EP0000545B1 - Procédé de fabrication d'un dispositif semiconducteur à auto-alignement - Google Patents

Procédé de fabrication d'un dispositif semiconducteur à auto-alignement Download PDF

Info

Publication number
EP0000545B1
EP0000545B1 EP78100443A EP78100443A EP0000545B1 EP 0000545 B1 EP0000545 B1 EP 0000545B1 EP 78100443 A EP78100443 A EP 78100443A EP 78100443 A EP78100443 A EP 78100443A EP 0000545 B1 EP0000545 B1 EP 0000545B1
Authority
EP
European Patent Office
Prior art keywords
layer
regions
semiconductor body
accordance
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100443A
Other languages
German (de)
English (en)
Other versions
EP0000545A1 (fr
Inventor
Chakrapani Gajanan Jambotkar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of EP0000545A1 publication Critical patent/EP0000545A1/fr
Application granted granted Critical
Publication of EP0000545B1 publication Critical patent/EP0000545B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3215Doping the layers
    • H01L21/32155Doping polycristalline - or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen

Definitions

  • the invention relates to a method for producing a semiconductor arrangement of the type specified in the preamble of patent claim 1.
  • a preferred field of application for this method is the production of insulating layer field-effect transistor structures which are equipped with so-called self-aligned gate electrodes.
  • Such field effect transistors with a self-aligned gate are already known per se.
  • the associated conventional manufacturing processes use a mask made of a high temperature resistant material for masking during the formation of the source and drain regions, i.e. a material capable of withstanding high temperatures on the order of 1000 ° C and higher.
  • This masking layer can be made of silicon, for example, as described for the processes described in US Pat. Nos. 3,475,234 and 3,544,399, using polycrystalline silicon as the masking material that remains in the gate region for the final formation of the gate electrode. Since such structures are insulating layer field effect transistors, a layer of an insulating material, e.g. of silicon dioxide, under the silicon-containing masking layer.
  • the high temperature resistant material itself may already be an insulating material, e.g. Silicon nitride, which remains as a gate dielectric in the gate area.
  • the high-temperature resistant material e.g. Silicon nitride or a double layer of silicon nitride over silicon dioxide, for edge definition of the source and drain regions adjoining the gate region; it remains as a thin gate dielectric in the final field effect transistor structure.
  • a thick oxide layer is thermally grown over the source and drain, the silicon nitride layer present in the gate region serving as an oxidation-inhibiting mask to prevent the thin gate insulating layer from increasing in thickness.
  • a conductive gate electrode is formed in the gate area, the thin silicon nitride layer or, after its removal, another thin insulating layer also serving to delimit the area provided as the gate area.
  • the main advance in such a self-aligned gate structure has been that it has improved the positioning of the gate electrode and gate insulating layer relative to the source and drain regions.
  • the gate electrode had to be made larger relative to the channel length effective between the source and drain, i.e. there was a significant overlap between the gate electrode and the source and drain regions. This resulted in undesired stray capacitances in the form of gate overlap capacitances, which led to a deterioration in the frequency properties or the switching speed of such field-effect transistor components in integrated circuits.
  • the dopants can first be introduced by diffusion or ion implantation in such a way that very flat surface areas of the appropriate conductivity type form, which is followed by a so-called driving-in step to be carried out at high temperatures, through which the source and drain are driven deeper into the semiconductor body.
  • driving-in step to be carried out at high temperatures, through which the source and drain are driven deeper into the semiconductor body.
  • the doping atoms migrate to a certain extent below the gate masking layer. As a result, there was nevertheless an overlap of the gate with the source and drain and the resulting disadvantageous consequences.
  • the layer wi is considerably lower resistances in the order of 8 to 10 ⁇ / ⁇ are required.
  • source and drain regions with such a low sheet resistance were produced by one of the diffusion methods described above for forming the source and drain regions with a depth extension in the substrate in the order of magnitude of 1000 nm.
  • the invention achieves the object of specifying a method for producing a semiconductor arrangement, in particular an insulating layer field-effect transistor structure, which is improved with respect to the overlap-free self-adjustment of doping regions relative to a surface layer, in which the overlap-free self-adjustment also occurs at a relatively deep in doping regions reaching the semiconductor body can be achieved.
  • buried areas completely enclosed by the material of the semiconductor body are first formed in the mutual arrangement defined by the masking layer on the semiconductor surface by means of ion implantation, whereupon a subsequent heat treatment brings about a targeted expansion of the dopants present in the buried areas until the semiconductor surface is reached.
  • the channel region is always exactly and completely covered by the gate electrode, but on the other hand that there is no gate overlap with the source and drain regions formed in this way.
  • FIG. 1 shows a semiconductor body or a substrate 10 of the P conductivity type, the specific resistance value of which is approximately 0.1 to 1 ⁇ cm and on which an approximately 900 nm thick silicon dioxide layer 11 is formed.
  • This layer 11 can be formed in a conventional manner by thermal oxidation or otherwise deposited, e.g. by vapor deposition or sputtering.
  • An opening 12 is produced in layer 11 using conventional photoiitography and etching methods, so that the structure shown in FIG. 1 results.
  • a thin layer 13 of silicon dioxide with a thickness of approximately 50 nm is then allowed to grow in the area of the opening 12, preferably thermally.
  • a silicon layer 14 is applied over this by means of conventional methods for depositing silicon, for example described in US Pat. No. 3,424,629. This process step is carried out at a temperature on the order of 500 to 900 ° C and usually at atmospheric pressure.
  • the silicon layer 14 is a polycrystalline structure since it is formed on the silicon dioxide layers 11 and 13.
  • the thickness of the layer 14 is approximately 900 nm.
  • an approximately 80 nm thick silicon dioxide layer 15 is produced in a conventional manner per se, but preferably by thermal oxidation of a part of the surface of the silicon layer 14.
  • the regions 18 and 19 buried in the semiconductor body 10 are then formed by means of ion implantation in accordance with FIG. 4.
  • N-type dopants for example phosphorus
  • the implantation step can be carried out either directly through the unmasked, relatively thin silicon dioxide layer 13 or, as shown in FIG. 4, after the silicon dioxide layer 13 not covered by the silicon layer 14 'has been removed beforehand. 4, the silicon dioxide layer arranged below the mask in the form of the silicon layer 14 'is designated by 13'.
  • a conventional etching process for example under Buffered hydrofluoric acid can be used.
  • the silicon dioxide layer 15 will also be removed, while the layer 11, which is considerably thicker in comparison, remains essentially unchanged.
  • the ion implantation must be carried out with sufficient radiation dosage and energy that the buried regions 18 and 19 have a concentration distribution which takes account of the following aspects.
  • the same heat treatment is intended to ensure that regions 18 and 19 also move upwards expand in the direction of the surface of the semiconductor body 10 so that they just adjoin the silicon gate electrode laterally on the semiconductor surface.
  • FIG. 8A shows the concentration distribution of the N-doping impurities for the regions 18 and 19 along the section line 8A-8A indicated in FIG. 4.
  • regions 18 and 19 were originally created as regions completely enclosed in P-type semiconductor body 10, with a peak concentration being approximately at a distance of 0.5 ⁇ m from the semiconductor surface.
  • the implantation step that can be used to form these areas 18 and 19 with the concentration profile shown can be carried out using conventional devices and methods, such as are described, for example, in US Pat. No. 3,756,862. For example, taking type 3 'P + ions, an energy value of 400 keV and a dosage of approximately 10 16 ions / cm 2 is appropriate.
  • the implantation also forms a dopant distribution similar to the shape shown in FIG. 8A in the silicon layer region 14 ′. As a result, the layer 14 'is desirably provided with a low sheet resistance.
  • a so-called diffusion or driving-in step is carried out at a temperature of about 950 ° C in a conventional oxidizing atmosphere, such as e.g. Steam is performed to bring the source and drain regions 18 and 19 into the form shown in FIG. 5.
  • a conventional oxidizing atmosphere such as e.g. Steam
  • the final dopant distribution for the source and drain regions 18 and 19 along the section line 8B-8B shown in FIG. 5 is shown in FIG. 8B.
  • a silicon dioxide layer 40 is formed over the semiconductor body 10 as well as over the polycrystalline silicon gate electrode 14 '.
  • the source and drain region edges next to it due to the subsequent diffusion or heat treatment step their downward expansion to the same extent can also be extended upwards so that their intersections 22 and 23 (in FIG. 5) are practically exactly aligned with the corresponding edges 24 and 25 of the silicon gate electrode 14 'with regard to their lateral adjustment.
  • the preliminary ion implantation step according to FIG.
  • openings 31, 32 and 28 are then produced in the silicon dioxide layer 40 as contact openings for source, drain and the gate electrode.
  • the source and drain regions have a relatively low surface concentration of phosphorus. It is therefore advantageous to carry out a flat implantation of the dopants which cause the N-conduction type, for example phosphorus, in each of these contact openings, the regions designated 29, 30 and 34 being formed in FIG. 6. These areas have a high surface concentration of the N conductivity type in the order of 10 21 atoms / cm 3 , cf. in addition the concentration profile shown in FIG. 8C for the relationships shown in FIG. 6, and in particular the point 33 in FIG. 8C.
  • N + conductive connection regions 29, 30 and 34 can be produced in a conventional manner by introducing dopants. However, it is preferable to fabricate these areas by implanting N-type ions, eg phosphorus, using the method described above with an energy of approximately 40 keV and a dosage of approximately 10 11 ions / cm 2 . In the last method step, as shown in FIG. 7, is carried out in a conventional manner the contact and connection metallization in the form of the connections 35, 36 and 37 for source, drain and the silicon gate. This metallization can be completely conventional in the manner customary in such integrated FET circuits, for example made of aluminum.
  • N-type ions eg phosphorus
  • the invention is not restricted to this but can also be applied to other self-aligned gate designs.
  • the masking layer required to ensure the self-alignment of the thin gate insulating layer consists of a material that does not melt or decompose in any other way at the diffusion temperatures of the order of 1000 ° C. or greater that are used.
  • Such other possibilities include, for example, self-aligned field effect transistors with silicon nitride gate technology, in which a thin layer of silicon nitride is used for the self-aligned formation of the source and drain regions relative to the thin gate insulating layer.
  • metals such as molybdenum, tungsten or tantalum which are resistant to high temperatures can be used instead of the silicon described in the present exemplary embodiment in the context of such a method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Claims (8)

1. Procédé de fabrication d'un dispositif semi-conducteur pour l'auto-alignement présentant des régions dopées auto-alignées par rapport à une région de porte, en particulier d'une structure de transistors à effet de champ à porte isolée, dans lequel sont formées, par une implantation d'ions dans un corps semi-conducteur d'un premier type de conductivité, au moins deux régions dopées d'un second type de conductivité, par exemple des régions source et drain, espacée l'une de l'autre, une couche de masquage'contre le bombardement ionique ayant été préalablement déposée sur le corps semi-conducteur au moins dans la zone entre ces régions, caractérisé en ce qu'un faisceau d'ions du second type de conductivité est dirigé sur le corps semi-conducteur avec une énergie et une dose suffisantes pour former des régions enterrées (18, 19), complètement entourées par le matériau du corps semi-conducteur (10) du type de conductivité opposé à ce dernier (Figure 4) selon une configuration déterminée par la couche de masquage (14'), et en ce que, par un traitement thermique ultérieur pendant lequel la couche de masquage (14') est présente au moins dans ladite zone entre les régions, les régions enterrées (18, 19) ainsi formées s'étalent jusqu'à ce qu'elles atteignent la surface semi-conductrice (Figure 5).
2. Procédé selon la revendication 1, caractérisé en ce que le corps semi-conducteur est en silicium et que la couche de masquage déterminant l'espace entre les régions dopées, est composée d'une couche électriquement isolante disposée sur le corps semi-conducteur recou- verte par une couche de silicium.
3. Procédé selon la revendication 2, caractérisée en ce que la couche électriquement isolante comporte une couche de dioxyde de silicium.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche de masquage comporte une couche de nitrure de silicium au moins dans ladite zone entre les régions dopées.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le traitement thermique est effectué de telle sorte que les jonctions semi-conductrices (20, 21 de la Figure 5), appartenant aux régions de dopage après étalement atteignent la surface semi-conductrice aux points (22, 23) de la couche de masquage (14') déterminant l'espacement desdites régions.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la concentration de surface des dopants déterminant les régions dopées du second type de conductivité est plus grande, par un facteur allant jusqu'à environ 3, que le dopage de base du corps semi-conducteur du premier type de conductivité.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape d'implantation ionique est effectuée à l'aide d'une couche, de préférence en dioxyde de silicium, couvrant la surface semi-conductrice dans les portions exposées de la couche de masquage.
8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que, après la formation des ouvertures destinées à permettre le contact avec les régions dopées, et avant la formation de la métallisation relative à ces contacts, on augmente la concentration de surface en introduisant des dopants supplémentaires du second type de conductivité dans les régions exposées à travers les ouvertures de contact (28, 31, 32 de la Figure 6) et ce de préférence par une étape d'implantation ionique.
EP78100443A 1977-08-01 1978-07-19 Procédé de fabrication d'un dispositif semiconducteur à auto-alignement Expired EP0000545B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/820,991 US4128439A (en) 1977-08-01 1977-08-01 Method for forming self-aligned field effect device by ion implantation and outdiffusion
US820991 1977-08-01

Publications (2)

Publication Number Publication Date
EP0000545A1 EP0000545A1 (fr) 1979-02-07
EP0000545B1 true EP0000545B1 (fr) 1981-02-11

Family

ID=25232219

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100443A Expired EP0000545B1 (fr) 1977-08-01 1978-07-19 Procédé de fabrication d'un dispositif semiconducteur à auto-alignement

Country Status (6)

Country Link
US (1) US4128439A (fr)
EP (1) EP0000545B1 (fr)
JP (1) JPS6046831B2 (fr)
CA (1) CA1112374A (fr)
DE (1) DE2860467D1 (fr)
IT (1) IT1108994B (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218267A (en) * 1979-04-23 1980-08-19 Rockwell International Corporation Microelectronic fabrication method minimizing threshold voltage variation
JPS55151349A (en) * 1979-05-15 1980-11-25 Matsushita Electronics Corp Forming method of insulation isolating region
US4338616A (en) * 1980-02-19 1982-07-06 Xerox Corporation Self-aligned Schottky metal semi-conductor field effect transistor with buried source and drain
US4391651A (en) * 1981-10-15 1983-07-05 The United States Of America As Represented By The Secretary Of The Navy Method of forming a hyperabrupt interface in a GaAs substrate
JPS58170067A (ja) * 1982-03-31 1983-10-06 Fujitsu Ltd 薄膜トランジスタの製造方法
NL188923C (nl) * 1983-07-05 1992-11-02 Philips Nv Werkwijze ter vervaardiging van een halfgeleiderinrichting.
US4648175A (en) * 1985-06-12 1987-03-10 Ncr Corporation Use of selectively deposited tungsten for contact formation and shunting metallization
US4734752A (en) * 1985-09-27 1988-03-29 Advanced Micro Devices, Inc. Electrostatic discharge protection device for CMOS integrated circuit outputs
EP0248988B1 (fr) * 1986-06-10 1990-10-31 Siemens Aktiengesellschaft Procédé pour fabriquer des circuits à transistors complémentaires à effet de champ du type MOS à haute intégration
US5602403A (en) * 1991-03-01 1997-02-11 The United States Of America As Represented By The Secretary Of The Navy Ion Implantation buried gate insulator field effect transistor
JPH05283710A (ja) * 1991-12-06 1993-10-29 Intel Corp 高電圧mosトランジスタ及びその製造方法
KR0166101B1 (ko) * 1993-10-21 1999-01-15 김주용 정전방전 보호회로의 트랜지스터 및 그 제조방법
JPH0955496A (ja) * 1995-08-17 1997-02-25 Oki Electric Ind Co Ltd 高耐圧mosトランジスタ及びその製造方法
EP1050562A1 (fr) * 1999-05-04 2000-11-08 Fina Research S.A. Composition à faible teneur en aromatiques
KR100640207B1 (ko) * 1999-10-29 2006-10-31 엘지.필립스 엘시디 주식회사 박막트랜지스터 및 그 제조방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449643A (en) * 1966-09-09 1969-06-10 Hitachi Ltd Semiconductor integrated circuit device
BE758683A (fr) * 1969-11-10 1971-05-10 Ibm Procede de fabrication d'un dispositif monolithique auto-isolant et structure de transistor a socle
US3734787A (en) * 1970-01-09 1973-05-22 Ibm Fabrication of diffused junction capacitor by simultaneous outdiffusion
JPS4936514B1 (fr) * 1970-05-13 1974-10-01
US4058887A (en) * 1971-02-19 1977-11-22 Ibm Corporation Method for forming a transistor comprising layers of silicon dioxide and silicon nitride
US4032372A (en) * 1971-04-28 1977-06-28 International Business Machines Corporation Epitaxial outdiffusion technique for integrated bipolar and field effect transistors
JPS5636585B2 (fr) * 1973-07-02 1981-08-25
FR2257998B1 (fr) * 1974-01-10 1976-11-26 Commissariat Energie Atomique
US3899373A (en) * 1974-05-20 1975-08-12 Ibm Method for forming a field effect device
US4001048A (en) * 1974-06-26 1977-01-04 Signetics Corporation Method of making metal oxide semiconductor structures using ion implantation
US3948694A (en) * 1975-04-30 1976-04-06 Motorola, Inc. Self-aligned method for integrated circuit manufacture
DE2554426C3 (de) * 1975-12-03 1979-06-21 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zur Erzeugung einer lokal hohen inversen Stromverstärkung bei einem Planartransistor sowie nach diesem Verfahren hergestellter invers betriebener Transistor
JPS52135685A (en) * 1976-05-10 1977-11-12 Nec Corp Semiconductor device
US4046606A (en) * 1976-05-10 1977-09-06 Rca Corporation Simultaneous location of areas having different conductivities
JPS52156576A (en) * 1976-06-23 1977-12-27 Hitachi Ltd Production of mis semiconductor device
US4029522A (en) * 1976-06-30 1977-06-14 International Business Machines Corporation Method to fabricate ion-implanted layers with abrupt edges to reduce the parasitic resistance of Schottky barrier fets and bipolar transistors

Also Published As

Publication number Publication date
JPS5427376A (en) 1979-03-01
DE2860467D1 (en) 1981-03-26
EP0000545A1 (fr) 1979-02-07
JPS6046831B2 (ja) 1985-10-18
CA1112374A (fr) 1981-11-10
IT7826098A0 (it) 1978-07-26
IT1108994B (it) 1985-12-16
US4128439A (en) 1978-12-05

Similar Documents

Publication Publication Date Title
DE4219319B4 (de) MOS-FET und Herstellungsverfahren dafür
DE4213244C2 (de) Halbleitereinrichtung und Verfahren zu deren Herstellung
DE3525396C2 (fr)
DE69909205T2 (de) Verfahren zur Herstellung vertikaler Transistoren
DE3326534C2 (fr)
EP0000545B1 (fr) Procédé de fabrication d'un dispositif semiconducteur à auto-alignement
CH623959A5 (fr)
DE3043913A1 (de) Halbleiteranordnung und verfahren zu ihrer herstellung
DE19806838A1 (de) Vertikaler Siliciumcarbid-MOSFET und Verfahren zur Herstellung desselben
DE3334337A1 (de) Verfahren zur herstellung einer integrierten halbleitereinrichtung
DE4116690A1 (de) Elementisolationsaufbau einer halbleitereinrichtung und verfahren zur herstellung derselben
DE3603470A1 (de) Verfahren zur herstellung von feldeffektbauelementen auf einem siliziumsubstrat
DE2502235A1 (de) Ladungskopplungs-halbleiteranordnung
DE19643903A1 (de) Verfahren zur Herstellung eines Bipolartransistors mit Heteroübergang
EP0029900B1 (fr) Elément de circuit ou composant auto-aligné formé par un transistor bipolaire sur un substrat semiconducteur et procédé pour sa fabrication
DE10234996B4 (de) Verfahren zur Herstellung einer Transistoranordnung mit Trench-Transistorzellen mit Feldelektrode
DE4101130C2 (de) MOS-Feldeffekttransistor und Verfahren zu dessen Herstellung
DE2922016A1 (de) Vlsi-schaltungen
EP1188188B1 (fr) Procede de production d'un transistor mosfet multicanal
DE10012112C2 (de) Steg-Feldeffekttransistor und Verfahren zum Herstellen eines Steg-Feldeffekttransistors
DE2353348A1 (de) Feldeffekttransistor und verfahren zu dessen herstellung
DE69722833T2 (de) Bipolarer Transistor mit einer verbesserten epitaktischen Basiszone und dessen Herstellungsverfahren
DE3427293A1 (de) Vertikale mosfet-einrichtung
EP1181723B1 (fr) Transistor a effet de champ a portee isolee a grille double et procede permettant de le produire
DE4130890A1 (de) Verfahren zur herstellung eines kondensators unter verwendung des feldeffekttransistor-prozesses und mit hilfe des verfahrens hergestellte struktur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 2860467

Country of ref document: DE

Date of ref document: 19810326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19830831

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840704

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840718

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19840731

BERE Be: lapsed

Owner name: INTERNATIONAL BUSINESS MACHINES CORP.

Effective date: 19840719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890626

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890630

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890731

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed

Ref document number: 78100443.7

Effective date: 19910402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT