DE2910198C3 - Unter Lichteinwirkung aushärtendes Überzugsmittel für Metall- und Kunstharzgegenstände - Google Patents
Unter Lichteinwirkung aushärtendes Überzugsmittel für Metall- und KunstharzgegenständeInfo
- Publication number
- DE2910198C3 DE2910198C3 DE2910198A DE2910198A DE2910198C3 DE 2910198 C3 DE2910198 C3 DE 2910198C3 DE 2910198 A DE2910198 A DE 2910198A DE 2910198 A DE2910198 A DE 2910198A DE 2910198 C3 DE2910198 C3 DE 2910198C3
- Authority
- DE
- Germany
- Prior art keywords
- anhydride
- butadiene polymer
- acidic
- reaction
- photo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/027—Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/30—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
- C08C19/34—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
- C08C19/40—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups with epoxy radicals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F279/00—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
- C08F279/02—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/026—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
- C09D4/06—Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S525/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S525/922—Polyepoxide polymer having been reacted to yield terminal ethylenic unsaturation
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Paints Or Removers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Epoxy Resins (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
Description
R, O
CH2=C-C-O-I71-A1-O — C--R0-(COOH)0
(D
wobei Ri Wasserstoff oder Methyl, Ai einen
Rest einer Polyolverbindung mit Ausnahme der Zahl (x\ + \) von Hydroxylradikalen, und Ro
einen Rest eines Mitgliedes aus der Gruppe aromatischer und cycloaliphatische^ polybasischer
Carbonsäuren bedeuten, wobei der Rest die Zahl (m+a) von Carboxylradikalen ausschließt
und der Index x\ eine positive Zahl von 1 -3, der Index m eine positive Zahl von 1 —3
und der Index a eine positive Zahl von 1 —3 ist, und wobei jede Seitenkettengruppe an die
Basisgruppe über eine Verkettungsgruppe an- in gefügt ist, die durch eine Veresterungsreaktion
zwischen einem Carbonsäureradikal in dem polybasischen Carbonsäureester und einem
Epoxyradikal in dem epoxydierten Butadienpolymer entstanden ist, und daß das modifizierte
Butadienpolymer
(2) pro 100 der in den Basisgruppen vorhandenen Butadieneinheiten 0-50 zusätzliche Seitenkettengruppen
enthält, von denen jede aus einem Rest einer sauren Phosphorsäureesterverbindung
der Formeln (II) und (III) besteht:
R2 O O
CH2=C-C-O-^A2-O P-(OIl)3-,,
(H)
(R-O)77P-(OH), Λ,
(III)
wobei R2 Wasserstoff oder Methyl und A2 einen
Rest einer Polyolverbindung mit Ausnahme der Zahl (^2+1) von Hydroxylradikalen bedeuten, 4r>
während der Index X2 eine positive Zahl von
1 - 3, der Index η eine positive Zahl von 1 - 2 ist und R ein Alkylrest mit 1-15 Kohlenstoffatomen,
der Phenylrest oder ein Alkylphenylrest ist, dessen Alkylrest 1-15 Kohlenstoffatome 5»
besitzt, wobei der Index xi eine positive Zahl von 1—2 ist und jede zusätzliche Seitenkettengruppe
an die Basisgruppe über eine Verkettungsgruppe angefügt ist, die durch eine Veresteruiigsreaktion zwischen einem an einem si
Phosphoratom in der sauren Phosphorsäureesterverbindung angelagerten Hydroxyl (-OH)-radikal und einem Epoxyradikal des
oxydierten Butadienpolymers entstanden ist.
2. Überzugsmittel nach Anspruch 1, dadurch w) gekennzeichnet, daß die Anzahl der polybasischen Carbonsäureester-Seitenkettengruppen in dem modifizierten epoxydierten Butadienpolymer höchstens 75% der Epoxyradikalen in dem epoxydierten Butadienpolymer entspricht.
2. Überzugsmittel nach Anspruch 1, dadurch w) gekennzeichnet, daß die Anzahl der polybasischen Carbonsäureester-Seitenkettengruppen in dem modifizierten epoxydierten Butadienpolymer höchstens 75% der Epoxyradikalen in dem epoxydierten Butadienpolymer entspricht.
3. Überzugsmittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Anzahl der
zusätzlichen Seitenkettengruppen in dem modifizierten epoxydierten Butadienpolymer 5 — 50 pro
100 Butadieneinheiten beträgt, und daß die Summe der Anzahl dieser Seitenkettengruppen und der
zusätzlichen Seitenkettengruppen in dem modifizierten epoxydierten Butadienpolymer 10 — 60 pro
100 Butadieneinheiten beträgt.
4. Überzugsmittel nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß das modifizierte
epoxydierte Butadienpolymer pro 100 Butadieneinheiten weniger als ein Epoxyradikal enthält.
Die Erfindung betrifft ein unter Lichteinwirkung aushärtendes Überzugsmittel, im folgenden auch als
photohärtende Zusammensetzung bezeichnet, mit folgender Zusammensetzung:
(A) 100 Gewichtsteile eines modifizierten Butadienpolymers, das eine Basisgruppe aus einem Rest eines
epoxydierten Butadienpolymers enthält,
(B) 30—800 Gewichtsteile mindestens eines photopolymerisierbaren
Monomers, und
(C) 03-15 Gewichtsteile eines Photosensibilisators.
Es handelt sich um eine Zusammensetzung, die man dadurch aushärtet, daß man sie einer aktinischen
Strahlung, beispielsweise einer UV-Strahlung, aussetzt, und die sich als Lack- bzw. Firnisüberzug für Metall- und
Kunstharzgegenstände eignet
Es ist bekannt, Metall- oder Kunstharzgegenstände mit einem in der Wärme aushärtbaren Harz zu
überziehen, indem man das in einem Lösungsmittel gelöste Harz auf die Oberfläche des Gegenstandes
aufträgt, den Oberzug trocknet, und die getrocknete
Harzschicht anschließend bei erhöhter Temperatur aushärtet Der bekannte Wärmehärtungsprozeß ist
insofern nachteilig, als großräumige Trocken- und HärtungskaiKmern bzw. -apparaturen vorhanden sein
müssen, um das Lösungsmittel aus der Harzlösung auszutreiben und die getrocknete Harzschicht anschließend
thermisch auszuhärten. Nachteilig ist ferner, daß bei dem Trockungs- und Aushärtungsvorgang eine
gewisse Luftverschmutzung durch verdampftes Lösungsmittel stattfindet Schließlich ist auch der Verbrauch
an Wärmeenergie zum Austreiben bzw. Verdampfen des Lösungsmittels und zum Aushärten der
Harzschicht beträchtlich.
Um diese Nachteile eines Wärmehärtungsprozesses auszuschalten, sind Photohärtungsprozesse vorgeschlagen
worden, d. h. Prozesse, bei denen die Härtung durch jo
photochemische Reaktionen erfolgt. Bei einem Photohärtungsprozeß wird eine flüssige, unter Lichteinwirkung
aushärtende Zusammensetzung auf die Oberfläche des zu beschichtenden Gegenstandes aufgetragen und
unter dem Einfluß von aklinischen Strahlungen, beispielsweise einer UV-Strahlung, gehärtet. Ein bekanntes
photohärtendes Überzugsmittel enthält beispielsweise ein Epoxydharz oder ein flüssiges Polybutadien
als Basiskomponente. Die bekannte photohärtende Zusammensetzung auf Basis eines Epoxydharzes ist
jedoch insofern nachteilig, als ihre Lagerungsstabilität sehr gering ist Außerdem ist beim Aushärten die
Reaktionsgeschwindigkeit der Zusammensetzung niedrig und auch das Haftvermögen auf der beschichteten
Oberfläche sehr gering. Schließlich besitzt die durch Photoreaktion ausgehärtete Zusammensetzung auch
nur eine geringe Biegefestigkeit und Schlagfestigkeit.
Eine photohärtende Zusammensetzung auf Basis von flüssigem Polybutadien härtet durch Photoreaktion
ebenfalls nur mit geringer Geschwindigkeit aus und -,0 besitzt ein schlechtes Haftvermögen; außerdem ist die
ausgehärtete Zusammensetzung von geringer Härte. Aus den genannten Gründen sind weder die bekannten
photohärtenden Zusammensetzungen auf Basis eines Epoxydharzes noch solche auf der Basis von flüssigem
Polybutadien zur Herstellung von Lack- bzw. Firnisüberzügen geeignet
In den veröffentlichten japanischen Patentanmeldungen Nr. 48-29 886 (1973), 49-98 454 (1974) und 51-37 128
(1976) sind photohärtende Zusammensetzungen be- t,o
schrieben, die als eine Basiskomponente ein epoxydiertes Polybutadien oder ein modifiziertes, epoxydiertes
Polybutadien enthalten, welches sowohl die Eigenschaften der oben beschriebenen Epoxydharzzusammensetzung
als auch der Zusammensetzung auf Basis von h> flüssigem Polybutadien besitzt. Trotzdem haben auch
die zuletzt erwähnten Zusammensetzungen die weiter oben beschriebenen Nachteile von Dhotohärtenden
Zusammensetzungen auf der Basis von Epoxydharz und flüssigem Polybutadien, d. h, sie besitzen eine geringe
Lagerungsstabilität, eine geringe Aushärtungsgeschwindigkeit und schlechte Hafteigenschaften. Außerdem ist
die durch Photoreaktion ausgehärtete Überzugsschicht von geringer Härte und nur wenig widerstandsfähig
gegenüber Wasser.
Die offengelegte japanische Patentanmeldung Nr. 51-37 128 (1976) beschreibt eine photohärtende Zusammensetzung,
die als Basiskomponente eine andere Art eines modifizierten epoxydierten Polybutadiens enthält,
das durch Reaktion eines epoxydierten Polybutadiens mit Acryl- oder Methacrylsäure, einem photopolymerisierbaren
Monomer und einem Photosensibilisator hergestellt worden ist Die bekannte Zusammensetzung
besitzt jedoch nur eine relativ geringe Reaktionsgeschwindigkeit, so daß für die photohärtende Reaktion
sehr viel Zeit benötigt wird. Für die praktische Anwendung ist die bekannte Zusammensetzung daher
nicht geeignet
Der Erfindung liegt die Aufgabe zugrunde, ein unter Lichteinwirkung, d. h. durch photochemische Reaktion
aushärtbares Überzugsmittel zu schaffen, welches eine große Lagerungsstabilität besitzt, sehr rasch aushärtet
und gut auf der zu beschichtenden Unterlage haftet.
Ausgehend von einem Überzugsmittel der eingangs erwähnten Art sieht die Erfindung zur Lösung der
Aufgabe die im ersten Anspruch angeführten Merkmale vor.
Das erfindungsgemäße, durch photochemische Reaktion aushärtende Überzugsmittel besitzt nach dem
Aushärten eine hohe Biegefestigkeit, eine hohe Schlagfestigkeit sowie eine große Härte. Außerdem ist
es widerstandsfähig gegen Wasser. Das Überzugsmittel eignet sich daher insbesondere als Lack- bzw.
Firnisüberzug für Metall- und Kunstharzgegenstände.
Die Merkmale der Unteransprüche dienen der weiteren qualitativen Verbesserung des Überzugsmittels.
Die polybasische Carbonsäureester-Seitenkettengruppe enthält mindestens eine Endgruppe, die
ausgewählt ist aus einem Mitglied der Klasse von Acryloyl- und Methacryloylradikalen, und eine Verkettungsgruppe,
mit der die polybasische Carbonsäureester-Seitenkettengruppe an die Basisgruppe angelagert
ist, wobei diese Verkettungsgruppe entstanden ist durch eine Veresterungsreaktion zwischen einem
Carbonsäureradikal in der polybasischen Carbonsäureesterverbindung und einem Epoxyradikal in dem
epoxidierten Butadienpolymer. Die zusätzliche saure Phosphorsäureester-Seitenkettengruppe umfaßt eine
Verkettungsgruppe, die durch eine Veresterungsreaktion zwischen einem an einen Phosphoratom in der
Phosphorsäureesterverbindung angelagerten Hydroxyl (-OH)-radikal und einem Epoxyradikal des epoxidierten
Butadienpolymers entstanden ist, um diese zusätzliche Seitenkettengruppen an der Basisgruppe anzulagern.
Das modifizierte epoxidierte Butadienpolymer kann durch Epoxidieren eines flüssigen Butadienpolymers
hergestellt worden sein, und durch Modifizieren des epoxidierten Butadienpolymers mit der speziellen
sauren polybasischen Carbonesterverbindung und gegebenenfalls der speziellen sauren Phosphorsäureesterverbindung.
Bei der Herstellung des epoxidierten Butadienpolymers
ist es vorteilhaft, ein flüssiges Butadienpolymer mit einem Durchschnittsmolekulargewicht zwischen 50 und
000. insbesondere 60 bis 3 000. zu verwenden. Das
flüssige Butadienpolyiner soll vorzugsweise bei einer
Temperatur von 300C eine Viskosität von 20 bis lOOOOmPas, insbesondere 30 bis 5 00OmPa-S,
haben, und zwar gemessen in einem Rotationsviskosimeter. Die Moiekularstruktur bzw. dei Molekülbau des
flüssigen Butadienpolymers ist nicht auf eine spezielle Art beschränkt Vorzugsweise sollen jedoch 40% oder
mehr der Butadieneinheiten in dem flüssigen Butadienpolymeren eine 1,4-Struktur haben. Das flüssige
Butadienpolymer kann ausgewählt sein aus der Klasse, bestehend aus Butadienhomopolymeren und -copolymeren.
Das Butadiencopo'ymer enthält vorzugsweise 70% oder mehr Butadien, während der Rest aus einem
oder mehreren Comonomeren besteht Das Comonomer, das mit Butadien copolymerisiert werden kann,
kann ausgewählt sein aus der Gruppe bestehend aus Acrylnitril, Styrol, Acrylsäureester, Methacrylsäureester,
Vinylacetat, Isopren, 1,3-Pentadien und Maleinsäureanhydrid.
Das flüssige Butadienpolymer kann iine Endgruppe _>o
aus einem Hydroxyl-, Carboxyl- und einem anderen funktioneilen Radikal haben.
Wenn die Rotationsviskosität und das Durchschnittsmolekulargewicht des flüssigen Butadienpolymers kleiner
sind als 20 mPa · s bzw. 500, kann die resultierende photohärtende Zusammensetzung manchmal eine nur
geringe Härtungsgeschwindigkeit haben. Wenn die Rotationsviskosität und das Durchschnittsmolekulargewicht
des flüssigen Butadienpolymers größer sind als lOOOOmPa-s bzw. 5 000, kann die resultierende jo
photohärtende Zusammensetzung unter Umständen eine derart hohe Viskosität haben, daß diese Zusammensetzung
sich nur schlecht zur Bildung eines Überzuges verwenden läßt
Die Epoxidierung des flüssigen Butadienpolymers kann in jeder geeigneten Weise erfolgen. Die Epoxidierung
soll vorzugsweise jedoch in einem solchen Umfang durchgeführt werden, daß das resultierende epoxidierte
Butadienpolymer mindestens 7, vorzugsweise 10 bis 80,
und insbesondere 12 bis 60 Epoxyradikale je 100 Butadieneinheiten aufweist
Das flüssige Butadienpolymer kann beispielsweise in der Weise epoxidiert werden, daß man es mit
Wasserstoffperoxid und Ameisensäure mehrere Stunden lang in einem organischen Medium bei einer
Temperatur von 30 bis 40° C zur Reaktion bringt Bei diesem Epoxidierverfahren ist es vorteilhaft wenn das
Molverhältnis von Wasserstoffperoxid zu Ameisensäure im Bereich von 1:10, insbesondere 2 :6, liegt Auch
das Gewichtsverhältnis von Wasserstoffperoxid zu flüssigem Butadienpolymer soll vorzugsweise im Bereich
von etwa 2 bis etwa 5 liegen.
Es kann jedoch auch das von Charles E Fielock in »Industrial Engineering Chemistry«, Band 50, Nr. 3,
Seite 299 (1958) beschriebene Epoxidierverfahren angewandt werden. Bei diesem Verfahren reagiert das
flüssige Butadienpolymer 5 Stunden lang in Gegenwart von Natriumacetat mit Peressigsäure in einem organischen
Medium bei einer Temperatur von etwa 50°C.
Bei jedem Epoxidierprozeß wird die Reaktionsmischung
nach Beendigung der Epoxydierreaktion mit Wasser gewaschen, um nicht reagiertes Wasserstoffperoxid
oder nicht reagierte Peressigsäure zu entfernen, und das resultierende epoxidierte Butadienpolymer
wird anschließend aus der gewaschenen Reaktionsmischung durch Wegdestillieren des organischen Mediums
isoliert.
Das epoxidierte Butadienpolymer wird mindestens mit einem Mitglied modifiziert, das ausgewählt ist aus
speziellen sauren aromatischen und cycloaliphatischen polybasischen Carbonsäureesterverbindungen. Die Modifizierungsverbindung
hat mindestens eine Endgruppe, die aus einem Acryloyl- oder Methacryloylradikal besteht, und mindestens ein freies Carbonsäureradikal.
Die sauren polybasischen Carbonesterverbindungen haben vorzugsweise die Formel (I):
R1 O
CH2=C-C-O
A1-O-C--R0-(COOH),,
wobei Ri ein Wasserstoffatom oder ein Methylradikal,
Ai einen Rest einer Polyolverbindung, beispielsweise
Diol und mrihrwertige Alkoholverbindungen, wobei
dieser Rest die Zahl (x\ + \) von Hydroxylradikalen ausschließt, und Ro einen Rest einer aromatischen oder
cycloaliphatischen polbasischen Carbonsäure repräsentieren, mit Ausnahme der Ziffer (m + a) an Carboxylradikalen,
wobei der Index *i eine positive Zahl von 1 bis 3,
der Index m eine positive Zahl von 1 bis 3 und der Index a eine positive Zahl von 1 bis 3 darstellen. Die im
Rahmen der vorliegenden Erfindung verwendbaren sauren polybasischen Carbonesterverbindvngen können
in einer Einstufenrcaktion aus einer Esterverbindung hergestellt werden, die ausgewählt ist aus der w>
Klasse bestehend aus Acrylat- und Methacrylatverbindungen, die jeweils ein Hydroxyalkylradikal mit 2 bis 6
Kohlenstoffatomen haben, mit einer polybasischen Carbonsäureanhydridverbindung, die ausgewählt ist aus
der Klasse bestehend aus substituierten und unsubstitu- « ierten aromatischen und cycloaliphatischen polybasischen
Carbonsäureanhydriden.
Die für die erfindunssgemäße Zusammensetzung verwendbaren sauren polybasischen Carbonesterverbindungen können auch im Rahmen einer Zweistufen-Reaktion hergestellt werden, bei der zuerst als Zwischenprodukt eine saure Esterverbindung mit mindestens' einem freien Carbonsäureradikal durch Reaktion einer aromatischen oder cycloaliphatischen polybasischen Carbonsäure mit einer Polyolverbindung hergestellt wird, während in einer zweiten Stufe eine saure polybasische Carbonesterverbindung hergestellt wird, indem man die als Zwischenprodukt hergestellte saure Esterverbindung mit einer Acrylsäure oder Methacrylsäure zur Reaktion bringt
Die für die erfindunssgemäße Zusammensetzung verwendbaren sauren polybasischen Carbonesterverbindungen können auch im Rahmen einer Zweistufen-Reaktion hergestellt werden, bei der zuerst als Zwischenprodukt eine saure Esterverbindung mit mindestens' einem freien Carbonsäureradikal durch Reaktion einer aromatischen oder cycloaliphatischen polybasischen Carbonsäure mit einer Polyolverbindung hergestellt wird, während in einer zweiten Stufe eine saure polybasische Carbonesterverbindung hergestellt wird, indem man die als Zwischenprodukt hergestellte saure Esterverbindung mit einer Acrylsäure oder Methacrylsäure zur Reaktion bringt
Sowohl bei der Einstufen-Reaktion als auch bei der Zweistufen-Reaktion wird die polybasische Carbonsäure
ausgewählt aus der Gruppe, bestehend aus unsubstituierten und substituierten aromatischen und
cycloaliphatischen polybasischen Carbonsäuren mit mindestens zwei Carboxylradikalen, vorzugsweise 2 bis
- Carboxylradikalen, und den entsprechenden Carbonsäureanhydriden mit mindestens einem intermolekularen
sauren Anhydridradikal.
Die aromatische polybasische Carbonsäure und das
Anhydrid sind vorzugsweise ausgewählt aus der Klasse bestehend aus
unsubstituierten Phthalsäureverbindungen und
substituierten Phthalsäureverbindungen,
beispielsweise 5
halogensubstituierten,
alkoxyl-subsuuierten,
hydroxyl-substituierten,
alkyl-substituierten,
alkylthio-substituierten und io
nitro-substituierten Phthalsäuren
und deren Anhydriden;
polybasische Biphenyl-Carbonsäureverbindungen, 15
beispielsweise
2,3,3',4'-Biphenyltetracarbonsäure,
3,3',4,4'-Biphenyltetracarbonsäureund
der oben genannten Verbindungen, und; 2n
polybasischen Carbonsäureverbindungen
mit zwei Henzenkernen, die durch eine
-CO-, -CH2-, -O-oder -S-Bindung
miteinander in Verbindung stehen,
beispielsweise 25
2,3,3',4'-Benzophenontetracarbonsäure,
der oben genannten Verbindungen. Die unsubstituierte und substituierte Phthalsäureverbindung kann ausgewählt sein aus der Klasse, bestehend
aus 35
3,6-Dichlorphthalsäureanhydrid,
4-Chlorphthalsäureanhydrid,
4.5- Dichlorphthalsäureanhydrid,
Tetrachlorphthalsäureanhydrid, 40
3- Fluorphthalsäureanhydrid,
3,6-Difluoφhthalsäureanhydrid,
3-]odphthalsäureanhydrid,
3,6-Dijodphthalsäureanhydrid,
4-Jodphthalsäureanhydrid, 45
4,5-Dijodphthalsäureanhydrid,
Tetrajodphthalsäureanhydrid,
3-Bromphthalsäureanhydrid,
3.6- Dibromphthalsäureanhydrid,
4-Bromphthalsäureanhydrid, so 4,5-Dibromphthalsäureanhydrid,
Tetrabromphihalsäureanhydräd,
4-Flm^htha)säureanhydrid,
4,5-DifluoφhthalsäuΓeanhydrid;
3,4-Dimethoxyphthalsäureanhydrid, 55
3,6-Dimethoxyphthalsäureanhydrid, 4,5-Dimethoxyphthalsäureanhydrid;
3-(Dibrommethyl)-phthalsäure,
3-Athyl-6-(äthylthio)-phthalsäureanhydrid,
3-(Äthylthio)phthalsäureanhydrid, 60 S^-Bimethoxy^-methylphthalsäureanhydrid,
4,6-Dimethoxy-3-methylphthalsäureanhydrid, 3,6-Dihydroxyphthalsäureanhydrid,
3,6-Dihydroxy-4-methylphthalsäureanhydrid,
S.e-Dimethoxy^^-methylen-dihydroxyphthal- 65
säureanhydrid,
3,4-Dimethylphthalsäureanhydrid,
3,6-Dimethylphthalsäureanhydrid,
4,5-Dimethylphthalsäureanhydrid,
3-Methylphthalsäureanhydrid,
4-Methylphthalsäureanhydrid,
3-Methoxyphthalsäureanhydrid,
4-Methoxyphthalsäureanhydrid,
3-Methoxy-4,6-dimethylphthalsäureanhydrid,
4-Isopropyl-3,5,6-tΓimethoxyphthalsäureanhydrid,
4-Hydroxyphthalsäureanhydrid,
3-Hydroxy-4,6-dimethyiphthalsäureanhydrid,
3-(Äthylthio)-6-methylphthalsäureanhydrid,
3-Hydroxy-4-methoxyphthalsäureanhydrid,
3-Hydroxy-5-methoxyphthalsäureanhydrid,
ö-Hydroxy^-methoxy-S-methylphthalsäureanhydrid,
6-lsobuty!-3,4-dimethylphtha!säureanhydrid,
3-Methyl-5-(phenylthio)-phthalsäureanhydrid,
3-{Methylthio)phthalsäureanhydrid,
3-Nitrophthalsäureanhydrid,
4-Nitrophthalsäureanhydride,
3-(Phenylthio)-phthalsäureanhydrid,
3-Propy !phthalsäureanhydrid und
3-{Propylthio)-phthalsäureanhydrid.
Die für die erfindungsgemäße Zusammensetzung verwendbare cycloaliphatische polybasische Carbonsäurekomponente kann ausgewählt sein aus der Klasse
bestehend aus
Methyl-S.e-endomethylen-tetrahydrophthalsäureanhydrid,
3,6-Endomethylentetrahydrophthalsäureanhydrid,
Die am besten geeigneten polybasischen Carbonsäureverbindungen zur Bildung der Gruppe R0 in Formel (I)
sind
233',4'-Bisphenyltetracarbonsäuredianhydrid,
33',4,4'-Biphenyltetracarbonsäuredianhydrid,
Methyl-S.e-endomethylen-tetrahydrophthalsäureanhydrid,
3,6-Endomethylen-tetrahydrophthalsäureanhydrid und
Tetrahydrophthalsäureanhydrid. Bei der Einstufen-Reaktion zur Herstellung der
sauren polybasischen Carbonesterverbindungen können die Acrvlat- oder MethacrWatvcrbindungen. die ein
Hydroxyalkylradikal aufweisen, durch Veresterung von
Polyolverbindungen, beispielsweise Diolverbindungen und mehrwertigen Alkoholverbindungen, mit Acryl-
oder Methacrylsäure hergestellt werden. Die Acrylat- und Methacrylatverbindungen mit einem Hydroxyalcylradikal können ausgewählt sein aus der Gruppe
bestehend aus
2-Hydroxyäthylacrylat,
2-Hydroxyäthylmethacrylat,
2-Hydroxypropylacrylat,
2-Hydroxypropylmethacrylat,
In der ersten Stufe der Zweistufen-Reaktion zur Herstellung von sauren polybasischen Carbonesterverbindungen können die Polyolverbindungen ausgewählt ■>
sein aus der Klasse bestehend aus Glykolverbindungen, beispielsweise Äthylenglycol, Propylenglycol, Diäthylenglycol, Dipropylenglycol, Triäthylenglycol, Tripropylenglycol, Tetraäthylenglycol und Tetrapropylenglykol;
Polyesterverbindungen mit zwei Hydroxyalkylendgrup- ι ο pen, welche Verbindungen Veresterungsprodukte von
Dicarbonsäureverbindungen sind, beispielsweise Phthalsäureanhydrid, Maleinsäureanhydrid, Malonsäure
und Succinsäure mit einer überschüssigen Molmenge an Glycolverbindungen, beispielsweise Äthylenglycol, Propylenglycol, Diäthylenglycol, Dipropylenglycol und
Triäthyiengiycoi, oder Alkylenoxide, beispielsweise Äthylenoxid und Propylenoxid; polybasischen Alkoholverbindungen, z. B. Glycerin, Polyglycerin und Pentaerythrit
Bei einem bevorzugten Beispiel für die Herstellung der sauren polybasischen Carbonsäureesterverbindungen nach der Einstufen-Reaktion wird ein Molteil eines
aromatischen oder cycloaliphatischen polybasischen Carbonsäureanhydrids mit zwei Molteilen oder mehr,
vorzugsweise 2,5 bis 6 Molteilen, eines Acrylate oder Methacrylate, welches ein Hydroxyalkylradikal hat, in
einem organischen Medium oder ohne Verwendung eines solchen Mediums in Gegenwart eines Veresterungskatalysators verestert, der aus mindestens einem jo
organischen quaternären Ammoniumsalz besteht, welches ausgewählt ist aus
Methyltriäthyl-ammoniumjodid;
diese Veresterungsreaktion wird während eines Zeitraumes von 2 bis 10 Stunden bei einer Temperatur von
70 bis 100° C durchgeführt
Bei dem oben beschriebenen Beispiel der Einstufen-Reaktion kann die Reaktionsmischung eine kleine
Menge eines bekannten Stabilisators für die thermische Polymerisation enthalten, beispielsweise Hydrochinon,
2,6-Di-tert-butyl-p-cresol und p-Benzochinon. Wenn die
Acrylat- oder Methacrylatverbindung mit einem Hydroxylalkylradikal in eine übermäßigen Molmenge gegenüber der Molmenge der in der Einstufen-Reaktion
verwendeten polybasischen Carbonsäureanhydridverbindung benutzt wird, dient die Acrylat- oder Methacrylatverbindung als ein organisches Medium für die so
Veresteningsreaktion. Nach Beendigung der Veresterungsreaktion dient die nicht reagierte Acrylat- oder
Methacryiaiverbindung ais ein organisches Medium tür
die Veresterungsreaktion zwischen dem epoxidierten Butadienpolymer und der sauren polybasischen Carbon- *>·>
esterverbindung. Nach Beendigung der Veresteningsreaktion kann die verbliebene Acrylat- oder Methacrylatverbindung als polymerisierbare Monomerkomponente
in der resultierenden, durch photochemische Reaktion härtenden Zusammensetzung benutzt werden. Nach- to
dem die Veresterung der Polyolverbindung mit dem polybasischen Carbonsäureanhydrid beendet ist,
braucht somit die verbliebene Menge an nicht reagiertem Acrylat oder Methacrylat nicht aus der
resultierenden Reaktionsmischung entfernt werden. e>5
Das für die erfindungsgemäße Zusammensetzung verwendete photopolymerisierbare Monomer kann als
ein organisches Lösungsmittel sowohl für die Einstufen
reaktion als auch die Veresterung des epoxidierten
Butadienpolymers mit der sauren polybasischen Carbonsäureesterverbindung benutzt werden.
Die Beendigung der Reaktion bei dem Einstufen-Prozeß kann festgestellt werden, indem man das Infrarotstrahlungs-Absorptionsspektrum in Bereichen oder
Frequenzen von 1760 bis 1780 cm-' und von 1840 bis 1860cm-' mißt, d.h. in Bereichen bei denen das
intermolekulare saure Anhydridradikal Absorptionsspitzen aufweist. Nach Beendigung der Einstufen-Reaktion sind in dem Spektrum keine Spitzen mehr zu finden.
Bei einem bevorzugten Beispiel der Zweistufen-Reaktion zur Herstellung der sauren polybasischen
Carbonesterverbindung wird ein Molteil einer aromatischen oder cycloaliphatischen polybasischen Carbonsäureanhydridverbindung bei einer Temperatur von 150
bis 2öO°C, vorzugsweise von 170 bis i90°C, während
eines Zeitraumes von 1 bis 10 Stunden, insbesondere 2 bis 7 Stunden, in Gegenwart eines Katalysators mit 5 bis
30 Molteilen, vorzugsweise 10 bis 25 Molteilen, einer Polyolverbindung in einem organischen Medium oder
ohne Benutzung eines organischen Mediums zur Reaktion gebracht, um als Zwischenprodukt eine
Esterverbindung mit 1 bis 3 Carboxylsäureradikalen herzustellen; anschließend wird ein Molteil der das
Zwischenprodukt bildenden Esterverbindung bei einer Temperatur von 70 bis 100° C während eines Zeitraumes
von 2 bis 10 Stunden, vorzugsweise 5 bis 8 Stunden, in
Gegenwart eines Katalysators in einem organischen Medium oder ohne Benutzung eines Mediums mit 3 bis
30, vorzugsweise 5 bis 15 Molteilen einer Acrylsäure oder Methacrylsäure zur Reaktion gebracht, um die
erwünscht saure polybasische Carbonesterverbindung zu erhalten.
Jede Veresterungsmischung bei der Zweistufen-Reaktion kann eine kleine Menge des oben genannten
Stabilisators für die thermische Polymerisation enthalten. Insbesondere die zweite Stufe der Veresterungsreaktion sollte in Gegenwart eines thermischen Polymerisationsstabilisators durchgeführt werden.
Der Katalysator für die erste Stufe der Veresterungsreaktion kann Dibutyl-Zinnoxid, Schwefelsäure und
p-Toluolsulfonsäure sein. Die erste Stufe der Veresterungsreaktion kann sogar ohne Verwendung eines
Katalysators durchgeführt werden. Der Katalysator für die zweite Stufe der Veresterungsreaktion kann
p-Toluolsulfonsäure, Schwefelsäure und ein saures
ionenaustauschharz sein.
Das epoxidierte Butadienpolymer kann mit der sauren polybasischen Carbonesterverbindung in jeder
geeigneten Weise modifiziert werden. So kann beispielsweise das epoxidierte Butadienpolymer mit der
sauren poiybasischen Carbonesterverbindung in Gegenwart eines Katalysators zur Reaktion gebracht
werden, der aus dem oben beschriebenen für die Einstufen-Reaktion vorgesehen organischen quaternären Ammoniumsalz besteht, oder auch ohne einen
solchen Katalysator; diese Reaktion findet bei einer Temperatur von 50 bis 100° C, vorzugsweise 60 bis 90° C,
während eines Zeitraumes von 3 bis 20 Stunden, vorzugsweise 5 bis 15 Stunden, in einem organischen
Medium oder ohne Verwendung eines solchen Mediums statt Bei der oben beschriebenen Reaktionsweise
werden die cyklischen Epoxyradikale in den epoxidierten Butadienpolymer gespalten und zusätzlich reagiert
mit einem freien Carbonsäureradikal in der sauren polybasischen Carbonesterverbindung, um eine Verkettungsestergruppe zwischen dem die Basisgruppe dar-
stellenden epoxidierten Butadienpolymer und der polybasischen Carbonester-Seitenkettengruppe zu bilden. Das resultierende modifizierte epoxidierte Polymer
enthält 5 bis 50, vorzugsweise 6 bis 40, polybasische Carbonester-Seitenkettengruppen je 100 Butadieneinheiten in der Basisgruppe.
Wenn die Anzahl der polybasischen Carbonester-Seitenkettengruppen niedriger ist als 5 je jeweils 100
Butadieneinheiten, hat die resultierende photochemisch aushärtende Zusammensetzung nur eine geringe Aushärtungsgeschwindigkeit, und die ausgehärtete Verbindung weist nur eine geringe Schlagfestigkeit auf.
Wenn andererseits die Anzahl der polybasischen Carbonsäureester-Seitenkettengruppen je 100 Butadieneinheiten über 50 liegt, hat das modifizierte
epoxidierte Butadienpolymer eine übermäßig hohe Viskosität, wodurch die Handhabung und die Bildung
von Überzügen erschwert werden. Es ist dann weiterhin
auch schwierig, mehr als 50 polybasische Carbonsäureester-Seitenkettengruppen in das epoxidierte Butadienpolymer einzulagern.
Das modifizierte epoxidierte Butadienpolymer kann je 100 Butadieneinheiten in der Basisgruppe 0 bis 50
zusätzliche Seitenkettengruppen erhalten. Die zusätzlichen Seitenkettengruppen bestehen jeweils aus einem
Rest einer sauren Phosphorsäureesterverbindung und sind an der Basisgruppe mittels einer Verkettungsgruppe angelagert, die durch eine Veresterungsreaktion
zwischen einem an einem Phosphoratom in der Phosphorsäureesterverbindung angelagerten Hydroxyl
( —OH)-Radikal und einem Epoxyradikal des epoxidierten Butadienpolymers entstanden ist.
Erfindungsgemäß ist vorgesehen, daß die saure Phosphorsäureesterverbindung ausgewählt ist aus Verbindungen der Formel (II) und (III):
R, O
CH2=C-C-O
__ A2-O--
O
-P-(OH)3.,,
(R-O^-P-(OH)3 v,
(HD
wobei R2 ein Mitglied, welches ausgewählt ist aus der
Gruppe bestehend aus einem Wasserstoffatom und einem Methylradikal, A2 einen Rest einer Polyolverbindung mit Ausnahme der Zahl fa+1) von Hydroxylradikalen, wobei der Index X2 eine positive Zahl von 1 bis 3
und der Index η eine positive Zahl von 1 bis 2 ist, und R
ein Mitglied repräsentieren, welches ausgewählt ist aus der Klasse bestehend aus Alkylradikalen mit 1 bis 15
Kohlenstoffatomen, Phenylradikal und Alkylphenylradikal, dessen Alkylradikal 1 bis 15 Kohlenstoffatome hat,
während der Index Xz eine positive Zahl von 1 bis 2
darstellt
Die sauren Phosphorsäureesterverbindungen der Formel (II) haben mindestens eine Endgruppe, die aus
einem Acryloyl oder Methacryloy!radikal besteht, und
mindestens ein freies Hydroxylradikal, das an das Phosphoratom in der Verbindung angelagert ist. Eine
derartige Verbindung kann in jeder geeigneten Weise hergestellt werden. So kann die Verbindung gemäß
Formel (II) in der Weise hergestellt werden, daß man eine Acrylat- oder Methacrylatverbindung, die ein
Hydroxyalcylradikal hat, in Reaktion bringt mit
Fnosphoryichiorid, Phosphorsäure oder Phosphorpenioxid. Die Acrylat- utid Methacrylatverbindungen mit
einem Hydroxyalkylradikal können aus der gleichen Klasse ausgewählt sein, wie diejenigen für die oben
beschriebene Herstellung der sauren polybasischen Carbonsäureesterverbindungen. So können für die
Herstellung der sauren Phosphorsäureesterverbindungen der Formel (H) insbesondere verwendet werden
2-Hydroxyäthviacrylat,
2-Hydroxyäthylmethacrylat,
2-HydroxypropylacryIat,
2-Hydroxvpropytaiethacrylat,
Die sauren Phosphorsäureesterverbindungen der Formel (III) können ausgewählt sein aus der Klasse,
bestehend aus
f, Monopropylphosphat, Dipropylphosphat,
MonobutylphosphatDibutylphosphat,
Monopentylphosphat,Monohexylphosphat,
Monophenylphosphat,
Mono-4-methylphenylphosphat und
Zum Modifizieren des epoxidierten Butadienpolymers lassen sich insbesondere Mono- und Dialkylphosphate
mit 1 bis 6 Kohlenstoffatomen verwenden.
Die Modifizierung des vorher noch nicht oder bereits
mit der sauren polybasischen Carbonsäureesterverbindung modifizierten, epoxidierten Butadienpolymer mit
der sauren Phosphorsäureesterverbindung kann in jeder geeigneten Weise erfolgen. So kann beispielsweise ein noch nicht modifiziertes oder vorher bereits
modifiziertes epoxidiertes Butadienpolymer in Reaktion gebracht werden mit einer sauren Phosphorsäureesterverbindung in einem organischen Medium oder ohne ein
solches Medium, und zwar bei einer Temperatur vOii 10
bis 800C, vorzugsweise 20 bis 500C, während einer
Reaktionsdauer von 0,5 Stunden oder mehr, vorzugsweise 1 bis 5 Stunden, wobei die Reaktionsmischung
umgerührt wird. Während dieser Reaktion werden die cyclischen Epoxyradikale in dem expoxidierten Butadienpolymer gespalten, wobei jeder Zusatz mit einem
bo Hydroxylradikal reagiert, welches an ein Phosphoratoin
in der sauren Phosphorsäureesterverbindung angelagert ist, um dadurch eine Verieettungsgruppe zwischen
der Basisgruppe und der zusätzlichen Seitenkettengruppe zu bilden.
Die Anzahl der zusätzlichen Seitenkettengruppen in dem modifizierten epoxidierten Butadieapolymer liegt
erfindungsgemäß im Bereich von 0 bis 50, vorzugsweise 5 bis 50, und zwar je 100 Butadieneinheiten in der
Basisgruppe. Wenn die Anzahl dieser zusätzlichen Seitenkettengruppen je 100 Butadieneinheiten über 50
liegt, hat das resultierende modifizierte und epoxidierte Butadienpolymer eine unerwünscht hohe Viskosität. Es
ist weiterhin auch technisch schwierig und in wirtschaft- ■-, licher Hinsicht aufwendig, ein modifiziertes epoxidiertes
Butadienpolymer herzustellen, welches je 100 Butadieneinheiten mehr als 50 zusätzliche Seitengruppen enthält.
Es ist weiterhin vorteilhaft, wenn in dem modifizierten epoxidierten Butadienpolymer die Seitenketten und ι ο
die zusätzlichen Seitenketten je 100 Butadieneinheiten in einer Gesamtanzahl von 60 oder weniger vorhanden
sind, vorzugsweise von 10 bis 60, insbesondere 10 bis 50,
und vorzugsweise insbesondere in einer Anzahl von 12 bis 45. Es ist technisch aufwendig, ein modifiziertes
epoxidiertes Butadienpolymer herzustellen, bei dem die Gesamianzahi von Seitenketten und zusätzlichen
Seitenketten über 60 liegt. Ein modifiziertes Polymer mit einer zu hohen Anzahl von Seitenketten und
zusätzlichen Seitenkettengruppen führt dazu, daß die ju resultierende photohärtende Zusammensetzung eine
große Neigung zum Gelatinieren hat.
Bei der Herstellung des modifizierten epoxidierten Butadienpolymers mit Seitenkettengruppen und zusätzlichen Seitenkettengruppen sind die Zusätze an saurer j-,
polybasischer Carbonsäureesterverbindung und an saurer Phosphorsäureesterverbindung zu dem epoxidierten Butadienpolymer nicht an eine bestimmte
Reihenfolge gebunden. So kann zuerst entweder die saure polybasische Carbonsäuremonoesterverbindung ju
und dann die saure Phosphorsäureesterverbindung dem epoxidierten Butadienpolymer zugesetzt werden oder
umgekehrt Es besteht auch die Möglichkeit, das epoxidierte Butadienpolymer in einer Einstufen-Reaktion zusammen mit der sauren polybasischen Carbon- j-,
esterverbindung und der sauren Phosphorsäureesterverbindung zu modifizieren. Da jedoch die saure
Phosphorsäureesterverbtndung nur eine verhältnismäßig geringe thermische Stabilität hat und eine relativ
hohe Zusatzreaktionsgeschwindigkeit aufweist ist es vorteilhaft, das epoxidierte Butadienpolymer zuerst mit
der sauren polybasischen Carbonsäureesterverbindung zu modifizieren und dann dieses bereits vormodifizierte
epoxidierte Butadienpolymer zusätzlich mit der sauren Phosphorsäureesterverbindung zu modifizieren. Eine
derartige Zweistufen Modifikation verhindert wirkungsvoll das unerwünschte Gelatinieren des resultierenden modifizierten epoxidierten Butadienpolymers.
Während der Zweistufen-Modifikation werden nahezu sämtliche cyclischen Epoxyradikale gespalten, so daß sie
eine Zusatzreaktion mit den freien Carboxylsäureradikalen in der sauren polybasischen Carbonsäureesterver-
uinuüng uürCtniiSCtiCn timj anSt-iiiicLFciHi Ulli ucTi
Hydroxyiradikalen, die an das Phosphoratom der sauren Phosphorsäureesterverbindung angelagert sind. Auf
diese Weise erhält das resultierende modifizierte, epoxidierte Butadienpolymer eine verbesserte Lagerstabilität
Für die erfindungsgemäße Zusammensetzung ist es vorteilhaft, daß das modifizierte epoxidierte Butadien- bo
polymer je 100 Butadieneinheiten in der Basisgruppe weniger als ein Epoxyradikal enthält
Wenn das modifizierte epoxidierte Butadienpolymer 6 oder mehr Seitenkettengruppen und mehr als null
zusätzliche Seitenkettengruppen je 100 Butadieneinheiten enthält kann ein kleiner Teil der zusätzlichen
Seitenkettengruppen ersetzt werden durch eine andere Seitenkettengruppe, bestehend aus Phosphorsäure,
Für die erfindungsgemäße durch photochemische Reaktion härtende Zusammensetzung ist es vorteilhaft,
wenn das modifizierte, epoxidierte Butadienpolymer nicht gelatiniert und gefärbt ist sondern in klarem
Zustand vorliegt. Es besteht jedoch auch die Möglichkeit, daß modifizierte, epoxidierte Butadienpolymer
leicht einzufärben. Das modifizierte epoxidierte Butadienpolymer hat vorzugsweise eine Viskosität von 2 000
bis 100 000 m Pa ■ s, und insbesondere von 4 000 bis 60 000 mPa · s, und zwar bestimmt bei einer Temperatur von 30°C in einem Rotationsviskosimeter.
Die Zusammensetzung enthält vorzugsweise als eine wesentliche Komponente ein photopolymerisierbares
Monomer. Das photopolymerisierbare Monomer besteht vorzugsweise aus photopolymerisierbaren Acrylsäure- und Methacryisäureesterverbindungen, die bei
Atmosphärendruck vorzugsweise einen Siedepunkt von 200° C oder mehr haben. Bei den photopolymerisierbaren Monomerverbindungen handelt es sich vorzugsweise um
2-Hydroxyäthylacrylat und -methacrylat,
2-Hydroxypropylacrylat und -methacrylat.
Pentaerythriltri-acrylat und
-tri-methacrylat,
2-Äthylenhexylacylat,
und -methacrylat.
Laurylacrylat und -methacrylat
Äthylenglycol-di-acrylat und
-di-methacrylat,
Diäthylenglycol-di-acrylat und
-di-methycrylat,
Di-acrylsäureester und
Dimethacrylsäureester von
Poiyäthyiengiycoi mii einem
Polymerisationsgrad von 3 bis 8,
Propylenglycoldi-acrylat und
-di-methacrylat
Di-acrylsäureester und
Di-methacrylsäureester von
Polypropylenglycol mit einem
Polymerisationsgrad von 2 bi? 6,
1 ,S-Butylenglycoldi-acrylat und
-di-methacrylat
l^-Butylenglycol-di-acrylatund
-di-methacrylat
1,6-Hexandioldi-acrylat und
-dimethacrylat
Neopentylglycoldi-acryiat und
-dimethacrylat und
Trimethylolpropan-tri-acrylat und
-tri-methacrylat
Die photopGiymensierbarcii MonufncrverbHidüngcri
können ausgewählt sein aus den sauren polybasischen Carbonsäureesterverbindungen der Formel (1) und den
sauren Phosphorsäureesterverbindungen der Formel
Die erfindungsgemäße photohärtende Zusammensetzung enthält die photopolymerisierbare Monomerkomponente vorzugsweise in einer Menge von 30 bis 800
Gewichtsteilen, vorzugsweise 50 bis 600 Gewichtsteilenu
und insbesondere von 100 bis 500 Gewichtsteilen, je 100 Gewichtsteilen des modifizierten, epoxidierten Butadienpolymers. Wenn die Menge bzw. der Anteil der
photopolymerisierbaren Mononaerverbindung unter dem oben angegebenen unteren Grenzwert liegt hat die
resultierende photohärtende Verbindung eine unerwünscht hohe Viskosität und ist als Oberzngslack wenig
geeignet Wenn die photohärtende Zusammensetzung andererseits einen größeren Anteil Jer photopolymerisierbaren
Monomerkomponente enthält, als es dem oben genannten oberen C/enzwert entspricht, hat die
durch photochemische Reaktion gehärtete Zusammensetzung nur eine geringe Schlagfestigkeit
Die erfindungsgemäße Zusammensetzung enthält als weitere wichtige Komponente einen Photosensibilisator.
Als Photosensibilisator kann jeder übliche Photosensibilisator verwendet werden, beispielsweise
Benzoinmethyläther, Benzoinäthyläther,
Benzoinisopropyläther, Benzoinbutyläther,
Benzoin, α-Methylbenzoin,
α-Chlordihydroxybenzoin, Benzophenon,
Dimethyloxyphenylacetophenon und Benzil.
Die erfindungsgemäße Zusammensetzung enthält den Photosensibilisator in einer Menge von 0,5 bis 15 Gewichtsteiien, vorzugsweise 2 bis 10 Gewichtsteilen, je 100 Gewichtsteile des modifizierten epoxidierten Butadienpolymers. Wenn die Menge des Photosensibilisators unter 0,5 Gewichtsteilen liegt wird unerwünscht viel Zeit benötigt, um die Photohärtungsreaktion zu beenden. Wenn andererseits die Menge an Photosensibilisator auf mehr als 12 Gewichtsteile erhöht wird, wird die Photosensivität der resultierenden photohärtenden Zusammensetzung nicht verbessert d. h. man hat nur einen wirtschaftlichen Nachteil.
Benzoinmethyläther, Benzoinäthyläther,
Benzoinisopropyläther, Benzoinbutyläther,
Benzoin, α-Methylbenzoin,
α-Chlordihydroxybenzoin, Benzophenon,
Dimethyloxyphenylacetophenon und Benzil.
Die erfindungsgemäße Zusammensetzung enthält den Photosensibilisator in einer Menge von 0,5 bis 15 Gewichtsteiien, vorzugsweise 2 bis 10 Gewichtsteilen, je 100 Gewichtsteile des modifizierten epoxidierten Butadienpolymers. Wenn die Menge des Photosensibilisators unter 0,5 Gewichtsteilen liegt wird unerwünscht viel Zeit benötigt, um die Photohärtungsreaktion zu beenden. Wenn andererseits die Menge an Photosensibilisator auf mehr als 12 Gewichtsteile erhöht wird, wird die Photosensivität der resultierenden photohärtenden Zusammensetzung nicht verbessert d. h. man hat nur einen wirtschaftlichen Nachteil.
Die erfindungsgemäße photohärtende Zusammensetzung kann einen kleinen Anteil eines thermischen
Polymerisationsstabilisators enthalten, beispielsweise Hydrochinon, 2,6-Di-tert-butyl-p-cresol und p-Benzochinon.
Da der Zusatz eines derartigen Stabilisators bei der erfindungsgemäßen Zusammensetzung jedoch dazu
führt, daß die Geschwindigkeit bei der Photohärtung abnimmt, solite ein derartiger Stabilisator nur in einer
sehr geringen Menge verwendet werden, d. h. bis zu höchstens 5 Gewichtsteilen je 100 Gewichtsteilen der
photohärtenden Zusammensetzung.
Die erfindungsgemäße photohärtende Zusammensetzung kann in ansonsten üblicher Weise zubereitet
werden. Da jedoch das photopolymerisierbare Monomer nicht in der Modifizierungs-Reaktionsmischung des
epoxidierten Butadienpolymers mit der sauren polybasischen Carbonsäuremonoesterverbindung und der sauren
Phosphorsäureesterverbindung reagiert, ist es vorteilhaft, wenn das photopolymerisierbare Monomer
als ein Reaktionsmedium mit der Modifizierungsreaktionsmischung
gemischt wird, wobei dann, nachdem die Modifizierung des epoxidierten Butadienpolymers
beendet ist, die resultierende Reaktionsmischung, die das modifizierte epoxidierte Butadienpolymer und das
photopolymerisierbare Monomer enthält, mit einer bestimmten Menge des Photosensibilisators oder einer
Mischung einer vorgegebenen Menge des Photosensibilisators und einer Zusatzmenge an photopolymerisierbarem
Monomer gemischt wird.
Die erfindungsgemäße photohärtende Zusammensetzung ist eine transparente oder halbtransparente,
farblose oder hellgelbe Flüssigkeit und hat eine Viskosität von 100 bis 2 000 mPa ■ s, vorzugsweise 150
bis 1 500 mPa · s, bestimmt bei einer Temperatur von 30° C mittels eines Rotationsviskosimeters.
Die Zusammensetzung kann als ein Überzugslack selbst ohne Verwendung weiterer Zusätze verwendet
werden. Um jedoch die Gleiteigenschaft zu verbessern und die Klebeneigung des Überzugslackes bzw.
Überzugsfirnis herabzusetzen, kann eine kleine Menge eines oder mehrere Zusatzstoffe zugesetzt werden,
beispielsweise ein Fettsäureamid, z. B. Stearinsäureamic
und Oleinsäureamid, und ein Wachs, z. B. Carnaubawachs,
Ozokeritwachs und Spermacetwachs.
Die Viskosität der erfindungsgemäßen photohärtenden Zusammensetzung kann durch Zusatz des photopolymerisierbaren
Monomers eingestellt werden. Die Viskosität kann jedoch auch reguliert werden durch
Zusatz einer kleinen Menge von Styrol, Vinyltoluol Vinylacetat, Methylmethacrylat, Acrylsäure, Methacryl
säure, Benzol, Toluol, Xylol, Cumol, Hexan, Cyclohexan
Äthylacetat Kerosin, Methylisobutylketon oder einei Mischung aus zwei oder mehreren dieser Verbindungen
Die erfindungsgemäße Zusammensetzung kann weiterhin eine kleinere Menge eines anorganischer
Pigmentes enthalten, beispielsweise Zinkchromat Strontiumchromat, Eisenoxid, Zinkoxid und Titandioxid
oder ein organisches Pigment beispielsweise vorr Azo-typ, Triphenylmethan-typ, Chinolin-typ, Anthrachinon-typ
oder Phthalocyamin-typ.
Weitere Merkmale und Vorteile der Erfindung
werden im folgenden an Hand der Beispiele vor Zubereitungen für epoxidierte Butadienpolymere, saure
polybasische Carbonesterverbindungen und modifizierte, epoxidierte Butadienpolymere und an Hand vor
Beispielen von photohärtenden Zusammensetzungen und an Hand von Vergleichsbeispielen beschrieben.
Bei den Bezugsbeispielen wurde die Anzahl der Epoxyradikale in dem epoxidierten Butadienpolymer in
einer solchen Weise bestimmt, daß eine bestimmte Menge des epoxidierten Butadienpolymers mit einet
Salzsäure-Dioxanlösung chloriert und anschließend die Menge an nichtreagierter Salzsäure durch Titrieren mil
alkoholischem Kalium in Gegenwart eines Indikators bestimmt, der aus Phenolphthalein bestand.
Die Anzahl der polybasischen Carbonsäureester-Seitenkettengruppen,
die an die Basisgruppe aus epoxidierte m Butadienpolymer angelagert war, wurde bestimmt
indem der Unterschied der Säurezahl der Reaktionsmischung des epoxidierten Butadienpolymers und dei
sauren polybasischen Carbonesterverbindung vor Beginn der Reaktion und nach Beendigung der Reaktior
gemessen wurde.
In den Bezugsbeispielen, Beispielen und Vergleichsbeispielen wurden die Viskositäten der flüssiger
Biitadienpolymere der epoxidierten Butadienpolymere der die modifizierten epoxidierten Butadienpolymere
enthaltenden Reaktionsmischung und der enindungsgemäßen photohärtenden Verbindung bei einer Temperatur
von 30°C mittels eines Rotationsviskosimeters
so bestimmt
In den Beispielen und Vergleichsbeispielen wurde die Reaktionsgeschwindigkeit bei der Photohärtung dei
photohärtenden Zusammensetzung in der folgender Weise bestimmt: Eine photohärtende Zusammensetzung
wurde auf eine entfettete Aluminiumplatte aufgetragen, um einen Überzugsfilm dieser Zusammensetzung
mit einer Dicke von 10 Mikron zu bilden. Die mit der photohärtenden Zusammensetzung beschichtete
bzw. überzogene Aluminiumplatte wurde auf eir Förderband gelegt, das mit einer bestimmten Umlaufgeschwindigkeit
entlang einer horizontalen Bewegungsbahn 9 cm unter einer 25 cm langen 2-KW-Hochspan
nungsquecksilberlampe umlief. Der aus der erfindungs
gemäßen photohärtenden Zusammensetzung bestehen-
de Überzugsfilm wurde der von der Quecksilberlampe ausgesandten UV-Strahlung ausgesetzt und dabei durch
photochemische Reaktion gehärtet. Die Geschwindigkeit des Förderbandes wurde variiert. Nach Beendigung
130 236/271
der photohärtenden Operation wurde ein Polyvinylidenchloridfdm
auf die Oberfläche des durch Photoreaktion gehärteten Oberzugsfilm gepreßt und dann wieder
davon entfernt. Die Oberfläche des Oberzugsfilms wurde nach diesem Preßvorgang begutachtet Die
Reaktionsgeschwindigkeit bei der Photohärtung der photohärtenden Zusammensetzung wurde durch den
größten Geschwindigkeitswert (m/min) des Förderbandes ausgedrückt, bei dem keine Veränderung im Glanz
der Oberfläche des Überzugsfilms mehr beobachtet werden konnte.
Die Haftfähigkeit des durch photochemische Reaktion gehärteten Filmes wurde auf dem Wege der
»Kreuzschraffierung« bestimmt. Es wurde ein auf einer Aluminiumplatte oder Alkydharzplatte haftender und '5
durch Photoreaktion gehärteter Film in der oben beschriebenen Weise erzeugt Der Film wurde gitterartig
in Abständen von 2 mm zerschnitten, um 100 voneinander getrennte Quadrate zu erhalten. Auf diesen
gitterartig zerschnittenen Film wurde anschließend eine Klebstoffolie aufgelegt und anschließend wieder davon
abgezogen. Das Haftvermögen des durch Photoreaktion gehärteten Filmes wurde ausgedrückt durch die
Anzahl der Quadrate, die auf der Aluminium- oder Alkydharzplatte zurückblieben.
Die Bleistifthärte des photogehärteten Überzugfilmes wurde gemäß dem in Paragraph 6.14 von JIS-K.
5,400 beschriebenen Methode gemessen.
Die Biegefestigkeit wurde in der folgenden Weise ermittelt:
In der in JIS-K 5,400 beschriebenen Weise wurde eine
photohärtende Zusammensetzung auf eine Stahlplatte aufgetragen, um einen Überzugfilm mit einer Dicke von
30 Mikron zu bilden. Der Überzugfilm wurde unter Verwendung der oben beschriebenen Quecksilberlampe .S5
photochemisch gehärtet, wobei das Förderband mit einer Geschwindigkeit von 1 m/min umlief. Der
Überzugfilm wurde der UV-Strahlung 3mal ausgesetzt. Die Biegefestigkeit des photogehärteten Filmes wurde
nach der in Paragraph 6,15, JIS-K 5,400 beschriebenen Weise gemessen.
Bei der Bestimmung der Schlagfestigkeit des photogehärteten Filmes wurde für die Herstellung
dieses Filmes in der oben beschriebenen Weise verfahren, und dieser Film wurde in Übereinstimmung
mit Paragraph 6,13, JIS-K 5,400 einer Messung der Du Pont-Schlagfestigkeit unterworfen.
Die Widerstandsfähigkeit gegen Wasser wurde in der Weise gemessen, daß man auf eine Glasplatte einen
Film mit einer Dicke von 30 Mikron auftrug, diesen Film in der oben beschriebenen Weise durch Photoreaktion
härtete, den gehärteten Film eine Stunde lang in Wasser mit einer Temperatur von 400C eintauchte, und die
Veränderungen des Aussehens der Filmoberfläche untersuchte. Dabei wurde insbesondere untersucht ob
eine Runzel- oder Rißbildung aufgetreten war, ob sich das Volumen des Filmes verändert hatte und ob eine
Veränderung des Glanzes bzw. der Glätte der Filmfläche stattgefunden hatte.
Bezugsbeispiel 1
(Herstellung von epoxidierten Butadienpolymeren)
(Herstellung von epoxidierten Butadienpolymeren)
Es wurden sechs Arten von epoxidierten Butadienpolymeren aus. flüssigen Butadienpolymeren hergestellt,
die die in der Tabelle 1 (Versuche E-I bis E-6) dargestellten Werte hinsichtlich des Durchschnittsmolekulargewichts,
der Viskosität und der Molstruktur hatten.
Bei jedem Versuch wurden 500 Gewichtsteile des flüssigen Butadienpolymers mit 1300 Gewichtsteilen
Benzol gemischt. Dieser Mischung wurde in der in Tabelle 1 angegebenen Menge eine 30%ige Wasserstoffperoxidlösung
zugesetzt. Danach wurde der resultierenden Mischung in den in Tabelle 1 angegebenen
Mengen Ameisensäure tröpfchenweise bei einer Temperatur von 20° C und während eines Zeitraumes von 30
Minuten zugesetzt. Die Reaktionsmischung wurde während eines Zeitraumes von 5 Stunden auf einer
Temperatur von etwa 35° C gehalten, um das flüssige Butadienpolymer zu epoxidieren. Nach Beendigung
dieser Reaktion wurde die Reaktionsmischung mit Wasser gewaschen, um nichtreagiertes Wasserstoffperoxid
und Ameisensäure zu entfernen, bevor anschließend Benzol durch Destillation ausgetrieben wurde.
Tabelle 1 zeigt die jeweilige Anzahl der Epoxyradika-Ie
je 100 Butadieneinheiten, die Viskosität und die Ausbeute an resultierendem epoxidierten Butadienpoly-
Tabelle I | II. liuuidienpolymer | cis-1,4- | Li.. 1,4- | Durchsehn. | Viskosität | .WK,igc | Ameisen | l-'poxidicrles IUi Uidi cn polymer | Viskosität | Ausheute | 1 |
\ ersuch | Struklur | Siruklui" | Molek.- | (el·) | Wiissc rsl.- | säure | du IV s) | Kiew.-T.) | |||
Nr. | Cichiill % | Ciewiehl | (h. 30 C) | peroxid- | (Cicw.- | Ziihl der | (h. 30 ( ) | ■:).■! | |||
33 | 9 | lü.sung | I'cilc) | lipoxyrnd | ;i"l | ||||||
1.2- | 33 | 9 | (Ciew.-T.) | je KK) | |||||||
Slriiktur | 33 | <) | I 270 | 5(X) | »uL-l-jii- | 1 020 | 510 | 1| | |||
33 | <) | I 270 | 5(K) | hcilcn | 2 100 | 518 | 1 | ||||
58 | 33 | <) | I 270 | 5(X) | 7(X) | 28 | 8 | 5 200 | 528 | |J | |
h-l | 58 | 48 | >) | I 270 | 500 | 700 | 50 | 12 | 45 600 | 53h | |
|.',7 | 58 | 1270 | 5(X) | 7(K) | 83 | 1') | 150 000 | 55h | |||
1'. -3 | 58 | 2 340 | 1 280 | I 5(X) | 132 | 2h | 7h 000 | 542 | |||
I--4 | 58 | 2(XX) | 2h4 | 41 | |||||||
Ko | 43 | 1 5(K) | 132 | 2') | |||||||
I -h | |||||||||||
Phthalsäureanhydrid ersetzt wurde durch 129 g (etwa 0,67 Mol) Trimellitsäureanhydrid. Es wurden 198 g der
resultierenden sauren Trimellitsäuremonoesterverbindung erhalten, die bei 1770 cm-' und 1850 cm-' keine
In den Versuchen R-I bis R-6 wurden 6 Arten von 5 Spitzen zeigte. Die Verbindung hatte eine Säurezahl
von 345 und bei 300C eine Viskosität von 21 000 mPa · s, und sie enthielt je Molekül etwa zwei
Carboxylradikale.
Bezugsbeispiel 2
(Herstellung von sauren polybasischen
Carbonsäureesterverbindungen)
Carbonsäureesterverbindungen)
sauren polybasischen Carbonesterverbindungen hergestellt
Versuch R-I
(Aus Phthalsäureanhydrid)
(Aus Phthalsäureanhydrid)
Eine Reaktionsmischung aus 98,8 g (etwa 0,67 Mol) Phthalsäureanhydrid, 116 g (etwa 1,0 Mol) 2-Hydroxyäthylacrylat,
0,3 g von 2,6-Di-tert-butyl-p-cresol und 0,45
g Triäthylbenzylammoniumchlorid wurden für einen Zeitraum von 8 Stunden unter ständigem Umrühren der
Mischung bei einer Temperatur von 95° C einer Veresterungsreaktion unterworfen. Danach wurde das
nichtreagierte 2-Hydroxyäthyl-acrylat durch Destillation
ausgetrieben. Es wurden 181 g einer viskosen, flüssigen, sauren Phthalsäuremonoesterverbindung erhalten,
die im IR-Strahlenspektrum bei Frequenzen von 1770 cm-' und 1850 cm-' keine Spitzen hatte.
Die resultierende Verbindung hatte eines Säurezahl von 208 und bei 30° C eine Viskosität von
15 00OmPa ■ s.
Versuch R-2
(Aus Phthalsäureanhydrid)
(Aus Phthalsäureanhydrid)
Es wurde in der gleichen Weise verfahren wie im Versuch R-I, wobei die Veresterungsreaktion jedoch
während eines Zeitraumes von 5 Stunden durchgeführt wurde. Es wurden 162 g der resultierenden viskosen,
flüssigen, sauren Phthalsäuremonoesterverbindung erhalten, die im IR-Strahlenspektrum bei Frequenzen von
1770cm-' und 1850cm-' keine Spitzen hatte. Die resultierende Verbindung hatte eine Säurezahl von 215
und bei 30°C eine Viskosität von 16 000 mPa · s.
Versuch R-3
(Aus2,3,3',4-Biphenyltetracarbonsäuredianhydrid)
(Aus2,3,3',4-Biphenyltetracarbonsäuredianhydrid)
Eine Reaktionsmischung aus 250 g (etwa 0,85 Mol) 2,3,3',4-Biphenyltetracarbonsäuredianhydrid, 390 g
(etwa 3,4 Mol) 2-Hydroxyäthylacrylat, 0,77 g Benzyltriäthylammoniumchlorid
(Katalysator) und 0,57 g von 2,6-Di-tert-butyl-p-cresol wurden, während man durch
die Mischung Luft strömen ließ, während eines Zeitraumes von 9 Stunden bei einer Temperatur von
etwa 800C einer Veresterungsreaktion unterworfen. Danach wurde das nichtreagierte 2-Hydroxyäthylacrylat
bei reduziertem Druck durch Destillation ausgetrieben. Es wurden etwa 467 g der resultierenden sauren
Biphenyltetracarbonsäurediesterverbindung erhalten. Die resultierende Verbindung hatte eine Säurezah! von
204 und bei 500C eine Viskosität von 23 00OmPa · s.
Die Verbindung enthielt je Molekül etwa zwei Carboxylradikale.
Versuch R-4
(Aus Trimellitsäureanhydrid)
(Aus Trimellitsäureanhydrid)
Es wurde im wesentlichen in der gleichen Weise verfahren wie im Versuch R-I, wobei jedoch das
Versuch R-5
(AusTetrahydrophthalsäureanhydrid)
(AusTetrahydrophthalsäureanhydrid)
Es wurde im wesentlichen in der gleichen Weise verfahren wie im Versuch R-I, wobei jedoch das
Phthalsäureanhydrid ersetzt wurde durch 102 g (etwa 0,67 Mol) Tetrahydrophthalsäureanhydrid, wobei die
Reaktionstemperatur bei etwa 95° C lag. Es wurden 184 g der sauren Tetrahydrophthalsäuremonoesterverbindung
erhalten. Die Verbindung hatte bei 1770 cm-' und 1850 cm-' keine Spitzen, die Säurezahl lag bei 204
und die Viskosität betrug bei 3O0C i6 000 mPa · s.
Versuch R-6
(Aus 4-Nitrophthalsäureanhydrid)
(Aus 4-Nitrophthalsäureanhydrid)
Es wurde im wesentlichen in der gleichen Weise
jo verfahren wie im Versuch R-I, wobei jedoch das
Phthalsäureanhydrid ersetzt wurde durch 129 g (etwa 0,67 Mol) 4-Nitrophthalsäureanhydrid. Es wurden 186 g
der sauren 4-Nitrophthalsäuremonoesterverbindung erhalten. Die Verbindung hatte bei 1770 cm-' und
J5 1850 cm -' keine Spitzen, eine Säurezahl von 175 und bei
einer Temperatur von 300C eine Viskosität von 37 000 mPa · s.
Bezugsbeispiel 3
(Zubereitung von modifizierten, epoxidierten
Butadienpolymeren)
Butadienpolymeren)
In den Versuchen M-I bis M-8 wurden 8 Typen von modifizierten epoxidierten Butadienpolymeren hergestellt,
indem man epoxidierte Butadienpolymere nur mit sauren polybasischen Carbonsäureesterverbindungen
modifizierte.
Bei jedem der Versuche M-I bis M-8 wurde eine Reaktionsmischung aus 280 Gewichtsteilen Benzol, 142 Gewichsteilen eines in Tabelle 2 angegebenen epoxidierten Butadienpolymers, eine Art und Menge einer sauren polybasischen Carbonsäureesterverbindung gemäß Tabelle 2, 0,8 Gewichtsteile, 2,6-Di-tert-butyl-pcresol und 0,8 Gewichtsteile Triäthylbenzylammoniumchlorid bei einer Temperatur von 75° C einer Modifizierungsreaktion unterworfen, und zwar während einer Reaktionsdauer von 8 Stunden, wobei jedoch als Ausnahme im Versuch M-3 die Reaktionszeit 4
Bei jedem der Versuche M-I bis M-8 wurde eine Reaktionsmischung aus 280 Gewichtsteilen Benzol, 142 Gewichsteilen eines in Tabelle 2 angegebenen epoxidierten Butadienpolymers, eine Art und Menge einer sauren polybasischen Carbonsäureesterverbindung gemäß Tabelle 2, 0,8 Gewichtsteile, 2,6-Di-tert-butyl-pcresol und 0,8 Gewichtsteile Triäthylbenzylammoniumchlorid bei einer Temperatur von 75° C einer Modifizierungsreaktion unterworfen, und zwar während einer Reaktionsdauer von 8 Stunden, wobei jedoch als Ausnahme im Versuch M-3 die Reaktionszeit 4
bo Stunden betrug. Nach Beendigung der Reaktion wurde das Benzol aus der Reaktionsmischung unter reduziertem
Druck durch Destillation ausgetrieben. Die erhaltene Flüssigkeit enthielt ein modifiziertes, epoxididertes
Butadienpolymer, und nichtreagierte, saure
hi polybasische Carbonsäureesterverbindung. Die Zusammensetzungen
und Viskositäten der bei den Versuchen 1 '-I bis M-8 erhaltenen Flüssigkeiten sind in Tabelle 2
wiedergegeben.
Tabelle 2 | Modifizierreaklion Komponente ArI des saure polybas. cpoxid. verbindung Buladicn- polymer Art der Verbind. |
PHEA | C'arboncsKT- Gcwichls- lcile |
l'roduki Komponente Modil'., cpoxid lililadienpohnier Zahl der Seilenkcttengruppcn üewichls- je 100 Hutadicneinheiicn leilc |
IM | niuilreag. polyhas. C'irboneslerverbinduni; ArI der Gcwichts- Vcrbind. teile |
25 |
\ iskiis'iäi
( ΠΊ 1\| - SI |
Versuch Nr. | E-I | PHEA | 53 | 4 | Ϊ97 | PIK-IA | SO | 3 500 |
M-I | E-2 | PHEA | 135 | 8 | 188 | PHlIA | 130 | 5 500 |
M-2 | E-3 | PHEA | 177 | 7 | 212 | PHEA | 106 | 5000 |
M-3 | E-3 | THEA | 177 | 10 | 232 | PHEA | 120 | 12000 |
M-4 | E-3 | NHEA | 210 | 11 | 225 | THEA | 128 | 25000 |
M-5 | E-3 | PHEA | 211 | 10 | 242 | NHEA | 181 | 35 000 |
M-6 | E-4 | PHEA | 281 | 15 | 217 | PHEA | UO | 45(JOO |
M-7 | E-5 | 199 | 18 | PHEA | 22 000 | |||
M-8 | ||||||||
Erläuterung:
PHEA - Rcaklionsprodukt aus Phthalsäureanhydrid und 2-Hydroxyäihylacrylal (Vers. R-I).
THIiA - Reaktionsprodukt aus Trimellitsäureanhydrid und 2-1 Iydroxyiilhylacr\lut (Vers. R-4).
NHEA - Rcaklionsprodukt aus 4-NitrophihaIsäurcanhydrid und 2-1 Iydrnxyiiihxhicryhu (Vers. R-6).
Das im Versuch M-I erhaltene modifizierte epoxidierte
Butadienpolymer ist als photohärtende Zusammensetzung im Sinne der vorliegenden Erfindung
ungeeignet, da je 100 Butadieneinheiten nur vier Seitenkettengruppen an die epoxidierte Butadienpolymer-Basisgruppe
angelagert waren.
Bei den Versuchen M-9 bis M-19 wurden modifizierte epoxidierte Butadienpolymere hergestellt, die nicht nur
polybasische Carbonsäureester-Seitenkettengruppen sondern auch zusätzliche Phosphorsäureester-Seitenkettengruppen
enthielten.
Bei jedem der Versuche M-9 bis M-19 wurde zunächst eine Reaktionsmischung, die gemäß Tabelle 3 eine
bestimmte Art und Menge eines epoxidierten Butadienpolymers und eine bestimmte Art und Menge einer
sauren polybasischen Carbonesterverbindung, 60 g 2-Hydroxyäthylacrylat als Medium, 0,4 g
Tnäthylbenzylammoniumchlorid als Katalysator und 0,8 g von 2,6-Di-tert-butyl-p-cresol als Antigeliermittel
45
enthielt, einer ersten Modifizierstufe unterworfen und zwar bei einer Temperatur von 85° C und während eines
Zeitraumes von 8 Stunden, jedoch mit Ausnahme von Versuch M-13, bei dem die Reaktionszeit 4 Stunden
betrug. Nach Beendigung der Modifizierungsstufe wurde die Reaktionsmischung auf Umgebungstemperatur
abgekühlt.
Danach wurde die abgekühlte erste Reaktionsmischung mit der in Tabelle 3 angegebenen Menge von
saurem Phosphordimethacrylat zur Bildung einer zweiten Reaktionsmischung gemischt, wobei jedoch im
Versuch M-14 8,2 g des sauren Butylphosphorsäuremonoesters benutzt wurden. Die zweite Reaktionsmischung
wurde während eines Zeitraumes von 4 Stunden bei einer Temperatur von 40° C unter Umrühren einer
zweiten Modifizierungsstufe unterworfen. Tabelle 3 zeigt die Zusammensetzungen und Viskositäten der aus
den Versuchen M-9 bis M-19 resultierenden Flüssigkeiten.
Tabelle | 3 | Menge (g) |
saure polybas. Carbone.stcrvcrbindung |
Menge <g> |
saure Phos- phorsäurc- eslerver- bindung |
Produkt Zusammensetzung |
zusatzl. Seitcn- kelten- gruppe |
Menge (g> |
nicht reag. polybas. Carbonsäure verbindung |
Menge (g) |
Menge an 2-llEA |
Viskosität (m Pa · si |
Versuch Nr. |
20 | ArI | 7,8 | <g> | 0.04 | 28,6 | Art der Verbind. |
3,9 | ||||
Modifizierung Komponente |
20 | PHEA | 11,7 | 4,7 | 0,07 | 33.1 | PHEA | 6,8 | 60 | 2 800 | ||
Epoxid. BuIa- dicnpolymcr |
20 | Pl IEA | 18,5 | 8,2 | Modif., epoxid. Butadien- polymcr Zahl von Gruppen je 100 Hut.-Einh. |
0,19 | 50,1 | PHEA | 10,7 | 60 | 3000 | |
M- 9 | Art | 20 | PHEA | 25,4 | 22,4 | Seitcn- keltcn- gruppe |
0,21 | 48.5 | PHEA | 20,7 | 60 | 3200 |
M-10 | E-I | 20 | PHEA | 25,4 | 23,8 | 0,04 | 0,Hi | 64,6 | PHEA | 15,6 | 60 | 2 700 |
M-Il | F.-2 | 20 | PHI7A | 25,4 | 18,8 | 0,05 | 0,16 | 37.9 | PHEA | 15,6 | 60 | 3400 |
M-12 | E-3 | I1IIEA | 8,2') | 0,08 | PHEA | 60 | 3100 | |||||
M-13 | E-4 | 0,05 | ||||||||||
M-14 | E-4 | 0,10 | ||||||||||
E-4 | 0.10 |
l'oilsct/iini:
\ ei such | M od ill/ | iciung | UuUi- | NI enge | same poh | h.is | siiiiiv I'hos- | l'lodukl | ■nsci/ung | idien- | Menge | nichl icag. | poh has. | Men | ge \ iskosiliil | A | 5300 |
Ni. | komponente | dienpol\ mei | ( lMincsk | .-nci bindung | phoi säure | Zusamme | po\id. Hut; | ( ;iihoiisiiui | an | iml'j s. | 4 500 | ||||||
l.poxid. | ester* ci- | M..chi.. C1 | \crbindung | Mil | 6 100 | ||||||||||||
(g) | hindung | pol) mei | C | IgI | 4 300 | ||||||||||||
20 | (iruppcti i | 65,2 | 3 200 | ||||||||||||||
Ail | 20 | Art | Menge | Zahl win | 'inh. | 51,8 | Art der | Menge | |||||||||
20 | HIO lim.-I | /USiil/l. | 60,8 | Vetbind. | |||||||||||||
20 | Seilen- | Seilen- | 50.2 | ||||||||||||||
20 | (gl | (gl | kellcn- | kclten- | 48,2 | (gl | |||||||||||
E-5 | PHEA | 39,9 | 30,6 | gruppe | gnippc | PHEA | 25,3 | 60 | |||||||||
E-6 | PHEA | 28.3 | 20,4 | 0,26 | PIIEA | 16,9 | 60 | ||||||||||
M-15 | E-4 | UIIEA | 50,5 | 15,3 | 0,15 | 0,19 | BIIEA | 25,0 | 60 | ||||||||
M-Ki | E-4 | THEA | 29,6 | 17,7 | 0,10 | 0,13 | THF. Λ | 17,1 | 60 | ||||||||
M-17 | E-4 | TPIIEA | 25.8 | 16.5 | 0,13 | 0,15 | TPHEA | 14,1 | 60 | ||||||||
M-IS | 0,11 | 0.14 | |||||||||||||||
M-19 | 0.12 | ||||||||||||||||
!■^läuterung:
IiIIIiA KciikliiiRsprodukl ims 2.3..V.4-Iiiphi'nyllclriic:trho\yns;iurc-di:inhydrid mit 2-1 lydroxvalhylaerylal (Versuch KoI.
TI'lllvA Kciiklionspriidukl aus relriilivdidphlhiilsiiurciinhyiliicl mit .?-llydri)xyiithyliicrylal (Versuch R-7).
2-III-:a 2-llydroxyiiihyl;iL-iyliii.
' ) - siitircr liut>
ipho.sphorsiiurcmoiKiL'slei.
Das im Versuch M-9 erhaltene modifizierte, veresterte Butadienpolymer ist als photohärtende Verbindung
im Sinne der vorliegenden Erfindung wertlos, da die Zahl der polybasischen Carbonsäureester-Seitenkettengruppen
außerhalb des erfindungsgemäßen Rahmens liegt.
Beispiele 1 bis 8
Bei jedem der Beispiele 1 bis 8 wurde eine durch photochemische Reaktion härtende Zusammensetzung
hergestellt, indem die in Tabelle 4 angegebenen Arten und Mengen eines modifizierten, epoxidierten Butadienpolymers
und eines photopolymensierbaren Monomers mit 5 Gewichtsteilen Benzoinmethyläther je 100
Gewichtsteilen als Gesamtsumme des modifizierten.
epoxidierten Butadienpolymers und des photopolymensierbaren Monomers gemischt wurden.
Die Viskositäten, Reaktionsgeschwindigkeiten und Lagerungsstabilität der photohärtenden Zusammensetzungen
gemäß den Beispielen 1 bis 8, sowie die Härten, Haftfähigkeiten, Biegefestigkeiten, Du Pont-Schlagfestigkeiten
und Widerstandsfähigkeiten gegen Wasser der gehärteten Zusammensetzungen sind ebenfalls in
Tabelle 4 enthalten. Die Lagerungsstabilität der photohärtenden Zusammensetzung ist ausgedrückt als
Viskosität der photohärtenden Zusammensetzung bei einer Temperatur von 300C, nachdem die Zusammensetzung
bei einer Temperatur von 300C während eines Zeitraumes von 90 Tagen gelagert worden war.
Tabelle 4 | I'hotoha'rlende Zusammensetzung Zusammensetzung |
(iew teile |
Art | ierbares | Visko sität ImP-j-sl |
lliinungs- geschw. (m/min) |
Lage- rungs- Slabilitat |
I'hou | »gehärtete | Zusammensetzung | Ou I'onl- sehlag- lesligk. (5(KIgX 1 :cXcml |
Widersl. gegen Wasser |
Hei- spiel |
Mod if. Rcaktions- I'hotopolymeris produkt cnl- Monomer haltend modit. epoxid. Butadien- pol. |
141 | 2-HEA | Gew.- lcilc |
I Lute | I IaIl- liihig- keit I ".ι I |
Hiege- I'esiigk. (mm B ι |
|||||
Art | 170 | 2-HEA | 100 | 360 | 25 | 375 | 120 | ausge zeichnet |
||||
M-2 | 151 | 2-HEA | 100 | 350 | 27.5 | 360 | H | 100 | 2 | HO | desgl. | |
1 | M-3 | 151 | 1,6-HDA | 100 | 450 | 30 | 470 | H | 100 | 2 | 150 | desgl. |
2 | M-4 | 155 | 2-HEA | 100 | 450 | 25 | 465 | H | 100 | 2 | 120 | desgl. |
3 | M^l | 157 | 2-HEA | 100 | 760 | 30 | 790 | H | 100 | 2 | 110 | desgl. |
4 | M-5 | 175 | 2-HEA | 100 | 470 | 25 | 480 | H | 100 | 2 | 120 | desgl. |
5 | M-6 | 155 | 2-HEA | 100 | 1 100 | 40 | 1 150 | H | 100 | 2 | 150 | desgl. |
6 | M-8 | 100 | 630 | 40 | 660 | H | 100 | 2 | 140 | desel. | ||
7 | M-9 | H | 100 | 2 | ||||||||
8 | ||||||||||||
I rliiuterunc: 1.6-11DA - l.h-lleiandioidiacrylal.
Vergleichsbeispiel 1
Es wurde in der gleichen Weise verfahren wie im Beispiel I1 wobei jedoch 146 Gewichtsteile des
Modifizierungsreaktionsproduktes von Versuch M-I an Stelle desjenigen von Versuch M-2 benutzt wurde.
Die zu Vergleichszwecken hergestellte resultierende photohärtende Zusammensetzung hatte bei 30° C eine
relativ niedrige Viskosität von 250 mPa · s und eine sehr niedrige Photohärtungsgeschwindigkeit von 10 m/min,
ausgedrückt in Rotationsgeschwindigkeit des Förderbandes. Die photogehärtete Vergleichszusammensetzung
hatte auch eine relativ niedrige Bleistifthärte von HB, eine niedrige Haftfähigkeit von 80%, eine
Biegefestigkeit von 2mm0 und eine geringe Du-Pont-Schlagfestigkeit
von 80 (500 g χ '/2" χ cm). Bei der
Untersuchung der Widerstandsfähigkeit gegen Wasser wurden eine Anzahl von Falten und Rissen in bzw. an
der Oberfläche des Filmes festgestellt, wobei der Überzugsfilm aufgequollen und der Glanz der Filmoberfläche
beträchtlich herabgesetzt waren.
Vergleichsbeispiel 2
Ein flüssiges Polybutadien mit einem Durchschnittsmolekulargewicht von 1530, einer Viskosität von
80OmPa · s bei 300C und mit einer Zusammensetzung
von 54% der 1,2-Struktur, 37% der Cis-1,4-Struktur und 9% der Trans-1,4-Struktur wurden in der gleichen
Weise epoxidiert wie im Versuch E-I. Das resultierende epoxidierte Polybutadien enthielt je 100 Butadieneinheiten
6 Epoxyradikale. 100 Gewichtsteile des epoxidierten Polybutadiens wurden mit 12 Gewichtsteilen Meth-
acrylsäure, 0,1 Gewichtsteilen Hydrochinon und 200 Gewichtsteilen Benzol gemischt. Die resultierende
Reaktionsmischung wurde während eines Zeitraumes von 3 Stunden bei einer Temperatur von 600C einem
Modifizierungsprozeß unterworfen. Nach Beendigung des Modifizierungsprozesses wurden das Benzol und die
nicht reagierte Methacrylsäure unter reduziertem Druck durch Destillation aus der Reaktionsmischung
ausgetrieben. Es wurden 105 Gewichtsteile des Modifizierungsproduktes erhalten.
Durch Mischen von 100 Gewichtsteilen des erhaltenen Modifizierungsproduktes, 10 Gewichtsteilen 1,3-Butylenglycoldiacrylat
und 1 Gewichtsteil Benzol wurde zu Vergleichszwecken eine photohärtende Zusammensetzung
hergestellt. Die Zusammensetzung hatte bei 30° C eine Viskosität von 0,4 Pa · s und zeigte selbst bei einer
Rotationsgeschwindigkeit des Förderbandes von 5 m/min eine so niedrige Photohärtungsgeschwindigkeit,
daß die Zusammensetzung nicht aushärtete.
Vergleichsbeispiel 3
Eine polybasische Carbonsäureesterverbindung wurde hergestellt, indem man eine Mischung von 58
Gewichtsteilen 2-Hydroxyäthylacrylat, 74 Gewichtsteilen Phthalsäureanhydrid, 2 Gewichtsteilen Triäthylbenzylammoniumchlorid,
0,1 Gewichtsteilen Hydrochinon und 0,1 Gewichtsteil Anthraguinon während eines Zeitraumes von 5 Stunden bei einer Temperatur von
1100C zur Reaktion brachte. 132 Gewichtsteile dieser
Esterverbindung wurden gemischt mit 95 Gewichtsteilen eines Bis-Phenol-Epoxydharzes der Formel:
-CII-CH-
CII,
() —CH;-CII-dl·- —O—<
O
CiI,
mit einem Epoxydäquivalent von 190 und 7 Gewichtsteilen
Trialkylisocyanat. Zur Herstellung eines Lackes bzw. Firnis wurde die Mischung 3 Stunden lang auf eine
Temperatur von 100 bis 1200C erhitzt.
Zu Vergleichszwecken wurde eine photohärtende Zusammensetzung hergestellt, indem man 7,8 Gewichtsteile dieses Lackes bzw. Firnis mit 2 Gewichtsteilen
Trimethylolpropantriacrylat und 0,2 Gewichtsteilen Benzoinäthyläther mischte. Die Zusammensetzung
hatte bei 300C eine Viskosität von 150OmPa · s und
eine niedrige Härtungsgeschwindigkeit von 7,5 m/min, ausgedrückt durch die Rotationsgeschwindigkeit des
Förderbandes. Nach der Härlung durch Photoreaktion hatte der resultierende gehärtete Film eine Bleistifthärte
von 2 H, ein sehr geringes Haftungsvermögen von 0, ein sehr geringe Biegefestigkeit von 4 mm 0 und eine
sehr geringe Du Pont-Schlagfestigkeit von 5 oder
weniger (500 g χ ■ Ii' χ cm). Der photogehärtete Film
hatte jedoch eine verhältnismäßig hohe Widerstandsfähigkeit gegen Wasser.
Beispiele 9bis 18
Bei jedem der Beispiele 9 bis 18 wurde eine photohärtende Zusammensetzung hergesteJlt, indem
man die in Tabelle 5 angegebenen Arten und Mengen CH,
eines Modifizierungsreaktionsproduktes, enthaltend ein modifiziertes epoxidiertes Butadienpolymer, und die
angegebenen Arten und Mengen der sauren polybasi-
4> sehen Carbonsäureesterverbindung und die angegebenen
Mengen von 2-Hydroxyäthylacrylat, Pentaerythrittriacrylat und Benzoinmethyläther miteinander mischte.
Die Viskositäten, Härtungsgeschwindigkeiten und Lagerungsstabilitäten der photohärtenden Zusammen-
Setzungen gemäß den Beispielen 9 bis 18, die Bleistifthärten, Haftfähigkeiten, Biegefestigkeiten und
Du Pont-Schlagfestigkeiten der photogehärteten Zusammensetzungen ergeben sieh aus Tabelle 6.
Vergleichsbeispiel 4
Es wurde in der gleichen Weise verfahren wie im Beispiel 9, wobei jedoch an Stelle des Modifizierungsre-
bo aktionsproduktes gemäß Versuch M-10 das Modifizierungsreaktionsprodukt
gemäß Versuch M-9 benutzt wurde, wobei die saure polybasische Carbonesterverbindung,
das 2-Hydroxyethylacrylat, das Pentaerythrittriacrylat
und der Benzoinmethyläther jeweils in den ebenfalls in Tabelle 5 angegebenen Mengen eingesetzt
wurden.
Die Ergebnisse des Vergleichsbespiels 4 ergeben sich
ebenfalls aus Tabelle 6.
Tabelle 5 | l'holohii Modil |
27 | Cievvichlsteik' | der pholohärtenden | l'holohärl. Lagerungs- | Stabilität | 29 | 10 | 198 | stigkeit an | Menge an | S | Alkydharz | 28 | Menge | an | Dupont | IMiolosensi- | Widerstand | schlecht | |
Beispie! Nr. | Zusammensetzung | Gesehw | <Vis nach | 2-1 ika | (7.,I | I1KTA | Schlag- | bilisalor | gegen | ||||||||||||
Art | Viscositiit | (m/min | 1Kl lagen) | Aluminium | Kiew.-teile) | ((iew.-teile) | festigkci | Menge an | 1 Wasser | ausge | |||||||||||
(ml'as) | iml'a s) | ("/..) | (50OgX | Benzoin- | zeichnet | ||||||||||||||||
methyliilher | VjgXcm) | desgl. | |||||||||||||||||||
lemle Zusammensetzung *l\ft\1fl l'fkll Klll'lillill^ |
saure poly | las. (.'arbonestcrverh. | 100 | (Ciew.-teile) | desgl. | ||||||||||||||||
_ |M J AlU. I | 100 | 213 | Art | 130 | 20 | desgl. | |||||||||||||||
Vergleichs- | 10 | 100 | 100 | 90 | desgl. | ||||||||||||||||
beispicl | M- 9 | 100 | 215 | 150 | 20 | 13,2 | desgl. | ||||||||||||||
4 | 100 | 210 | 30 | 100 | 180 | 100 | 20 | 130 | desgl. | ||||||||||||
':■.-;■ | Beispiel | M-IO | 100 | 218 | 180 | 100 | 20 | 14,5 | desgl. | ||||||||||||
ι | 9 | M-Il | 100 | 210 | 35 | 238 | ΡΙΙΕΛ | 100 | 200 | 100 | 20 | 16,1 | 135 | desgl. | |||||||
I | IO | M-12 | 100 | 30 | 237 | 100 | 150 | 100 | 20 | 17,1 | 135 | desal. | |||||||||
I | Il | M-13 | 100 | 215 | 40 | 227 | ΡΙΙΕΛ | 100 | 400 | 100 | 20 | 17,2 | 140 | ||||||||
'a | 12 | M-14 | 100 | 235 | 30 | 255 | ΡΙΙΕΛ | 100 | 380 | 100 | 20 | 15,6 | 135 | ||||||||
I | 13 | M-15 | 100 | 230 | 45 | 269 | ΡΙΙΕΛ | 100 | 400 | 100 | 20 | 27,9 | 130 | ||||||||
1 | 14 | M-16 | 100 | 220 | 40 | 303 | ΡΙΙΕΛ | 100 | 380 | 100 | 20 | 26,6 | 140 | ||||||||
15 | M-17 | 100 | 250 | 50 | 275 | ΡΙΙΕΛ | 100 | 180 | 100 | 20 | 27,8 | 110 | |||||||||
I | 16 | M-18 | •KTA - l'cnlaerylhrillriacrylal. | 260 | 40 | 213 | ΡΙΙΕΛ | 100 | 26,7 | 105 | |||||||||||
17 | M-19 | 290 | 30 | ΡΙΙΕΛ | 100 | 16,5 | 130 | ||||||||||||||
18 | Kigcnschalt | 270 | IJl ΙΕΛ | ||||||||||||||||||
I | !■rläulerung: | 210 | TIIEA | ||||||||||||||||||
!'I | Tabelle 6 | TPI ΙΕΛ | Biege | ||||||||||||||||||
I | Beispiel | festig | |||||||||||||||||||
I | Nr. | keit | |||||||||||||||||||
S | Kigenschal'l | Menge | (mni0) | ||||||||||||||||||
I | Kiew.-teile) | ||||||||||||||||||||
I | Bleislill- | ||||||||||||||||||||
härte | |||||||||||||||||||||
2 | |||||||||||||||||||||
Vergleichs | 13,6 | ||||||||||||||||||||
S | beispiel | 2 | |||||||||||||||||||
ti I Γ |
4 | 20,5 | |||||||||||||||||||
I | Beispiel | 21,3 | 2 | ||||||||||||||||||
I | 9 | MB | 42,7 | 2 | |||||||||||||||||
§ | 24,2 | 2 | |||||||||||||||||||
10 | H | 41,1 | 2 | ||||||||||||||||||
ca | 11 | 38,8 | 2 | ||||||||||||||||||
i | 12 | 211 | 32,6 | 2 | |||||||||||||||||
13 | 211 | 36,7 | 2 | ||||||||||||||||||
I | 14 | 2H | 34,1 | 2 | |||||||||||||||||
H | 15 | 2H | 29,2 | 2 | |||||||||||||||||
1 | 16 | 2 H | |||||||||||||||||||
i | 17 | 2 H | |||||||||||||||||||
1 | 18 | 211 | des photogehärteten HIm | ||||||||||||||||||
1 | 2H | ||||||||||||||||||||
B | 2 H | I IaIHe | |||||||||||||||||||
Zinn | |||||||||||||||||||||
(M | |||||||||||||||||||||
90 | |||||||||||||||||||||
100 | |||||||||||||||||||||
100 | |||||||||||||||||||||
100 | |||||||||||||||||||||
100 | |||||||||||||||||||||
100 | |||||||||||||||||||||
100 | |||||||||||||||||||||
100 | |||||||||||||||||||||
100 | |||||||||||||||||||||
100 | |||||||||||||||||||||
100 | |||||||||||||||||||||
Claims (1)
1. Unter Lichteinwirkung aushärtendes Überzugsmittel mit folgender Zusammensetzung:
(A) 100 Gewichtste;!e eines modifizierten Butadienpolymers,
das eine Basisgruppe aus einem Rest eines epoxydierten Butadienpolymers enthält,
(B) 30-800 Gewichtsteile mindestens eines photopolymerisierbaren Monomers, und
(C) 0,5—15 Gewichtsteile eines Photosensibilisators,
ία dadurch gekennzeichnet, daß das modifizierte
Butadienpolymer
(1) pro 100 der in den Basisgruppen vorhandenen
Butadieneinheiten 5-50 Seitenkettengruppen enthält, von denen jede aus einem Rest eines
Mitgliedes der sauren aromatischen und cycloaliphatischen, polybasischen Carbonsäureestern
der Formel (I) besteht:
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2983878A JPS54123160A (en) | 1978-03-17 | 1978-03-17 | Photo-setting composition |
Publications (3)
Publication Number | Publication Date |
---|---|
DE2910198A1 DE2910198A1 (de) | 1979-09-20 |
DE2910198B2 DE2910198B2 (de) | 1981-01-22 |
DE2910198C3 true DE2910198C3 (de) | 1981-09-03 |
Family
ID=12287148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2910198A Expired DE2910198C3 (de) | 1978-03-17 | 1979-03-15 | Unter Lichteinwirkung aushärtendes Überzugsmittel für Metall- und Kunstharzgegenstände |
Country Status (5)
Country | Link |
---|---|
US (1) | US4250007A (de) |
JP (1) | JPS54123160A (de) |
DE (1) | DE2910198C3 (de) |
FR (1) | FR2419959B1 (de) |
GB (1) | GB2017723B (de) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4795693A (en) * | 1983-07-13 | 1989-01-03 | American Telephone And Telegraph Company, At&T Technologies, Inc. | Multilayer circuit board fabrication process |
US4628022A (en) * | 1983-07-13 | 1986-12-09 | At&T Technologies, Inc. | Multilayer circuit board fabrication process and polymer insulator used therein |
US5080999A (en) * | 1985-06-10 | 1992-01-14 | Fuji Photo Film Co., Ltd. | Light-sensitive diazo resin composition containing a higher fatty acid or higher fatty acid amide |
EP0264037B1 (de) * | 1986-10-07 | 1993-01-20 | E.I. Du Pont De Nemours And Company | UV-härtbare dielektrische Zusammensetzungen |
US5240808A (en) * | 1989-04-27 | 1993-08-31 | Fuji Photo Film Co., Ltd. | Light-sensitive compositions containing photosensitive polymeric compound having both photocross-linkable groups capable of cycloaddition, and functional groups carrying P--OH bonds |
DE4434630A1 (de) * | 1994-09-28 | 1996-04-04 | Nokia Deutschland Gmbh | UV-Klebstoff |
JP2001092129A (ja) * | 1999-09-24 | 2001-04-06 | Toshiba Corp | 紫外線硬化性樹脂組成物 |
JP4716539B2 (ja) * | 2000-03-28 | 2011-07-06 | ダイセル化学工業株式会社 | 液状エポキシ化重合体の製造方法 |
US20040171722A1 (en) * | 2003-02-28 | 2004-09-02 | Brown William R. | Flame retardant polyurethanes and additive compositions for use in producing them |
DE102007046641A1 (de) * | 2007-09-27 | 2009-04-09 | Carl Freudenberg Kg | Strahlungs-härtbare Elastomermischung |
JP5544533B2 (ja) * | 2009-12-08 | 2014-07-09 | スリーボンドファインケミカル株式会社 | 爪又は人工爪被覆用硬化性樹脂組成物 |
JP6010352B2 (ja) * | 2012-06-07 | 2016-10-19 | 株式会社オートネットワーク技術研究所 | 硬化性増感剤、光硬化材料、硬化物及びワイヤーハーネス材料 |
JP6183036B2 (ja) * | 2012-08-06 | 2017-08-23 | 東亞合成株式会社 | 絶縁性硬化膜を有する金属基材の製造方法 |
JP2014051654A (ja) * | 2012-08-06 | 2014-03-20 | Toagosei Co Ltd | 活性エネルギー線硬化型コーティング剤組成物 |
WO2014024826A1 (ja) * | 2012-08-06 | 2014-02-13 | 東亞合成株式会社 | 活性エネルギー線硬化型コーティング剤組成物 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3291781A (en) * | 1963-06-27 | 1966-12-13 | Du Pont | Reaction product of a vinylidene chloride/vinyl chloride/allyl glycidyl ether terpolymer and orthophosphonic acid and compositions containing same |
US3367992A (en) * | 1964-06-05 | 1968-02-06 | Dow Chemical Co | 2-hydroxyalkyl acrylate and methacrylate dicarboxylic acid partial esters and the oxyalkylated derivatives thereof |
US3770602A (en) * | 1968-11-25 | 1973-11-06 | Ppg Industries Inc | Radiation crosslinkable polymers prepared by reacting a polyepoxy compound with an acrylic anhydride of a monocarboxylic acid |
FR2080679B1 (de) * | 1970-02-21 | 1973-02-02 | Okura Industrial Co Ltd | |
US3674545A (en) * | 1970-04-07 | 1972-07-04 | Du Pont | Radiation curable epoxy coating composition and method of coating |
JPS5310636B1 (de) * | 1971-07-01 | 1978-04-14 | ||
US3888844A (en) * | 1971-09-10 | 1975-06-10 | Alelio Gaetano F D | Halogenated esters of phosphorus-containing acids (ii) |
US3855364A (en) * | 1973-01-05 | 1974-12-17 | Alcolac Inc | Phosphate esters of hydroxyalkyl acrylates and hydroxyalkyl methacrylates |
JPS5137128A (ja) * | 1974-09-25 | 1976-03-29 | Toa Gosei Chem Ind | Shigaisenkokagatakinzokuhifukuyojushisoseibutsu |
US4146452A (en) * | 1976-02-02 | 1979-03-27 | Mobil Oil Corporation | Anhydride modified epoxy acrylate UV curable coating |
-
1978
- 1978-03-17 JP JP2983878A patent/JPS54123160A/ja active Granted
-
1979
- 1979-03-13 GB GB7908879A patent/GB2017723B/en not_active Expired
- 1979-03-14 US US06/020,496 patent/US4250007A/en not_active Expired - Lifetime
- 1979-03-15 DE DE2910198A patent/DE2910198C3/de not_active Expired
- 1979-03-19 FR FR7906862A patent/FR2419959B1/fr not_active Expired
Also Published As
Publication number | Publication date |
---|---|
FR2419959A1 (fr) | 1979-10-12 |
GB2017723A (en) | 1979-10-10 |
DE2910198A1 (de) | 1979-09-20 |
JPS6115081B2 (de) | 1986-04-22 |
GB2017723B (en) | 1982-10-20 |
US4250007A (en) | 1981-02-10 |
DE2910198B2 (de) | 1981-01-22 |
FR2419959B1 (fr) | 1985-08-23 |
JPS54123160A (en) | 1979-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2910198C3 (de) | Unter Lichteinwirkung aushärtendes Überzugsmittel für Metall- und Kunstharzgegenstände | |
DE1964547C3 (de) | Verfahren zur Herstellung eines durch Strahlung härtbaren Überzugsmaterials | |
DE69613704T2 (de) | Funktionalisierte polybutadienharze, verfahren zu ihrer herstellung und ihre verwendung | |
DE2618729C2 (de) | ||
DE2206387A1 (de) | Verfahren zur Herstellung einer ungesättigten Epoxyester-Harzmasse | |
DE2614860C3 (de) | Durch Lichteinfluß härtbare flüssige Massen | |
DE1091335B (de) | Verfahren zur Herstellung von Polymerisaten ungesaettigter, Perfluorkohlenwasserstoffgruppen enthaltender Ester | |
DE2145935A1 (de) | Lichthärtbare Harzmasse | |
DE2512642C3 (de) | Durch aktinische Strahlung härtbare Masse | |
DE2635122A1 (de) | Kunstharze und verfahren zu ihrer herstellung | |
DE2550077C3 (de) | Strahlenhärtbare Massen auf Polyesterbasis | |
DE1100962B (de) | Verfahren zur Herstellung von Polymerisaten | |
DE2112718B2 (de) | Durch katalysatorzusatz haertbare ueberzugsmassen | |
DE2612132A1 (de) | Durch strahlung und waerme haertbare formmassen auf der grundlage von melaminverbindungen | |
DE2232822C2 (de) | Lichthärtbare Masse | |
DE2345981A1 (de) | Durch photobestrahlung haertbare harzmischungen | |
DE2256611A1 (de) | Strahlungshaertbare verbindungen und massen | |
DE2460530A1 (de) | Diisocyanatharze, verfahren zur herstellung solcher harze und deren verwendung | |
DE2407301A1 (de) | Haertbare beschichtungszusammensetzung und verfahren zu ihrer herstellung | |
DE2404313B2 (de) | Lichthärtbare Anstrichmittel und Überzugsmassen | |
DE60304827T2 (de) | Niedrige voc's vinylester harzzusammensetzungen und anwendungen | |
DE2345624C2 (de) | ||
DE2647890A1 (de) | Haertbare ueberzugszusammensetzung | |
DE2408893C2 (de) | Durch Strahlung härtbare Masse auf Basis von veresterten Epoxydverbindungen und deren Verwendung | |
DE2414596B2 (de) | Verfahren zur Herstellung einer vorsensibilisierten Druckplatte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OAP | Request for examination filed | ||
OD | Request for examination | ||
C3 | Grant after two publication steps (3rd publication) | ||
8339 | Ceased/non-payment of the annual fee |