EP0002744A1 - Härtbare Massen auf Grundlage von modifizierten Polyorganosiloxangemischen mit in situ gebildeten Teilchen und Verfahren zur Herstellung der modifizierten Polyorganosiloxangemische - Google Patents

Härtbare Massen auf Grundlage von modifizierten Polyorganosiloxangemischen mit in situ gebildeten Teilchen und Verfahren zur Herstellung der modifizierten Polyorganosiloxangemische Download PDF

Info

Publication number
EP0002744A1
EP0002744A1 EP78101704A EP78101704A EP0002744A1 EP 0002744 A1 EP0002744 A1 EP 0002744A1 EP 78101704 A EP78101704 A EP 78101704A EP 78101704 A EP78101704 A EP 78101704A EP 0002744 A1 EP0002744 A1 EP 0002744A1
Authority
EP
European Patent Office
Prior art keywords
weight
siloxanes
polyorgano
modified polyorganosiloxane
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78101704A
Other languages
English (en)
French (fr)
Other versions
EP0002744B1 (de
Inventor
John C. Getson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemical Corp
Original Assignee
Wacker Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemical Corp filed Critical Wacker Chemical Corp
Publication of EP0002744A1 publication Critical patent/EP0002744A1/de
Application granted granted Critical
Publication of EP0002744B1 publication Critical patent/EP0002744B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences

Definitions

  • the invention relates to modified polyorganosiloxanes, in particular polyorganosiloxane mixtures, which contain particles formed in situ and which can be cured to products with improved physical properties.
  • modified polyorganosiloxanes Several processes have already become known for the production of modified polyorganosiloxanes. For example, US Pat. Nos. 3,555,109 and 3,776,875 describe the reaction of monomers which contain aliphatic unsaturated bonds with polyorganosiloxanes which have terminal hydroxyl groups or hydrolyzable groups in the presence of free radicals. According to the process described in US Pat. No. 3,631,087, modified polyorganosiloxanes are prepared by gradually introducing a mixture of monomers and radical formers into heated polyorganosiloxanes, while, according to the process described in US Pat. No.
  • the radical formers are gradually added to a preheated mixture of polyorganosiloxanes and an organic monomer which contains aliphatic unsaturated bonds.
  • aliphatic unsaturated monomers with hydrolyzable groups or hydroxyl-containing polyorganosiloxanes in the presence of radical formers and an inert liquid with a boiling point of up to about 100 ° C./760 mm Hg (abs.), in which neither the polyorganosiloxanes to be grafted nor the polymers obtained during the grafting reaction are soluble at the polymerization temperature used in each case, and in US Pat. No.
  • polyolefin-filled polyvinylorganosiloxane mixtures which are obtained by polymerizing aliphatic unsaturated monomers in the presence of Polyvinylorganosiloxanes and radical formers are produced.
  • Polyorganosiloxane elastomers have been widely used due to their thermal stability, their dielectric properties and their aging resistance. However, it has been found that some properties of these polyorganosiloxane elastomers are unsatisfactory in certain applications. For example, the physical properties could not be improved to the desired extent by adding reinforcing fillers or fillers such as polytetrafluoroethylene fibers. When such fibers are dispersed in a polyorganosiloxane in a random distribution, it is difficult to obtain a homogeneous mixture. It was also found that the modified polyorganosiloxanes produced by the processes known hitherto tend to shrink during the curing process, which is particularly disadvantageous when the products are used as molding or casting compounds.
  • the invention is therefore based on It was the object of the invention to provide modified polyorganosiloxane mixtures which contain particles formed in situ and which have been prepared by reacting aliphatic unsaturated monomers with polyorganosiloxanes in the presence of free-radical formers at elevated temperature. These mixtures can be cured together with crosslinking agents, curing catalysts and, if appropriate, other customary additives both at room temperature and in the heat to form elastomers with improved physical properties.
  • the entire reaction products are understood to have been obtained at the polymerization of aliphatically unsaturated monomers in the presence polyorgano-H-siloxanes by means of free radicals, wherein the total organic polymer, or a part thereof by carbon-carbon bond with the polyorganosiloxanes are linked, in addition to organic homo- or copolymers and polyorgano-H-siloxanes.
  • liquid polyorgano-H-siloxanes in the presence of which the polymerization of the aliphatic unsaturated monomers has been carried out to understand, for example, those which have at least 2 SiH groups per molecule and which consist of units of the average formula are constructed in which R is the same or different, monovalent, optionally halogenated hydrocarbon or cyanoalkyl radicals free of aliphatic unsaturated bonds, a is a value from 0 to 2.5, preferably 0.5 to 2.1, b is a value of 0, Has 0005 to 2.0 and the sum of a + b is 1.0 to 3.
  • Examples of monovalent hydrocarbon radicals R are alkyl radicals having 1 to 18 carbon atoms, such as methyl, ethyl, propyl, butyl, hexyl, octyl, decyl and octadecyl radicals; Cycloalkyl radicals, such as cyclopentyl and cyclohexyl radicals; Aryl groups such as phenyl and naphthyl groups; Alkaryl radicals, such as the benzyl radical; alpha- and beta-phenylethyl residues, alpha- and beta-phenylpropyl residues; Halogenated derivatives of the radicals mentioned, such as chloromethyl, trifluoromethyl, chloropropyl, chlorophenyl, dibromophenyl, tetrachlorophenyl and difluorophenyl radicals, and also cyanoalkyl radicals, such as beta-cyanoethyl, gamma-cyan
  • the polyorgano-H-siloxanes have a viscosity in the range from 10 to 10,000,000 cP / 25 ° C, preferably from 10 to 5,000,000 cP / 25 ° C and in particular from 50 to 1,000,000 cP / 25 ° C.
  • the SiH groups can either be arranged terminally and / or along the chain.
  • the polyorgano-H-siloxanes preferably contain at least 2 Si-bonded H atoms per molecule, in particular if the resulting modified polyorganosiloxane mixture is to be cured to give elastomers.
  • Such copolymers generally contain 0.1 to 99.5 mol% of units II and 0.5 to 99.9 mol% of units III.
  • siloxane units II are H-siloxane units (H SiO 1.5 ), methyl-H-siloxane units (H Si CH 3 0), dimethyl-H-siloxane units and di-H-siloxane units (H 2 SiO).
  • Diorganopolysiloxanes containing terminal SiH groups are preferred as polyorgano-H-siloxanes composed of units of the average formula I.
  • R has the meaning given and m has a value which corresponds to a viscosity of 10 to 1,000,000 cP / 25 0 C.
  • All R radicals herein are preferably methyl radicals. Examples of such polyorgano-H-siloxanes are described in US Pat. Nos. 2,823,218, 3,159,662 and 3,220,972.
  • polyorgano-H-siloxanes composed of units of the average formula I are 1,3-dimethyldisiloxane, 1,1,3,3-tetramethyldisiloxane and higher polymers with up to 100,000 Si atoms per molecule.
  • any polymerisable re organic monomers containing aliphatic unsaturated bonds can be used.
  • monomers are straight chain, low molecular weight hydrocarbons such as ethylene, propylene, butylene; vinyl halides such as vinyl chloride and vinyl fluoride; vinyl esters of organic acids such as vinyl acetate; styrene, ring substituted styrenes and other vinyl aromatics such as vinyl pyridine and vinyl naphthalene ; Acrylic acid and its derivatives, such as the salts, esters, amides and acrylonitrile; II-vinyl compounds, such as vinyl carbazole, N-vinyl pyrrolidone and N-vinyl caprolactam; Vinyl groups-containing silanes, such as vinyl triethoxysilane.
  • esters such as allyl methacrylate, allyl acrylate, diallyl adipate, methallyl acrylate, methallyl methacrylate, vinyl acrylate, vinyl methacrylate; Hydrocarbons such as divinylbenzene and vinylcyclohexene; Esters of polyols and acrylic or methacrylic acid, such as ethylene dimethacrylate, tetramethylene diacrylate and pentaerythritol tetramethacrylate, and conjugated diolefins such as 1,3-butadiene, isoprene and chloroprene.
  • Esters such as allyl methacrylate, allyl acrylate, diallyl adipate, methallyl acrylate, methallyl methacrylate, vinyl acrylate, vinyl methacrylate; Hydrocarbons such as divinylbenzene and vinylcyclohexene; Esters of polyols and acrylic or methacrylic acid, such
  • Monomers that provide elastomeric homopolymers generally also impart elastomeric properties to the reaction product, while those that provide plastic homopolymers tend to form reaction products with less elastic properties.
  • the polymerization of the organic monomers in the presence of the polyorgano-H-siloxanes is expediently carried out using a radical generator, which is preferably organic peroxides.
  • a radical generator which is preferably organic peroxides.
  • other radical formers such as azo compounds, in which the two N atoms of the azo bond are bonded to a tertiary C atom and the remaining valences of the tertiary C atom by nitrile, carboxyalkyl, cycloalkylene or alkyl radicals, preferably with 1 to 18 carbon atoms are saturated.
  • the free radicals can also be generated by high-energy radiation.
  • Preferred organic peroxides are those of the general formulas ROOH and ROOR, in which R denotes an organic radical.
  • examples include hydroperoxides such as tert-butyl hydroperoxide, cumene hydroperoxide and decalin hydroperoxide; Dialkyl peroxides such as di-tert-butyl and dicumyl peroxide; cyclic peroxides such as ascaridol and 1,5-dimethylhexane-1,5-peroxide; Peresters such as tertiary butyl perbenzoate, tertiary butyl peroxyisopropyl carbonate and tertiary butyl peroctoate; Keto peroxides such as acetone peroxide and cyclohexanone peroxide.
  • Acyl peroxides and peracids can also be used, although they generally result in less grafting, i.e. poorer yields on the grafted products. It is assumed that the type of radicals formed is responsible for this different mode of action. For example, tertiary alkoxy radicals from the di-tert-butyl peroxide have the tendency to remove H atoms from the Si-bonded organic groups possibly the mechanism of the graft reaction.
  • Acyloxy radicals on the other hand, which originate from an acyl peroxide, for example benzoyl peroxide, are effective polymerization catalysts, but rather ineffective for the removal of H atoms from the Si-bonded organic groups.
  • the amount of radical generator used is not critical. When the more active peroxides are used, amounts as small as 0.05%, based on the weight of the monomers to be polymerized, are usually sufficient. However, larger amounts, such as 3% by weight or more, of the radical formers can also be used to increase the reaction rate. In general, however, amounts of about 5% by weight should not be exceeded, since otherwise excessive crosslinking is promoted, which is associated with an undesirable increase in the viscosity of the reaction mixture.
  • the radical generator mentioned above can be used for any monomers. If, for example, the half-life of the radical generator in toluene is more than 2 hours at the polymerization temperature used in each case, it is advantageous to mix part or all of the radical generator with the polyorgano-H-siloxanes and the aliphatic unsaturated monomers before the polymerization begins. If, on the other hand, the half-life of the radical generator is less than 2 hours under the specified conditions, it is advantageous to add the radical generator in portions or continuously during the polymerization at the temperature used in each case.
  • the polymerization of the organic monomers in the presence of the polyorgano-H-siloxanes can be carried out in the absence or in the presence of a liquid medium which is inert towards both the reactants and the polymerization products and the particles formed in situ.
  • a liquid Media are advantageously used those which have a boiling point below about 130 ° C / 760 mm Hg (abs.) And in which the polymerization products formed do not dissolve at the polymerization temperature.
  • inert liquid media are water, methanol and saturated aliphatic hydrocarbons, aliphatic fluorocarbons and chlorinated hydrocarbons, in which 3 halogen atoms are bonded to at least one carbon atom.
  • Water is preferred as the inert liquid because it is readily available and the monomers, the polyorgano-H-siloxanes and the polymers are insoluble therein. However, it is also possible to use mixtures of several liquids, provided that they meet the conditions mentioned (boiling point below 130 ° C, inert behavior towards starting and end products).
  • temperatures above about 160 ° C should be avoided because it has been found that this sometimes prevents the formation of the particles, which leads to polymers with poorer properties. For this reason, it is advantageous to carry out the polymerization at temperatures below about 150 0 C and in particular at temperatures from about 50 ° to about 140 0 C.
  • the polymerization can be carried out under normal pressure, under reduced or elevated pressure.
  • the process is preferably carried out under normal pressure.
  • the polymerization reaction is complete in about 30 minutes to about 10 hours.
  • the quantitative ratio of organic monomers to polyorgano-H-siloxanes can be in a wide range can be varied.
  • the amounts of polyorgano-H-siloxanes can range from about 20 to 95 wt .-%, based on the total weight, that is organic monomers + polyorgano-H-siloxanes. However, less than 20% by weight of polyorgano-H-siloxanes, based on the total weight, can also be used.
  • the polyorgano-H-siloxanes are preferably used in amounts of about 25 to 70% by weight, based on the total weight of the reactants.
  • shear can have a significant impact on the formation of the particles, particularly the formation of elongated rod-shaped particles. It is believed that by controlling the amount of shear on the reactants, particles of different configurations are formed. For example, elongated, rod-shaped particles with a length of 10 to 500 ⁇ m and a diameter of 1 to 5 ⁇ m can be formed in situ by carefully checking the shear effect. The presence of these rod-shaped particles significantly improves the physical properties of the resulting polyorganosiloxane mixture and, in particular, of the hardened product. For this reason, it is therefore advantageous to carry out the polymerization under conditions which lead to the formation of elongated, rod-shaped particles in situ. For example, when polyorganosiloxane mixtures containing these rod-shaped particles are cured to form elastomers, these elastomers show considerably improved values for tensile strength, elongation and tear strength.
  • shear rate gradient which serves as a measure of the shear effect, in the range from about 5 to 1000 sec -1 , preferably 15 to 300 sec-1.
  • This shear rate gradient is calculated from the linear Ge Velocity of the impeller divided by its distance from the reactor wall at the point of closest approach.
  • unreacted monomers can be removed from the desired product in any conventional manner, e.g. be separated by distillation, solvent extraction or selective solvent fractionation.
  • modified polyorganosiloxane mixtures produced in this way can be used for the production of elastomeric molded parts, seals, embeddings or coatings. It is particularly useful to use them in masses that must shrink as little as possible during shaping.
  • modified organopolysiloxane mixtures according to the invention can be used as the basis for compositions curable at room temperature or in the heat to give elastomers.
  • such compositions comprise a compound having at least 2 vinyl groups per molecule as crosslinking agent and a catalyst which prevents the addition of the SiH groups in the polyorgano-H-siloxanes to the vinyl groups supported.
  • Polyorganosiloxanes containing vinyl groups are preferred as compounds suitable for crosslinking agents and contain vinyl groups.
  • Such a bum Lyvinylorganosiloxanes are described, for example, in US PSS 3,159,662 and 3,220.9-2.
  • the radicals R can be identical or different and can be monovalent, optionally halogenated hydrocarbon radicals having 1 to 18 carbon atoms or cyanoalkyl radicals. Each of the radicals R is preferably a methyl radical.
  • the polyvinylorganosiloxanes have a viscosity of approximately 10 to 750,000, preferably approximately 100 to 150,000 cP / 25 ° C.
  • the vinyl groups can either be terminal and / or arranged along the chain.
  • Diorganopolysiloxae containing terminal vinyl groups are preferred as polyvinylorganosiloxanes composed of units of the average formula IV, those of the general formula correspond, in which R has the meaning given and y has a value which corresponds to a viscosity of 10 to 750,000 cP / 25 ° C.
  • Diorganopolysiloxanes containing terminal vinyl groups are known and are described in US Pat. No. 3,436,366.
  • polyvinylorganosiloxanes from units of the average formula IV are vinylpentamethyldisiloxane, 1,3-divinyltetramethyldisiloxane, 1,1, -3, -trimethyl-1,3,3-trivinyldisiloxane, 1,1,3,3, -tetravinyldimethyldisiloxane, and higher polymers with up to 100,000 or more Si atoms per molecule.
  • Such copolymers generally contain 0.1 to 99.5 mol%, preferably 1.0 to 99.5 mol% of units V and 0.5 to 99.9, preferably 0.5 to 99.0 mol% of units III.
  • the compounds containing vinyl groups can also be mixtures of polyorganosiloxanes containing vinyl groups.
  • Organic compounds which have at least 2 non-conjugated, olefinically unsaturated bonds can also be used as compounds containing vinyl groups.
  • esters such as allyl methacrylate, allyl acrylate, diallyl adipate, methallyl acrylate, methallyl methacrylate, vinyl acrylate and vinyl methacrylate; Ethers, such as divinyl ether of diethylene glycol; Hydrocarbons such as divinylbenzene and vinylcyclohexene; Esters of polyols and acrylic or methacrylic acid, such as ethylene dimethacrylate, tetramethylene diacrylate, 1,3-butylene dimethacrylate, trimethylolpropane trimethacrylate and pentaerythritol tetramethacrylate.
  • Platinum and platinum compounds or platinum-containing complex compounds which support the addition of Si-bonded H atoms to preferably Si-bonded vinyl groups can be used as catalysts for the compositions to be hardened.
  • Examples include hexachloroplatinic acid, platinum on supports such as silica gel or carbon powder, platinum salts, reaction products from hexachloroplatinic acid and alcohols, aldehydes or ketones, Platinum-siloxane complexes, platinum-olefin complexes, platinum carboxylates, nitrile-platinum halide complexes, ammonium-platinum complexes according to US Pat. No. 3,795,656 and platinum complexes of unsaturated siloxanes which are practically halogen-free according to US Pat. No. 3,814 .730.
  • Platinum-ketone complexes according to US Pat. No. 3,798,252 are preferred as catalysts.
  • the amounts of the individual components in the masses to be hardened can be varied within a wide range. It is not absolutely necessary to use stoichiometrically equivalent amounts, since many of the products produced from the compositions according to the invention have satisfactory properties, even if the end product can still contain unreacted vinyl groups or unreacted Si-bonded H atoms.
  • the compound containing vinyl groups and the modified organopolysiloxane mixture from the polymerization reaction should each be used in amounts such that 0.005 to 20 Si — H bonds are present in the total mixture per vinyl group. However, it is preferred if the total mixture contains the same number of vinyl groups and Si-H bonds, which ensures the formation of end products which are free of Si-H bonds and vinyl groups.
  • the platinum catalyst is usually added to the mixture of the vinyl group-containing compound and the modified polyorganosiloxane mixture in an amount corresponding to the vinyl groups present.
  • a satisfactory hardening can be achieved even with such small amounts of catalyst that one atom of platinum makes available for each one million vinyl groups present.
  • the amount of catalyst used can also be so large that one atom of platinum is present for every thousand vinyl groups. In general, however, it is advantageous to use the catalyst in amounts such that one atom of platinum is present for every one to one hundred thousand vinyl groups of the compound containing vinyl groups.
  • solvents are hydrocarbons such as benzene, toluene, xylene, petroleum fractions with a boiling point of 153 to 204 ° C, halogenated alkanes and oxygen-containing solvents such as dioxane, ethanol and butanol.
  • the amount of solvent used is not critical. Satisfactory results are achieved with solutions which contain 0.1 to 0.0001 parts by weight of the platinum catalyst per part by weight of solvent.
  • compositions containing the vinyl group-containing compound, the modified organopolysiloxane mixture and the platinum catalyst can be cured at temperatures in the range from room temperature to about 100 to 150 ° C.
  • the time required for curing can also be varied within wide limits, in depen - dependence upon the particular reactants, the amounts of reactants and temperature. Hardening can therefore be accomplished in periods ranging from a few minutes to 24 hours or more. Under the same conditions with regard to the type and amounts of the reactants, the curing rate increases with increasing temperature and with increasing catalyst concentration in the mass.
  • the curable compositions are to be stored for a long time before curing, it is advantageous to pack them separately.
  • the modified organopolysiloxane mixture and the catalyst in one package and the compound containing the vinyl groups and, if appropriate, fillers or additives to be used in the two are expediently used ten pack housed. Shortly before use, i.e. during use, the two components are then mixed and hardened.
  • compositions according to the invention already contain sufficient reinforcing agents due to the presence of the particles formed in situ in the modified organopolysiloxane mixture.
  • fillers or other customary additives can be incorporated into the compositions.
  • fillers are reinforcing fillers, such as pyrogenically obtained types of silicon dioxide, precipitated silicas with a large surface area, silica aerogels and non-reinforcing fillers, such as diatomaceous earth and quartz powder, furthermore metal oxides, such as titanium dioxide, ferroxide, zinc oxide and fibrous fillers, such as asbestos and glass fibers.
  • additives are pigments, antioxidants and UV absorbers.
  • a 500 ml glass vessel equipped with a stirrer, gas inlet tube and reflux condenser was mixed with a starting mixture of 78 parts by weight.
  • the mixture was heated to about 97 ° C. with stirring and nitrogen bubbling for about 4.3 hours, then devolatilized within 1 hour at 100 ° C.
  • the viscosity of the modified polyorganosiloxane mixture obtained was determined using a Brookfield rotary viscometer at 25 ° C. with a spindle no. 7 determined at 10 revolutions / minute. The viscosity was 92,000 cP after 1 minute, 68,000 cP after 5 minutes and 60,000 cP after 10 minutes.
  • the modified polyorganosiloxane mixture (1) obtained was a white, opaque, viscous material, in which when viewed under the microscope elongated particles could be seen at 430x magnification.
  • the modified polyorganosiloxane mixtures 2 to 11 were prepared from the specified constituents using starting mixtures in each case under the same conditions as described in Example 1:
  • the modified polyorganosiloxane mixture (2) was obtained.
  • the modified polyorganosiloxane mixture (3) was obtained.
  • the modified polyorganosiloxane mixture (4) was obtained.
  • the modified polyorganosiloxane mixture (6) obtained was a white, opaque viscous liquid.
  • the modified polyorganosiloxane mixture obtained was a white, opaque viscous liquid.
  • the modified polyorganosiloxane mixture obtained was white, opaque and highly viscous.
  • the modified polyorganosiloxane mixture (9) obtained was white and highly viscous.
  • the modified polyorganosiloxane mixture (10) was obtained.
  • the modified polyorganosiloxane mixture (11) was obtained.
  • the mass hardened to an elastomeric solid when left to stand overnight.
  • the platinum catalyst containing amino groups was prepared according to Example 1 of US Pat. No. 3,795,656 by heating a mixture of 266.4 parts by weight for 3 hours.
  • Octamethylcyclotetrasiloxane, 22.4 parts by weight ⁇ - (aminoethyl) -gamma-aminopropyltrimethoxysilane and 0.29 parts by weight Potassium hydroxide to 145 ° C and then neutralizing the reaction product with 0.29 parts by weight Acetic acid made.
  • Example 14 From the same constituents as in Example 14 with the modification that 10 parts by weight instead of the modified polyorganosiloxane mixture (1). of the modified polyorganosiloxane mixture (3) was used, a mass was prepared which hardened to an elastomeric solid when heated to 115 ° C.
  • Example 14 From the same constituents as in Example 14 with the modification that 10 parts by weight instead of the modified polyorganosiloxane mixture (1). of the modified polyorganosiloxane mixture (4) was used, a mass was produced which hardened to an elastomer in about 10 minutes when heated to 115 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Gegenstand der Erfindung sind modifizierte Polyorganosiloxangemische, die in situ gebildete Teilchen enthalten, die durch Polymerisation von aliphatisch ungesättigten Monomeren in Gegenwart von Polyorgano-H-siloxanen mittel freier Radikale unter Erhitzen hergestellt worden sind. Diese Gemische können zusammen mit Verbindungen, die mindestens zwei Vinylgruppen je Molekül aufweisen, und einem Katalysator, der die Addition von Sigebundenen Wasserstoffatomen an die Vinylgruppen unterstützt, sowohl bei Raumtemperatur als auch in der Hitze unter Bildung von Elastomeren gehärtet werden.

Description

  • Gegenstand der Erfindung sind modifizierte Polyorganosiloxane, insbesondere Polyorganosiloxangemische, die in situ gebildete Teilchen enthalten und die zu Produkten mit verbesserten physikalischen Eigenschaften gehärtet werden können.
  • Für die Herstellung von modifizierten Polyorganosiloxanen sind bereits mehrere Verfahren bekannt geworden. So wird beispielsweise in den US-PSS 3.555.109 und 3.776.875 die Umsetzung von Monomeren, die aliphatisch ungesättigte Bindungen enthalten, mit Polyorganosiloxanen, die endständige Hydroxylgruppen oder hydrolysierbare Gruppen aufweisen, in Gegenwart von freien Radikalen beschrieben. Gemäß dem in der US-PS 3.631.087 beschriebenen Verfahren erfolgt die Herstellung von modifizierten Polyorganosiloxanen durch allmähliches Eintragen eines Gemisches aus Monomeren und Radikalbildnern in vorerhitzte Polyorganosiloxane, während gemäß dem in der US-PS 3.694.478 beschriebenen Verfahren einem vorerhitzten Gemisch aus Polyorganosiloxanen und einem organischen Monomeren, das aliphatisch ungesättigte Bindungen enthält, die Radikalbildner allmählich zugegeben werden. Gemäß dem in der US-PS 4.032.499 beschriebenen Verfahren werden aliphatisch ungesättigte Monomere mit hydrolysierbare Gruppen oder Hydroxylgruppen aufweisenden Polyorganosiloxanen in Gegenwart von Radikalbildnern und einer inerten Flüssigkeit mit einem Siedepunkt von bis zu etwa 100°C/760 mm Hg (abs.), in der weder die zu pfropfenden Polyorganosiloxane, noch die bei der Pfropfreaktion erhaltenen Polymerisate bei der jeweils angewendeten Polymerisationstemperatur löslich sind, umgesetzt und in der US-PS 4.014.851 werden mit Polyolefin gefüllte Polyvinylorganosiloxangemische beschrieben, die durch Polymerisation von aliphatisch ungesättigten Monomeren in Gegenwart von Polyvinylorganosiloxanen und Radikalbildnern hergestellt werden.
  • Polyorganosiloxanelastomere haben aufgrund ihrer thermischen Stabilität, ihrer dielektrischen Eigenschaften und ihrer Alterungsbeständigkeit weite Anwendung gefunden. Es wurde jedoch festgestellt, daß einige Eigenschaften dieser Polyorganosiloxanelastomeren bei bestimmten Anwendungsgebieten nicht befriedigen. So konnten beispielsweise die physikalischen Eigenschaften durch Zugabe von verstärkenden Füllstoffen oder Füllmitteln, wie Poly- tetrafluoräthylenfasern,nicht in dem gewünschten Ausmaß verbessert werden. Wenn derartige Fasern in statistischer Verteilung in einem Polyorganosiloxan dispergiert werden, ist es schwierig, ein homogenes Gemisch zu erhalten. Außerdem zeigte sich, daß die nach den bisher bekannten Verfahren hergestellten, modifizierten Polyorganosiloxane während des Härtungsvorgangs zum Schrumpfen neigen, was insbesondere dann von Nachteil ist, wenn die Produkte als Form- oder Vergußmassen Verwendung finden.
  • Der Erfindung liegt daher die Aufgabe zugrunde, modifizierte Polyorganosiloxangemische zur Verfügung zu stellen, die in situ gebildete Teilchen enthalten und die durch Umsetzung von aliphatisch ungesättigten Monomeren mit Polyorganosiloxanen in Gegenwart von Radikalbildnern bei erhöhter Temperatur hergestellt worden sind. Diese Gemische können zusammen mit Vernetzungsmitteln, Härtungskatalysatoren und gegebenenfalls anderen üblichen Zusätzen sowohl bei Raumtemperatur als auch in der Hitze unter Bildung von Elastomeren mit verbesserten physikalischen Eigenschaften gehärtet werden.
  • Die Aufgabe wird erfindungsgemäß dadurch,daß modifizierte Polyorganosiloxangemische mit in situ gebildeten Teilchen aus
    • (1) 20 bis 25 Gew.-%, vorzugsweise 25 bis 70 Gew.-%, flüssigen Polyorgano-H-siloxanen und
    • (2) 80 bis 5 Gew.-%, vorzugsweise 75 bis 30 Gew.-%, jeweils bezogen auf das Gesamtgewicht von (1) und (2), organischen Polymeren mit sich wiederholenden, von aliphatisch ungesättigte Bindungen aufweisenden Monomeren ableitenden Einheiten, die durch Polymersiation von aliphatisch ungesättigte Bindungen aufweisenden Monomeren in Gegenwart von flüssigen Polyorgano-H-siloxanen mit einer Viskosität von 10 bis 1.000.000 cP/25°C, mittels freier Radikale hergestellt worden sind, gelöst.
  • Unter den modifizierten Polyorganosiloxangemischen sind die gesamten Reaktionsprodukte zu verstehen, die bei der Polymerisation der aliphatisch ungesättigten Monomeren in Gegenwart der Polyorgano-H-siloxane mittels freier Radikale erhalten worden sind, wobei die gesam- ten organischen Polymeren oder ein Teil derselben durch C-C-Bindung mit den Polyorganosiloxanen verknüpft sind, neben organischen Homo- oder Copolymeren und Polyorgano-H-siloxanen.
  • Unter den flüssigen Polyorgano-H-siloxanen,in deren Gegenwart die Polymerisation der aliphatisch ungesättigten Monomeren durchgeführt worden ist, sind beispielsweise solche zu verstehen, die je Molekül mindestens 2 SiH-Gruppen aufweisen und die aus Einheiten der durchschnittlichen Formel
    Figure imgb0001
    aufgebaut sind, worin R gleiche oder verschiedene, von aliphatisch ungesättigten Bindungen freie, einwertige, gegebenenfalls halogenierte Kohlenwasserstoff- oder Cyanoalkylreste bedeutet, a einen Wert von 0 bis 2,5, vorzugsweise 0,5 bis 2,1, b einen Wert von 0,0005 bis 2,0 hat und die Summe von a + b 1,0 bis 3 ist.
  • Beispiele für einwertige Kohlenwasserstoffreste R sind Alkylreste mit 1 bis 18 C-Atomen, wie Methyl-,Äthyl-, Propyl-, Butyl-, Hexyl-, Octyl-, Decyl- und Octadecylreste; Cycloalkylreste, wie Cyclopentyl- und Cyclohexylreste; Arylreste, wie Phenyl- und Naphthylreste; Alkarylreste, wie der Benzylrest; alpha- und beta-Phenyläthylreste, alpha- und beta-Phenylpropylreste; halogenierte Derivate der genannten Reste, wie Chlormethyl-, Trifluormethyl-, Chlorpropyl-, Chlorphenyl-, Dibromphenyl-, Tetrachlorphenyl- und Difluorphenylreste, ferner Cyanoalkylreste, wie beta-Cyanoäthyl-, gamma-Cyanopropyl- und beta-Cyanopropylreste. Als Reste R bevorzugt sind Alkylreste mit 1 bis 3 C-Atomen und insbesondere Methylreste.
  • Die Polyorgano-H-siloxane haben eine Viskosität im Bereich von 10 bis 10.000.000 cP/25°C, vorzugsweise von 10 bis 5.000.000 cP/25°C und insbesondere von 50 bis 1.000.000 cP/25°C. Die SiH-Gruppen können entweder endständig und/oder entlang der Kette angeordnet sein. Vorzugsweise enthalten die Polyorgano-H-siloxane mindestens 2 Si-gebundene H-Atome je Molekül, insbesondere, wenn das resultierende modifizierte Polyorganosiloxangemisch zu Elastomeren gehärtet werden soll.
  • Die Polyorgano-H-siloxane können jedoch auch Copolymere sein, die je Molekül mindestens 1 Einheit der Formel
    Figure imgb0002
    aufweisen, worin R die angegebene Bedeutung hat und c = 0, 1 oder 2, d = 1 oder 2 und die Summe von c + d = 1, 2 oder 3, während die restlichen Siloxaneinheiten solche der Formel
    Figure imgb0003
    sind, worin R die angegebene Bedeutung hat und n = 0, 1, 2 oder 3. Derartige Copolymeren enthalten im allgemeinen 0,1 bis 99,5 Mol-% Einheiten II und 0,5 bis 99,9 Mol-% Einheiten III.
  • Beispiele für Siloxaneinheiten II sind H-Siloxaneinheiten (H SiO1,5), Methyl-H-siloxaneinheiten (H Si CH30), Dimethyl-H-siloxaneinheiten und Di-H-siloxaneinheiten (H2SiO).
  • Als Polyorgano-H-siloxane aus Einheiten der durchschnittlichen Formel I sind endständige SiH-Gruppen aufweisende Diorganopolysiloxane bevorzugt, beispielsweise solche der allgemeinen Formel
    Figure imgb0004
    worin R die angegebene Bedeutung zukommt und m einen Wert hat, der einer Viskosität von 10 bis 1.000.000 cP/250C entspricht. Vorzugsweise sind hierin alle Reste R Methylreste. Beispiele für derartige Polyorgano-H-siloxane sind in den US-PSS 2.823.218, 3.159.662 und 3.220.972 beschrieben.
  • Beispiele für Polyorgano-H-siloxane aus Einheiten der durchschnittlichen Formel I sind 1,3-Dimethyldisiloxan, 1,1,3,3-Tetramethyldisiloxan sowie höhere Polymere mit bis zu 100.000 Si-Atomen je Molekül.
  • Für die Polymerisation in Gegenwart der Polyorgano-H-siloxane können beliebige polymerisierbare organische Monomere, die aliphatisch ungesättigte Bindungen enthalten, verwendet werden. Beispiele für derartige Monomere sind geradkettige Kohlenwasserstoffe mit niedrigem Molekulargewicht", wie Äthylen, Propylen, Butylen; Vinylhalogenide, wie Vinylchlorid und Vinylfluorid; Vinylester von organischen Säuren, wie Vinylacetat; Styrol, Ring-substituierte Styrole und andere Vinyl-Aromaten, wie Vinylpyridin und Vinylnaphthalin; Acrylsäure und deren Derivate, wie der Salze, Ester, Amide und Acrylnitril; Ii-Vinylverbindungen, wie Vinylcarbazol, N-Vinylpyrrolidon und N-Vinylcaprolactam; Vinylgruppen enthaltende Silane, wie Vinyltriäthoxysilan.
  • Auch disubstituierte Äthylene entsprechend der allgemeinen Formel CH2 = CX2 können verwendet werden, wie Vinylidenfluorid, Vinylidenchlorid, Vinylidencyanid, Methacrylsäure und deren Derivate, wie der Salze, Ester und Amide, sowie Methacrolein und Methacrylnitrile, ferner disubstituierte Äthylene entsprechend der allgemeinen Formel CHX = CHX, wie Vinylencarbonat und verschiedene Monomere, die am besten in Gegenwart anderer Monomerer polymerisieren, wie Maleinsäureanhydrid, Ester der Malein- und Fumarsäure, Stilben, Inden und Cumaron.
  • Außerdem können Monomere mit mehr, das heißt mindestens 2 aliphatisch ungesättigten Bindungen verwendet werden, z.B. Ester, wie Allylmethacrylat, Allylacrylat, Diallyladipat, Methallylacrylat, Methallylmethacrylat, Vinylacrylat, Vinylmethacrylat; Kohlenwasserstoffe, wie Divinylbenzol und Vinylcyclohexen; Ester aus Polyolen und Acryl- bzw. Methacrylsäure, wie Äthylendimethacrylat, Tetramethylendiacrylat und Pentaerythrittetramethacrylat, sowie konjugierte Diolefine, wie 1,3-Butadien, Isopren und Chloropren.
  • Diese Monomeren können einzeln oder im Gemisch von 2, 3 oder mehr eingesetzt werden. Die Eigenschaften des Reaktionsproduktes sind dabei selbstverständlich sowohl von der Art der verwendeten Monomeren, als auch der Menge derselben, die in Bezug auf die Polyorgano-H-siloxane eingesetzt wurden, abhängig. Monomere, die elastomere Homopolymere liefern, verleihen im allgemeinen auch dem Reaktionsprodukt elastomere Eigenschaften, während solche, die plastische Homopolymere liefern, dazu neigen, Reaktionsprodukte mit weniger elastischen Eigenschaften zu bilden.
  • Die Polymerisation der organischen Monomeren in Gegenwart der Polyorgano-H-siloxane wird zweckmäßig unter Verwendung eines Radikalbildners durchgeführt, worunter vorzugsweise organische Peroxide zu verstehen sind. Es können jedoch auch andere Radikalbildner, wie Azoverbindungen, in welchen die beiden N-Atome der Azobindung an ein tertiäres C-Atom gebunden sind und die restlichen Valenzen des tertiären C-Atoms durch Nitril-, Carboxyalkyl-, Cycloalkylen- oder Alkylreste, vorzugsweise mit 1 bis 18 C-Atomen abgesättigt sind, verwendet werden. Ferner können die freien Radikale auch durch eine energiereiche Strahlung erzeugt werden.
  • Als organische Peroxide sind solche der allgemeinen Formeln ROOH und ROOR, worin R einen organischen Rest bedeutet, bevorzugt. Beispiele hierfür sind Hydroperoxide, wie tert.-Butylhydroperoxid, Cumolhydroperoxid und Decalinhydroperoxid; Dialkylperoxide, wie Di-tert.-butyl- und Dicumylperoxid; cyclische Peroxide, wie Ascaridol und 1,5-Dimethylhexan-1,5-peroxid; Perester, wie tert.-Butylperbenzoat, tert.-Butylperoxyisopropylcarbonat und tert.-Butylperoctoat; Ketoperoxide, wie Acetonperoxid und Cyclohexanonperoxid.
  • Acylperoxide und Persäuren können ebenfalls verwendet werden, obwohl sie im allgemeinen zu einer geringeren Pfropfung führen, das heißt zu schlechteren Ausbeuten an den gepfropften Produkten. Es wird angenommen, daß für diese unterschiedliche Wirkungsweise die Art der gebildeten Radikale verantwortlich ist. So haben tertiäre Alkoxyradikale aus dem Di-tert.-Butylperoxid die Neigung den Si-gebundenen organischen Gruppen H-Atome zu entziehen worauf möglicherweise der Mechanismus der Pfropfreaktion beruht. Acyloxyradikale hingegen, die aus einem Acylperoxid, beispielsweise Benzoylperoxid, stammen, sind zwar wirksame Polymerisationskatalysatoren, aber ziemlich unwirksam für die Entziehung von H-Atomen aus den Si-gebundenen organischen Gruppen.
  • Die Menge des verwendeten Radikalbildners ist nicht entscheidend. Bei Einsatz der aktiveren Peroxide sind meist so geringe Mengen, wie 0,05 %, bezogen auf das Gewicht der zu polymerisierenden Monomeren, ausreichend. Zur Erhöhung der Reaktionsgeschwindigkeit können jedoch auch größere Mengen, wie 3 Gew.-% oder mehr der Radikalbildner eingesetzt werden. Im allgemeinen sollten jedoch Mengen von etwa 5 Gew.-% nicht überschritten werden, da sonst eine zu starke Vernetzung begünstigt wird, was mit einem unerwünschten Anstieg der Viskosität des Reaktionsgemisches verbunden ist.
  • Die oben genannten Radikalbildner können für jedes beliebige Monomere verwendet werden. Wenn beispielsweise die Halbwertszeit des Radikalbildners in Toluol mehr als 2 Stunden bei der jeweils angewendeten Polymerisationstemperatur beträgt, ist es vorteilhaft, einen Teil oder die gesamte Menge der Radikalbildner vor Beginn der Polymerisation mit den Polyorgano-H-siloxanen und den aliphatisch ungesättigten Monomeren zu vermischen. Wenn hingegen die Halbwertszeit des Radikalbildners unter den angegebenen Bedingungen weniger als 2 Stunden beträgt, ist es vorteilhaft, den Radikalbildner portionsweise oder kontinuierlich während der Polymerisation bei der jeweils angewendeten Temperatur zuzufügen.
  • Die Polymerisation der organischen Monomeren in Gegenwart der Polyorgano-H-siloxane kann in Abwesenheit oder in Gegenwart eines flüssigen Mediums durchgeführt werden, das sich sowohl gegenüber den Reaktionsteilnehmern, als auch den Polymerisationsprodukten und den in situ gebildeten Teilchen inert verhält. Als flüssige Medien werden vorteilhaft solche verwendet, die einen Siedepunkt unter etwa 130°C/760 mm Hg (abs.) haben und worin sich die gebildeten Polymerisationsprodukte bei der Polymerisationstemperatur nicht lösen. Beispiele für derartige inerte flüssige Medien sind Wasser, Methanol und gesättigte aliphatische Kohlenwasserstoffe, aliphatische Fluor- und Chlorkohlenwasserstoffe, in welchen 3 Halogenatome an mindestens einem C-Atom gebunden sind. Wasser ist als inerte Flüssigkeit bevorzugt, da es leicht verfügbar ist und die Monomeren, die Polyorgano-H-siloxane und die Polymeren darin unlöslich sind. Es ist jedoch auch möglich, Gemische aus mehreren Flüssigkeiten zu verwenden, sofern sie den genannten Bedingungen (Siedepunkt unter 130°C, inertes Verhalten gegenüber Ausgangs- und Endprodukten) genügen.
  • Obwohl die Temperatur für die Polymerisation keine entscheidende Rolle spielt, sollten Temperaturen oberhalb von etwa 160°C vermieden werden, denn es wurde festgestellt, daß hierbei manchmal die Bildung der Teilchen verhindert wird, was zu Polymeren mit schlechteren Eigenschaften führt. Aus diesem Grunde ist es vorteilhaft, die Polymerisation bei Temperaturen unterhalb von etwa 1500C und insbesondere bei Temperaturen von etwa 50° bis etwa 1400C durchzuführen.
  • Außerdem ist es vorteilhaft, die Polymerisation in praktisch sauerstoffreier Umgebung durchzuführen, da es sich um eine Radikalbildungsreaktion handelt. Das kann durch Spülen des Reaktionsgefäßes mit einem inerten Gas, wie Stickstoff erreicht werden.
  • Die Polymerisation kann unter Normaldruck, unter vermindertem oder erhöhtem Druck durchgeführt werden. Vorzugsweise wird unter Normaldruck gearbeitet. In Abhängigkeit von den jeweils gewählten Reaktionsbedingungen ist die Polymerisationsreaktion in etwa 30 Minuten bis zu etwa 10 Stunden beendet.
  • Das Mengenverhältnis von organischen Monomeren zu Polyorgano-H-siloxanen kann in weitem Bereich variiert werden. Die Mengen an Polyorgano-H-siloxanen können im Bereich von etwa 20 bis 95 Gew.-%, bezogen auf das Gesamtgewicht, das sind organische Monomere + Polyorgano-H-siloxane, liegen. Es können jedoch auch weniger als 20 Gew.-% Polyorgano-H-siloxane, bezogen auf das Gesamtgewicht, eingesetzt werden. Vorzugsweise werden die Polyorgano-H-siloxane in Mengen von etwa 25 bis 70 Gew.-%, bezogen auf das Gesamtgewicht der Reaktionsteilnehmer, eingesetzt.
  • Außerdem wurde festgestellt, daß die Anwendung von Scherkraft einen beträchtlichen Einfluß auf die Bildung der Teilchen, insbesondere auf die Bildung von länglichen, stäbchenförmigen Teilchen ausüben kann. Es wird angenommen, daß durch Steuerung des Ausmaßes der Scherwirkung auf die Reaktionsteilnehmer Teilchen mit verschiedener Konfiguration gebildet werden. So können beispielsweise längliche, stäbchenförmige Teilchen mit einer Länge von 10 bis 500 µm und einem Durchmesser von 1 bis 5 µm durch sorgfältige Kontrolle der Scherwirkung in situ gebildet werden. Durch die Anwesenheit dieser stäbchenförmigen Teilchen werden die physikalischen Eigenschaften des resultierenden Polyorganosiloxangemisches und insbesondere des gehärteten Produkts entscheidend verbessert. Aus diesem Grunde ist es daher vorteilhaft, die Polymerisation unter Bedingungen durchzuführen, die zur Bildung von länglichen, stäbchenförmigen Teilchen in situ führen. Werden beispielsweise Polyorganosiloxangemische, die diese stäbchenförmigen Teilchen enthalten, unter Bildung von Elastomeren gehärtet, zeigen diese Elastomeren beträchtlich verbesserte Werte für Zugfestigkeit, Dehnung und Einreißfestigkeit.
  • Da die Scherwirkung diesen erheblichen Einfluß auf die Größe und Form der in situ gebildeten Teilchen haben kann, ist es vorteilhaft, die Polymerisation bei einem Schergeschwindigkeitsgradienten, der als Maß für die Scherwirkung dient, im Bereich von etwa 5 bis 1 000 sec-1, vorzugsweise 15 bis 300 sec-1, durchzuführen. Dieser Schergeschwindigkeitsgradient errechnet sich aus der linearen Geschwindigkeit des Rührflügels, dividiert durch dessen Entfernung von der Reaktorwand am Punkt der engsten Annäherung.
  • Nach Beendigung der Polymerisation können nichtumgesetzte Monomere vom gewünschten Produkt in beliebiger herkömmlicher Weise, z.B. durch Destillation, Lösungsmittelextraktion oder selektive Lösungsmittelfraktionierung abgetrennt werden.
  • Die so hergestellten modifizierten Polyorganosiloxangemische können für die Herstellung von elastomeren Formteilen, Abdichtungen, Einbettungen oder Überzügen verwendet werden. Besonders nützlich ist ihre Verwendung in Massen, die bei der Formgebung möglichst wenig schrumpfen dürfen.
  • Die erfindungsgemäßen modifizierten Organopolysiloxangemische können als Grundlage für bei Raumtemperatur oder in der Hitze zu Elastomeren härtbaren Massen eingesetzt werden. Derartige Massen enthalten neben den modifizierten Organopolysiloxangemischen, die nach dem oben beschriebenen Verfahren hergestellt worden sind, eine Verbindung mit mindestens 2 Vinylgruppen je-Molekül als Vernetzer und einen Katalysator, der die Addition der SiH-Gruppen in den Polyorgano-H-siloxanen an die Vinylgruppen unterstützt.
  • Als für Vernetzer geeignete, Vinylgruppen enthaltende Verbindungen sind Vinylgruppen enthaltende Polyorganosiloxane bevorzugt. Derartige Verbindungen sind bekannt und aus Einheiten der durchschnittlichen Formel
    Figure imgb0005
    aufgebaut, worin R die oben angegebene Bedeutung hat und R' eine Vinylgruppe der Formel CH2=C$- ist, die mit dem Si-Atom über eine SiC-Bindung verknüpft ist, a einen Wert von 0 bis 2,5, vorzugsweise 0,5 bis 2,1, b einen Wert von 0,0005 bis 2,0 hat und die Summe von a + b 1,0 bis 3 ist. Derartige Polyvinylorganosiloxane sind beispielsweise in den US-PSS 3.159.662 und 3.220.9?2 beschrieben.
  • In der angegebenen Formel IV können die Reste R gleich oder verschieden sein und einwertige, gegebenenfalls halogenierte Kohlenwasserstoffreste mit 1 bis 18 C-Atomen oder Cyanoalkylreste sein. Vorzugsweise ist jeder der Reste R ein Methylrest. Die Polyvinylorganosiloxane haben eine Viskosität von etwa 10 bis 750.000, vorzugsweise von etwa 100 bis 150.000 cP/25°C. Die Vinylgruppen können entweder endständig und/oder entlang der Kette angeordnet sein.
  • Als Polyvinylorganosiloxane aus Einheiten der durchschnittlichen Formel IV sind endständige Vinylgruppen aufweisende Diorganopolysiloxae bevorzugt, die der allgemeinen Formel
    Figure imgb0006
    entsprechen, worin R die angegebene Bedeutung zukommt und y einen Wert hat, der einer Viskosität von 10 bis 750.000 cP/25°C entspricht. Endständige Vinylgruppen aufweisende Diorganopolysiloxane sind bekannt und in der US-PS 3.436.366 beschrieben.
  • Beispiele für Polyvinylorganosiloxane aus Einheiten der durchschnittlichen Formel IV sind Vinylpentamethyldisiloxan, 1,3-Divinyltetramethyldisiloxan, 1,1,-3,-Trimethyl-1,3,3-trivinyldisiloxan, 1,1,3,3,-Tetravinyldimethyldisiloxan, sowie höhere Polymere mit bis zu 100.000 oder mehr Si-Atomen je Molekül. Von der Formel IV werden ferner auch cyclische Siloxane mit Si-gebundenen Vinylgruppen mitumfaßt, wie cyclische Trimere, Tetramere oder Pentamere von Methylvinylsiloxan [(CH2=CH) (CH3) SiO]. Als cyclisches Siloxan ist Tetramethyltetravinylcyclotetrasiloxan bevorzugt.
  • Die Vinylgruppen enthaltenden Verbindungen können jedoch auch Copolymere sein, die neben Siloxaneinheiten der Formel
    Figure imgb0007
    worin R und R' die oben angegebene Bedeutung haben, c = 0, 1 oder 2, d = 1 oder 2 und die Summe von c + d = 1, 2 oder 3, Siloxaneinheiten der Formel III aufweisen, die bei den Polyorgano-H-siloxanen erläutert wurden. Derartige Copolymere enthalten im allgemeinen 0,1 bis 99,5 Mol-%, vorzugsweise 1,0 bis 99,5 Mol-% Einheiten V und 0,5 bis 99,9, vorzugsweise 0,5 bis 99,0 Mol-% Einheiten III.
  • Die Vinylgruppen enthaltenden Verbindungen können auch Gemische aus Vinylgruppen enthaltenden Polyorganosiloxanen sein.
  • Als Vinylgruppen enthaltende Verbindungen können ferner organische Verbindungen verwendet werden, die mindestens 2 nicht konjugierte, olefinisch ungesättigte Bindungen aufweisen. Beispiele hierfür sind Ester, wie Allylmethacrylat, Allylacrylat, Diallyladipat, Methallylacrylat, Methallylmethacrylat, Vinylacrylat und Vinylmethacrylat; Äther, wie Divinyläther von Diäthylenglykol; Kohlenwasserstoffe, wie Divinylbenzol und Vinylcyclohexen; Ester aus Polyolen und Acryl- bzw. Methacrylsäure, wie Äthylendimethacrylat, Tetramethylendiacrylat, 1,3-Butylendimethacrylat, Trimethylolpropantrimethacrylat und Pentaerithrittetramethacrylat.
  • Als Katalysatoren für die zu härtenden Massen können Platin und Platinverbindungen oder Platin enthaltende Komplexverbindungen verwendet werden, die die Addition von Si-gebundenen H-Atomen an vorzugsweise Si-gebundene Vinylgruppen unterstützen. Beispiele hierfür sind Hexachlorplatinsäure, Platin auf Trägern, wie Kieselsäuregel oder Kohlepulver, Platinsalze, Reaktionsprodukte aus Hexachlorplatinsäure und Alkoholen, Aldehyden oder Ketonen, Platin-Siloxan-Komplexe, Platin-Olefin-Komplexe, Platincarboxylate, Nitril-Platinhalogenid-Komplexe, Ammonium-Platin-Komplexe gemäß der US-PS 3.795.656 und Platinkomplexe von ungesättigten Siloxanen, die praktisch halogenfrei sind, gemäß der US-PS 3.814.730. Als Katalysatoren bevorzugt sind Platin-Keton-Komplexe gemäß der US-PS 3.798.252.
  • Die Mengen der einzelnen Bestandteile in den zu härtenden Massen können in weitem Bereich variiert werden. Es ist nichtunbedingt erforderlich, stöchiometrisch äquivalente Mengen einzusetzen, da viele der aus den erfindungsgemäßen Massen hergestellten Produkte befriedigende Eigenschaften haben, auch wenn das Endprodukt noch unumgesetzte Vinylgruppen oder unumgesetzte Si-gebundene H-Atome enthalten kann. Im allgemeinen sollte die Vinylgruppen enthaltende Verbindung und das modifizierte Organopolysiloxangemisch aus der Polymerisationsreaktion jeweils in solchen Mengen eingesetzt werden, daß in dem Gesamtgemisch je Vinylgruppe 0,005 bis 20 Si-H-Bindungen vorhanden sind. Es ist jedoch bevorzugt, wenn in dem Gesamtgemisch jeweils die gleiche Anzahl an Vinylgruppen und Si-H-Bindungen vorliegt, wodurch die Bildung von Endprodukten gewährleistet wird, die frei von Si-H-Bindungen und Vinylgruppen sind.
  • Der Platinkatalysator wird üblicherweise dem Gemisch aus der Vinylgruppen enthaltenden Verbindung und dem modifizierten Polyorganosiloxangemisch in einer den vorhandenen Vinylgruppen entsprechenden Menge zugefügt. So kann bereits mit so geringen Katalysatormengen die ein Atom Platin für jeweils eine Million vorhandener Vinylgruppen zur Verfügung stellt, eine befriedigende Härtung erzielt werden. Die eingesetzte Katalysatormenge kann jedoch auch so groß sein, daß ein Atom Platin auf jeweils eintausend Vinylgruppen vorhanden ist. Im allgemeinen ist es jedoch vorteilhaft, den Katalysator in solchen Mengen einzusetzen, daß ein Atom Platin auf jeweils eintausend bis einhunderttausend Vinylgruppen der Vinylgruppen enthaltenden Verbindung vorhanden ist.
  • Bei Einsatz sehr geringer Katalysatormengen ist es häufig vorteilhaft, den Katalysator in einem Lösungsmittel zu lösen oder zu dispergieren, da er sich gegenüber den Reaktionsteilnehmern unter den gewählten Reaktionsbedingungen inert verhält, um die einheitliche Dispergierung oder Lösung des Platinkatalysators in dem Gesamtgemisch zu erleichtern. Beispiele für deratige Lösungsmittel sind Kohlenwasserstoffe, wie Benzol, Toluol, Xylol, Erdölfraktionen mit einem Siedepunkt von 153 bis 204°C, halogenierte Alkane sowie Sauerstoff enthaltende Lösungsmittel, wie Dioxan, Äthanol und Butanol. Die Menge des verwendeten Lösungsmittels spielt keine entscheidende Rolle. Mit Lösungen, die 0,1 bis 0,0001 Gew.-Teile des Platinkatalysators je Gew.-Teil Lösungsmittel enthalten, werden befriedigende Ergebnisse erzielt.
  • Die Massen, die die Vinylgruppen enthaltende Verbindung, das modifizierte Organopolysiloxangemisch und den Platinkatalysator enthalten, können bei Temperaturen im Bereich von Raumtemperatur bis zu etwa 100 bis 1500C gehärtet werden. Die für die Härtung erforderliche Zeit kann ebenfalls in weiten Grenzen variiert werden, in Abhän- gigkeit von den jeweils verwendeten Reaktionteilnehmern, den Mengen der Reaktionsteilnehmern und der Temperatur. Die Härtung kann daher in Zeiträumen, die von wenigen Minuten bis zu 24 Stunden oder mehr reichen, bewerkstelligt werden. Unter jeweils gleichen Bedingungen hinsichtlich Art und Mengen der Reaktionsteilnehmer nimmt die Härtungsgeschwindigkeit mit steigender Temperatur und mit steigender Katalysatorkonzentration in der Masse zu.
  • Wenn die härtbaren Massen vor der Härtung längere Zeit gelagert werden sollen, ist es vorteilhaft, diese getrennt zu verpacken. Bei derartigen Zweikomponentensystemen werden zweckmäßig das modifizierte Organopolysiloxangemisch und der Katalysator in einer Packung und die Vinylgruppen enthaltende Verbindung und gegebenenfalls mitzuverwendende Füllstoffe oder Zusätze in der zweiten Packung untergebracht. Kurz vor Gebrauch, das heißt bei der Anwendung, werden die beiden Komponenten dann vermischt und gehärtet.
  • Die erfindungsgemäßen Massen enthalten bereits ausreichende Verstärkungsmittel durch die Anwesenheit der in situ gebildeten Teilchen in dem modifizierten Organopolysiloxangemisch. Zusätzlich können jedoch Füllstoffe oder andere übliche Zusätze in die Massen eingearbeitet werden. Beispiele für Füllstoffe sind verstärkende Füllstoffe, wie pyrogen gewonnene Siliciumdioxidarten, gefällte Kieselsäuren mit großer Oberfläche, Silicaaerogele und nichtverstärkende Füllstoffe, wie Diatomeenerde und Quarzmehl, ferner Metalloxide, wie Titandioxid, Ferrioxid, Zinkoxid und faserartige Füllstoffe, wie Asbest und Glasfasern. Beispiele für Zusätze sind Pigmente, Antioxidantien und UV-Absorber.
  • Herstellung der modifizierten Polyorganosiloxan-Gemische: Beispiel 1
  • Ein 500 ml Glasgefäß, das mit Rührer, Gaseinleitungsrohr und Rückflußkühler ausgerüstet war, wurde mit einer Ausgangsmischung aus 78 Gew.-Tl. Styrol, 63 Gew.-Tl. Butylacrylat, 94 Gew.-Tl. eines endständige H-Atome aufweisenden Dimethylpolysiloxans mit einer Viskosität von 50 cP/ 25°C und einem Si-H-Gehalt von 0,7 Gew.-%, 1,5 Gew.-T1. 1,1-Di-tert.-butylperoxy-3,3,5-Trimethylcyclohexan und 12 Tl. Wasser beschickt. Die Mischung wurde unter Rühren und Durchleiten von Stickstoff etwa 4,3 Stunden auf etwa 97°C erhitzt, dann innerhalb von 1 Stunde bei 100°C und innerhalb 1 Stunde bei 120°C von flüchtigen Bestandteilen befreit. Die Viskosität des erhaltenen modifizierten Polyorganosiloxangemisches wurde mit einem Rotationsviskometer nach Brookfield bei 25°C mit einer Spindel No. 7 bei 10 Umdrehungen/Minute bestimmt. Die Viskosität betrug nach 1 Minute 92.000 cP, nach 5 Minuten 68.000 cP und nach 10 Minuten 60.000 cP.
  • Das erhaltene modifizierte Polyorganosiloxangemisch (1) war ein weißes, lichtundurchlässiges, viskoses Material, in dem bei Betrachtung unter dem Mikroskop bei 430-facher Vergrößerung längliche Teilchen zu sehen waren.
  • Unter jeweils gleichen Bedingungen, wie in Beispiel 1 beschrieben, wurden unter Einsatz von Ausgangsmischungen aus den angegebenen Bestandteilen die modifizierten Polyorganosiloxangemische 2 - 11 hergestellt:
  • Beispiel 2
  • Ausgangsmischung:
    • 141 Gew.-Tl. Styrol
    • 94 Gew.-Tl. eines endständige H-Atome aufweisenden Dimethylpolysiloxans mit einer Viskosität von 50 cP/25°C und einem SiH-Gehalt von 0,7 Gew.-% und
    • 1,5 Gew.-Tl. 1,1-Di-tert.-Butylperoxy-3,3,5-trimethylcyclohexan.
  • Es wurde das modifizierte Polyorganosiloxangemisch (2) erhalten.
  • Beispiel 3
  • Ausgangsmischung: (Unter Verwendung eines 800 ml Glasgefäßes) 41 Gew.-Tl. Styrol 204 Gew.-Tl. Butylacrylat 164 Gew.-Tl. eines endständige H-Atome aufweisenden Dimethylpolysiloxans mit einer Viskosität von 50 cP/25°C und einem SiH-Gehalt von 0,7 Gew.-% 1,5 Gew.-T1.1,1-Di-tert.-Butylperoxy-3,3,5-trimethylcylohe- xan und 20 Tl. Wasser.
  • Es wurde das modifizierte Polyorganosiloxangemisch (3) erhalten.
  • Beispiel 4.
  • Ausgangsmischung:
    • 154 Gew.-Tl. Butylacrylat
    • 42 Gew.-Tl. Acrylnitril
    • 131 Gew.-Tl. eines endständige H-Atome aufweisenden Dimethylpolysiloxans mit einer Viskosität von 50 cP/25°C und einem SiH-Gehalt von 0,7 Gew.-%
    • 1,5 Gew.-Tl. 1,1-Di-tert.-Butylperox9-3,3,5-trimethylcyclohexan und 15 Tl. Wasser.
  • Es wurde das modifizierte Polyorganosiloxangemisch (4) erhalten.
  • Beispiel 5
  • Ausgangsmischung:
    • 90 Gew.-Tl. Vinylchlorid
    • 210 Gew.-T1. eines mit Trimethylsiloxygruppen endblockierten Copolymeren mit einer Viskosität von 400 cP/25°C das 2 Mol-% Methyl-H-siloxaneinheiten enthielt, während die restlichen Einheiten Dimethylsiloxaneinheiten waren, und
    • 1,5 Gew.-Tl. eines 1,1-Di-tert.-Butylperoxy-3,3,5-Trimethylcyclohexan.
  • Es wurde das modifizierte Polyorgano- siloxangemisch (5) erhalten.
  • Beispiel 6
  • Ausgangsmischung:
    • 155 Gew.-Tl. Vinylacetat
    • 145 Gew.-Tl. eines Copolymeren mit einer Viskosität von 1000 cP/25°C, das aus Dimethyl-H-siloxan-, Dimethylsiloxan-, Methyl-H-siloxan- und Trimethylsiloxaneinheiten in einem Molverhältnis von 1,9: 4,9 : 3,1 : 0,1
    • 1 Gew.-T1. tertr.-Butylperoctoat und
    • 12 Tl. Wasser.
  • Das erhaltene modifizierte Polyorganosiloxangemisch (6) war eine weiße, lichtundurchlässige viskose Flüssigkeit.
  • Beispiel 7
  • Ausgangsmischung:
    • 150 Gew.-Tl. Vinylidenchlorid
    • 150 Gew.-Tl. des endständige H-Atome aufweisenden Dimethylpolysiloxans mit einer Viskosität von 50 cP/25°C und einem Si-H-Gehalt von 0,7 Gew.-%
    • 1,1 Gew.-Tl. Di-tert.-butylperoxid und 12 Tl. Wasser.
  • Das erhaltene modifizierte Polyorganosiloxangemisch war eine weiße, lichtundurchlässige viskose Flüssigkeit.
  • Beispiel 8
  • Ausgangsmischung:
    • 100 Gew.-Tl. Styrol
    • 82 Gew.-T1. Butylacrylat
    • 10 Gew.-Tl. Allylmethacrylat
    • 121 Gew.-Tl. des endständige H-Atome aufweisenden Dimethylpolysiloxans mit einer Viskosität von 50 cP/25°C und einem Si-H-Gehalt von.0,7 Gew.-%
    • 1,1 Gew.-Tl. Di-tert.-butylperoxid und
    • 12 Tl. Wasser.
  • Das erhaltene modifizierte Polyorganosiloxangemisch war weiß, lichtundurchlässig und hochviskos.
  • Beispiel 9
  • Ausgangsmischung:
    • 78 Gew.-Tl Styrol
    • 63 Gew.-Tl. Butylacrylat
    • 64 Gew.-Tl. eines endständige H-Atome aufweisenden Dimethylpolysiloxans mit einer Viskosität von 350 cP/25°C
    • 1,5 Gew.-Tl. 1,1-Di-tert.-butylperoxy-3,3,5-Trimethylcyclohexan und
    • 12 Tl. Wasser.
  • Das erhaltene modifizierte Polyorganosiloxangemisch (9) war weiß und hochviskos.
  • Beispiel 10
  • Ausgangsmischung:
    • 78 Gew.-Tl. Styrol
    • 63 Gew.-Tl. Butylacrylat
    • 150 Gew.-Tl. eines endständige H-Atome aufweisenden Dimethylpolysiloxans mit einer Viskosität von 400 cP/25oC
    • 1,5 Gew.-Tl. 1,1-Di-tert.-butylperoxy-3,3,5-Trimethylcyclohexan und
    • 12 Tl. Wasser.
  • Es wurde das modifizierte Polyorganosiloxangemisch (10) erhalten.
  • Beispiel 11
  • Ausgangsmischung:
    • 78 Gew.-Tl. Styrol
    • 63 Gew.-Tl. Butylacrylat
    • 100 Gew.-Tl. eines Copolymeren mit einer Viskosität von 3000 cP/25°C aus Dimethylsiloxan-, Methyl-H-siloxan- und Trimethylsiloxaneinheiten mit einem Verhältnis von Dimethylsiloxaneinheiten : Methyl-H-siloxaneinheiten von 12 : 1
    • 1,5 Gew.-Tl. 1,1-Di-tert.-butylperoxy-3,3,5-Trimethylcyclohexan und
    • 12 Tl. Wasser.
  • Es wurde das modifizierte Polyorganosiloxangemisch (11) erhalten.
  • Herstellung und Härtung der Massen: Beispiel 12
  • 20 Gew.-Tl. des modifizierten Polyorganosiloxangemisches (1) wurden mit 0,5 Gew.-Tl. einer 0,1 Gew.-%-igen Lösung von Hexachlorplatinsäure in Isopropanol und 0,5 Gew.-T1. 1,3,5,7-Tetramethyl-1,3,5,7-Tetravinylcyclotetra- siloxan
  • zu einer Masse verarbeitet. Die Masse härtete beim Stehenlassen über Nacht zu einem elastomeren Feststoff.
  • Beispiel 13
  • 20 Gew.-T1. des modifizierten Polyorganosiloxangemisches (1) wurden mit 0,5 Gew.-Tl. einer 0,1-Gew.-%.-igen Lösung von Hexachlorplatinsäure in Isopropanol und 0,5 Gew.-Tl. 1,3,5,7-Tetramethyl-1,3,5,7-Tetravinylcyclotetra- siloxan
  • vermischt und auf 120°C erhitzt, wobei die Masse in weniger als 1 Stunde zu einem elastomeren Feststoff härtete.
  • Beispiel 14
  • 10 Gew.-Tl. des modifizierten Polyorganosiloxangemisches (1) 0,75 Gew.-Tl. 1,3,5,7-Tetramethyl-1,3,5,7-Tetravinylcyclotetra- siloxan und 0,25 Gew.-Tl. eines Aminogruppen aufweisenden Platinkatalysators wurden vermischt und auf 115°C erhitzt, wobei die Masse innerhalb von 8 Minuten zu einem elastomeren Feststoff härtete.
  • Der Aminogruppen aufweisende Platinkatalysator wurde gemäß Beispiel 1 der US-PS 3.795.656 durch 3-stündiges Erhitzen eines Gemisches aus 266,4 Gew.-Tl. Octamethylcyclotetrasiloxan, 22,4 Gew.-Tl. β-(Aminoäthyl)-gamma-aminopropyltrimethoxysi- lan und 0,29 Gew.-Tl. Kaliumhydroxid auf 145°C und anschließendem Neutralisieren des Reaktionsproduktes mit 0,29 Gew.-Tl. Essigsäure hergestellt.
  • Beispiel 15
  • Aus den gleichen Bestandteilen wie in Beispiel 14 mit der Abänderung, daß anstelle des modifizierten Polyorganosiloxangemisches (1) 10 Gew.-Tl. des modifizierten Polyorganosiloxangemisches (3) verwendet wurden, wurde eine Masse hergestellt, die beim Erhitzen auf 115°C zu einem elastomeren Feststoff härtete.
  • Beispiel 16
  • Aus den gleichen Bestandteilen wie in Beispiel 14 mit der Abänderung, daß anstelle des modifizierten Polyorganosiloxangemisches (1) 10 Gew.-Tl. des modifizierten Polyorganosiloxangemisches (4) verwendet wurden, wurde eine Masse hergestellt, die beim Erhitzen auf 115°C in etwa 10 Minuten zu einem Elastomeren härtete.
  • Beispiel 17
  • 10 Gew.-Tl. des modifizierten Polyorganosiloxangemisches (8) wurden mit 0,5 Gew.-Tl. eines Copolymeren mit einer Viskosität von 2000 cP/25°C aus 95 Mol-% Dimethylsiloxan- und 5 Mol-% Methylvinylsiloxaneinheiten und 0,25 Gew.-% des Aminogruppen aufweisenden Platinkatalysators aus Beispiel 14 vermischt und auf 115°C erhitzt, wobei die Masse zu einem elastomeren Feststoff härtete.

Claims (10)

1. Modifizierte Polyorganosiloxan- gemische mit in situ gebildeten Teilchen aus
(1) 20 bis 95 Gew.-% flüssigen Polyorgano-H-siloxanen und
(2) 80 bis 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht von (1) und (2) organischen Polymeren mit sich wiederholenden, von aliphatisch ungesättigte Bindungen aufweisenden Monomeren ableitenden Einheiten, die durch Polymerisation von aliphatisch ungesättigte Bindungen aufweisenden Monomeren in Gegenwart von flüssigen Polyorgano-H-siloxanen mit einer Viskosität von 10 bis 1.000.000 cP/25°C, mittels freier Radikale hergestellt worden sind.
2. Modifizierte Polyorganosiloxan- gemische gemäß Anspruch 1, die als Polyorgano-H-siloxane (1) solche mit endständigen SiH-Gruppen enthalten.
3. Modifizierte Polyorganosiloxan- gemische gemäß Anspruch 1, die als organische Polymere (2) mit sich wiederholenden Einheiten solche enthalten, die sich von mindestens zwei Monomeren mit aliphatisch ungesättigten Bindungen ableiten.
4. Modifizierte Polyorganosiloxan- gemische gemäß Anspruch 3 mit sich wiederholenden Einheiten in den Polymeren (2), die sich von Monomeren ableiten, von denen mindestens eines nicht konjugierte aliphatisch ungesättigte Bindungen aufweist.
5. Verfahren zur Herstellung der modifizierten Polyorganosiloxangemische gemäß Anspruch 1 durch Polymerisation von aliphatisch umgesättigten Monomeren in Gegenwart von Polyorganosiloxanen mittels freier Radikale, dadurch gekennzeichnet, daß die Polymerisation in Gegenwart von flüssigen Polyorgano-H-siloxanen bei Temperaturen von 50° bis 160°C in einem flüssigen Medium, das sich gegenüber den Reaktionsteilnehmern und den Polymerisationsprodukten bei den jeweils angewendeten Temperaturen inert verhält und unter Verwendung eines organischen Peroxids durchgeführt wird.
6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß als flüssige Polyorgano-H-siloxane solche verwendet werden, die aus Einheiten der durchschnittlichen Formel
Figure imgb0008
aufgebaut sind, worin R von aliphatisch ungesättigten Bindungen freie, einwertige, gegebenenfalls halogenierte Kohlenwasserstoffreste oder Cyanoalkylreste bedeutet, a einen Wert von 0 bis 2,5, b einen Wert von 0,0005 bis 2,0 hat und die Summe von a + b 1,0 bis 3 ist.
7. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet , daß als flüssige Polyorgano-H-siloxane Copolymere verwendet werden, die mindestens eine Einheit der Formel
Figure imgb0009
neben Siloxaneinheiten der Formel
Figure imgb0010
aufweisen, worin R von aliphatisch ungesättigten Bindungen freie, einwertige, gegebenenfalls halogenierte Kohlenwasserstoffreste oder Cyanoalkylreste bedeutet, c = 0, 1 oder 2, d = 1 oder 2, c + d = 1, 2 oder 3 und n = 0, 1, 2 oder 3.
8. Verfahren gemäß Anspruch 5 und 6, dadurch gekennzeichnet , daß endständige SiH-Gruppen aufweisende Diorganopolysiloxane der allgemeinen Formel
Figure imgb0011
verwendet werden, worin R-die angegebene Bedeutung zukommt und m einen Wert hat, der einer Viskosität von 10 bis 1.000.000 cP/25°C entspricht.
9. Härtbare Massen enthaltende modifizierte Polyorganosiloxangemische gemäß Anspruch 1 zusammen mit einer Verbindung mit mindestens zwei Vinylgruppen je Molekül als Vernetzer und einem Katalysator, der die Addition von Si-gebundenen Wasserstoffatomen an die Vinylgruppen unterstützt.
10. Härtbare Massen gemäß Anspruch 9 enthaltend als Vernetzer Polyvinylorganosiloxane und als Katalysator Platin oder eine Platinverbindung.
EP78101704A 1977-12-16 1978-12-15 Härtbare Massen auf Grundlage von modifizierten Polyorganosiloxangemischen mit in situ gebildeten Teilchen und Verfahren zur Herstellung der modifizierten Polyorganosiloxangemische Expired EP0002744B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/861,312 US4166078A (en) 1977-12-16 1977-12-16 Modified organopolysiloxane compositions
US861312 1977-12-16

Publications (2)

Publication Number Publication Date
EP0002744A1 true EP0002744A1 (de) 1979-07-11
EP0002744B1 EP0002744B1 (de) 1982-05-12

Family

ID=25335469

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78101704A Expired EP0002744B1 (de) 1977-12-16 1978-12-15 Härtbare Massen auf Grundlage von modifizierten Polyorganosiloxangemischen mit in situ gebildeten Teilchen und Verfahren zur Herstellung der modifizierten Polyorganosiloxangemische

Country Status (8)

Country Link
US (1) US4166078A (de)
EP (1) EP0002744B1 (de)
JP (1) JPS5490392A (de)
AT (1) AT381950B (de)
AU (1) AU516105B2 (de)
CA (1) CA1104744A (de)
DE (1) DE2861831D1 (de)
IT (1) IT1106812B (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0084321A2 (de) * 1982-01-16 1983-07-27 Bayer Ag Vernetzbare Pfropfpolymerisat-Dispersionen aus Hydrogensiloxan-Gruppen und Si-Vinyl-Gruppen enthaltenden Organopolysiloxanen
EP0084772A2 (de) * 1982-01-16 1983-08-03 Bayer Ag Pfropfmodifizierte Siloxandispersionen zur Ausrüstung von textilen Materialien
EP0272441A2 (de) * 1986-11-27 1988-06-29 Bayer Ag Silikonkautschuk enthaltende Polymerisatpulver, ihre Herstellung und ihre Anwendung als flammhemmendes Additiv
EP0378370A2 (de) * 1989-01-12 1990-07-18 Rohm And Haas Company Verfahren zur Herstellung von Silikonpartikeln
WO1990009411A2 (de) * 1989-02-17 1990-08-23 Wacker-Chemie Gmbh Modifizierung von additionsvernetzbaren siliconelastomeren mit polysiloxansegmente enthaltenden blockcopolymerisaten
EP0653663A1 (de) * 1993-11-17 1995-05-17 Nippon Shokubai Co., Ltd. Organisch- anorganische Verbundpartikel und Verfahren zu ihrer Herstellung
US5670257A (en) * 1994-11-15 1997-09-23 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
DE19934116A1 (de) * 1999-04-07 2000-10-19 S & C Polymer Silicon & Compos Haftvermittler für Siliconmaterialien

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700158B2 (ja) * 1999-11-16 2011-06-15 東レ・ダウコーニング株式会社 エマルジョンの製造方法、およびオイル組成物の製造方法
FR2522649B1 (de) * 1982-03-03 1987-07-10 Commissariat Energie Atomique
US4492786A (en) * 1983-08-26 1985-01-08 General Electric Company Modified organopolysiloxane composition
US4536553A (en) * 1983-09-06 1985-08-20 General Electric Company Modified silicon elastomers having improved flex life and method therefor
US4623700A (en) 1985-06-07 1986-11-18 General Electric Company Curable organopolysiloxane composition useful for coating optical fibers
US4797501A (en) * 1986-12-31 1989-01-10 Union Carbide Corporation Silicone-based stabilizers useful in the preparation of improved polyurethane foams
JPS6416414U (de) * 1987-07-21 1989-01-26
LU87350A1 (fr) * 1988-09-28 1990-04-06 Oreal Application cosmetique de polysiloxanes a fonction diester et compositions mises en oeuvre
ES2100337T3 (es) * 1991-02-14 1997-06-16 Johnson & Son Inc S C Composiciones polimericas mezcladas.
US5227448A (en) * 1992-05-26 1993-07-13 Dow Corning Corporation Method for preparing organofunctional polysiloxanes
US5225511A (en) * 1992-05-26 1993-07-06 Dow Corning Corporation Organofunctional polysiloxanes and method for preparation
US5436308A (en) * 1992-06-03 1995-07-25 Dow Corning Corporation Cross-linked organofunctional polysiloxanes and method for preparation
US5247045A (en) * 1992-07-13 1993-09-21 Dow Corning Corporation Hydrosilylation process for preparation of novel chlorine end-terminated organosiloxanes
EP0705296A4 (de) * 1993-06-24 1996-07-03 Sola Int Holdings Telomerzusammensetzung
SG76536A1 (en) * 1993-11-17 2000-11-21 Nippon Shoukubai Company Ltd Process for production of organic-inorganic composite particles
US20050100692A1 (en) * 2003-11-06 2005-05-12 Parker Richard H. Textile products and silicone-based copolymeric coating compositions for textile products
US8067478B1 (en) * 2006-10-19 2011-11-29 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Process for preparing polymer reinforced silica aerogels

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3555109A (en) * 1967-09-08 1971-01-12 Stauffer Wacker Silicone Corp In situ generation of unique particulate matter in organopolysiloxanes
US3631087A (en) * 1969-09-29 1971-12-28 Stauffer Wacker Silicone Corp Uniform grafting of organopolysiloxanes
FR2343010A1 (fr) * 1976-03-04 1977-09-30 Pfersee Chem Fab Procede de polymerisation d'esters acryliques en presence d'hydrogenopolysiloxanes et application des produits au traitement des fibres

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL128098C (de) * 1965-12-09
US3271362A (en) * 1966-02-07 1966-09-06 Gen Electric Process for reaction of silanic hydrogen with unsaturated organic compounds
US3627836A (en) * 1968-11-15 1971-12-14 Stauffer Wacker Silicone Corp Modified organopolysiloxanes with mono and polyolefinic cross-linked particles generated in situ
US3694478A (en) * 1970-11-23 1972-09-26 Stauffer Chemical Co Process for grafting organopolysiloxanes
US3776875A (en) * 1971-12-30 1973-12-04 Stauffer Chemical Co Preparation of modified organopoly-siloxanes in a solvent system
US3950300A (en) * 1972-10-11 1976-04-13 Wacker-Chemie Gmbh Dental impression materials
US3898300A (en) * 1974-01-31 1975-08-05 Dow Corning Emulsion polymerization method to produce a polymeric styrene-acrylonitrile-polyorganosiloxane composition and product
DE2405828C2 (de) * 1974-02-07 1985-11-14 Consortium für elektrochemische Industrie GmbH, 8000 München Verfahren zum Herstellen von modifizierten Organopolysiloxanen
US4016333A (en) * 1974-10-25 1977-04-05 Desoto, Inc. Radiation curable coatings having nonadherent surfaces

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3555109A (en) * 1967-09-08 1971-01-12 Stauffer Wacker Silicone Corp In situ generation of unique particulate matter in organopolysiloxanes
US3631087A (en) * 1969-09-29 1971-12-28 Stauffer Wacker Silicone Corp Uniform grafting of organopolysiloxanes
FR2343010A1 (fr) * 1976-03-04 1977-09-30 Pfersee Chem Fab Procede de polymerisation d'esters acryliques en presence d'hydrogenopolysiloxanes et application des produits au traitement des fibres

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0084321A2 (de) * 1982-01-16 1983-07-27 Bayer Ag Vernetzbare Pfropfpolymerisat-Dispersionen aus Hydrogensiloxan-Gruppen und Si-Vinyl-Gruppen enthaltenden Organopolysiloxanen
EP0084321A3 (en) * 1982-01-16 1983-08-03 Bayer Ag Cross-linkable graft polymer dispersions from organosiloxanes containing hydrogen-siloxane and si-vinyl groups
EP0084772A2 (de) * 1982-01-16 1983-08-03 Bayer Ag Pfropfmodifizierte Siloxandispersionen zur Ausrüstung von textilen Materialien
EP0084772A3 (en) * 1982-01-16 1983-08-24 Bayer Ag Grafted siloxane dispersions for the finishing of textile materials
US4463127A (en) * 1982-01-16 1984-07-31 Bayer Aktiengesellschaft Crosslinkable graft polymer dispersion of organopolysiloxanes containing hydrogen-siloxane groups and Si-vinyl groups
US4464506A (en) * 1982-01-16 1984-08-07 Bayer Aktiengesellschaft Graft-modified siloxane dispersions for finishing textile materials
EP0272441A2 (de) * 1986-11-27 1988-06-29 Bayer Ag Silikonkautschuk enthaltende Polymerisatpulver, ihre Herstellung und ihre Anwendung als flammhemmendes Additiv
EP0272441A3 (en) * 1986-11-27 1989-11-02 Bayer Ag Polymer powder containing silicone rubber, its preparation and use as a flame-retardant additive
EP0378370A2 (de) * 1989-01-12 1990-07-18 Rohm And Haas Company Verfahren zur Herstellung von Silikonpartikeln
EP0378370A3 (de) * 1989-01-12 1991-09-11 Rohm And Haas Company Verfahren zur Herstellung von Silikonpartikeln
WO1990009411A2 (de) * 1989-02-17 1990-08-23 Wacker-Chemie Gmbh Modifizierung von additionsvernetzbaren siliconelastomeren mit polysiloxansegmente enthaltenden blockcopolymerisaten
WO1990009411A3 (de) * 1989-02-17 1990-10-18 Wacker Chemie Gmbh Modifizierung von additionsvernetzbaren siliconelastomeren mit polysiloxansegmente enthaltenden blockcopolymerisaten
EP0653663A1 (de) * 1993-11-17 1995-05-17 Nippon Shokubai Co., Ltd. Organisch- anorganische Verbundpartikel und Verfahren zu ihrer Herstellung
US5503932A (en) * 1993-11-17 1996-04-02 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
US5580619A (en) * 1993-11-17 1996-12-03 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
EP1211278A2 (de) * 1993-11-17 2002-06-05 Nippon Shokubai Co., Ltd. Organisch- anorganische Verbundpartikel und Verfahren zu ihrer Herstellung
EP1211278A3 (de) * 1993-11-17 2005-12-14 Nippon Shokubai Co., Ltd. Organisch- anorganische Verbundpartikel und Verfahren zu ihrer Herstellung
US5670257A (en) * 1994-11-15 1997-09-23 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
DE19934116A1 (de) * 1999-04-07 2000-10-19 S & C Polymer Silicon & Compos Haftvermittler für Siliconmaterialien

Also Published As

Publication number Publication date
JPS5490392A (en) 1979-07-18
AT381950B (de) 1986-12-10
US4166078A (en) 1979-08-28
IT7852298A0 (it) 1978-12-14
EP0002744B1 (de) 1982-05-12
ATA898278A (de) 1986-05-15
JPS629127B2 (de) 1987-02-26
IT1106812B (it) 1985-11-18
AU3894778A (en) 1980-02-21
AU516105B2 (en) 1981-05-14
DE2861831D1 (en) 1982-07-01
CA1104744A (en) 1981-07-07

Similar Documents

Publication Publication Date Title
EP0002744B1 (de) Härtbare Massen auf Grundlage von modifizierten Polyorganosiloxangemischen mit in situ gebildeten Teilchen und Verfahren zur Herstellung der modifizierten Polyorganosiloxangemische
EP0004947B1 (de) Organopolysiloxane modifiziert durch Pfropfpolymerisation von Vinylmonomeren sowie deren Verwendung in härtbaren Zusammensetzungen
DE1957257C3 (de) Verfahren zur Herstellung von lösungsmittelbeständigen, modifizierten Organopolysiloxanen
EP0492376B1 (de) Elastomere Pfropfcopolymerisate mit Kern-Hülle-Struktur
DE1795289C3 (de) Verfahren zur Herstellung von Organopolysiloxanen mit aufgepfropften organischen Seitenketten, die in situ gebildete längliche Teilchen enthalten
EP0296403B1 (de) Thermoplastische Silikonkautschukpfropfpolymerisate (II)
DE2644551A1 (de) Loesungsmittelbestaendige kalthaertende silikonkautschuk-massen
DE2459806C2 (de) Stabile Dispersion aus Organopolysiloxan und einem Polymerisat eines olefinischen Monomers
EP0315035B1 (de) Mischungen von Polycarbonaten mit siloxanhaltigen Pfropfpolymerisaten
DE3704655A1 (de) Teilchenfoermige mehrphasenpolymerisate
DE1242862B (de) In der Waerme vernetzbare Formmassen aus AEthylen-Propylen-Mischpolymerisaten und Alkenylpolysiloxanen
DE2459816A1 (de) Polyolefin-gefuellte polyorganosiloxan-massen und verfahren zu deren herstellung
DE3428529A1 (de) Haertbare fluorsilicon-zubereitung, verfahren zu ihrer herstellung und ihre verwendung
DE3116299A1 (de) "verfahren zur herstellung von anlagerungsgehaerteten siliconkautschuk-zubereitungen"
DE3012777C2 (de)
DE3213053A1 (de) Fluorsilicon-kautschukmasse, verfahren zu ihrer haertung und polymer
DE2405828C2 (de) Verfahren zum Herstellen von modifizierten Organopolysiloxanen
DE2338790A1 (de) Silikonelastomere
DE2310213A1 (de) Emulsionscopolymere und deren herstellung
DE1694976B2 (de) Füllstoffe in bei Raumtemperatur härtenden Massen auf Organopoly siloxangrundlage
DE2455004A1 (de) Vernetzbare gemische aus bituminoesen massen und diorganopolysiloxanen
DE69812740T2 (de) Polymerisierung von Vinylmonomeren mit Silanen und Siloxanen
DE2165601A1 (de) Bei Raumtemperatur unter Zutritt von Wasser härtende Massen auf Grundlage von modifizierten Diorganopolysiloxanen, Verfahren zur Herstellung solcher Massen und Organosiloxane
DE1912671C3 (de) Verfahren zur Herstellung von Organopolysiloxanen mit aufgepfropter organischer Seitenkette
CH553836A (de) Bei raumtemperatur vulkanisierbare organopolysiloxanmasse.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 2861831

Country of ref document: DE

Date of ref document: 19820701

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: STAUFFER-WACKER SILICONES CORPORATION TE ADRIAN, M

BECA Be: change of holder's address

Free format text: 861117 *WACKER SILICONES CORP.ADRIAN, MICHIGAN 49221

BECN Be: change of holder's name

Effective date: 19861117

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: WACKER SILICONES CORPORATION TE ADRIAN, MICHIGAN,

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911108

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911118

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911129

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911227

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911231

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19921231

BERE Be: lapsed

Owner name: WACKER SILICONES CORP.

Effective date: 19921231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921215

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT