DE3202610A1 - Piezoelektrisches keramikmaterial - Google Patents

Piezoelektrisches keramikmaterial

Info

Publication number
DE3202610A1
DE3202610A1 DE19823202610 DE3202610A DE3202610A1 DE 3202610 A1 DE3202610 A1 DE 3202610A1 DE 19823202610 DE19823202610 DE 19823202610 DE 3202610 A DE3202610 A DE 3202610A DE 3202610 A1 DE3202610 A1 DE 3202610A1
Authority
DE
Germany
Prior art keywords
ceramic material
piezoelectric ceramic
harmonic
amount
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19823202610
Other languages
English (en)
Other versions
DE3202610C2 (de
Inventor
Toshihiko Shijonawate Kittaka
Toshio Kyoto Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of DE3202610A1 publication Critical patent/DE3202610A1/de
Application granted granted Critical
Publication of DE3202610C2 publication Critical patent/DE3202610C2/de
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates

Description

Beschreibung
Die Erfindung betrifft ein piezoelektrisches Keramikmaterial oder eine Piezokeramik des Bleititanat-Systems.
Es ist bekannt, daß die Piezokeramiken ein Material einschließen, welches überwiegend aus PbTiO, besteht oder welches überwiegend aus Pb(Ti, Zr)O3 besteht oder welches feste Lösungen von Pb(Mn, /3Nt>2/3* °3 undder Pb(Ni^3Nb-Z3)O3 als zweiten oder dritten Bestandteil in den Hauptbestandteilen enthält.
Von diesen sind den binären oder ternären Systemen, die Pb(Ti, Zr)O3 als Hauptbestandteil enthalten, verschiedene Zusätze oder Additive zugesetzt worden, um die piezoelektrischen und elektrischen Eigenschaften zu verbessern und Materialien dieser Art werden für pyroelektrische Geräte, piezoelektrische Vibratoren, Schwinger, Zerhacker, Resonatoren, Oszillatoren, Keramikfilter, Oberflächenwellenfilter und dergleichen verwendet. Andererseits besitzt ein Keramikmaterial des modifizierten PbTiO3~Systems, bei dem Blei durch ein anderes Metall ersetzt ist, einen größeren elektromechanischen Kupplungskoeffizienten bei der Dickenexpansionsschwingung (thickness mode vibration) als bei der Konturschwingung (contour mode vibration) und eine niedrige Dielektrizitätskonstante (welche Eigenschaften man nicht bei den Materialien des Pb(Ti, Zr)O3-Systems findet) . Dies hat zur Folge, daß dann, wenn die Dickenschwingung angewandt wird, die als Folge der Konturschwingung verursachten Störschwingungen klein werden, was den Vorteil mit sich bringt, daß die Impedanzanpassung an einen äußerem SJfli.i I Lk ro La bl:; '/.um Hoch rrntjiuuizbcroich erleichtert wird. Da es jedoch unmöglich ist, die Energie der Dickenausdehnungs-Grundschwingung in der Nähe der Elek-
Murata wanux. co.,
TER MEER · MÜLLER · STEINMEIST&R2 I *..*.:. '-.'.I.. 32026Ί0
trode einzufangen, ergibt sich der Nachteil, daß die Grundschwingung der Dickenausdehnung nicht scharf auftritt. Weiterhin ergibt sich ein weiterer Nachteil dadurch, daß in der Temperatur/Resonanzfrequenz-Kennlinie die Resonanzfrequenz linear mit ansteigender Temperatur absinkt. Insbesondere liegt der· Temperaturkoeffizient der Resonanzfrequenz zwischen -50 und -100 ppm/0C. Dies entspricht dem Phänomen der Keramikmaterialien mit zunehmender Temperatur weicher zu werden. Wegen dieser Nachteile ist es äußerst schwierig, Keramiken des modifizierten PbTiO^-Systems, bei denen Blei durch ein anderes Metall ersetzt ist, für Resonatoren, Oszillatoren, Keramikfilter und dergleichen zu verwenden.
Die Aufgabe der vorliegenden Erfindung besteht somit darin, ein piezoelektrisches Keramikmaterial des Bleititanat-Systems zu schaffen, welches die oben angesprochenen Nachteile nicht aufweist.
Diese Aufgabe wird nun gelöst durch das piezoelektrische Keramikmaterial gemäß Hauptanspruch. Die Unteransprüche betreffen besonders bevorzugte Ausführungsformen dieses Erfindungsgegenstandes.
Die Erfindung betrifft somit ein piezoelektrisches Keramikmaterial oder eine Piezokeramik, das bzw. die als Hauptbestandteil {pb , 1_3χ) +u Lax I TiO3 , worin 0,09 = χ = 0,20 und -0,20 =06= +0,20 bedeuten, und als Zusatz oder Additiv Mangan in einer Menge von 0,1 bis 2,0 Gew.-% MnO2, bezogen auf das Gewicht eines Mols des Hauptbestandteils, enthält.
Es hat sich gezeigt, wenn die erfindungsgemäßen Keramiken für elektronische Bauteile, wie Resonatoren, Oszillatoren, Keramikfilter und dergleichen verwendet werden, man vor-
Murata Manuf. Co. r Ltd. ' .: .-" * : : ': fp>1393:
TER MEER · MÖLLER · STEINMElSTfcR ^ "..*.!. "--"
zugsweise die dritte harmonische Oberschwingung der Dikkenexpansionsschwingung statt der Grundschwingung der Dickenexpansionsschwingung anwendet. Demzufolge geht die Auswahl des oben beschriebenen Materials auf die dritte harmonische Oberschwingung zurück, wie weiter unten noch erläutert werden wird- Es ist jedoch festzuhalten, daß die erfindungsgemäßen Keramiken nicht auf jene Anwendungszwecke beschränkt sind, bei denen die dritte harmonische Oberschwingung angewandt wird.
Es hat sich, wie bereits erwähnt, weiterhin gezeigt, daß die erfindungsgemäßen Keramiken einen größeren elektromechanischen Kupplungskoeffizient bei der Dickenexpansionsschwingung als bei der Konturschwingung zeigen. Demzufolge beruht die oben erwähnte Materialauswahl überwiegend auf der Dickenexpansionsschwingung.
Bei dem erfindungsgemäßen Keramikmaterial ist ein Teil des Bleis durch Lanthan ersetzt. Der Grund dafür, daß die Lanthanmenge nicht weniger als 9 Atom-% betragen soll, ist darin zu sehen, daß anderenfalls der Temperaturkoeffizient der Resonanzfrequenz der dritten harmonischen Oberschwingung der Dickenexpansion mehr als 5 ppm/0C beträgt. Der Grund der Festlegung der Obergrenze der Lanthanmenge auf 20 Atom-% ist darin zu sehen,daß anderenfalls der Temperaturkoeffizient der Resonanzfrequenz für die dritte harmonische Oberschwingung bei der Dickenexpansionsschwingung mehr als 5 ppm/0C beträgt und der mechanische Qualitätsfaktor der dritten harmonischen Oberschwingung
30 der Dickenexpansionsschwingung klein wird.
Der Grund zur Auswahl der MnO2~Menge innerhalb eines Bereichs von 0,1 bis 2,0 Gew.-% ist darin zu sehen, daß bei einer geringeren Menge als 0,1 Gew.-% der Temperaturkoeffizient der Resonanzfrequenz für die dritte har-
Murata Manuf. Co., Ltd.
* .: .·' · : · ': FP>1J93:noMn
TER MEER - MÜLLER · STEINMEISTER I ',.*.:. "..*.... OiUZO IU
monische Oberschwingung der Dickenexpansionsschwingung nicht weniger als 5 ppm/0C beträgt, während bei einer Menge von mehr als 2,0 Gew.-% der spezifische Widerstand der Keramik so gering wird, daß die Keramik kaum mehr polarisiert werden kann.
Wenn die beiden Bedingungen erfüllt sind, d. h. daß die La-Menge auf einen Bereich von 0,095 bis 0,135 Atom-% und die MnO2~Menge auf einen Bereich von 0,2 bis 0,15 Gew.-% begrenzt werden, beträgt der Temperaturkoeffizient der Resonanzfrequenz der dritten harmonischen Oberschwingung bei der Dickenexpansionsschwingung nicht mehr als 2 ppm/ 0C und zeigt eine verbesserte Linearität.
Bezüglich der Bleimenge haben experimentelle Ergebnisse gezeigt, daß diese ohne Beeinflussung der Kristallstruktur erheblich verändert werden kann. Insbesondere kann, wenn die Bleimenge in dem Hauptbestandteil in Abhängigkeit von der Lanthanmenge bezüglich der Wertigkeit der Kationenstellen angepaßt worden ist, diese Menge im Bereich von 0 bis 20 Atom-% erhöht oder vermindert werden. Ein überschreiten der Bleimenge um +20 Atom-% führt zu einem beträchtlichen Kornwachstum, so daß es nicht möglich wird, dichte Keramiken zu erzeugen. Andererseits
25 führt die Verminderung der Bleimenge um -20 Atom-% zu einer Bildung einer zweiten Phase, wodurch die Piezoelektrizität deutlich verschlechtert wird.
Wenn die Bleimenge innerhalb des Bereichs von 1 bis 20 0 Atom-% erhöht oder vermindert und im Hinblick auf die Lanthanmenge unter Berücksichtigung der Wertigkeiten angepaßt wird, so zeichnen sich die dadurch erhaltenen Keramiken durch eine Beibehaltung ihrer Perowskit-Struktur aus, wenngleich sich die Keramiken stöchiometrisch nicht im Gleichgewicht befinden.
Murata Manuf. Co., Ltd. * .* .·* * : : ": FP><3 9 3*
TER MEER · MÜLLER ■ STEINMEISTIER l *..■ .:. "-.".:.. 3 20 2
Insbesondere dann, wenn die Bleimenge im Bereich von 1 bis 15 Atom-% vermindert wird, hat sich gezeigt, daß die erhaltenen Keramiken bemerkenswerterweise im Vergleich zu den stöchiometrischen piezoelektrischen Keramiken den folgenden Effekt im Hinblick auf die Eigenschaften aufweisen.
So besteht die Neigung zur Steigerung des Werts des elektromechanischen Kupplungskoeffizienten für die dritte harmonische Oberschwingung (Kt..). Weiterhin nimmt der Wert des mechanischen Qualitätsfaktors bei der dritten harmonischen Oberschwingung (QmtO zu. Dabei entspricht ein hoher Wert des mechanischen Qualitätsfaktors einem niedrigen Wert der Resonanzimpedanz, was den Vorteil mit sich bringt, daß die Keramiken bei niedrigeren Treiberspannungen in Resonanz oder Oszillation bzw. zum Schwingen kommen. Es ist darauf hinzuweisen, daß dies eine äußerst vorteilhafte Eigenschaft für einen Resonator oder einen Oszillator darstellt. Wenn andererseits der mechanische Qualitätsfaktor der dritten harmonischen Oberschwingung größer wird, nimmt auch der Wert der Antiresonanz-Impedanz zu, was zur Folge hat, daß das Verhältnis von Resonanz-Impedanz zu Antiresonanz-Impedanz größer wird, so daß es möglich wird, die Schwingung (Resonanz
25 und Oszillation) zu stabilisieren. Weiterhin besitzt
der Temperaturkoeffizient der Resonanzfrequenz der dritten harmonischen Oberschwingung bei der Dickenexpansionsschwingung (Cfr.t3) einen niedrigen Wert von nicht mehr als 1,3 ppm/ 0C, so daß man ein piezoelektrisches Keramikmaterial mit stabilen Temperatureigenschaften im Vergleich zu einem Quarzoszillator erhält.
Weiterhin ist aus der folgenden Beschreibung der bevorzugten Ausführungsformen der Erfindung zu entnehmen, daß die erfindungsgemäßen Keramiken ihre Perowskit-Struktur beibehalten, selbst dann, wenn die Bleimenge erhöht oder
Murata Manuf. Co., Ltd.
- · " * · FP**! 3 93* TER MEER · MÜLLER · STEINMEISTER I *..* .Ϊ» '..".!,. OZUZÖ IU
vermindert wird.
Weiterhin zeigen die durch Brennen in einer nicht weniger als 80 Vol.-% Sauerstoff enthaltenden Sauerstoffatmosphäre hergestellten piezoelektrischen Keramikmaterialien geringe Schwankungen des spezifischen Widerstands, da das in dem Material enthaltene Metalloxid, d. h. das Manganoxid, durch eine ausreichende Oxidation in einem hohen Wertigkeitszustand gehalten wird.
10
Die Erfindung sei im folgenden näher unter Bezugnahme auf die beigefügten Zeichnungen erläutert.
In den Zeichnungen zeigen
15
Fig. 1 eine graphische Darstellung, die die Beziehung zwischen der Lanthanmenge und dem Temperaturkoeffizienten für die dritte harmonische Oberschwingung der Dickenexpansionsschwingung für die in der Tabelle angegebenen Proben verdeutlicht, wobei
die MnOp-Menge als Paramenter herangezogen ist;
Fig. 2 anhand einer Kurvendarstellung die temperaturabhängige Änderung der Resonanzfrequenz der dritten harmonischen Oberschwingung der Dicken-
expansionsschwingungials Änderungsrate auf 200C bezogen, von erfindungsgemäßen Proben und von Proben, die nicht der Erfindungsdefinition entsprechen;
Fig. 3A bis 31 mit CuK06-Strahlung ermittelte Röntgenbeugungsdiagramme von Proben, deren Probennummer in der Tabelle angegeben ist;
Fig. 4 eine graphische Darstellung, die die Frequenz/
Murata_ Manuf. Co., Ltd.
*.*.·'*: : Ί FE-*i39i
TER MEER · MÜLLER . STEINMEISTfclS : ",* -I- *..*.:.- 3202810
— 9 —
Scheinleitwert-Kennlinie von erfindungsgemäßen Proben verdeutlicht; und
Fig. 5 eine graphische Darstellung, die die Frequenzbereiche wiedergibt, in denen das erfindungsge
mäße piezoelektrische Keramikmaterial und Quarzvibratoren eingesetzt werden können.
Das folgende Beispiel dient der weiteren Erläuterung der Erfindung.
Beispiel
Als Ausgangsmaterialien verwendet man PbO (oder Pb3O4), TiO2 , La2O-. und MnO2. Neben diesen Verbindungen ist es natürlich möglich, ein Material einzusetzen, welches sich letztlich in das gewünschte Oxid umwandelt, beispielsweise MnCO.,.
Man wiegt den Hauptbestandteil der allgemeinen Formel •jPb,., 3 i^La TTiO0 und den Zusatz MnO0 ab, um die in *· \ l—;tXJ ήχ< xj j ι.
der nachfolgenden Tabelle angegebenen Zusammensetzungsverhältnisse zu erreichen, und vermischt die Materialien in feuchtem Zustand in einer Kugelmühle. Nach dem Vermisehen werden die Materialien entwässert, getrocknet und während 2 Stunden bei 850 bis 10000C calciniert. Dann werden die calcinierten Pulver zusammen mit einem organischen Bindemittel vermählen, vermischt, getrocknet und granuliert. Das Granulat wird unter Anwendung eines Drucks von etwa 981 bar (1000 kg/cm2) zu Scheiben mit einem Durchmesser von 20 mm und einer Dicke von 1,5 mm verpreßt.
Die Scheiben werden dann während 2 Stunden bei 1150 bis 13000C unter Bildung der Keramik gebrannt. Einige Schei-
Murata Manuf. Co., Ltd..
* ; .· . : : ·: epv.393: termeer-muller-steinmeist^r. : ·..* .:. ".."".:.. 3202610
- 10 -
ben werden auf beiden Oberflächen durch Einbrennen mit Silberelektroden versehen, wahrend andere zur Verminderung der Dicke auf etwa 0,3 mm abgeschliffen und dann durch Vakuumbedampfen mit Silberelektroden versehen werden und zur Messung der Resonatoreigenschaften eingesetzt werden. Sie werden dann einer Polarisationsbehandlung während etwa 5 bis 60 Minuten bei 20 bis 2000C und 2 bis 8 kV/mm unterworfen.
Nach dem Polarisieren bestimmt man bei Scheiben und Resonatoren mit einem Durchmesser von 1 bis 2 mm (Resonanzfrequenz = 23 MHz) auf der dünnen Scheibe die dielektrischen und piezoelektrischen Eigenschaften, namentlich
15 den dielektrischen Verlustwinkel (tan<S) , die Dielektrizitätskonstante (E),
den elektromechanischen Kupplungskoeffizienten für die Radialschwingung (radial mode vibration) (Kp), den mechanischen Qualitätsfaktor für die Radialschwin-
20 gung (Qmp),
den elektromechanischen Kupplungskoeffizienten für die Grundschwingung der Dickenexpansionsschwingung (thickness expansion mode) (Kt),
den elektromechanischen Kupplungskoeffizienten für die dritte harmonische Oberschwingung der Dickenexpansionsschwingung (Kt3),
den mechanischen Qualitätsfaktor für die dritte harmonische Oberschwingung der Dickenexpansionsschwingung (Qmt3), den Temperaturkoeffizienten der Resonanzfrequenz der Grundschwingung der Dickenexpansionsschwingung (Cfr.t) , und
den Temperaturkoeffizienten der Resonanzfrequenz der dritten harmonischen Oberschwingung der Dickenexpansionsschwingung (Cfr.t_).
Murata Manuf. Co., Ltd. •'VT- . :"*: ·: ϊ*'τΛ39$
TER MEER · MÜLLER ■ STEINMEISTSS : *--" --- "-."-*-. 3202610
Die hierbei erhaltenen Meßergebnisse sind ebenfalls in der nachfolgenden Tabelle zusammengestellt.
Weiterhin zeigen die Proben der Nr. 17 und 37 Werte, die mit piezoelektrischen Keramiken erhalten worden sind, die in einer Sauerstoffatmosphäre (mit einer Sauerstoffkonzentration von 100 VoI.-% bzw. 80 Vol.-%) gebrannt worden sind. Für jene Materialien, deren piezoelektrische Eigenschaften nicht ermittelt worden sind, sind die Werte für tan S und £ vor der Polarisationsbehandlung in der Tabelle angegeben.
Zur Ermittlung der Temperaturkoeffizienten der Resonanzfrequenz (Cfr.t und Cfr.t.,) wurde die Differenz zwischen dem Maximalwert und dem Minimalwert im Temperaturbereich von -200C bis +800C ermittelt und durch den Wert bei 200C dividiert.
Die in der Tabelle angegebenen Sternchen (*) bedeuten, daß die Probe nicht im Rahmen der Erfindung liegt, während die übrigen Proben der Erfindung entsprechen.
TABELLE
0 Zusammensetzung
χ α MnO2
(Gew.-%)
0 05 0,1 tan£
(%)
ε Kp ) Qrr.p Kt Tro_
(Z)
Qmt3 Cfr.t Cfr.t3
(ppm/D C)
ι [T
—τ
< * 0
Proben-
Nr.
0 ,07 +0, 2,0 1,23 264 6, 2 1123 52 6,6 1523 -45 -27,8 A
1
υ
υ
J
<
rt
Pi
p)
1* 0 ,07 0 05 0,05 1,82 229 5, 7 746 51 5,4 3048 -43 -19,4 Γ
. Π
3
H
2* 0 ,08 -ο, 20 0,1 1,12 289 5, 8 1300 50 5,8 . 1401 -49 -27,4 C
3* 0 ,08 -ο, 20 0,01 1,10 261 7, 9 1417 49 7,3 2396 -47 -17,7 i
I
)
»
1
t < ( «
τ < « < <
4* 0 ,09 "Ο, 15 0,1 1,98 303 8, 3 212 50 8,1 523 -60 -53 ω f
Π
5* 0 ,09 -o, 10
05
0,1 0,76 271 7, 9 1661 49 8,0 2681 -50 -4,0 H
m
ζ
6 0
0
,09 -o,
-o,
01 0,1
0,1
0,75 268 8, 1 1724 50 8,8 3947 -48 -1,2 . m
i (n
OO
7 0
0
,09
,09
-ο,
0
05 0,1
0,1
0,77
0,72
276
280
8,
8,
3
2
1807
1971
51
50
9,0
8,9
4062
3988
-47
-50
+0,3
+1,0
CD
00 CTl 0 ,09
,09
+0, 10 ο,ι 0,71
0,70
282 ·
287
8,
8,
2
0
2025
■ 2063
50
47
9,0
7,8
4155
2693
-49
-61
+0,3
-3,9
CD
10
11
0 ,09 +0, 20 0,1 0,68 291 7, 9 2086 46 7,7 2607 -75 -4,2
12 0 ,09 +0, 0,1 0,67 293 7, 7 2098 45 7,6 2581 -81 -4,6 CD
13 0 ,09 0 2,5 0,65 296 7, 8 2105 46 7,8 2574 -89 -4;9
14 ,09
15*
Murata Manuf. Co., Ltd. ·»»··· ►» * ·· "·
* « .*.* Z "' FP*-*i3*93* TER MEER · MÜLLER · STEINMEIS^eR * .."A. "..'.'--■ 3202610
φ
ω
-P
U O
tf
Γ4
(U
O ·
U U
in
CN I
ro
Γ0 CN
in in
1 I
cn
CN
in
00
in
rco
CN
VD ■Η
in ο ro
in co
cn
VO
CN
CN
■^r cn ο ι ο CN
O
γΗ
ro
ro
ro
ο ιη CN
VD cn Γ
I I Ι
co"
CTl
3306 2450 3634 4337
CO ιη ιη VO
CO 00 cn cn
co 3439
tn
cn
co
4126
in
cn
3863
cn
cn
in
VO
CN
CN
vo ι
rH ο rH O O O in
O
d" CN* O CN r-T fN O
σ
H
O
H
in
CN
in
rH
in
(N
σ O
I
O O o" O O
095 095 O
rH
O
rH
rH H CN
rH
CN
CN
CO
r-l
cn
CN
CN •X
CN
ro
Ol
CN
H
ο
CN
•ft
m
CN
U-)
ro
H
CN
ro
O CN
O
CN
σ
I
ro
VD
CN
CO
CN
in
ο
I
ο co vo **
r- vo in ^
I I I
in
fN
in
.H
o"
ro
2073 1416 I 932 I 1050 1567 1534 1216 I
I
1023 935 876 893 668
VO co I VO I O r— VD M VD co CN VD
cn co I I co cn cn O cn* co cn cn cn
271 313 296 289 I 304 302 293 291 294
in O
in
σ
r-
I O
cn
VD
H
VD
CN
in
CN
ro
CN
O O σ I o" r-T r-T r-I
TABELLE (Fortsetzung)
Probe-
Nr.
Zusammensetzung
χ α MnO2
(Gew.-%)
-ο, 01 2,0 ti ε Kp
(%
) ©ηρ Kt Kt3 O^ Cfr.t
(ppV°C)
31 0,13 0 2,0 1 295 9, 5 921 53 10,5 5734 -50
32 0,13 +0, 05 .2,0 1 298 9, 0 933 49 9,6 4197 -65
33 0,13 +0, 20 2,0 1 300 8f 9 948 48 ' 9,6 4182 -66
34 0,13 -ο, 20 0,05 1 305 8, 5 1059 45 9,2 4055 -75
35* 0,135 -Or 05 0,1 0 365 12, 9 2337 47 9,8 2576 -55
36 0,135 +0, 05 1,5 0 340 11, 7 1966 47 10,0 2557 -73
37 0,135 +0, 20 2,0 0 325 10, 1 1390 46 9,8 3598 -71
38 0,135 +0, 25 1,0 1 325 8, 9 983 46 9,7 4984 -70
39* 0,140 0 0,1 — ■
40 0,140 -ο, 25 0,1 0 353 12, 0 2054 46 10,3 2794 -73
41* 0,145 0 2,0 — ·
42 0,145 0 0 334 9, 0 1021 46 9,8 5321 -76
43* 0,149 +0, .15 2,0 2 406 14, 9 234 48 10,3 ' 565 -92
44 0,149 -ο, .15 2,0 0 359 10, 8 1529 45 • 9,9 3379 -79
45 0,149 1 347 9, ,6 1048 45 9,8 3979 -80
an(5
.23
,21
,19
,15
,30
,44
,80
,08
,42
,95
,83
,60
.08
CSr.t3
+0,6 +3,5 +3,6 +4,5 +13,9 +1,0 +1,6 +4,5
+2,5
+4,8 -65
+4,9 +0,5
TABELLE (Fortsetzung)
Zusammensetzuna
χ CK Μηθ2
(Gew.-%)
-0,05 0,5 tani ε Kp Ötp Kt Kt3 «. Cfr.t
(ppV°O
(pS^c) TER MEER · K I 2
m
i-i
rt
P)
3;
Probe-
Nr.
0,150 -0,05 2,0 0,52 346 13,1 1956 48 11,1 3874 -77 -0,1 Q
Γ
Ul
I
ω
iil ·.
P)
46 0,150 0 2,0 0,97 337 13,0 2054 49 11,5 3998 -78 +0,3 m 1 Hi
η
O
tr1
rf
Da
47 0,150 -0,20 1,0 1,13 353 12,5 2109 45 10,0 3050 -85 -4,5 U)
I m
ι *
• *
*
48 0,175 -0,15 1,0 0,76 395 14,0 1893 46 12,4 2893 -92 -3,9 4 Ψ · *
49 0,175 -0,01 1,0 0,82 398 15,0 1910 50 13,8 5322 -82 -1,0
50 0,175 -0,01 1,5 0,95 402 15,1 2015 49 13,9 5451 -85 -0,3
51 0,175 0 1,0 1,23 400 14;9 2154 49 13,7 5629 -84 +0,2
52 0,175 -0,10 0,5 1,18 407 14,4 2248 45 12,8 3025 -90 -4,9
53 0,200 0
0
0,1
0,5
0f64 443 15r8 2705 49 14,5 5870 -80 -1,3
54 0,200
0,200
+0,20 0,5 0,72
0,87
468
449
15,1
15,0
2874
2919
46
45
12,0
11,8
3805
3522
-91
-95
-5,0
-4,7
fa
1 · |*
ft Vt
• ■ UJ
■ > ^,
* - *
55
56
0,200 -0,05
-0,05
0
0,1
2,0
1,03 455 14,7 3053 43 11,5 3419 -97 -5,0
57 0,210
0,210
0,210
0r44
1,18
1,33
474
496
481
15,0
15,3
14,7
2563
2570
2433
45
44
40
11,5
11,2
10,0
3084
3007
2766
-105
-111
-123
-5,6
-6,3
-8,9
co
NO
Q
NO
CO
58*
59*
60*
Murata Manuf. Co., Ltd.
TER MEER · MÜLLER ■ STEINMEISTSR- : '··* "** ",."...- O Z U Z D IU
- 16 -
Die Fig. 1 verdeutlicht anhand einer graphischen Darstellung die Beziehung zwischen der Lanthanmenge (Atom-%) und dem Temperaturkoeffizienten (Cfr.t.,) für die dritte harmonische Oberschwingung der Dickenexpansionsschwingung, wobei die MnO2~Menge als Parameter fungiert. Wie aus dieser graphischen Darstellung zu erkennen ist, liegen die Mengen .von La und MnO „ jener Proben, deren Temperaturkoeffizient innerhalb des Bereichs von _+ 5 ppm/0C liegt, innerhalb des erfindungsgemäßen Bereichs. Bevorzugtere Ausführungsformen des erfindungsgemäßen piezoelektrischen Keramikmaterials umfassen die La- und MnO^-Mengen jener Proben, deren Temperaturkoeffizient im Bereich von _+ 2 ppm/0C liegt.
Wie aus der obigen Tabelle hervorgeht, zeigen jene Proben, deren o(.-Wert sich von -0,01 bis -0,15 erstreckt, einen ausgezeichneten Temperaturkoeffizienten für die Resonanzfrequenz der dritten harmonischen Oberschwingung der Dickenexpansionsschwingung (Cfr.t-.) im Bereich von + 1,3
20 ppm/0C.
Die Fig. 2 zeigt die temperaturabhängige Änderung der Resonanzfrequenz der dritten harmonischen Oberschwingung der Dickenexpansionsschwingung als Änderungsrate (Afr.t.,/ fr.t-J bezogen auf 200C für erfindungsgemäße Proben (Proben-Nr. 23 und 42) und eine außerhalb der Erfindungsdefinition liegende Probe (Probe Nr. 22). Die Änderungsrate der Antiresonanzfrequenz (Af a.t,/fa.t3) einer jeden Probe ist durch die gestrichelte Kurve wiedergegeben. Weiterhin sind auch der Temperaturkoeffizient für die Resonanzfrequenz (Cfr.t-.) und der Temperaturkoeffizient für die Antiresonanzfrequenz (Cfa.t-.) angegeben.
Wie am besten aus der Fig. 2 zu erkennen ist, kann, wie 5 es anhand der Probe Nr. 42 abgelesen werden kann, der
., . Mura-ta.Wanuf. Co., Ltd.
TER MEER · MÖLLER · STEINMEIST£*R· * *" * oZUZDlU
sekundäre Temperaturkoeffizient im Vergleich zu der Probe Nr. 22, die einen hohen sekundären Temperaturkoeffizient aufweist,vermindert werden. Weiterhin ist es möglich, eine Probe zu bilden, deren primärer Temperaturkoeffizient sehr klein ist,wie bei der Probe Nr. 23. Weiterhin Hind die Kurvim für dJ.o l'i'übo Nv. 2.1 Im OocjtMiu.i I. ζ ;-.u den Kurven der Proben der Nr. 22 und 42 in der vertikalen Achse in vergrößertem Maßstab wiedergegeben. Somit erzielt man mit dem erfindungsgemäßen piezoelektrischen Keramikmaterial Charakteristiken, die sich von dem tertiären Temperaturkoeffizient der Temperaturcharakteristik (strichpunktierte Linie) eines AT-geschnittenen Quarzkristalls nicht wesentlich unterscheiden.
Es ist weiterhin zu erkennen, daß erfindungsgemäß Keramiken geschaffen werden, deren Dielektrizitätskonstante und Frequenz-Temperaturkoeffizient jeweils niedrig sind, wie es aus der Tabelle abzulesen ist. Bezüglich der Frequenz/Temperatur-Charakteristiken hat sich gezeigt, daß bei einer Stabilität, die annähernd die von Quarzoszillatoren erreicht, der sekundäre Temperaturkoeffizient und der primäre Temperaturkoeffizient jeweils zufriedenstellend sind.
Weiterhin wurden Proben der Nr. 17 und 37 in einer Atmosphäre mit einer Sauerstoffkonzentration von 100 Vol.-% bzw. 80 Vol.-% und in Luft (wozu die Kenndaten nicht angegeben sind) gebrannt. Die Ergebnisse zeigten, daß im Mittel die Änderung der Werte von Kt und Kt3 beim Bren-
nen in einer Sauerstoffatmosphäre ausgedrückt als das Verhältnis (Standardabweichung/Mittelwert) 0,5 % beträgt. Dieser Wert beträgt etwa 1/3 des Werts für das Brennen in der Luft.
Die Fig. 3A bis 31 zeigen die mit CuK^-Strahlung aufge-
rauxctua nauuj. . v_u . , jjuu. ---- · *··" · 3202610
PERMEER-MaLLER-STEtNMEISTER
- 18 -
zeichneten Röntgenbeugungsdiagramme von Proben, deren oi-Wert im Bereich von -0,20 bis. +0,20 geändert wurde. Die bei jedem Diagramm angegebene Ziffer steht jeweils für die Proben-Nr.
5
Wie aus den Fig. 3A bis 31 zu erkennen ist, zeigen die proben selbst dann, wenn der cc-Wert im Bereich von -0,20 bis +0,20 vermindert oder vergrößert wird,eine Perowskit-Struktur.
Die Fig. 4 verdeutlicht anhand einer graphischen Darstellung die Frequenz/Scheinlextwert-( Admittanz )-Kennlinie von erfindungsgemäßen Proben, wobei die Scheinleitwert-Kennwerte für die Grundschwingung und die erste und fünfte harmonische Oberschwingung der Dickenexpansionsschwingung angegeben sind.
Wie aus dieser Kurvendarstellung abgelesen werden kann, ist es für die erfindungsgemäßen Keramiken, die für Resonatoren und Oszillatoren verwendet werden sollen, bevorzugt, die dritte harmonische Oberschwingung der Dikkenexpansionsschwingung anzuwenden. Der Grund hierfür ist, daß das Anregungsniveau der dritten harmonischen Oberschwingung größer ist als das der Grundschwingung und darüber hinaus scharf ist. Weiterhin beträgt, wie ebenfalls aus der Tabelle entnommen werden kann, der elektromechanische Kupplungskoeffizient für die dritte harmonische Oberschwingung der Dickenexpansions schwingung (Kt.,) etwa 10 % und es ist weiterhin möglich, einen hohen mechanisehen Qualitätsfaktor (Qmt.J oberhalb 4000 zu erreichen. Aus diesen Gründen kann man bei Anwendung der dritten harmonischen Oberschwingung Resonatoren und Oszillatoren mit überlegenen Kenndaten erhalten. Darüber hinaus besitzen Quarzoszillatoren des gleichen Frequenzbereichs
35 normalerweise eine Größe von 20 bis 40 mm im Quadrat,
Murata Manuf. Co., Ltd.
TER MEER · MÜLLER · STEINMEISTER
- 19 -
während es mit dem erfindungsgemäßen piezoelektrischen Keramikmaterial möglich ist, die Größe auf etwa 5 χ 5 χ 2 mm zu vermindern. Weiterhin sind, wie in der Fig. 5 dargestellt ist, im Falle eines Quarzoszillators die Wellen im Frequenzbereich von 1 bis 100 MHz in die AT-Grundschwingung, die AT dritte harmonische Oberschwingung und die AT fünfte harmonische Oberschwingung eingeteilt, so daß entsprechende Oszillatorschaltkreise notwendig sind, während mit Hilfe der erfindungsgemäßen Keramiken die dritte harmonische Oberschwingung kontinuierlich durch Änderung der Dicke der Keramik angewandt werden kann, so daß es möglich wird, die Oszillatorschaltungen zu vereinfachen. Auf diese Weise sind die erfindungsgemäßen piezoelektrischen Keramikmaterialien den Quarzvibratoren überlegen. Weiterhin zeigen die erfindungsgemäßen Keramiken eine geringe Dielektrizitätskonstante von 250 bis 350, was die Anwendung im Hochfrequenzbereich ermöglicht.
Darüber hinaus ist es mit den erfindungsgemäßen Keramikmaterialien möglich, überlegene, schmalbandige verlustarme Filter durch die Anwendung der dritten harmonischen Oberschwingung der Dickenexpansionsschwingung zu erhalten. Dies bedeutet, daß es ohne weiteres möglich ist, Keramikmaterialien, deren mechanischer Qualitätsfaktor für die dritte harmonische Oberschwingung der Dickenexpansionsschwingung (Qmt3) größer ist als 4000 herzustellen und damit verlustarme Filter zu erhalten, während gleichzeitig Keramikmaterialien, deren elektromechanischer Kupplungskoeffizient für die dritte harmonische Oberschwingung der Dickenexpansionsschwingung (Kt-O et~ wa 10 % beträgt, und damit Filter mit schmaler Bandbreite gebildet werden können.
Leerseite

Claims (1)

  1. PATE NTA N WALTE
    TER MEER-MÜLLER-STEINMEISTER
    Beim Europaischen Patentamt zugelassene Vertreter — Professional Representatives before the European Patent Office Mandatalres agrees pres !'Office europeen des brevets
    Dipl.-Ghem. Dr. N. ter Meer Dipl.-lng. H. Steinmeister
    KAe I MÜIIer Artur-Ladebeck-Strasse 51
    D-8OOO MÜNCHEN 22 D-4800 BIELEFELD 1
    Case: FP-1393 27. Januar 1982
    MURATA MANUFACTURING CO., LTD.
    26-10, Tenj in 2-chome Nagaokakyo-shi, Kyoto-fu,Japan
    Piezoelektrisches Keramikmaterial
    Priorität: 28. Januar 1981, Japan, Nr. 11925/1981
    Patentansprüche
    1 j Piezoelektrisches Keramikmaterial enthaltend 5 ^_Pb(1_3xj+0C Lax \ TiO3, worin 0,09 = χ = 0,20 und -0,20 = CL = +0,20 bedeuten, als Hauptbestandteil und Mangan als Zusatz in einer Menge von 0,1 bis 2,0 Gew.-% MnO2, bezogen auf das Gewicht von 1 Mol des Hauptbestandteils.
    10 2. Piezoelektrisches Keramikmaterial nach Anspruch 1, dadurch gekennzeichnet, daß -0,15 = OC = -0,01 bedeutet.
    Mujrata, Manuf. Co., Ltd.
    Mt:ER · MÜLLER · STEINMEIS JJ^F? ; '..*.:. "..*.!.. 3202610
    — 2 —
    3. Piezoelektrisches Keramikmaterial nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß 0,095 = χ = 0,135 bedeutet und die MnO2~Menge 0,2 bis 1,5 Gew.-% pro Mol des Hauptbestandteils beträgt.
    4. Piezoelektrisches Keramikmaterial nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß es in einer 80 Vol.-% oder mehr Sauerstoff enthaltenden Atmosphäre gebrannt worden ist.
DE19823202610 1981-01-28 1982-01-27 Piezoelektrisches keramikmaterial Granted DE3202610A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56011925A JPS6021941B2 (ja) 1981-01-28 1981-01-28 圧電性磁器組成物

Publications (2)

Publication Number Publication Date
DE3202610A1 true DE3202610A1 (de) 1982-08-12
DE3202610C2 DE3202610C2 (de) 1987-04-23

Family

ID=11791254

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19823202610 Granted DE3202610A1 (de) 1981-01-28 1982-01-27 Piezoelektrisches keramikmaterial

Country Status (3)

Country Link
US (1) US4605876A (de)
JP (1) JPS6021941B2 (de)
DE (1) DE3202610A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378050B2 (en) 2000-12-20 2008-05-27 Murata Manufacturing Co., Ltd. Method of producing translucent ceramic

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790178B2 (ja) * 1987-06-26 1998-08-27 株式会社村田製作所 電歪共振装置
JP2790180B2 (ja) * 1987-12-29 1998-08-27 株式会社村田製作所 電歪共振装置
US5084647A (en) * 1989-07-19 1992-01-28 Murata Manufacturing Co., Ltd. Piezoelectric filter
US5274293A (en) * 1989-07-19 1993-12-28 Murata Manufacturing Co., Ltd. Piezoelectric filter
PH31245A (en) * 1991-10-30 1998-06-18 Janssen Pharmaceutica Nv 1,3-Dihydro-2H-imidazoÄ4,5-BÜ-quinolin-2-one derivatives.
JP3244238B2 (ja) * 1993-02-25 2002-01-07 株式会社村田製作所 圧電共振装置
US5430342A (en) * 1993-04-27 1995-07-04 Watson Industries, Inc. Single bar type vibrating element angular rate sensor system
JP4030190B2 (ja) * 1998-06-18 2008-01-09 株式会社日本自動車部品総合研究所 圧電磁器組成物および圧電トランス
US6545387B2 (en) * 2000-04-03 2003-04-08 Ibule Photonics Co., Ltd. Surface acoustic wave filter using novel piezoelectric single crystal substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2055197C3 (de) * 1969-12-26 1974-05-16 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan) Piezoelektrische Keramik
US4078284A (en) * 1977-04-04 1978-03-14 Zenith Radio Corporation Piezoelectric substrate fabrication process
JPS55151381A (en) * 1979-05-16 1980-11-25 Matsushita Electric Ind Co Ltd Fabricating method of piezoelectric porcelain resonator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526597A (en) * 1967-03-24 1970-09-01 Matsushita Electric Ind Co Ltd Piezoelectric ceramic compositions
US3747176A (en) * 1969-03-19 1973-07-24 Murata Manufacturing Co Method of manufacturing an energy trapped type ceramic filter
US3763446A (en) * 1972-03-31 1973-10-02 Murata Manufacturing Co High frequency multi-resonator of trapped energy type
JPS5020278A (de) * 1973-06-27 1975-03-04
US4356421A (en) * 1980-03-25 1982-10-26 Tohoku Metal Industries, Ltd. Piezoelectric resonators of an energy-trapping type of a width extensional vibratory mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2055197C3 (de) * 1969-12-26 1974-05-16 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan) Piezoelektrische Keramik
US4078284A (en) * 1977-04-04 1978-03-14 Zenith Radio Corporation Piezoelectric substrate fabrication process
JPS55151381A (en) * 1979-05-16 1980-11-25 Matsushita Electric Ind Co Ltd Fabricating method of piezoelectric porcelain resonator

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DE-Z.: Berichte der Dt. Keram. Gesellschaft, 52, 1975, Nr. 7, S. 220-222 *
US-Z.: Journal of the Acoustical Society of America 50, 1971, Nr. 4, part 1, S. 1060-1066 *
US-Z.: Journal of the American Ceramic Society, 57, 1974, Nr. 12, S. 527-530 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378050B2 (en) 2000-12-20 2008-05-27 Murata Manufacturing Co., Ltd. Method of producing translucent ceramic

Also Published As

Publication number Publication date
DE3202610C2 (de) 1987-04-23
JPS6021941B2 (ja) 1985-05-30
US4605876A (en) 1986-08-12
JPS57129869A (en) 1982-08-12

Similar Documents

Publication Publication Date Title
DE10140396B4 (de) Gesinterter Piezoelektrischer Keramikpressling, Verfahren zu seiner Herstellung und seine Verwendung
DE19964243C2 (de) Piezoelektrische keramische Zusammensetzung
DE19964233C2 (de) Piezoelektrische keramische Zusammensetzung
DE10007260C2 (de) Piezoelektrische Keramikzusammensetzung und Verwendung derselben
DE3202610A1 (de) Piezoelektrisches keramikmaterial
DE10007261B4 (de) Piezoelektrische Keramikzusammensetzung und Verwendung derselben
DE3135041C2 (de)
DE1646818B1 (de) Piezoelektrisches keramisches Material
DE10024823A1 (de) Piezoelektrisches Keramikmaterial unter Verwendung desselben erhaltene gesinterte piezoelektrische Keramikmasse
DE10141293A1 (de) Piezoelektrische Keramikzusammensetzung und piezoelektrisches keramisches Bauelement unter Verwendung derselben
DE10123608C2 (de) Piezoelektrischer keramischer Pulverpressling und Verwendung desselben
DE3508797C2 (de)
DE1646820C2 (de) Piezoelektrischer Keramikstoff
DE10041304C2 (de) Piezoelektrische Keramikzusammensetzung und deren Verwendung für ein piezoelektrisches Keramikbauteil
DE10122676A1 (de) Piezoelektrisches Material und Herstellungsverfahren dafür
DE1646823B1 (de) Piezoelektrischer keramikstoff
DE10123607B4 (de) Piezoelektrischer keramischer Pulverpressling und piezoelektrisches keramisches Bauelement
DE10025575B4 (de) Piezoelektrische Keramikzusammensetzung und Verwendung derselben für ein piezoelektrisches Keramikelement
DE10041503B4 (de) Piezoelektrische Keramikzusammensetzung und deren Verwendung für ein piezoelektrisches Keramikbauteil
DE2001290B2 (de) Piezoelektrische keramik
DE1646776B1 (de) Piezoelektrischer keramikstoff
DE1646818C2 (de) Piezoelektrisches keramisches Material
DE2747473C2 (de) Piezoelektrische keramische Masse
DE1646690C2 (de) Verbesserte piezoelektrische Keramik und Verfahren zu ihrer Herstellung
DE1646525C3 (de) Piezoelektrische Keramik

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8363 Opposition against the patent
8365 Fully valid after opposition proceedings
8380 Miscellaneous part iii

Free format text: ANSPRUCH 1, ZEILE 2 "DAS" AENDERN IN "DASS"