EP0000123B1 - Verfahren zum Abscheiden einkristalliner Schichten nach der Flüssigphasen-Schiebeepitaxie. - Google Patents
Verfahren zum Abscheiden einkristalliner Schichten nach der Flüssigphasen-Schiebeepitaxie. Download PDFInfo
- Publication number
- EP0000123B1 EP0000123B1 EP78100110A EP78100110A EP0000123B1 EP 0000123 B1 EP0000123 B1 EP 0000123B1 EP 78100110 A EP78100110 A EP 78100110A EP 78100110 A EP78100110 A EP 78100110A EP 0000123 B1 EP0000123 B1 EP 0000123B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- melt
- substrate
- slide
- melts
- substrates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 21
- 239000007791 liquid phase Substances 0.000 title claims description 5
- 239000000758 substrate Substances 0.000 claims description 78
- 239000000155 melt Substances 0.000 claims description 53
- 238000000151 deposition Methods 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 15
- 230000008021 deposition Effects 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000000407 epitaxy Methods 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 claims description 4
- 235000012431 wafers Nutrition 0.000 description 19
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 7
- 238000003860 storage Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B1/00—Dumping solid waste
- B09B1/008—Subterranean disposal, e.g. in boreholes or subsurface fractures
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/06—Reaction chambers; Boats for supporting the melt; Substrate holders
- C30B19/063—Sliding boat system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02395—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02463—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02625—Liquid deposition using melted materials
Definitions
- the invention relates to a method for depositing single-crystalline layers according to the liquid-phase shift epitaxy, as specified in the preamble of claim 1.
- Such a sliding epitaxy method and a device for carrying out this method are described, for example, in US Pat. No. 3,753,801.
- double heterostructure diodes e.g. a (Ga, Al) As-GaAs diode
- US Re 28 140 From US Re 28 140 it is known to grow an epitaxial layer on successive substrates. There is a single storage container 10-12, from which melt is removed in portions by means of a first slide 13 into an opening 18 and then applied to a substrate wafer by displacement. If a further pane is to be coated, a further slide 14 is to be provided, with which the substrate slices and the portion opening 18 of the first slide have to be displaced relative to one another and with respect to the one storage container. For re-deposition, reheating to the original starting temperature is planned. In addition, US Re 28 140 only mentions coating several substrates in tandem. The possibility of depositing several layers on top of one another is also mentioned, for which purpose additional storage containers and additional portion openings have to be provided in an extended first slide. The substrate disc is probably again in the second slide.
- Layer sequences are usually produced using sliding devices in which the substrate disks are located in suitably designed depressions in a graphite “boat” and in which a movable slide is present which has several Has chambers for different melts of different compositions.
- the substrate disks are arranged one behind the other or concentrically at the same distance, and the chambers of the slide are also arranged one behind the other or concentrically with the appropriate distance.
- the thickness of the grown layer is determined by the size of the lowering of the temperature of the melt and by the thickness of the melt above the substrate, and, unless the amount of dissolved substance corresponding to the lowering of the temperature is entirely deposited on the substrate, also by the cooling rate of the melt. If very thin layers are to be deposited on a substrate, then melts which are saturated with the material of the substrate must be used for the deposition, so that when the melt is pushed on, there is no uncontrolled dissolution of the substrate crystal on its surface and, as a result, an uncontrolled layer growth .
- the object of the invention is to provide a method for the deposition of single-crystalline layers after the liquid phase shift epitaxy, with which it is possible to provide a plurality of substrate wafers simultaneously with a multilayer structure, without the need for such pre-substrates and which allows the number of to reduce the chambers of the slide provided for the melts to be pushed open.
- the advantage of the method according to the invention is that the individual layers are deposited on the respective substrate wafers from the same melt, and that the temperature is reduced by the same amount for the individual melts. To control the thickness of the layer deposited in each case, the thickness of the melt located above the substrate wafer is varied accordingly.
- the respective melt from which the layer in question is to be deposited in single crystal remains on the substrate crystal until it is in equilibrium with it.
- the substrate wafers to be coated are arranged one behind the other in the apparatus used to carry out the method according to the invention at the same distance as the distance between the slider chambers provided for the melts.
- the substrate disks or the chambers provided for the melts can be arranged linearly or also on concentric circles.
- a first melt is pushed onto a first substrate.
- the first melt can optionally have been brought into solution equilibrium via a pre-substrate.
- the arrangement is cooled by a certain temperature interval T, which is, for example, approximately 1 ° C.
- Material that is dissolved in the melt is deposited epitaxially on the substrate surface.
- the melt is left on the substrate until the melt has reached the solution equilibrium prevailing at this new temperature, ie until the melt is exhausted for the deposition. It can be assumed that the growth out of the melt is determined by the diffusion of the substance dissolved in the melt, for example in the case of the deposition of GaAs by the diffusion of the As in the Ga melt.
- the minimum residence time of the melt on the substrate after the cooling is completed by the equation. given, where W max is the greatest thickness of the melt used for deposition and D is the diffusion coefficient of the dissolved material in the melt.
- a prerequisite for the necessity of this minimum dwell time is that the equation ⁇ ⁇ ⁇ T ⁇ t min is fulfilled, where ⁇ is the reciprocal cooling rate, AT is the cooling interval. If the equation ⁇ ⁇ ⁇ T> t min applies instead of this last equation, the minimum dwell time can be kept correspondingly lower after cooling. If the reciprocal cooling rate of the melt is kept sufficiently high, a holding time of the melt on the substrate without a simultaneous lowering of the temperature could even be omitted entirely.
- the thickness of the melt is proportional to the thickness of the melt located over the respective substrate wafer.
- ⁇ T 1 ° C.
- the thickness of the melt must be approximately 1 mm in order to grow a 1 ⁇ m thick GaAs layer, taking the hold time according to the equation with D approximately equal to 5.10 -5 cm 2 sec -1 must be approximately 200 sec.
- the first melt is then pushed onto the second substrate by sliding the slide; at the same time, the second melt is then pushed onto the first substrate to deposit the second layer.
- the arrangement is then cooled again by the same amount of temperature, in the example given by 1 ° C.
- the first melt is then pushed onto the third substrate wafer, the second melt onto the second substrate wafer, and the third melt onto the first substrate wafer, and then the entire arrangement cooled again by 1 ° C.
- Fig. 2 shows the temperature profile of the entire arrangement.
- the initial temperature T A is, for example, 800 ° C.
- the temperature is gradually lowered by an amount AT, for example by 1 ° C.
- the final temperature T E is in a process in which ten substrate wafers are coated with a 4-layer structure, for example 14 ° C. lower than the initial temperature.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
- Die Erfindung betrifft ein Verfahren zum Abscheiden einkristalliner Schichten nach der Flüssigphasen-Schiebeepitaxie, wie es im Oberbegriff des Patentanspruches 1 näher angegeben ist.
- Zur Herstellung bestimmter Halbleiterbauelemente, z.B. zur Herstellung von Lumineszenzdioden oder Laserdioden, ist es notwendig, auf einem Halbleiterkristall eine oder mehrere Schichten aus Halbleitermaterial epitaxial abzuscheiden. Insbesondere zur Herstellung von Halbleiterbauelementen aus intermetallischen III-V-Verbindungen und deren Mischkristalle wird dazu die Technik der Flüssigphasen-Schiebeepitaxie angewendet. Bei dieser Methode wird mit Hilfe eines Schiebers eine Schmelze, die das abzuscheidende Material enthält, auf die Oberfläche eines Substrates aufgeschoben und sodann durch leichtes Abkühlen der Schmelze Material auf der Substratoberfläche einkristallin abgeschieden. Sobald mit dem Abscheiden die vorgesehene Schichtdicke der einkristallinen Schicht erreicht ist, wird mit Hilfe des Schiebers die restliche Schmelze von der Substratoberfläche bzw. der aufgewachsenen Epitaxieschicht abgeschoben. Ein solches Schiebeepitaxie-Verfahren sowie eine Vorrichtung zur Durchführung dieses Verfahrens sind beispielsweise in der US-Patentschrift 3 753 801 beschrieben. Zur Herstellung von kohärent und inkohärent strahlenden Doppelheterostruktur-Dioden, z.B. einer (Ga, AI) As-GaAs-Diode, sowie auch bei Mikrowellen-Bauelementen mit Heterestruktur ist es notwendig, aufeinander mehrere Schichten epitaxial abzuscheiden. Diese Schichten unterscheiden sich dabei in ihrer Zusammensetzung, z.B. bei einer GaAs-(GaA1)As-Schichtfolge, im Aluminiumgehalt.
- Aus der US-Re 28 140 ist bekannt, je eine Epitaxieschicht auf aufeinanderfolgende Substrate aufwachsen zu lassen. Es ist dort ein einziger Vorratsbehälter 10-12 vorhanden, aus dem mit einem ersten Schieber 13 in eine Öffnung 18 portionsweise Schmelze entnommen und dann durch Verschieben auf eine Substratscheibe aufgebracht wird. Soll eine weitere Scheibe beschichtet werden, ist ein weiterer Schieber 14 vorzusehen, mit dem die Substratscheiben und die Portionsöffnung 18 des ersten Schiebers gegeneinander und gegenüber dem einen Vorratsbehälter verschoben werden müssen. Für die erneute Abscheidung ist vorherige Wiedererwärmung auf die ursprüngliche Ausgangstemperatur vorgesehen. Zusatzlich ist in der US-Re 28 140 noch lediglich erwähnt, mehrere Substrate in Tandemweise zu beschichten. Auch ist die Möglichkeit, mehrere Schichten aufeinander abzuscheiden, erwähnt, wozu zusätzliche Vorratsbehälter und zusätzliche Portionsöffnungen in einem verlängerten ersten Schieber vorzusehen sind. Die Substratscheibe befindet sich wohl wieder im zweiten Schieber.
- Schichtfolgen, wie sie beispielsweise für Doppelheterostruktur-Laserdioden oder -Lumineszenzdioden benötigt werden, werden üblicherweise mit Schiebeapparaturen hergestellt, bei denen sich in einem Graphit- "Boot" in geeignet ausgebildeten Vertiefungen die Substratscheiben befinden, und bei denen ein beweglicher Schieber vorhanden ist, der mehrere Kammern für die verschiedenen Schmelzen unterschiedlicher Zusammensetzung aufweist. Die Substratscheiben sind dabei hintereinander oder konzentrisch im gleichen Abstand angeordnet, und die Kammern des Schiebers sind ebenfalls hintereinander oder konzentrisch mit dem entsprechenden Abstand angeordnet. Durch Weiterschieben bzw. Drehen des Schiebers werden die Schmelzen nacheinander über den jeweiligen Substratkristall geschoben, wobei jedes Mal durch Abkühlen der Schmelze um einen gewissen Temperaturbetrag auf der Substratscheibe eine einkristalline Schicht aufwächst. Die Dicke der aufgewachsenen Schicht wird durch die Größe der Temperaturabsenkung der Schmelze und durch die Dicke der Schmelze über dem Substrat, und, sofern nicht die der Temperaturabsenkung entsprechende Menge gelöster Substanz zur Gänze auf dem Substrat abgeschieden wird, auch durch die Abkühlgeschwindigkeit der Schmelze festgelegt. Wenn auf einem Substrat sehr dünne Schichten abgeschieden werden sollen, so müssen zum Abscheiden Schmelzen verwendet werden, die mit dem Material des Substrates gesättigt sind, damit beim Aufschieben der Schmelze nicht eine unkontrollierte Auflösung des Substratkristalles an seiner Oberfläche und als deren Folge ein unkontrolliertes Schichtwachstum auftritt. Eine exakte Sättigung der Schmelzen wird am einfachsten dadurch bewerkstelligt, daß die jeweils verwendete Schmelze durch genügend langes Verweilen auf einem Vorsubstrat in ein Lösungsgleichgewicht gebracht wird, bevor sie auf das eigentliche Substrat aufgeschoben wird. Bei tatsächlich ausgeführten Apparaturen, in denen mehrere Substratscheiben gleichzeitig beschichtet werden, ist für jede abzuscheidende Schicht einer jeden Substratscheibe eine gesonderte Kammer in dem Schieber vorgesehen worden. Zur Herstellung einer 4-Schichtstruktur, bei der zur Abscheidung der einzelnen Schichten jeweils unterschiedliche Abkühlintervalle angewendet werden, ist ein Schieber eingesetzt worden, dessen Kammerzahl 4 mal so groß ist wie die Zahl der zu beschichtenden Substratscheiben. Dies hat bereits bei einer kleinen Anzahl von Substratscheiben zu einer sehr komplizierten Konstruktion des Schiebers bzw. des "Bootes" geführt. Ferner konnte die hohe Anzahl von Kammern bei der Beschickung dieser "Boote" leicht zu Fehlern führen. Bei der Verwendung von Vorsubstraten ist bei diesem Verfahren darüber hinaus auch die doppelte Anzahl von Substratscheiben erforderlich, was die Kosten des Verfahrens zusätzlich erhöht.
- Aufgabe der Erfindung ist es, ein Verfahren zum Abscheiden einkristalliner Schichten nach der Flüssigphasen-Schiebeepitaxie anzugeben, mit dem es möglich ist, mehrere Substratscheiben gleichzeitig mit einer Vielschicht-Struktur zu versehen, ohne daß derartige Vorsubstrate notwendig sind und das es erlaubt, die Zahl der für die aufzuschiebenden Schmelzen vorgesehenen Kammern des Schiebers zu vermindern.
- Diese Aufgabe wird bei einem wie im Oberbegriff des Patentanspruches 1 angegebenen Verfahren erfindungsgemäß nach der im kennzeichnenden Teil des Patentanspruches 1 angegebenen Weise gelöst.
- Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
- Der Vorteil des erfindungsgemäßen Verfahrens besteht einmal darin, daß die einzelnen Schichten auf den jeweiligen Substratscheiben jeweils aus derselben Schmelze abgeschieden werden, und daß weiterhin die Temperaturabsenkung für die einzelnen Schmelzen jeweils um den gleichen Betrag erfolgt. Zur Steuerung der Dicke der jeweils abgeschiedenen Schicht wird die Dicke der über der Substratscheibe befindlichen Schmelze entsprechend variiert.
- Die jeweilige Schmelze, aus der heraus die betreffende Schicht einkristallin abgeschieden werden soll, verbleibt solange auf dem Substratkristall, bis sie sich mit diesem im Gleichgewicht befindet. Die zu beschichtenden Substratscheiben sind in der für die Durchführung des erfindungsgemäßen Verfahrens verwendeten Apparatur hintereinander im gleichen Abstand wie der Abstand der für die Schmelzen vorgesehenen Kämmern des Schiebers angeordnet. Die Substratscheiben bzw. die für die Schmelzen vorgesehenen Kammern können linear oder auch auf konzentrischen Kreisen angeordnet sein.
- Zum Abscheiden der ersten einkristallinen Schichten wird eine erste Schmelze auf ein erstes Substrat aufgeschoben. Die erste Schmelze kann gegebenenfalls auch über ein Vorsubstrat in das Lösungsgleichgewicht gebracht worden sein. Nachdem die erste Schmelze auf das erste Substrat aufgeschoben worden ist, wird die Anordnung um ein bestimmtes Temperaturintervall T, das beispielsweise etwa 1 °C beträgt, abgekühlt. Dabei scheidet sich Material, das in der Schmelze gelöst ist, auf der Substratoberfläche epitaktisch ab. Die Schmelze wird solange auf dem Substrat belassen, bis die Schmelze das bei dieser neuen Temperatur herrschende Lösungsgleichgewicht erreicht hat, d.h. bis die Schmelze für die Abscheidung erschöpft ist. Man kann davon ausgehen, daß das Wachstum aus der Schmelze heraus durch die Diffusion des in der Schmelze gelösten Stoffes bestimmt wird, beispielsweise bei der Abscheidung von GaAs durch die Diffusion des As in der Ga-Schmelze. In diesem Falle ist die Mindestverweilzeit der Schmelze auf dem Substrat nach Abschluß der Abkühlung durch die Gleichung.
- Im folgenden wird die Erfindung anhand eines in den Figuren dargestellten Ausführungsbeispiels beschrieben und näher erläutert.
- Fig. 1 zeigt schematisch die für die Durchführung des erfindungsgemäßen Verfahrens verwendete Apparatur,
- Fig. 2 zeigt schematisch, wie die Temperatur der gesamten Anordnung zur Abscheidung einzelner Schichten auf den jeweiligen Substratscheiben abgesenkt werden wird.
- Fig. 2 zeigt den Temperaturverlauf der gesamten Anordnung. Die Anfangstemperatur TA beträgt beispielsweise 800°C. Entsprechend der vorhandenen Anzahl von Substraten sowie der Zahl der abzuscheidenden Schichten erfolgt eine schrittweise Temperaturabsenkung jeweils um einen Betrag AT, beispielsweise um 1 °C. Die Endtemperatur TE liegt bei einem Verfahren, bei dem zehn Substratscheiben mit einer 4-Schichtstruktur überzogen werden, beispielsweise 14°C tiefer als die Anfangstemperatur.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2730358 | 1977-07-05 | ||
DE2730358A DE2730358C3 (de) | 1977-07-05 | 1977-07-05 | Verfahren zum aufeinanderfolgenden Abscheiden einkristalliner Schichten auf einem Substrat nach der Flüssigphasen-Schiebeepitaxie |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0000123A1 EP0000123A1 (de) | 1979-01-10 |
EP0000123B1 true EP0000123B1 (de) | 1981-02-25 |
Family
ID=6013202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP78100110A Expired EP0000123B1 (de) | 1977-07-05 | 1978-06-07 | Verfahren zum Abscheiden einkristalliner Schichten nach der Flüssigphasen-Schiebeepitaxie. |
Country Status (6)
Country | Link |
---|---|
US (1) | US4149914A (de) |
EP (1) | EP0000123B1 (de) |
JP (1) | JPS5414669A (de) |
CA (1) | CA1116312A (de) |
DE (1) | DE2730358C3 (de) |
IT (1) | IT1096839B (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7712315A (nl) * | 1977-11-09 | 1979-05-11 | Philips Nv | Werkwijze voor het epitaxiaal neerslaan van verscheidene lagen. |
DE3036643C2 (de) * | 1980-09-29 | 1984-09-20 | Siemens AG, 1000 Berlin und 8000 München | Vorrichtung zur Flüssigphasen-Epitaxie |
US4319937A (en) * | 1980-11-12 | 1982-03-16 | University Of Illinois Foundation | Homogeneous liquid phase epitaxial growth of heterojunction materials |
US4342148A (en) * | 1981-02-04 | 1982-08-03 | Northern Telecom Limited | Contemporaneous fabrication of double heterostructure light emitting diodes and laser diodes using liquid phase epitaxy |
US4547230A (en) * | 1984-07-30 | 1985-10-15 | The United States Of America As Represented By The Secretary Of The Air Force | LPE Semiconductor material transfer method |
JPH07115987B2 (ja) * | 1986-09-26 | 1995-12-13 | 徳三 助川 | 超構造および多層膜の製作法 |
TW460604B (en) | 1998-10-13 | 2001-10-21 | Winbond Electronics Corp | A one-sided and mass production method of liquid phase deposition |
CN102995115B (zh) * | 2012-12-27 | 2015-07-29 | 中国电子科技集团公司第十一研究所 | 一种用于液相外延生长的石墨舟及液相外延生长方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE28140E (en) * | 1971-11-29 | 1974-08-27 | Bergh ctal | |
BE788374A (fr) * | 1971-12-08 | 1973-01-02 | Rca Corp | Procede de depot d'une couche epitaxiale d'un materiau semi-conducteur sur la surface d'un substrat |
US3933538A (en) * | 1972-01-18 | 1976-01-20 | Sumitomo Electric Industries, Ltd. | Method and apparatus for production of liquid phase epitaxial layers of semiconductors |
GB1414060A (en) * | 1972-07-28 | 1975-11-12 | Matsushita Electronics Corp | Semoconductor devices |
JPS5342230B2 (de) * | 1972-10-19 | 1978-11-09 | ||
US3899371A (en) * | 1973-06-25 | 1975-08-12 | Rca Corp | Method of forming PN junctions by liquid phase epitaxy |
US3899137A (en) * | 1974-12-17 | 1975-08-12 | Martin Shenker | Cleaning device for photo-slides |
US4028148A (en) * | 1974-12-20 | 1977-06-07 | Nippon Telegraph And Telephone Public Corporation | Method of epitaxially growing a laminate semiconductor layer in liquid phase |
US4032951A (en) * | 1976-04-13 | 1977-06-28 | Bell Telephone Laboratories, Incorporated | Growth of iii-v layers containing arsenic, antimony and phosphorus, and device uses |
-
1977
- 1977-07-05 DE DE2730358A patent/DE2730358C3/de not_active Expired
-
1978
- 1978-06-07 EP EP78100110A patent/EP0000123B1/de not_active Expired
- 1978-06-09 US US05/914,167 patent/US4149914A/en not_active Expired - Lifetime
- 1978-06-30 IT IT25180/78A patent/IT1096839B/it active
- 1978-07-03 JP JP8083378A patent/JPS5414669A/ja active Granted
- 1978-07-04 CA CA000306752A patent/CA1116312A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
CA1116312A (en) | 1982-01-12 |
DE2730358C3 (de) | 1982-03-18 |
IT1096839B (it) | 1985-08-26 |
JPS5414669A (en) | 1979-02-03 |
IT7825180A0 (it) | 1978-06-30 |
EP0000123A1 (de) | 1979-01-10 |
US4149914A (en) | 1979-04-17 |
DE2730358B2 (de) | 1981-05-27 |
DE2730358A1 (de) | 1979-01-11 |
JPS6235260B2 (de) | 1987-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2416550C2 (de) | Verfahren zum Herstellen eines Halbleiterbauelements mit versetzungsfreiem Übergitterstrukturkristall | |
DE2257834A1 (de) | Verfahren zur herstellung eines halbleiterbauelementes | |
EP0000123B1 (de) | Verfahren zum Abscheiden einkristalliner Schichten nach der Flüssigphasen-Schiebeepitaxie. | |
DE2616700A1 (de) | Verfahren zum ausbilden einer duennen schicht aus einem halbleitermaterial der gruppen iii-v aus einer loesung auf einem substrat durch epitaxiales aufwachsen aus fluessigphase | |
DE2338244B2 (de) | Verfahren und Vorrichtung zur Herstellung eines mehrschichtig aufgebauten Halbleiter-Bauelementes mit epitaktischen Aufwachsschichten | |
DE2062041B2 (de) | ||
DE2227883C2 (de) | Flüssigphasenepitaxieverfahren | |
DE2425747C3 (de) | Verfahren zum Herstellen epitaktischer Schichten auf einem Substrat mittels Flüssigphasen-Epitaxie | |
DE4427715C1 (de) | Komposit-Struktur mit auf einer Diamantschicht und/oder einer diamantähnlichen Schicht angeordneter Halbleiterschicht sowie ein Verfahren zu deren Herstellung | |
DE3785859T2 (de) | Halbleiterstrukturen. | |
DE1280416B (de) | Verfahren zum Herstellen epitaktischer Halbleiterschichten auf elektrisch leitenden Schichten | |
EP1238414A1 (de) | Verfahren zur epitaxie von (indium, aluminium, gallium)-nitrid auf fremdsubstraten | |
DE2522921C3 (de) | Verfahren zur epitaktischen Abscheidung dotierter III-V-Verbindungshalbleiter-Schichten | |
DE3217501C2 (de) | Verfahren zum Herstellen einer ionenimplantierten Schicht eines Magnetblasenspeicher-Bauelements | |
DE3248689C2 (de) | ||
DE2535160C3 (de) | Vorrichtung zum epitaktischen Züchten einer Kristallschicht auf einem Halbleitersubstrat | |
DE2942203C2 (de) | ||
DE3129449C2 (de) | ||
DE2910723A1 (de) | Verfahren zum herstellen von epitaktischen halbleitermaterialschichten auf einkristallinen substraten nach der fluessigphasen-schiebe-epitaxie | |
DE3535046C2 (de) | ||
DE2556503C2 (de) | Verfahren zum epitaktischen Niederschlagen einer Halbleiterschicht auf einem Substrat | |
DE2233734C3 (de) | Verfahren und Vorrichtung zum epitaktischen Aufwachsen einer Einkristallschicht auf einem einkristallinen Substrat durch Flüssigphasen-Epitaxie | |
DE2641347A1 (de) | Verfahren zur herstellung von epitaxialen schichten auf einkristallinen substraten nach der fluessig-phasen-schiebeepitaxie | |
DE2213313B2 (de) | Verfahren zum Abscheiden einer einkristallinen Halbleiterepitaxialschicht auf einem Substrat | |
DE2728771A1 (de) | Verfahren zur epitaktischen ablagerung eines halbleitermaterials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE FR GB SE |
|
17P | Request for examination filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE FR GB SE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19840626 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19840630 Year of fee payment: 7 Ref country code: BE Payment date: 19840630 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19890531 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19890608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19890630 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. BERLIN UND MUNCHEN Effective date: 19890630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19900228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19900607 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
EUG | Se: european patent has lapsed |
Ref document number: 78100110.2 Effective date: 19900412 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |