen aus Verbrennungsmotoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 1247

Country of ref document: AT

Date of ref document: 19820715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2963192

Country of ref document: DE

Date of ref document: 19820812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19821205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19821231

Ref country code: CH

Effective date: 19821231

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19831212

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19831219

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19831231

Year of fee payment: 5

Ref country code: NL

Payment date: 19831231

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19841205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19841206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19850701

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911226

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920901

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 79104931.5

Effective date: 19851007

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT