WO2014024826A1 - 活性エネルギー線硬化型コーティング剤組成物 - Google Patents

活性エネルギー線硬化型コーティング剤組成物 Download PDF

Info

Publication number
WO2014024826A1
WO2014024826A1 PCT/JP2013/071119 JP2013071119W WO2014024826A1 WO 2014024826 A1 WO2014024826 A1 WO 2014024826A1 JP 2013071119 W JP2013071119 W JP 2013071119W WO 2014024826 A1 WO2014024826 A1 WO 2014024826A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
meth
active energy
weight
energy ray
Prior art date
Application number
PCT/JP2013/071119
Other languages
English (en)
French (fr)
Inventor
佐内 康之
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013158718A external-priority patent/JP2014051654A/ja
Priority claimed from JP2013158717A external-priority patent/JP6183036B2/ja
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Publication of WO2014024826A1 publication Critical patent/WO2014024826A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • C08F290/048Polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00

Definitions

  • the present invention forms a coating layer of a cured film on the surface of a substrate by irradiation with an active energy ray such as an electron beam or ultraviolet ray, and provides good adhesion without causing swelling or peeling even when the coating layer is immersed in an organic solvent.
  • the present invention relates to an active energy ray-curable coating agent composition capable of exhibiting properties.
  • the composition of the present invention is suitably used as a coating agent for a metal substrate, and is suitably used for producing an electrode protective material for a lithium ion battery that requires not only adhesion to metal but also solvent resistance. And can be used in these technical fields.
  • acrylate and / or methacrylate is represented by (meth) acrylate
  • acryloyl group and / or methacryloyl group is represented by (meth) acryloyl group
  • acrylic acid and / or methacrylic acid is represented by (meth) acrylic acid.
  • a coating agent having excellent solvent resistance a trifunctional or higher polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups, and a bifunctional bridge ring having 2 (meth) acryloyl groups.
  • Photocurable composition comprising (meth) acrylate having structure, photopolymerization initiator (Patent Document 1), polyisobutylene having (meth) acryloyl group and hydrolyzable group in molecule, photoinitiator and moisture curing catalyst
  • Thermosetting composition comprising a light and moisture curable composition (Patent Document 2), an epoxy resin, rubber-like polymer fine particles, an inorganic filler, a heat-latent epoxy curing agent, and high softening point polymer fine particles (Patent Document 3) ),
  • Photocurable composition comprising an initiator (Patent Document 4), film and sheet comprising polyolefin and polyvinyl alcohol, compatibilizer, plasticizer, processing aid, and antioxidant (Patent Document 5) ) Etc. are disclosed
  • Patent Document 6 A copolymer having a chemical structure derived from an epoxy resin and a polysiloxane structure and having an epoxy group as a functional group
  • Patent Document 8 A copolymer having a chemical structure derived from an epoxy resin and a polysiloxane structure and having an epoxy group as a functional group
  • Patent Document 9 A low-moisture permeability hot-melt adhesive (Patent Document 9) or the like using a resin is disclosed.
  • a cured film such as a coating agent cured by active energy rays
  • a cured film forming material active energy ray curable composition
  • the cured film formed on the substrate cannot follow the deformation of the substrate due to heat cycle, and the coating layer cannot be formed. Often cracked or peeled off.
  • the coating layer may be peeled off when the base material is bent.
  • the coating agent has a low crosslinking density and is flexible, for example, in the electrode material of a lithium ion battery, there is a problem that it is dissolved by an organic solvent used as an electrolytic solution or peeled off from a substrate due to swelling. there were.
  • the object of the present invention is to solve the above-mentioned problem, that is, the obtained coating cured film is excellent in adhesion to a substrate, particularly adhesion to a metal substrate, and the adhesion is further improved by bending the substrate. It is to provide an active energy ray-curable coating agent composition having a followability to the above and excellent in solvent resistance.
  • the present inventors have two or more (meth) acryloyl groups and have a diene skeleton or a hydrogenated diene skeleton.
  • the present invention has been completed by finding that it has excellent adhesion, excellent followability to bending of the substrate, and excellent solvent resistance. The present invention will be described in detail below.
  • the obtained coating cured film (hereinafter, also simply referred to as “cured film”) is excellent in adhesion to a substrate, particularly adhesion to a metal substrate, and the adhesion is It has the ability to follow the bending of the substrate and has excellent solvent resistance.
  • the present invention is a composition comprising 30 to 97% by weight of the following component (A) as an essential component in the total amount of the curable component,
  • the following (B1) component and (C1) component are respectively included in the total amount of the curable component of 3 to 70% by weight and 0 to 67% by weight, or
  • the present invention relates to an active energy ray-curable coating agent composition comprising the following components (B2) and (C2) in an amount of 3 to 70% by weight and 0 to 57% by weight, respectively, in the total amount of curable components.
  • Compound (C1) component having a saturated group and one or more hydrophilic groups a compound having an ethylenically unsaturated group, which is a compound other than the components (A) and (B1).
  • the component (C1) is: The ester moiety has an alkyl group having 4 to 20 carbon atoms, an alkenyl group, a cyclic alkyl group, or a cyclic alkenyl group, and (meth) acrylate having one (meth) acryloyl group is excluded.
  • Component (B2) Compound having at least one ethylenically unsaturated group and separating incompatible with the same part by weight of n-hexane (C2)
  • Component One or more ethylenically unsaturated groups A compound which can be mixed with the same part by weight of n-hexane and can also be mixed with the same part by weight of the component (B2).
  • the component (C2) is an alkyl group having 4 to 20 carbon atoms at the ester site.
  • An alkenyl group, a cyclic alkyl group or a cyclic alkenyl group, and (meth) acrylate having one (meth) acryloyl group is excluded.
  • the curable component means the components (A), (B1), (C1), (B2) and (C2), and is a compound having an ethylenically unsaturated group, which is an active energy ray. It means a component that is cured by irradiation.
  • composition containing the components (A), (B1) and (C1) in the above-described proportions is referred to as the first invention, and the components (A), (B2) and (C2) in the proportions described above.
  • the composition containing this is referred to as the second invention.
  • polybutadiene, polyisoprene and / or a (meth) acrylate oligomer having a skeleton obtained by hydrogenation thereof is preferable, and a compound having a number average molecular weight of 500 to 50,000 is preferable.
  • a hydroxyl group-containing (meth) acrylate is preferable.
  • the component (C1) includes a compound having one or more ethylenically unsaturated groups, which can be mixed with the same part by weight of n-hexane and can be mixed with the same part by weight of the component (B1). And those containing a compound having an alkyl group in the skeleton and having two or more (meth) acryloyl groups are preferred.
  • compositions containing 0.1 to 20 parts by weight of (D) a radical photopolymerization initiator with respect to 100 parts by weight of the total amount of curable components is preferred.
  • a composition containing a fluorescent agent, a dye or / and a pigment is also preferable.
  • the components (A), (B1), (C1), (B2) and (C2) and other components will be described.
  • the specific compound mentioned by description of the following (A), (B1), (C1), (B2), and (C2) component may use the said compound independently, or two or more types are combined. May be used.
  • the component (A) is a (meth) acrylate oligomer having two or more (meth) acryloyl groups and having a diene skeleton or a hydrogenated diene skeleton.
  • the (meth) acryloyl group in the component (A) may have a side chain or a terminal, preferably a compound having a (meth) acryloyl group at the terminal, particularly preferably a (meth) acryloyl at both terminals.
  • a compound having a group is a (meth) acrylate oligomer having two or more (meth) acryloyl groups and having a diene skeleton or a hydrogenated diene skeleton.
  • the (meth) acryloyl group in the component (A) may have a side chain or a terminal, preferably a compound having a (meth) acryloyl group at the terminal, particularly preferably a (meth) acryloyl at both terminals
  • the number average molecular weight (hereinafter referred to as “Mn”) of the component (A) is preferably a compound of 500 to 100,000, more preferably 1,000 to 50,000.
  • Mn number average molecular weight
  • Mn number average molecular weight
  • GPC gel permeation chromatography
  • an oligomer in which a polydiene or hydrogenated polydiene skeleton and two or more (meth) acryloyl groups are bonded by a urethane bond hereinafter referred to as “(A1)”
  • a polydiene or a hydrogenated polydiene skeleton and two Oligomer hereinafter referred to as “(A2)”
  • the (meth) acryloyl group is bonded by an ester bond, a reaction product of an isoprene polymer, an acid anhydride adduct, and a hydroxyl group-containing (meth) acrylate [hereinafter referred to as “(A3 ) "]]
  • (A1) a polydiene or hydrogenated polydiene skeleton and two Oligomer
  • (A1) and (A2) are preferable, and (A1) is preferable in terms of excellent mechanical properties of the cured product, and a urethane (meth) acrylate oligomer having two (meth) acryloyl groups is more preferable. preferable.
  • the urethane (meth) acrylate oligomer having two (meth) acryloyl groups in (A1) includes polydiene diol or hydrogenated polydiene diol (a) [hereinafter referred to as “compound (a)”], diisocyanate.
  • compound (b) a compound having a hydroxyl group-containing (meth) acrylate (c))
  • compound (c) a hydroxyl group-containing (meth) acrylate (c))
  • Examples of the compound (a) include polybutadiene diol, polyisoprene diol, and polyethylene propylene diol as polydiene diol.
  • Examples of the hydrogenated polydiene diol include hydrogenated polybutadiene diol, hydrogenated polyisoprene diol, and hydrogenated polyethylene propylene diol. Among these compounds, polybutadiene diol, polyisoprene diol, hydrogenated polybutadiene diol, and hydrogenated polyisoprene diol are preferable.
  • the Mn of the compound (a) is preferably 500 to 10,000, more preferably 1,000 to 10,000.
  • polyols other than the compound (a) may be used in combination as necessary.
  • various compounds can be used as long as they are compounds having two isocyanate groups in one molecule.
  • Specific examples include tolylene diisocyanate, hydrogenated tolylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, tolidine diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, and the like. it can.
  • various compounds can be used as long as they are (meth) acrylates having a hydroxyl group.
  • Specific examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, butanediol mono (meth) acrylate, 2-hydroxyethyl (meth) acrylate caprolactone modified product, and glycidol di (meth) acrylate.
  • Etc Among these, hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and butanediol mono (meth) acrylate are preferable.
  • (A2) include an esterification reaction product of two or more hydroxyl-containing polydienes or hydrogenated polydienes and (meth) acrylic acid or (meth) acrylic acid halides, two or more hydroxyl-containing polydienes or hydrogen And a transesterification product of a modified polydiene and (meth) acrylate.
  • esterification reaction products include esterification reaction products of polybutadiene diol and (meth) acrylic acid, esterification reaction products of polyisoprene diol and (meth) acrylic acid, and esters of hydrogenated polybutadiene diol and (meth) acrylic acid.
  • Reaction product esterification reaction product of hydrogenated polyisoprenediol and (meth) acrylic acid, esterification reaction product of polybutadienediol and (meth) acrylic acid chloride, esterification reaction of polyisoprenediol and (meth) acrylic acid chloride And an esterification reaction product of hydrogenated polybutadiene diol and (meth) acrylic acid chloride, and an esterification reaction product of hydrogenated polyisoprenediol and (meth) acrylic acid chloride.
  • transesterification products include transesterification products of polybutadiene diol and alkyl (meth) acrylate, transesterification products of polyisoprediol and alkyl (meth) acrylate, and hydrogenated polybutadiene diol and alkyl (meth) acrylate.
  • transesterification products and transesterification products of hydrogenated polyisoprediol and alkyl (meth) acrylate examples include transesterification products of polybutadiene diol and alkyl (meth) acrylate.
  • (A3) include a reaction product of an isoprene polymer, a maleic anhydride adduct, and hydroxyethyl (meth) acrylate.
  • Component (A) is commercially available.
  • Specific examples of (A1) include “TEA-1000” (polybutadiene urethane acrylate oligomer, Mn: about 3,000) manufactured by Nippon Soda Co., Ltd., Nippon Soda Co., Ltd.
  • TEAI-1000 hydrogenated polybutadiene urethane acrylate oligomer manufactured by Nippon Soda Co., Ltd.
  • TE-2000 polybutadiene urethane methacrylate oligomer manufactured by Soda
  • CN9014 polybutadiene urethane acrylate
  • Sartomer “CN301” polybutadiene dimethacrylate) manufactured by Sartomer
  • CN303 polybutadiene dimethacrylate
  • CN307 polybutadiene diacrylate manufactured by Sartomer
  • Specific examples of (A2) include “BAC-45” (polybutadiene diacrylate, Mn: 5,000) manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • (A3) include “UC-203” manufactured by Kuraray Co., Ltd. (an esterified oligomer of maleic anhydride adduct of isoprene polymer and 2-hydroxyethyl methacrylate, Mn: about 30,000). Can be mentioned. Among these compounds, “TEAI-1000”, “TEA-1000”, “CN9014”, “CN307”, and “BAC-45” having an acryloyl group are preferable from the viewpoint of good photocurability.
  • polybutadiene, polyisoprene and / or a (meth) acrylate oligomer having a skeleton in which these are hydrogenated are preferable.
  • a more preferable example of the (meth) acrylate oligomer having a polybutadiene skeleton is a compound in which (meth) acryloyl groups are bonded to both ends of polybutadiene.
  • the compound is commercially available.
  • Examples of the compound having an acryloyl group bonded to both ends of polybutadiene include BAC-45 (Mn: 5,000) manufactured by Osaka Organic Chemical Industry Co., Ltd. )
  • Examples of the compound having an acryloyl group bonded thereto include TEA-1000 (Mn: about 3,000) and TE-2000 (Mn: about 3,000) manufactured by Nippon Soda Co., Ltd.
  • the above-described (A3) can be mentioned.
  • the compound is commercially available, and examples thereof include Kuraray Co., Ltd. UC-203 (Mn about 30,000), which is an esterified product of polyisoprene maleic anhydride adduct and 2-hydroxyethyl methacrylate. be able to.
  • Preferable compounds of the (meth) acrylate oligomer having a hydrogenated skeleton of polybutadiene or polyisoprene include compounds in which a urethane (meth) acryloyl group is bonded to both ends of the hydrogenated polybutadiene skeleton.
  • Such compounds are commercially available, and examples thereof include TEAI-1000 (Mn: about 3,000 to 9,000) manufactured by Nippon Soda Co., Ltd.
  • the proportion of the component (A) needs to be 30 to 97% by weight, preferably 50 to 90% by weight, based on the total amount of the curable component. If the proportion of the component (A) is less than 30% by weight, there is a risk that sufficient adhesion to the substrate may not be obtained after the cured film is immersed in an organic solvent, whereas if it exceeds 97% by weight, Since the cohesive strength of the component (A) is low, the initial adhesion may be reduced.
  • 1st invention is a composition comprising 30 to 97 wt% of the component (A) as an essential component in the total amount of curable components, It is an active energy ray-curable coating agent composition containing 3 to 70% by weight and 0 to 67% by weight of the component (B1) and the component (C1), respectively, in the total amount of the curable component.
  • active energy ray-curable coating agent composition containing 3 to 70% by weight and 0 to 67% by weight of the component (B1) and the component (C1), respectively, in the total amount of the curable component.
  • Component (B1) is a compound having one ethylenically unsaturated group and one or more hydrophilic groups.
  • the component (B1) imparts cohesive force that cannot be obtained with the component (A) alone to the composition and improves the adhesion to the substrate.
  • the component (B1) since the component (B1) has low compatibility with the component (A), it may not be a uniform composition when added in an amount of 70% by weight or more. In order to obtain a desired effect, the content is 3 to 70% by weight. There is a need to.
  • a compound having one ethylenically unsaturated group and one hydrophilic group is preferable.
  • Examples of the ethylenically unsaturated group include vinyl bonds such as vinyl groups, allyl groups, and styryl groups, (meth) acryloyl groups, and (meth) acrylamide groups.
  • a (meth) acryloyl group and a (meth) acrylamide group are preferable because of excellent copolymerizability with other components.
  • Examples of the hydrophilic group include a hydroxyl group and an acidic group, and examples of the acidic group further include a carboxyl group, a phosphoric acid group, and a sulfone group.
  • a hydroxyl group-containing (meth) acrylate and a hydroxyl group-containing (meth) acrylamide are preferable.
  • Specific examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxypentyl (meth) acrylate, and hydroxyhexyl (meth) acrylate.
  • hydroxyalkyl (meth) acrylates such as hydroxyoctyl (meth) acrylate; pentaerythritol mono (meth) acrylate and trimethylolpropane are mono (meth) acrylates of polyols such as mono (meth) acrylate; and phenylglycidyl ether Examples include 2-hydroxy-3-phenoxypropyl (meth) acrylate, which is an adduct of (meth) acrylic acid.
  • Specific examples of the hydroxyl group-containing (meth) acrylamide include N-hydroxyethyl (meth) acrylamide.
  • a carboxyl group-containing (meth) acrylate is preferable.
  • the carboxyl group-containing (meth) acrylate include (meth) acrylic acid, ⁇ -carboxy-polycaprolactone mono (meth) acrylate, and monohydroxyethyl (meth) acrylate phthalate.
  • the component (B1) is a compound having a phosphate group as a hydrophilic group, a phosphate group-containing (meth) acrylate is preferable.
  • Specific examples of the phosphoric acid group-containing (meth) acrylate include esterified products of phosphoric acid and (meth) acrylic acid.
  • the proportion of the component (B1) needs to be 3 to 70% by weight, preferably 5 to 50% by weight, based on the total amount of the curable component.
  • the proportion of the component (B1) is less than 3% by weight, the initial adhesion of the cured film is lowered, whereas when it exceeds 70% by weight, turbidity due to separation occurs in the composition, Good internal curability cannot be obtained.
  • the component (C1) is a compound having an ethylenically unsaturated group, and is a compound other than the components (A) and (B1). However, the component (C1) excludes (meth) acrylates having an alkyl group, alkenyl group, cyclic alkyl group or cyclic alkenyl group having 4 to 20 carbon atoms at the ester site and having one (meth) acryloyl group. It is a thing.
  • Examples of the ethylenically unsaturated group in the component (C1) include a (meth) acryloyl group, a (meth) acrylamide group, a vinyl group, and an allyl group, and among these, the copolymerization with other components is excellent ( A (meth) acryloyl group is preferred.
  • component (C1) various compounds can be used as long as they have an ethylenically unsaturated group.
  • preferred compounds include compounds having one or more ethylenically unsaturated groups, Examples thereof include compounds that can be mixed with the same weight of n-hexane and can also dissolve the same weight of component (B1) (hereinafter referred to as “component (c1)”).
  • the component (c1) may be selected after experimentally confirming compatibility with the compound used as the component (B1).
  • the ethylenically unsaturated group include (meth) acryloyl group, (meth) acrylamide group, vinyl group. And allyl group. Among these, (meth) acryloyl group is preferable because of excellent copolymerizability with other components.
  • the compound having one (meth) acryloyl group in the component (c1) include alkyl (meth) acrylates having 3 or less carbon atoms, carbitol (meth) acrylates having 3 or less carbon atoms, and tetrahydrofurfuryl ( A (meth) acrylate having a cyclic ether group such as (meth) acrylate is preferred.
  • alkyl (meth) acrylate having 3 or less carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate.
  • the carbitol (meth) acrylate having 3 or less carbon atoms include ethyl carbitol (meth) acrylate.
  • examples of the compound having two or more (meth) acryloyl groups include compounds having an alkyl group in the skeleton.
  • Specific examples of the compound include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate and 1,9-nonanediol di (meth) acrylate.
  • the component (c1) is preferably a compound that can be uniformly mixed with the same weight of n-hexane and can be uniformly dissolved with the same weight of the component (B1), and the compounds listed above correspond to the compound.
  • a compound such as tricyclodecane dimethylol di (meth) acrylate, which dissolves and does not separate when mixed with n-hexane but shows some turbidity in the solution, can also be used as the component (c1). .
  • component (C1) a compound having an ethylenically unsaturated group other than the above-described component (c1) [hereinafter referred to as “component (c2)”], glass transition temperature, water permeability and It can be used for the purpose of adjusting secondary performance such as water absorption.
  • component (c2) various compounds can be used as long as they are compounds containing an ethylenically unsaturated group, and examples thereof include vinyl compounds and (meth) acrylates, with (meth) acrylates being preferred.
  • (meth) acrylate examples include (meth) acrylate having one (meth) acryloyl group (hereinafter referred to as “monofunctional (meth) acrylate”) and one (meth) acryloyl group (meth) ) Acrylamide compounds (hereinafter referred to as monofunctional (meth) acrylamide compounds).
  • Epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate; Aromatic monofunctional (meth) acrylates such as benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, o-phenylphenoxy (meth) acrylate and p-cumylphenolethylene (meth) acrylate; Monofunctional (meth) acrylates having maleimide groups such as (meth) acryloyloxyethyl hexahydrophthalimide; and 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane and 3 Examples include alkoxyl group-containing monofunctional (meth) acrylates such as-(meth) acryloxypropylmethyldiethoxysilane and 3- (meth) acryloxypropyltriethoxysilane.
  • Examples of the vinyl compound include N-vinylcaprolactam and N-vinylpyrrolidone.
  • the ratio of the component (C1) needs to be 0 to 67% by weight, preferably 5 to 40% by weight in the total amount of the curable component.
  • the component (C1) is used for the purpose of improving the compatibility between the component (A) and the component (B1).
  • the proportion of the component (C1) exceeds 67% by weight, in the case of a compound having one ethylenically unsaturated group, the solvent resistance of the cured film of the composition becomes insufficient, and swelling or partial after the solvent immersion
  • the cured film may be peeled off by dissolution of the cured film, and in the case of a compound having two or more ethylenically unsaturated groups, the cohesive force may be insufficient and initial adhesion may not be obtained.
  • the second invention is a composition comprising 30 to 97% by weight of the component (A) as an essential component in the total amount of the curable component, It is an active energy ray-curable coating agent composition containing 3 to 70% by weight and 0 to 57% by weight of the component (B2) and the component (C2), respectively, in the total amount of the curable component.
  • the components (B2) and (C2) will be described.
  • Component (B2) is a compound which has one or more ethylenically unsaturated groups and is separated without being compatible with the same part by weight of n-hexane.
  • the component (B2) imparts cohesive force that cannot be obtained only with the component (A) to the composition and improves the adhesion to the substrate.
  • the component (B2) since the component (B2) has low compatibility with the component (A), it may not be a uniform composition when added in an amount of 70% by weight or more. In order to obtain a desired effect, the content is 3 to 70% by weight. There is a need to.
  • the component applicable as the component (B2) may be selected after confirming that the solubility in a low-polar solvent is extremely low as an index of cohesive force.
  • n is an easy-to-handle low-polar solvent. -Confirm using hexane. According to the study by the present inventor, it is clear that a sufficient cohesive force can be imparted to the composition by selecting one that is mixed and stirred with the same weight of n-hexane and then separated.
  • the component (B2) is not particularly limited as long as it is a compound having one or more ethylenically unsaturated groups in one molecule.
  • Examples of the ethylenically unsaturated group include vinyl bonds such as vinyl group, allyl group and styryl group, (meth) acryloyl group and (meth) acrylamide group.
  • a (meth) acryloyl group and a (meth) acrylamide group are preferable because of excellent copolymerizability with other components.
  • the compound having one ethylenically unsaturated group in the molecule is preferably a compound having a higher cohesive force than the component (A), and the substituent includes an aromatic group, an amide group, an imide group.
  • Aromatic groups include monocyclic aromatic hydrocarbon groups such as phenyl, tolyl, xylyl, cumenyl, and cumyl groups, condensed polycyclic aromatic hydrocarbon groups such as naphthyl, anthryl, and phenanthryl.
  • Preferred examples include a biphenyl group (phenylphenyl group), a p-cumylphenyl group, a terphenyl group and the like of an aromatic hydrocarbon group composed of a plurality of aromatic rings.
  • the component (B2) is a compound having an aromatic ring, a compound having a hydroxyl group, a compound having a hydroxyl group in addition to an aromatic, a compound having an amide group, a compound having a hydroxyl group in addition to an amide group, or a compound having an imide group. More preferred are compounds having a phenoxyethyl group and a phenylphenoxyethyl group.
  • component (B2) include phenoxyethyl (meth) acrylate, phenoxypropyl (meth) acrylate, phenoxy (polyalkyleneoxy) (meth) acrylate, phenyl (meth) containing a phenyl group as an aromatic group.
  • Examples of (meth) acrylamide include N, N-dimethyl (meth) acrylamide and (meth) acryloylmorpholine.
  • Examples of those having an imide group include N- (meth) acryloyloxyethyl hexahydrophthalimide and 2- (cyclohex-1-ene-1,2-dicarboximido) ethyl (meth) acrylate.
  • phenoxyethyl acrylate and phenylphenoxyethyl acrylate are more preferable because of excellent solvent resistance.
  • bifunctional (meth) acrylate examples include polyethylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and tetramethylene glycol di Examples include (meth) acrylate, polytetramethylene glycol di (meth) acrylate, and di (meth) acrylate of an bisphenol A alkylene oxide adduct.
  • epoxy (meth) acrylate having a bisphenol skeleton, polyether skeleton, polyalkylene skeleton, polyester skeleton, polyether skeleton, urethane (meth) acrylate having a polycarbonate skeleton, polyester (meth) acrylate, and the like are also used. Can do.
  • tri- or higher functional (meth) acrylates include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, di Examples include pentaerythritol hexa (meth) acrylate and tris (2- (meth) acryloyloxyethyl) isocyanurate.
  • polyfunctional polyesters such as polyfunctional urethane (meth) acrylates and polyfunctional epoxy (meth) acrylates having a novolak skeleton obtained by urethanization of polyfunctional (meth) acrylates having hydroxyl groups and polyisocyanates (Meth) acrylate etc. are mentioned.
  • trimethylolpropane triacrylate pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, polyfunctional urethane (meth) acrylate, and polyfunctional epoxy (meth) acrylate are more preferable.
  • Aronix M-305 (a mixture of pentaerythritol tri and tetraacrylate), M-309 (trimethylolpropane triacrylate), M-310 (trimethylolpropane) manufactured by Toagosei Co., Ltd.
  • the proportion of the component (B2) needs to be 3 to 70% by weight, preferably 5 to 50% by weight, based on the total amount of the curable component.
  • the proportion of the component (B2) is less than 3% by weight, the initial adhesion of the cured film is lowered, whereas when it exceeds 70% by weight, turbidity due to separation occurs in the composition. Good internal curability cannot be obtained.
  • Component (C2) is a compound of a compound having one ethylenically unsaturated group, which can be mixed with the same weight of n-hexane and can be dissolved in the same weight of component (B2). A compound.
  • the component (C2) has an alkyl group having 4 to 20 carbon atoms, an alkenyl group, a cyclic alkyl group or a cyclic alkenyl group (hereinafter, these groups are collectively referred to as “alkyl group or the like”) at the ester site, This is obtained by removing (meth) acrylate having one (meth) acryloyl group.
  • the component (C2) may be selected by experimentally confirming compatibility with the compound used as the component (B2), but as the ethylenically unsaturated group, (meth) acryloyl group, (meth) acrylamide group, vinyl group And allyl group. Among these, (meth) acryloyl group is preferable because of excellent copolymerizability with other components.
  • the compound having one (meth) acryloyl group in the component (C2) include alkyl (meth) acrylates having 3 or less carbon atoms, carbitol (meth) acrylates having 3 or less carbon atoms, and tetrahydrofurfuryl ( A (meth) acrylate having a cyclic ether group such as (meth) acrylate is preferred.
  • alkyl (meth) acrylate having 3 or less carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate.
  • the carbitol (meth) acrylate having 3 or less carbon atoms include ethyl carbitol (meth) acrylate.
  • examples of the compound having two or more (meth) acryloyl groups include compounds having an alkyl group in the skeleton.
  • Specific examples of the compound include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate and 1,9-nonanediol di (meth) acrylate.
  • the component (C2) is preferably a compound that can be uniformly mixed with the same weight of n-hexane and can be uniformly dissolved with the same weight of the component (B2), and the compounds listed above correspond to the compound.
  • a compound such as tricyclodecane dimethylol di (meth) acrylate, which dissolves and does not separate when mixed with n-hexane but shows some turbidity in the solution, can also be used as the component (C2). .
  • the ratio of the component (C2) needs to be 0 to 57% by weight, preferably 5 to 40% by weight in the total amount of the curable component.
  • the component (C2) is used for the purpose of improving the compatibility between the component (A) and the component (B2).
  • the proportion of the component (C2) exceeds 57% by weight, in the case of a compound having one ethylenically unsaturated group, the solvent resistance of the cured film of the composition becomes insufficient, and swelling or partial after the solvent immersion
  • the cured film may be peeled off by dissolution of the cured film, and in the case of a compound having two or more ethylenically unsaturated groups, the cohesive force may be insufficient and initial adhesion may not be obtained.
  • the composition of the present invention comprises the components (A), (B1) and (C1) as essential components in the first invention, and the components (A), (B2) and (C2) in the second invention.
  • the component is an essential component
  • various components that are usually used as a coating agent can be blended depending on the purpose and application.
  • Preferred components include photo radical polymerization initiators (hereinafter referred to as “component (D)”). Besides these, photo acid generators, silane coupling agents, antioxidants, ultraviolet absorbers, light stability Agents, tackifiers, thiol compounds, plasticizers, fillers, fluorescent agents, dyes, pigments, dispersants and / or antistatic agents.
  • an absorber or / and a light stabilizer For the purpose of improving the interfacial bond strength between the cured film and the substrate, it is preferable to use a photoacid generator and / or a silane coupling agent. For the purpose of improving adhesion, it is preferable to use a thiol compound that is effective by reducing the stress with the substrate interface. It is preferable to use a filler such as a conductive material that facilitates the detection of the location of defective insulation.
  • a fluorescent agent or a dye for the purpose of facilitating process management in which a coating film of the composition or a cured film after irradiation with active energy rays can be easily confirmed, it is preferable to use a fluorescent agent or a dye.
  • these components will be specifically described.
  • the specific compound mentioned by description of the other component may use the said compound independently, and may be used in combination of 2 or more types.
  • Component (D) is a radical photopolymerization initiator.
  • Component (D) is a compound that generates radicals by irradiation with active energy rays and initiates polymerization of a compound having an ethylenically unsaturated group. When an electron beam is used as the active energy ray, it is not always necessary to add the component (D).
  • component (D) examples include benzyl dimethyl ketal, benzyl, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane- 1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, oligo [2-hydroxy-2-methyl-1- [4-1 -(Methylvinyl) phenyl] propanone, 2-hydroxy-1- [4- [4- (2-hydroxy-2-methyl-propionyl) benzyl] phenyl] -2-methylpropan-1-one, 2-methyl- 1- [4- (Methylthio)] phenyl] -2-morpholinopropan-1-one 2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl)
  • ⁇ -hydroxyphenyl ketones are preferable because they have good surface curability even in the case of thin film coating in the atmosphere.
  • 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2 -Methyl-1-phenyl-propan-1-one is more preferred.
  • bis (2,4,6-trimethylbenzoyl)- is used for the purpose of improving the curability inside the cured film.
  • Phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl- (2,4,6-trimethylbenzoyl) phenylphosphinate and bis (2,6-dimethoxybenzoyl) -2,4,4- Acylphosphine oxide compounds such as trimethylpentylphosphine oxide, 2-methyl-1- [4- (methylthio)] phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-Morpholinophenyl) butan-1-one, 2-dimethylamino-2- (4-methyl) Benzyl) -1- (4-morpholin-4-yl-phenyl) - - is preferably used in combination with butan-1-one and the like.
  • the content ratio of the component (D) is preferably 0.1 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the total amount of the curable components. (D) By making the ratio of a component 0.1 weight part or more, it can make the photocurability of a composition favorable and can make it excellent in adhesiveness, and a cured film can be 20 weight part or less. The internal curability can be improved, and the adhesion to the substrate can be improved.
  • the photoacid generator is a compound that generates an acid by irradiating a composition containing this component with active energy rays. By using this component, the adhesion of the resulting cured film to the substrate is improved. Since the main reaction of the composition of the present invention is a radical reaction, it is unclear what kind of participation this component is involved in, but it has some modification effect on the surface of the metal substrate. Presumed to be.
  • a compound known as a photocationic polymerization initiator can be used as the photoacid generator.
  • Specific examples include sulfonium salts, iodonium salts, diazonium salts, selenium salts, pyridinium salts, ferrocenium salts, phosphonium salts, onium salts such as thiopyrinium salts, and more preferably aromatic sulfonium salts and aromatics.
  • Group iodonium salt examples include BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , and B (C 6 F 5 ) 4 ⁇ , with PF 6 ⁇ and B (C being particularly preferable. 6 F 5) 4 - it is.
  • the photo acid generator is commercially available, and examples thereof include the following compounds.
  • Aromatic sulfonium salts include Dow Chemical Co., Ltd.'s Cyracure UVI-6922 and UVI-6974, Asahi Denka Kogyo Co., Ltd., Adekaoptomer SP-150, SP-152, SP-170, and SP-172, CPI-100P and CPI-101A manufactured by San Apro Co., Ltd. and the like can be mentioned.
  • aromatic iodonium salts include GE Toshiba Silicone UV-9380C, Rhodia PHOTOINITITOR 2074, Wako Pure Chemical Industries, Ltd. WPI-116 and WPI-113, Nippon Soda Co., Ltd., CI-5102, and the like. .
  • the blending ratio of the photoacid generator may be appropriately set according to the purpose, and is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the total amount of the curable components. Parts, particularly preferably 1 to 5 parts by weight.
  • Silane coupling agent is mix
  • the silane coupling agent is not particularly limited as long as it can contribute to improvement in adhesion to the substrate.
  • silane coupling agent examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- Glycidoxypropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3 -Aminopropyltrimethoxysilane, N
  • the mixing ratio of the silane coupling agent may be appropriately set according to the purpose, and is preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the total amount of the curable components. .
  • the blending ratio is 0.1 parts by weight or more, the adhesive strength of the composition can be improved.
  • the blending ratio is 10 parts by weight or less, it is possible to prevent the adhesive force from changing over time.
  • Antioxidant Antioxidant is mix
  • the antioxidant include phenol-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants.
  • phenolic antioxidants include hindered phenols such as di-t-butylhydroxytoluene.
  • commercially available products include AO-20, AO-30, AO-40, AO-50, AO-60, AO-70, and AO-80 manufactured by Adeka Corporation.
  • Examples of the phosphorus-based antioxidant include phosphines such as trialkylphosphine and triarylphosphine, and trialkyl phosphites and triaryl phosphites.
  • the blending ratio of the antioxidant may be appropriately set according to the purpose, and is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the total amount of the curable components. It is. When the blending ratio is 0.1 parts by weight or more, the durability of the composition can be improved. On the other hand, when it is 5 parts by weight or less, curability and adhesion can be improved.
  • Light Stabilizer examples of the light stabilizer used in the present invention include hindered amine light stabilizers. Examples of commercially available products include BASF Corporation TINUVIN 111FDL, TINUVIN 123, TINUVIN 144, TINUVIN 152, TINUVIN 292, and TINUVIN 5100. These antioxidants may be used alone or in combination of two or more.
  • the blending ratio of the light stabilizer may be appropriately set according to the purpose, and is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the total amount of the curable component. is there. By setting it as 0.01 weight part or more, durability of the coating film obtained from a composition can be improved, and favorable sclerosis
  • UV absorber An ultraviolet absorber is mix
  • the UV absorber include triazine UV absorbers such as TINUVIN400, TINUVIN405, TINUVIN460, and TINUVIN479 manufactured by BASF, and benzotriazole UV absorbers such as TINUVIN900, TINUVIN928, and TINUVIN1130.
  • the blending ratio of the ultraviolet absorber may be appropriately set according to the purpose, and is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the total amount of the curable components. It is. When the blending ratio is 0.01% by weight or more, the light resistance of the cured film can be improved, and when it is 5% by weight or less, the curability of the composition is excellent. be able to.
  • Tackifier can be added to the composition of the present invention for the purpose of further improving the adhesion to the substrate.
  • these types are not particularly limited, and examples thereof include rosin resins, rosin phenol resins, terpene resins, petroleum resins, phenol resins, ketone resins, amide resins, and epoxy resins.
  • examples of the rosin-based resin include raw material rosins such as gum rosin, wood rosin, tall oil rosin, and rosin derivatives corresponding thereto.
  • rosin phenolic resin for example, rosin phenolic resin obtained by copolymerizing rosin and phenol such as gum rosin, wood rosin, tall oil, etc., and corresponding rosin phenolic resin are esterified, hydrogenated, disproportionated, Examples include dimerized rosin phenol resin.
  • terpene resin include terpene resins obtained by polymerizing terpenes such as ⁇ -pinene and ⁇ -pinene.
  • the petroleum resin include aliphatic hydrocarbon petroleum resins, such as aromatic hydrocarbon petroleum resins, and alicyclic hydrocarbon petroleum resins such as norbornene resin.
  • phenolic resins include phenol resins obtained by polycondensation of phenols such as phenol and cresol and aldehydes.
  • ketone resins include ketone resins obtained by polycondensation of ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetophenone, cyclohexanone, and methylcyclohexanone with formaldehyde.
  • amide resins include hexamethylene diamine, decamethylene diamine, dodecamethylene diamine, 2,2,4- or 2,4,4-trimethylhexamethylene diamine, 1,3- or 1,4-bis (amino A diamine such as methyl) cyclohexane, bis (p-aminocyclohexylmethane), m- or p-xylylenediamine, and a dicarboxylic acid such as adipic acid, suberic acid, sebacic acid, cyclohexanedicarboxylic acid, terephthalic acid, and isophthalic acid.
  • a dicarboxylic acid such as adipic acid, suberic acid, sebacic acid, cyclohexanedicarboxylic acid, terephthalic acid, and isophthalic acid.
  • Polycondensed polyamides such as polyamides polycondensed with aminocarboxylic acids such as ⁇ -aminocaproic acid and 11-aminoundecanecarboxylic acid, such as polyamides polycondensed with lactams such as ⁇ -caprolactam and ⁇ -laurolactam, etc. It is done.
  • the epoxy resin include sorbitol polyglycidyl ether, polyglycol polyglycidyl ether, pentaerythritol polyglycidyl ether, trimethylolpropane polyglycidyl ether, and the like.
  • the blending ratio of the tackifier may be appropriately set according to the purpose, and is preferably 5 to 100 parts by weight with respect to 100 parts by weight of the total amount of the curable components.
  • the tackifier may be present uniformly in the composition or may be unevenly distributed. Further, the haze of the composition is not particularly limited as long as it does not hinder active energy ray curing.
  • composition of the present invention has a cured film having excellent adhesion to a substrate, but a thiol compound may be added as necessary according to the purpose of further adhesion improvement and the type of substrate. it can. In the curing process, the thiol compound can relieve stress between the cured film and the substrate interface and further improve the adhesion.
  • both a monofunctional thiol compound having one thiol group in the molecule and a polyfunctional thiol compound having a plurality of thiol groups in the molecule can be used.
  • Specific examples include thioglycolic acid, monoethanolamine thioglycolate, methyl thioglycolate, octyl thioglycolate, methoxybutyl thioglycolate, ethylene glycol bisthioglycolate, butanediol bisthioglycolate, hexanediol Bisthioglycolate, trimethylolpropane tristhioglycolate, pentaerythritol tetrakisthioglycolate, 3-mercaptopropionic acid, methyl mercaptopropionate, methoxybutyl mercaptopropionate, octyl mercaptopropionate, tridecyl mer
  • pentaerythritol tetrakis (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptobutyrate) and trimethylolethane tris (3-mercaptobutyrate) are used.
  • secondary thiols such as (rate).
  • the blending ratio of the thiol compound is preferably 0.1 to 30 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the total amount of the curable components.
  • the adhesiveness with respect to a base material can be improved by making the number of added parts 0.1 parts by weight or more, and good solvent resistance can be obtained by making the added parts 30 parts by weight or less.
  • Plasticizer A plasticizer may be added to the composition of the present invention for the purpose of further improving the adhesion to the substrate.
  • the plasticizer those compatible with the essential components in the composition of the present invention are preferable, and examples thereof include polymers, oligomers, phthalates, and castor oils.
  • the oligomer or polymer include polyisoprene-based, polybutadiene-based, and xylene-based oligomers or polymers. These oligomers or polymers are commercially available, and examples thereof include Kuraray LIR series, Degussa polyoil series, and the like.
  • the blending ratio of the plasticizer may be appropriately set depending on the purpose, and is preferably 300 parts by weight or less, more preferably 200 parts by weight or less, with respect to 100 parts by weight of the total amount of the curable component.
  • the composition of this invention can use the filler normally used with a coating agent.
  • carbon black such as acetylene black, carbon nanotubes, etc. are added as fillers for the purpose of partially reducing the resistance value for the purpose of detecting defective parts. May be.
  • the blending ratio of the filler may be appropriately set according to the purpose, and is preferably 50 parts by weight or less, more preferably 20 parts by weight or less, with respect to 100 parts by weight of the total amount of the curable component.
  • Various compounds can be used as carbon black. Specifically, Mitsubishi Chemical Corporation # 2650, # 2600, # 2350, # 2300, # 1000, # 980, # 970, # 960, # 950, # 900, # 850, MCF88, MA600, # 750B , # 650B, # 52, # 47, # 45, # 45L, # 44, # 40, # 33, # 32, # 30, # 25, # 20, # 10, # 5, # 95, # 85, # 260, MA77, MA7, MA8, MA11, MA100, MA100R, MA100S, MA230, MA220, MA14, # 4000B, # 3030B, # 3050B, # 3250B, # 3230B, # 3400B, Color Black manufactured by Orion Engineered Carbons FW200, Color Black FW2, Color Black FW2V, Color Bl ack FW1, Color Black FW18, Special Black 6, Color Black S170, Color Black S160, Special Black5, Special Black4, Special Black4A, Printex 150T
  • the carbon nanotube can be used as the carbon nanotube, and both single-walled carbon nanotubes and multi-walled carbon nanotubes can be used.
  • Specific examples of the multi-walled carbon nanotube include Baytubes C70P and C150P manufactured by Bayer MaterialScience, CNTM5 and CNTM15, CNTM30, CNTM40, and CNTM60 manufactured by NANOCS, and VGCF-H manufactured by Showa Denko K.K. it can.
  • the single-walled carbon nanotube include KH SWCNT HP manufactured by KH Chemicals, SWENT CG100, SG65, SG76, and CG200 manufactured by Sigma-Aldrich.
  • a preferable blending ratio when using carbon nanotubes is preferably 5 parts by weight or less, more preferably 0.01 parts by weight or less with respect to 100 parts by weight of the total amount of the curable components. By setting it as the said mixture ratio, it can prevent that a carbon nanotube aggregates and becomes a lump and the handling property of a coating agent composition is impaired.
  • the composition is hardened by irradiating it with an electron beam because it is difficult for ultraviolet rays and visible light to pass through the composition.
  • Fluorescent agent / dye / pigment The composition of the present invention can be used as a so-called clear coat agent in which the cured film is transparent, but on the substrate, the composition is coated on the substrate.
  • a fluorescent agent, a dye or / and a pigment may be added.
  • fluorescent agent examples include benzoxazolylthiophene derivatives and distyryl / biphenyl derivatives.
  • Fluorescent agents are commercially available, and examples thereof include BASF Corporation UVITEX OB, UVITEX NFW Liquid, and the like.
  • the dye examples include oil-soluble tar dyes, carotene dyes and annatto dyes.
  • the pigment examples include organic pigments and inorganic pigments.
  • organic pigments include insoluble azo pigments such as toluidine red, toluidine maroon, Hansa Yellow, benzidine yellow and pyrazolone red; soluble azo pigments such as Ritol Red, Helio Bordeaux, Pigment Scarlet and Permanent Red 2B; Alizarin, Indantron And derivatives from vat dyes such as thioindigo maroon; phthalocyanine organic pigments such as phthalocyanine blue and phthalocyanine green; quinacridone organic pigments such as quinacridone red and quinacridone magenta; perylene organic pigments such as perylene red and perylene scarlet; Isoindolinone organic pigments such as indolinone yellow and isoindolinone orange; pyranthrone organic pigments such as pyranthrone red and pyranthrone orange Thioindigo organic pigments; condensed azo organic pigments; benzimidazolone
  • the inorganic pigment examples include titanium oxide, barium sulfate, calcium carbonate, zinc white, lead sulfate, yellow lead, zinc yellow, red bean (red iron (III) oxide), cadmium red, ultramarine blue, bitumen, and oxidation.
  • examples include chrome green, cobalt green, amber, titanium black, and synthetic iron black.
  • the carbon black exemplified as the filler can also be used as an inorganic pigment.
  • the presence or absence of a cured film can be easily determined by irradiating the surface of a substrate having a coating film or cured film of the composition with black light or UV-LED.
  • the presence or absence of a cured film can be easily determined visually.
  • Which of the fluorescent agent and the dye is used may be appropriately set according to the purpose. From the viewpoint of ease of determination, a dye is preferable, but the curing rate and internal curability of the composition may be lowered.
  • the fluorescent agent is more preferable because it can be determined with a high sensitivity even with a very small number of added parts such as 0.0001 parts by weight and has little influence on the curing rate and internal curability of the composition.
  • the blending ratio of the fluorescent agent and the dye As the blending ratio of the fluorescent agent and the dye, if the amount is too large, the curability of the composition may be deteriorated when ultraviolet rays or visible rays are used as active energy rays. Therefore, it is preferable to add as little amount as possible. .
  • the blending ratio of the fluorescent agent and the dye is preferably 1 part by weight or less, more preferably 0.1 part by weight or less with respect to 100 parts by weight of the total amount of the curable component.
  • Dispersant When a filler such as carbon black, a pigment, or the like is blended in the composition of the present invention, a dispersant may be added to prevent the sedimentation or aggregation of these.
  • the amount of the dispersant used is preferably 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the total amount of filler and pigment.
  • the dispersant include a low molecular weight copolymer. Those having carboxylic acid in the molecule, those having amine or ammonium salt, or those having both, polyether, phosphoric acid ester of polyether polymer, modified polyester, fatty acid derivative, modified soybean lecithin, etc. These can be used and may contain a silicone-based additive.
  • DISPERBYK-170 / 171 DISPERBYK-174, DISPERBYK-180, DISPERBYK-182, DISPERBYK-183 / 185, DISPERBYK-184, DISPERBYK-2000, DISPERBYK-2001, DISPERBYK-by Big Chemie Japan Co., Ltd.
  • DISPERBYK-2009 DISPERBYK-2025, DISPERBYK-2050, DISPERBYK-2070, DISPERBYK-2096, DISPERBYK-2150, DISPERBYK-2155, DISPERBYK-2163, DISPERBYK-2164, BYK-P104 / P104-P104B , BYK- 077, BYK-220S, ANTI-TERRA-U / U100, ANTI-TERRA-204 / 205, DISPERBYK-204 / 205, DISPERBYK-101, DISPERBYK-102, DISPERBYK-103, DISPERBYK-106, DISPERBYK-108, DISPERBYK 109, DISPERBYK-110 / 111, DISPERBYK-112, DISPERBYK-116, DISPERBYK-130, DISPERBYK-140,
  • a uniform composition can be obtained by stirring before coating.
  • the stirring method is not particularly limited, and any method can be used. Examples thereof include a disper, a planetary stirring and defoaming device, and an ultrasonic stirring device.
  • Antistatic agent The composition of the present invention is excellent in insulating properties, but it is possible to further reduce the resistance value by adding an antistatic agent as required. Moreover, a defective part can be detected by reducing the resistance value of a cured film by mix
  • a conductive antistatic agent is preferable.
  • the conductive antistatic agent include cationic compounds such as alkali metal salts, quaternary ammonium salts, imidazolium salts and pyridinium salts, organic boron complexes, and ionic liquids. These antistatic agents are also preferable in that they dissolve in the composition and do not settle.
  • a cationic compound is preferable, and an alkali metal salt is preferable.
  • an alkali metal salt is more preferable.
  • Specific examples of the lithium metal salt include imidolithium, lithium triflate such as lithium tris (trifluoromethanesulfonyl) methane, and lithium trifluoromethanesulfonate.
  • cationic compound various commercially available products can be used. Specific examples thereof include, for example, alkylamine quaternary ammonium salt type antistatic agents such as Elique LS-30, Elique PS-909 and Elique SEI-52 manufactured by Yoshimura Oil Chemical Co., Ltd .; Lion Akzo Co., Ltd.'s ARCARD C-50, ARCARD T-50, Daiichi Kogyo Seiyaku Co., Ltd., Kachiogen L, Colcoat Co., Ltd.
  • alkylamine quaternary ammonium salt type antistatic agents such as Elique LS-30, Elique PS-909 and Elique SEI-52 manufactured by Yoshimura Oil Chemical Co., Ltd .
  • Colcoat NR-121X, Colcoat NR-121X-9, Colcoat NR- Quaternary ammonium salt type antistatic agents such as 121X-9IPA and Nopcostat 092 manufactured by San Nopco Co., Ltd .
  • An imidazoline type antistatic agent such as Nopcostat SN A-2 manufactured by San Nopco, Inc .
  • Sanconol MEK-50R chemical name: lithium bis (trifluoromethanesulfonyl) imide) manufactured by Sanko Chemical Co., Ltd.
  • Sanconol PETA-20R And alkali metal salt type antistatic agents such as Sanconol A600-30R, Sanconol PEO-20R, Sanconol A600-50R and Sanconol A400-50R.
  • the content ratio of the antistatic agent is preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the total amount of the curable components.
  • the antistatic agent can also improve visibility by further combining a pigment.
  • the dye used in combination with the antistatic agent include the same compounds as described above.
  • the combined proportion of the antistatic agent and the dye is preferably 0.0005 to 2 parts by weight.
  • the method for producing the active energy ray-curable coating agent composition is the above-mentioned components (A), (B1) and (C1) and, if necessary, other components, the first invention
  • the components (A), (B2) and (C2) and, if necessary, other components may be further stirred and mixed according to a conventional method.
  • heating can be performed as necessary.
  • the heating temperature may be appropriately set according to the components used, the substrate, the purpose, etc., but is preferably 30 to 80 ° C.
  • the composition of the present invention is such that a cured film coated and cured on a metal substrate does not peel from the metal substrate after being immersed in a dialkyl carbonate and cyclic carbonate mixed organic solvent at 25 ° C. for 24 hours.
  • the mixing ratio of the dialkyl carbonate and the cyclic carbonate is preferably 95: 5 to 55:45, more preferably 80:20 to 60:40, with respect to the dialkyl carbonate content weight: cyclic carbonate content weight.
  • composition of the present invention can be used in various applications as a coating agent.
  • the composition of the present invention can be used for applications that require followability to substrate deformation and solvent resistance.
  • composition of the present invention As a method of using the composition of the present invention, a conventional method may be used. The step of applying the composition of the present invention to a part or all of the substrate, and the active energy applied to the coated composition. The method of including the process of irradiating and hardening a line
  • the substrate examples include metals and plastic films.
  • the composition of the present invention can be preferably used as a coating agent for a base metal substrate.
  • a conductive metal is preferable, and aluminum, copper, and the like are more preferable.
  • the substrate shape is preferably a film shape or a foil.
  • Aluminum foil also referred to as film-like aluminum stretched like thin paper obtained by rolling aluminum, aluminum foil), copper foil, and the like are more preferable, and aluminum foil is particularly preferable.
  • the material in the plastic film examples include polyvinyl chloride resin, polyvinylidene chloride, cellulosic resin, polyethylene, polypropylene, polystyrene, ABS resin, polyamide, polyester, polycarbonate, polyurethane, polyvinyl alcohol, triacetyl cellulose, cycloolefin polymer, Examples include polymethyl methacrylate, acrylic / styrene resin, ethylene-vinyl acetate copolymer, and chlorinated polypropylene.
  • the composition of the present invention can be preferably used as a coating agent for a film-like substrate. Furthermore, it can be preferably used as a coating agent in which the film-like substrate is a metal substrate, and can also be preferably used as a coating agent in which the metal substrate is aluminum.
  • Coating on the substrate may be performed by a conventionally known method, natural coater, knife belt coater, floating knife, knife over roll, knife on blanket, spray, dip, kiss roll, squeeze roll, reverse roll, air blade , Curtain flow coater, comma coater, gravure coater, micro gravure coater, die coater and curtain coater.
  • the coating thickness of the composition of the present invention to the substrate may be selected according to the use of the substrate to be used and the coated material, but is preferably 1 to 100 ⁇ m, more preferably 5 to 40 ⁇ m. It is.
  • the surface of the base material can be activated in order to increase the interlayer adhesion.
  • the surface activation treatment include plasma treatment, corona discharge treatment, chemical treatment, surface roughening treatment and etching treatment, and flame treatment, and these may be used in combination.
  • the composition after coating is irradiated with active energy rays to form a cured film, that is, a coating layer.
  • active energy rays include visible light, ultraviolet rays, X-rays, and electron beams, but ultraviolet rays are preferable because inexpensive devices can be used.
  • Various light sources can be used as the light source when cured by ultraviolet rays, and examples thereof include a pressurized or high pressure mercury lamp, a metal halide lamp, a xenon lamp, an electrodeless discharge lamp, a carbon arc lamp, and an LED.
  • various devices can be used as the EB irradiation device that can be used, and examples thereof include a Cockloft-Waltsin type, a bandegraph type, and a resonance transformer type device.
  • the composition of the present invention can be preferably used as a coating agent for a metal substrate, and the coating agent for a film-like metal substrate. More preferably.
  • the method for producing a metal substrate having a cured film using the composition of the present invention (hereinafter, also referred to as “metal substrate production method with a film”) is applied to a part or all of the metal substrate. And a step of irradiating the applied composition with an active energy ray and curing it.
  • the cured film obtained by the composition of the present invention and the method for producing a metal substrate with a film has excellent followability to deformation of a metal substrate, particularly a film-like metal substrate, and solvent resistance. It can be suitably used for electrode protective coating agents used for materials, board circuit protection materials for electric bicycles, lithium ion batteries and the like.
  • electrode protective coating agents used for materials, board circuit protection materials for electric bicycles, lithium ion batteries and the like.
  • the metal substrate used in the method for producing a metal substrate with a film of the present invention is preferably aluminum, copper or the like.
  • the substrate shape is preferably a film shape or a foil shape.
  • Aluminum foil, copper foil and the like are more preferable, and aluminum foil is particularly preferable.
  • As the film-like metal substrate used an electrode protective material for PDP, a substrate circuit protective material for an electric bicycle, and a positive electrode metal of a lithium ion battery are preferable.
  • an aluminum foil is suitably used as a metal substrate. It is done.
  • the cured layer on the metal substrate formed by the method for producing a metal substrate with a film of the present invention is not only excellent in followability and solvent resistance to the deformation of the metal substrate, but also as an insulating coating agent. Has excellent performance.
  • the method for producing a metal substrate with a film of the present invention includes a process (coating process) of applying the composition of the present invention to a part or all of the metal substrate.
  • a coating method for the metal substrate a conventionally known method may be used, and the same method as described above may be mentioned.
  • the coating thickness of the composition of the present invention on the substrate in this case may be selected according to the substrate to be used and the application of the coated coating agent, but is preferably 1 to 100 ⁇ m, more The thickness is preferably 5 to 40 ⁇ m.
  • the coating of the composition of the present invention on the substrate is preferably performed on a part or all of the film-like metal substrate as necessary.
  • the method for producing a metal substrate with a film of the present invention preferably includes a step (curing step) of irradiating the coated composition with an active energy ray to cure.
  • a step (curing step) of irradiating the coated composition with an active energy ray to cure As the active energy rays used in this case, the same active energy rays as described above can be used.
  • the cured film formed by the composition of the present invention and the method for producing a metal substrate with a film has good resistance to an organic solvent.
  • the cured film formed by the composition of the present invention and the method for producing a metal substrate with a film has good resistance to various organic solvents, and particularly used as an electrolyte in an electrode material of a lithium ion battery. Good resistance to organic solvents. For example, it has good resistance to organic solvents such as dialkyl carbonates such as diethyl carbonate, cyclic carbonates such as ethylene carbonate, and mixed organic solvents thereof.
  • the cured film formed by the method for producing a metal substrate with a film of the present invention has excellent performance of not peeling from the metal substrate after being immersed in a dialkyl carbonate and cyclic carbonate mixed organic solvent at 25 ° C. for 24 hours. .
  • the insulating coating layer cured on a desired film-like metal substrate can be produced by the method for producing a metal substrate with a film of the present invention using the composition of the present invention.
  • the insulating coating layer produced using the present invention has excellent substrate adhesion, solvent resistance, and insulation.
  • Embodiment of the first invention 1) Examples 1-1 to 1-9, Comparative Examples 1-1 to 1-4 (production of active energy ray-curable coating agent composition) The components shown in Tables 1 and 2 below were dissolved by heating and stirring at 60 ° C. for 1 hour in the ratios shown in Tables 1 and 2 to produce active energy ray-curable coating agent compositions.
  • Tables 1 and 2 mean the number of copies.
  • the abbreviations in Tables 1 and 2 are as follows.
  • TEAI1000 Oligomer having urethane acryloyl groups at both ends of a hydrogenated polybutadiene skeleton (TEAI-1000 manufactured by Nippon Soda Co., Ltd.)
  • Component (C1) HDDA 1,6-hexanediol diacrylate [Light acrylate 1,6HX-A manufactured by Kyoeisha Chemical Co., Ltd.]
  • POA Phenoxyethyl acrylate [Kyoeisha Chemical Co., Ltd. light acrylate PO-A]
  • M-309 trimethylolpropane triacrylate [Aronix M-309 manufactured by Toagosei Co., Ltd.]
  • THFA Tetrahydrofurfuryl acrylate [Kyoeisha Chemical Co., Ltd. light acrylate THF-A]
  • KBM503 3-methacryloxypropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd. KBM-503, silane coupling agent)
  • TMTP trimethylolpropane tristhiopropionate [manufactured by Sakai Chemical Co., Ltd.
  • CPI propylene carbonate solution of p- (phenylthio) phenyldiphenylsulfonium hexafluorophosphate [CPI-100P manufactured by San Apro Co., Ltd.]
  • OB 2,5-thiophenezyl bis (5-tert-butyl-1,3-benzoxazole [UVITEX OB manufactured by BASF Corp.]
  • the ultraviolet intensity was 1,250 mW / cm 2 and the integrated light amount was 1,800 mJ / cm 2 (both values at a light source wavelength of 365 nm).
  • coating / active energy ray irradiation was performed at 25 ° C.
  • the composition containing stearyl acrylate as the component (B1) was crystallized at room temperature, so the coating / active energy ray was applied at 60 ° C. Irradiation was performed.
  • the obtained specimen was cut into a length of 15 cm and a width of 25 mm, and the following evaluation was performed. The results are shown in Table 4.
  • Evaluation method (A) The cured film surface of the initial adhesion test specimen was cut with an X mark with a cutter, a mending tape manufactured by Sumitomo 3M Co., Ltd. was applied thereon, and peeled by hand for evaluation. The adhesion was evaluated according to the following three levels. A: The cured film was not peeled off from the aluminum foil surface, and further, the cured film was not peeled off from the cut portion. ⁇ : Although the cut portion was slightly cut, the cured film almost remained on the aluminum foil. X: The cured film adhered to the tape side.
  • Solvent resistance Insulation The tester was applied to the surface of the cured film of the test body evaluated for its appearance and the non-coated portion of the aluminum foil, the electrical conductivity was examined, and the following two levels were evaluated. ⁇ : There was no conduction and good insulation was maintained. X: Conductivity was recognized.
  • compositions of Examples 1-1 to 1-9 which are the compositions of the present invention, have excellent cured films with excellent adhesion to substrates and followability to deformation. It was also excellent in substrate adhesion and insulation.
  • a flashlight NS365HBS manufactured by Nitride Semiconductor Co., Ltd.
  • a 365 nm UV-LED on a substrate with a cured film formed using the composition of Example 1-9 containing a fluorescent brightening agent
  • compositions of Comparative Examples 1-1 and 1-4 that do not contain the component (B1) and the compositions of Comparative Examples 1-2 and 1-3 that do not contain the component (A) cannot be satisfied.
  • Examples 1-10 and 1-11 active energy ray-curable coating composition containing carbon black
  • the components shown in Table 4 below were dissolved by heating and stirring at 60 ° C. for 1 hour to produce an active energy ray-curable coating agent composition.
  • FA512 in Table 4 refers to dicyclopentenyloxyethyl acrylate [Fanacryl FA-512AS manufactured by Hitachi Chemical Co., Ltd.].
  • carbon black Mitsubishi Chemical Co., Ltd. # 3050B [particle diameter: 50 nm * The arithmetic average diameter obtained by observing carbon black particles with an electron microscope.
  • Specific surface area 50 m 2 / g * Specific surface area (JISK6217) determined from the nitrogen adsorption amount by the S-BET formula.
  • Example 3050 DISPERBYK-2001 (manufactured by Big Chemie Co., Ltd., hereinafter referred to as “DISP”) was further used as a dispersant.
  • DISP DISPERBYK-2001
  • the obtained test body was cut into a length of 15 cm and a width of 25 mm, and the initial adhesion, deformation resistance, and solvent resistance (appearance) were evaluated.
  • the (insulation) resistance value of the cured film was measured using ULTRA HIGH RESISTANCE METER R8340 (hereinafter referred to as “R8340”) manufactured by Advantest Corporation. The results are shown in Table 5.
  • the composition of the present invention is excellent in insulation, but by adding carbon black as necessary, the resistance value can be reduced and the visibility in the coating process can be improved.
  • Examples 1-12 and 1-13 (Active energy ray-curable coating composition containing a conductive antistatic agent)
  • the components shown in Table 6 below were dissolved by heating and stirring at 60 ° C. for 1 hour to produce an active energy ray-curable coating agent composition.
  • a conductive antistatic agent Sankonol A600-50R (imidolithium conductive antistatic agent, imide lithium content 50%, referred to as “A600”) manufactured by Sanko Chemical Industry Co., Ltd. was used.
  • A600 conductive antistatic agent
  • Example 1-13 the following dyes were further used as the dyes.
  • ⁇ Kaya-B Blue pigment (Kayaset Blue A-2R manufactured by Nippon Kayaku Co., Ltd.) Using the obtained composition, a metal substrate having a cured film was produced in the same manner as in 2) above. The obtained test body was cut into a length of 15 cm and a width of 25 mm, and the initial adhesion, deformation resistance, and solvent resistance (appearance) were evaluated. Further, in these examples, R8340 was used to measure the (insulation) resistance value of the cured film. The results are shown in Table 7. Although the composition of the present invention is excellent in insulation, it is possible to reduce the resistance value and improve the visibility in the coating process by adding a conductive antistatic agent as necessary.
  • Example of the second invention 1) Examples 2-1 to 2-11, Comparative Examples 2-1 to 2-4 (Production of active energy ray-curable coating agent composition) The components shown in Tables 8 to 10 below were dissolved by heating and stirring at 60 ° C. for 1 hour in the ratios shown in Tables 8 to 10 to prepare active energy ray-curable coating agent compositions.
  • UC203 Oligomer having methacryloyl group, which is an esterified product of polyisoprene maleic anhydride adduct and 2-hydroxyethyl methacrylate [UC-203 manufactured by Kuraray Co., Ltd.]
  • Component (C2) # 190 Ethyl carbitol acrylate [Biscoat 190 manufactured by Osaka Organic Chemical Industry Co., Ltd.]
  • Irg651 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE651 manufactured by BASF)
  • Irg819 Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide [IRGACURE819 manufactured by BASF Corporation]
  • compositions of Examples 2-1 to 2-11 which are the compositions of the present invention, have excellent cured films with excellent adhesion to substrates and followability to deformation. It was also excellent in substrate adhesion and insulation. Further, according to a flashlight NS365HBS (manufactured by Nitride Semiconductor Co., Ltd.) equipped with a 365 nm UV-LED on a substrate with a cured film formed using the composition of Example 2-8 containing a fluorescent brightening agent When irradiated, the cured film portion emitted light, but the substrate portion without the cured film did not emit light, and the presence or absence of the cured film could be easily determined.
  • NS365HBS manufactured by Nitride Semiconductor Co., Ltd.
  • compositions of Comparative Examples 2-1 and 2-4 that do not contain the component (B2), and the compositions of Comparative Examples 2-2 and 2-3 that do not contain the component (A) cannot be satisfied.
  • composition of the present invention is suitable as a coating agent for various substrate surfaces, particularly as a coating agent for metal substrates, as an electrode protective material for PDP, a substrate circuit protective material for electric bicycles, and a positive electrode protective material for lithium ion batteries. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

【課題】得られるコーティング硬化膜が、基材との密着性、特に金属基材との密着性に優れ、さらに密着性は基材の曲げに対する追従性を有し、かつ耐溶剤性に優れる活性エネルギー線硬化型コーティング剤組成物の提供。 【解決手段】必須成分として下記(A)成分を含む組成物であって、 下記(B1)成分及び(C1)成分を含むか、 又は、下記(B2)成分及び(C2)成分を含む活性エネルギー線硬化型コーティング剤組成物。 (A):ジエン系の骨格又は水素添加されたジエン系の骨格を有する多官能(メタ)アクリレートオリゴマー (B1):エチレン性不飽和基と親水性基とを有する化合物 (C1):エチレン性不飽和基を有する(A)及び(B1)成分以外の化合物 (B2):エチレン性不飽和基を有する化合物であって、n-ヘキサンに相溶しない化合物 (C2):エチレン性不飽和基を有する化合物であって、n-ヘキサンと(B2)成分に混合する化合物

Description

活性エネルギー線硬化型コーティング剤組成物
 本発明は、電子線又は紫外線等の活性エネルギー線の照射により、基材表面に硬化膜によるコーティング層を形成し、コーティング層が有機溶剤に浸漬しても膨潤や剥離を起こすことなく良好な密着性を発現することが可能な活性エネルギー線硬化型コーティング剤組成物に関するものである。
 本発明の組成物は、金属基材へのコーティング剤として好適に使用され、金属への密着性だけではなく、耐溶剤性も要求されるリチウムイオン電池の電極保護材の製造に好適に使用されるものであり、これら技術分野で賞用され得るものである。
 尚、本明細書においては、アクリレート及び/又はメタクリレートを(メタ)アクリレートと、アクリロイル基及び/又はメタクリロイル基を(メタ)アクリロイル基と、アクリル酸及び/又はメタクリル酸を(メタ)アクリル酸と表す。
 従来、耐溶剤性に優れるコーティング剤としては、3個以上の(メタ)アクリロイル基を有する三官能以上の多官能(メタ)アクリレート、2個の(メタ)アクリロイル基を有する二官能の橋かけ環構造を有する(メタ)アクリレート、光重合開始剤からなる光硬化性組成物(特許文献1)、分子内に(メタ)アクリロイル基と加水分解性基を有するポリイソブチレン、光開始剤及び湿気硬化触媒からなる光及び湿気硬化性組成物(特許文献2)、エポキシ樹脂、ゴム状ポリマー微粒子、無機充填剤、熱潜在性エポキシ硬化剤及び高軟化点ポリマー微粒子からなる熱硬化性組成物(特許文献3)、特定の化学構造を有するエポキシ化合物を含有するカチオン重合性化合物、ラジカル重合性化合物、光カチオン重合開始剤及び光ラジカル重合開始剤からなる光硬化性組成物(特許文献4)、ポリオレフィンとポリビニルアルコール、相溶化剤、可塑剤、加工助剤、及び酸化防止剤からなるフィルム、シート、成形加工用組成物(特許文献5)等が開示されている。
 一方、反応性樹脂中にエラストマーを分散させる技術や反応性樹脂骨格中にエラストマー成分を導入する技術に関する報告もある。エポキシ樹脂由来の化学構造とポリシロキサン構造を有し、かつ官能基としてエポキシ基を有する共重合体(特許文献6、特許文献7、特許文献8)、分子中にポリブタジエン骨格を有する(メタ)アクリレート系樹脂を用いた低透湿度ホットメルト接着剤(特許文献9)等が開示されている。
特許第2953598号公報 特開2000-178535号公報 特開2000-347203号公報 特開2002-256062号公報 特表2002-537408号公報 特公昭61-48544号公報 特開平2-208314号公報 特開平6-16773号公報 特開平3-278333号公報
 一般に、活性エネルギー線により硬化したコーティング剤等の硬化膜の耐溶剤性を高めるためには硬化膜の架橋密度を高くする必要があり、そのため硬化膜が硬くなる傾向がある。このような硬化膜形成材料(活性エネルギー線硬化型組成物)をコーティング剤として用いると、ヒートサイクルによる基材の変形に対し基材上に形成された前記硬化膜が追従できずにコーティング層が割れたり剥がれたりすることが多い。又、基材を曲げて変形させて用いる用途、例えばリチウムイオン電池の電極材料においては、基材を曲げた時にコーティング層が剥がれるというおそれがあった。
 一方で、コーティング剤を架橋密度が低く柔軟なものとした場合には、例えばリチウムイオン電池の電極材料においては、電解液として用いられる有機溶剤により溶解したり、膨潤により基材から剥がれるという問題があった。
 本発明の目的は、上記の問題を解決すること、即ち、得られるコーティング硬化膜が、基材との密着性、特に金属基材との密着性に優れ、さらに当該密着性は基材の曲げに対する追従性を有し、かつ耐溶剤性に優れる活性エネルギー線硬化型コーティング剤組成物を提供することである。
 本発明者らは、前記の課題を解決するため種々の検討を行った結果、2個以上の(メタ)アクリロイル基を有し、且つジエン系の骨格又は水素添加されたジエン系の骨格を有する(メタ)アクリレートオリゴマーを必須成分として含み、これと親水性基を有する不飽和化合物を含む組成物か、又はn-ヘキサンに対し相溶せずに分液する不飽和化合物を含む組成物が、密着性に優れ、さらに基材の曲げに対する追従性に優れ、かつ耐溶剤性にも優れることを見出し、本発明を完成した
 以下、本発明を詳細に説明する。
 本発明の組成物によれば、得られるコーティング硬化膜(以下、単に「硬化膜」ともいう)が、基材との密着性、特に金属基材との密着性に優れ、さらに当該密着性は基材の曲げに対する追従性を有し、かつ耐溶剤性に優れる。
 本発明は、必須成分として下記(A)成分を硬化性成分合計量中に30~97重量%含む組成物であって、
下記(B1)成分及び(C1)成分を、それぞれ硬化性成分合計量中に3~70重量%及び0~67重量%含むか、又は、
下記(B2)成分及び(C2)成分を、それぞれ硬化性成分合計量中に3~70重量%及び0~57重量%含む
活性エネルギー線硬化型コーティング剤組成物に関する。
(A)成分:2個以上の(メタ)アクリロイル基を有し、且つジエン系の骨格又は水素添加されたジエン系の骨格を有する(メタ)アクリレートオリゴマー
(B1)成分:1個のエチレン性不飽和基と1個以上の親水性基とを有する化合物
(C1)成分:エチレン性不飽和基を有する化合物であって、(A)及び(B1)成分以外の化合物
 但し、(C1)成分は、エステル部位に炭素数4~20のアルキル基、アルケニル基、環状アルキル基又は環状アルケニル基を有し、1個の(メタ)アクリロイル基を有する(メタ)アクリレートを除いたものである。
(B2)成分:1個以上のエチレン性不飽和基を有し、同重量部のn-ヘキサンに対し相溶せずに分液する化合物
(C2)成分:1個以上のエチレン性不飽和基を有する化合物であって、同重量部のn-ヘキサンと混合でき、かつ同重量部の(B2)成分とも混合できる化合物
 但し、(C2)成分は、エステル部位に炭素数4~20のアルキル基、アルケニル基、環状アルキル基又は環状アルケニル基を有し、1個の(メタ)アクリロイル基を有する(メタ)アクリレートを除いたものである。
 尚、本発明において硬化性成分とは、前記(A)、(B1)、(C1)、(B2)及び(C2)成分を意味し、エチレン性不飽和基を有する化合物で、活性エネルギー線の照射により硬化する成分を意味する。
 又、以下においては、(A)、(B1)及び(C1)成分を前記した割合で含む組成物を第1発明といい、(A)、(B2)及び(C2)成分を前記した割合で含む組成物を第2発明という。
 前記(A)成分としては、ポリブタジエン、ポリイソプレン及び/又はこれらが水素添加された骨格を有する(メタ)アクリレートオリゴマーが好ましく、又、数平均分子量500~50,000の化合物が好ましい。
 前記(B1)成分としては、水酸基含有(メタ)アクリレートが好ましい。
 前記(C1)成分としては、1個以上のエチレン性不飽和基を有する化合物であって、同重量部のn-ヘキサンと混合でき、かつ同重量部の(B1)成分とも混合できる化合物を含むものや、アルキル基を骨格に有し(メタ)アクリロイル基を2個以上有する化合物を含むものが好ましい。
 又、さらに、(D)光ラジカル重合開始剤を、硬化性成分合計量100重量部に対して0.1~20重量部を含む組成物が好ましい。又、蛍光剤、色素又は/及び顔料を含む組成物も好ましい。
 以下、(A)、(B1)、(C1)、(B2)及び(C2)成分及びその他の成分について説明する。
 尚、以下の(A)、(B1)、(C1)、(B2)及び(C2)成分の説明で挙げた具体的化合物は、当該化合物を単独で使用しても良く、又は2種類以上組合せて使用しても良い。
1.(A)成分
 (A)成分は、2個以上の(メタ)アクリロイル基を有し、且つジエン系の骨格又は水素添加されたジエン系の骨格を有する(メタ)アクリレートオリゴマーである。
 (A)成分中の(メタ)アクリロイル基としては、側鎖又は末端を有して良く、好ましくは末端に(メタ)アクリロイル基を有する化合物であり、特に好ましくは、両末端に(メタ)アクリロイル基を有する化合物である。
 (A)成分の数平均分子量(以下、「Mn」という)としては、500~100,000の化合物が好ましく、より好ましくは1,000~50,000である。
 Mnが500以上の化合物を使用することで、硬化膜と基材との剥離を防止することができ、又、100,000以下の化合物を使用することで、(B1)及び(C1)成分、又は(B2)及び(C2)成分に対する相溶性が良好となり、組成物中に均一に混合することができる。
 尚、本発明において、Mn(数平均分子量)とは、ゲルパーミエーションクロマトグラフィー(以下、「GPC」という)により測定した分子量をポリスチレン換算した値である。
 (A)成分としては、ポリジエン又は水素化ポリジエン骨格と2個以上の(メタ)アクリロイル基がウレタン結合により結合したオリゴマー〔以下、「(A1)」という〕、ポリジエン又は水素化ポリジエン骨格と2個以上の(メタ)アクリロイル基がエステル結合により結合したオリゴマー〔以下、「(A2)」という〕、イソプレン重合体と酸無水物付加物と水酸基含有(メタ)アクリレートの反応物〔以下、「(A3)」という〕等が挙げられる。
 (A)成分としては、(A1)及び(A2)が好ましく、硬化物の機械特性が優れる点で、(A1)が好ましく、(メタ)アクリロイル基を2個有するウレタン(メタ)アクリレートオリゴマーがより好ましい。
 さらに、(A1)における2個の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートオリゴマーとしては、ポリジエンのジオール又は水素化ポリジエンのジオール(a)〔以下、「化合物(a)」という〕、ジイソシアネート化合物(b)〔以下、「化合物(b)」という〕及び水酸基含有(メタ)アクリレート(c))〔以下、「化合物(c)」という〕を反応させて得られる(メタ)アクリロイル基を2個有するウレタン(メタ)アクリレートオリゴマーが好ましい。
 化合物(a)としては、ポリジエンジオールとしては、ポリブタジエンジオール、ポリイソプレンジオール及びポリエチレンプピレンジオール等が挙げられる。水素化ポリジエンジオールとしては、水素化ポリブタジエンジオール、水素化ポリイソプレンジオール及び水素化ポリエチレンプピレンジオール等が挙げられる。これら化合物の中でも、ポリブタジエンジオール、ポリイソプレンジオール、水素化ポリブタジエンジオール及び水素化ポリイソプレンジオールが好ましい。
 化合物(a)のMnとしては、500~10,000のものが好ましく、より好ましくは1,000~10,000である。
 本発明においては、化合物(a)に加え、必要に応じて化合物(a)以外のその他のポリオールを併用しても良い。
 例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、1,4-ブタンジオール、ポリブチレングリコール、1,6-ヘキサンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、水素添加ビスフェノールA、ポリカプロラクトン、トリメチロールエタン、トリメチロールプロパン、ポリトリメチロールプロパン、ペンタエリスリトール、ポリペンタエリスリトール、ソルビトール、マンニトール、アラビトール、キシリトール、ガラクチトール、グリセリン、ポリグリセリン、ポリテトラメチレングリコール等の多価アルコール;
ポリエチレンオキサイド、ポリプロピレンオキサイド、エチレンオキサイド/プロピレンオキサイドのブロック又はランダム共重合の少なくとも1種の構造を有するポリエーテルポリオール;
該多価アルコール又はポリエーテルポリオールと無水マレイン酸、マレイン酸、フマール酸、無水イタコン酸、イタコン酸、アジピン酸、イソフタル酸等の多塩基酸との縮合物であるポリエステルポリオール;
カプロラクトン変性ポリテトラメチレンポリオール等のカプロラクトン変性ポリオール、ポリオレフィン系ポリオール等が挙げられる。
 化合物(b)としては、1分子中にイソシアネート基を2個有する化合物であれば種々の化合物を使用することができる。
 具体的には、トリレンジイソシアネート、水添トリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、トリジンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート等を挙げることができる。
 化合物(c)としては、水酸基を有する(メタ)アクリレートであれば種々の化合物を使用することができる。
 具体例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートのカプロラクトン変性物及びグリシドールジ(メタ)アクリレート等が挙げられる。
 これらの中でも、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートが好ましい。
 (A2)の具体例としては、2個以上の水酸基含有するポリジエン又は水素化ポリジエンと(メタ)アクリル酸又は(メタ)アクリル酸ハライドのエステル化反応物、2個以上の水酸基含有するポリジエン又は水素化ポリジエンと(メタ)アクリレートのエステル交換反応物が挙げられる。
 エステル化反応物の例としては、ポリブタジエンジオールと(メタ)アクリル酸のエステル化反応物、ポリイソプレンジオールと(メタ)アクリル酸のエステル化反応物、水素化ポリブタジエンジオールと(メタ)アクリル酸のエステル化反応物、水素化ポリイソプレンジオールと(メタ)アクリル酸のエステル化反応物、ポリブタジエンジオールと(メタ)アクリル酸クロライドのエステル化反応物、ポリイソプレンジオールと(メタ)アクリル酸クロライドのエステル化反応物、水素化ポリブタジエンジオールと(メタ)アクリル酸クロライドのエステル化反応物及び水素化ポリイソプレンジオールと(メタ)アクリル酸クロライドのエステル化反応物等が挙げられる。
 エステル交換反応物の例としては、ポリブタジエンジオールとアルキル(メタ)アクリレートのエステル交換反応物、ポリイソプレジオールとアルキル(メタ)アクリレートのエステル交換反応物、水素化ポリブタジエンジオールとアルキル(メタ)アクリレートのエステル交換反応物及び水素化ポリイソプレジオールとアルキル(メタ)アクリレートのエステル交換反応物、等が挙げられる。
 (A3)の具体例としては、イソプレン重合体と無水マレイン酸付加物とヒドロキシエチル(メタ)アクリレートの反応物が挙げられる。
 (A)成分は市販されており、(A1)の具体例としては、日本曹達(株)製「TEA-1000」(ポリブタジエン系ウレタンアクリレートオリゴマー、Mn:約3,000)、日本曹達(株)製「TEAI-1000」(水素添加ポリブタジエン系ウレタンアクリレートオリゴマー)、日本曹達(株)製「TE-2000」(ポリブタジエン系ウレタンメタクリレートオリゴマー)、サートマー社製「CN9014」(ポリブタジエン系ウレタンアクリレート)、サートマー社製「CN301」(ポリブタジエン系ジメタクリレート)、サートマー社製「CN303」(ポリブタジエン系ジメタクリレート)、サートマー社製「CN307」(ポリブタジエン系ジアクリレート)等が挙げられる。
 (A2)の具体例としては、大阪有機化学工業(株)製「BAC-45」(ポリブタジエン系ジアクリレート、Mn:5,000)等が挙げられる。
 (A3)の具体例としては、(株)クラレ製「UC-203」(イソプレン重合物の無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物オリゴマー、Mn:約30,000)等が挙げられる。
 これら化合物の中でも、アクリロイル基を有する「TEAI-1000」、「TEA-1000」、「CN9014」、「CN307」及び「BAC-45」は光硬化性が良好な点で好ましい。
 (A)成分としては、ポリブタジエン、ポリイソプレン及び/又はこれらが水素添加された骨格を有する(メタ)アクリレートオリゴマーが好ましい。
 ポリブタジエン骨格を有する(メタ)アクリレートオリゴマーのより好ましい例としては、ポリブタジエン両末端に(メタ)アクリロイル基が結合した化合物である。
 当該化合物は市販されており、ポリブタジエン両末端にアクリロイル基が結合した化合物としては、大阪有機化学工業(株)製BAC-45(Mn:5,000)、ポリブタジエン骨格の両末端に、ウレタン(メタ)アクリロイル基が結合した化合物としては、日本曹達(株)製TEA-1000(Mn:約3,000)やTE-2000(Mn:約3,000)等を挙げることができる。
 ポリイソプレン骨格を有する(メタ)アクリレートオリゴマーの好ましい化合物としては、前記した(A3)が挙げられる。
 前記した通り、当該化合物は市販されており、ポリイソプレンの無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物である、クラレ(株)UC-203(Mn約30,000)等を挙げることができる。
 ポリブタジエン又はポリイソプレンの水素添加された骨格を有する(メタ)アクリレートオリゴマーの好ましい化合物としては、水添ポリブタジエン骨格の両末端に、ウレタン(メタ)アクリロイル基が結合した化合物が挙げられる。
 当該化合物は市販されており、日本曹達(株)製TEAI-1000(Mn約3,000~9,000)等を挙げることができる。
 (A)成分の割合は、硬化性成分合計量中に30~97重量%とする必要があり、好ましくは50~90重量%である。
 (A)成分の割合が30重量%に満たないと、硬化膜を有機溶剤に浸漬したのちに十分な基材への密着性が得られなくなるおそれがあり、一方、97重量%を超えると、(A)成分の凝集力が低いために初期密着力が低下するおそれがある。
2.第1発明
 第1発明は、必須成分として前記(A)成分を硬化性成分合計量中に30~97重量%含む組成物であって、
(B1)成分及び(C1)成分を、それぞれ硬化性成分合計量中に3~70重量%及び0~67重量%含む活性エネルギー線硬化型コーティング剤組成物である。
 以下、(B1)及び(C1)成分について説明する。
1)(B1)成分
 (B1)成分は、1個のエチレン性不飽和基と1個以上の親水性基とを有する化合物である。(B1)成分は、(A)成分のみでは得られない凝集力を組成物に付与し、基材への密着性を向上させるものである。但し、(B1)成分は、(A)成分との相溶性は低いため、70重量%以上添加すると均一な組成物とならないおそれがあり、所望の効果を得るためには3~70重量%とする必要がある。
 さらに、(B1)成分としては、1個のエチレン性不飽和基と1個の親水性基とを有する化合物が好ましい。
 エチレン性不飽和基としては、ビニル基、アリル基、スチリル基等のビニル結合、(メタ)アクリロイル基及び(メタ)アクリルアミド基等が挙げられる。エチレン性不飽和基としては、他成分との共重合性に優れることから(メタ)アクリロイル基と(メタ)アクリルアミド基が好ましい。
 親水性基としては、水酸基及び酸性基等が挙げられ、酸性基としては、さらにカルボキシル基、リン酸基及びスルホン基等が挙げられる。
 (B1)成分が、親水性基として水酸基を有する化合物である場合、水酸基含有(メタ)アクリレート及び水酸基含有(メタ)アクリルアミドが好ましい。
 水酸基含有(メタ)アクリレートの具体例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシペンチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート及びヒドロキシオクチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;ペンタエリスリトールモノ(メタ)アクリレート、及びトリメチロールプロパンはモノ(メタ)アクリレート等のポリオールのモノ(メタ)アクリレート等;並びにフェニルグリシジルエーテルと(メタ)アクリル酸の付加体である2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等が挙げられる。
 水酸基含有(メタ)アクリルアミドの具体例としては、N-ヒドロキシエチル(メタ)アクリルアミド等が挙げられる。
 (B1)成分が、親水性基としてカルボキシル基を有する化合物である場合、カルボキシル基含有(メタ)アクリレートが好ましい。
 カルボキシル基含有(メタ)アクリレートの具体例としては、(メタ)アクリル酸、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート及びフタル酸モノヒドロキシエチル(メタ)アクリレート等が挙げられる。
 (B1)成分が、親水性基としてリン酸基を有する化合物である場合、リン酸基含有(メタ)アクリレートが好ましい。
 リン酸基含有(メタ)アクリレートの具体例としては、リン酸と(メタ)アクリル酸とのエステル化物等が挙げられる。
 (B1)成分の割合は、硬化性成分合計量中に3~70重量%とする必要があり、好ましくは5~50重量%である。
 (B1)成分の割合を3重量%に満たないと、硬化膜の初期密着性が低下してしまい、一方、70重量%に超えると、組成物に分離による濁りが発生してしまい、又、良好な内部硬化性を得ることができない。
2)(C1)成分
 (C1)成分は、エチレン性不飽和基を有する化合物であって、(A)及び(B1)成分以外の化合物である。
 但し、(C1)成分は、エステル部位に炭素数4~20のアルキル基、アルケニル基、環状アルキル基又は環状アルケニル基を有し、1個の(メタ)アクリロイル基を有する(メタ)アクリレートを除いたものである。
 (C1)成分におけるエチレン性不飽和基としては、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニル基、アリル基等が挙げられ、これらの中でも他成分との共重合性に優れることから(メタ)アクリロイル基が好ましい。
 (C1)成分としては、エチレン性不飽和基を有する化合物であれば種々の化合物が使用可能であり、好ましい化合物の例としては、1個以上のエチレン性不飽和基を有する化合物であって、同重量のn-ヘキサンと混合でき、かつ同重量の(B1)成分とも溶解できる化合物〔以下「(c1)成分」という〕を挙げることができる。
 (c1)成分は、(B1)成分として用いる化合物との相溶性を実験的に確認し選べばよいが、エチレン性不飽和基としては、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニル基、アリル基等が挙げられ、これらの中でも他成分との共重合性に優れることから(メタ)アクリロイル基が好ましい。
 (c1)成分において1個の(メタ)アクリロイル基を有する化合物の具体例としては、炭素数3以下のアルキル(メタ)アクリレート、炭素数が3以下のカルビトール(メタ)アクリレート及びテトラヒドロフルフリル(メタ)アクリレート等の環状エーテル基を有する(メタ)アクリレート等が好しい。
 炭素数3以下のアルキル(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート及びプロピル(メタ)アクリレート等が挙げられる。
 炭素数3以下のカルビトール(メタ)アクリレートとしては、エチルカルビトール(メタ)アクリレート等が挙げられる。
 (c1)成分において、2個以上の(メタ)アクリロイル基を有する化合物としては、アルキル基を骨格に有する化合物が挙げられる。
 当該化合物の具体例としては、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート及び1,9-ノナンジオールジ(メタ)アクリレート等が挙げられる。
 (c1)成分としては、同重量のn-ヘキサンと均一に混合でき、かつ同重量の(B1)成分とも均一に溶解できる化合物が好ましく、前記に挙げた化合物は当該化合物に該当する。
 但し、n-ヘキサンと混合した時に、溶解し分液しないものの、溶液に若干の濁りが見られる、トリシクロデカンジメチロールジ(メタ)アクリレートのような化合物も(c1)成分として用いることができる。
 (C1)成分としては、前記した(c1)成分以外のエチレン性不飽和基を有する化合物〔以下、「(c2)成分」という〕を、目的及び用途等に応じてガラス転移温度、透水率及び吸水率等の二次的な性能を調節する目的で使用することができる。
 (c2)成分としては、エチレン性不飽和基を含有する化合物であれば種々の化合物が使用でき、ビニル化合物及び(メタ)アクリレート等が挙げられ、(メタ)アクリレートが好ましい。
 (メタ)アクリレートの具体例としては、1個の(メタ)アクリロイル基を有する(メタ)アクリレート(以下、「単官能(メタ)アクリレート」という)及び1個の(メタ)アクリロイル基を有する(メタ)アクリルアミド化合物(以下、単官能(メタ)アクリルアミド化合物という)が挙げられる。
 単官能(メタ)アクリレートとしては、
グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレート;
ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、o-フェニルフェノキシ(メタ)アクリレート及びp-クミルフェノールエチレン(メタ)アクリレート等の芳香族単官能(メタ)アクリレート;
(メタ)アクリロリルオキシエチルヘキサヒドロフタルイミド等のマレイミド基を有する単官能(メタ)アクリレート;並びに
3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン及び3-(メタ)アクリロキシプロピルメチルジエトキシシラン及び3-(メタ)アクリロキシプロピルトリエトキシシラン等のアルコキシル基含有単官能(メタ)アクリレート等を挙げることができる。
 ビニル化合物としては、N-ビニルカプロラクタム及びN-ビニルピロリドンを挙げることができる。
 (C1)成分の割合としては、硬化性成分合計量中に0~67重量%とする必要があり、好ましくは5~40重量%である。(C1)成分は、(A)成分と(B1)成分の相溶性を向上させる目的で使用される。(C1)成分の割合が67重量%を超えると、1個のエチレン性不飽和基を有する化合物の場合、組成物の硬化膜の耐溶剤性が不十分となり、溶剤浸漬後に膨潤や部分的な硬化膜の溶解により硬化膜が剥がれるおそれがあり、2個以上のエチレン性不飽和基を有する化合物の場合、凝集力が不足して初期密着性が得られなくなるおそれがある。
3.第2発明
 第2発明は、必須成分として前記(A)成分を硬化性成分合計量中に30~97重量%含む組成物であって、
(B2)成分及び(C2)成分を、それぞれ硬化性成分合計量中に3~70重量%及び0~57重量%含む活性エネルギー線硬化型コーティング剤組成物である。
 以下、(B2)及び(C2)成分について説明する。
1)(B2)成分
 (B2)成分は、1個以上のエチレン性不飽和基を有し、同重量部のn-ヘキサンに対し相溶せずに分液する化合物である。
 (B2)成分は、(A)成分のみでは得られない凝集力を組成物に付与し、基材への密着性を向上させるものである。但し、(B2)成分は、(A)成分との相溶性は低いため、70重量%以上添加すると均一な組成物とならないおそれがあり、所望の効果を得るためには3~70重量%とする必要がある。
 (B2)成分として適用できる成分は、凝集力の指標として、低極性溶媒に対する溶解性が極めて低いことを確認して選べばよいが、本発明では、取り扱いが容易で好適な低極性溶媒としてn-ヘキサンを使用して確認する。本発明者の検討によれば、同重量のn-ヘキサンと混合・撹拌したのちに、分液するようなものを選べば、組成物に十分な凝集力を付与できることが明らかとなっている。(B2)成分は、1分子内に1個以上のエチレン性不飽和基を有する化合物であれば特に制限はない。
 エチレン性不飽和基としては、ビニル基、アリル基、スチリル基等のビニル結合、(メタ)アクリロイル基及び(メタ)アクリルアミド基等が挙げられる。エチレン性不飽和基としては、他成分との共重合性に優れることから(メタ)アクリロイル基と(メタ)アクリルアミド基が好ましい。
 (B2)成分のうち、分子内にエチレン性不飽和基を1個有する化合物としては、(A)成分よりも凝集力が高い化合物が好ましく、置換基として、芳香族基、アミド基、イミド基等を有する化合物が挙げられる。
 芳香族基としては、単環芳香族炭化水素基のフェニル基、トリル基、キシリル基、クメニル基、クミル基等、縮合多環芳香族炭化水素基のナフチル基、アンスリル基、フェナンスリル基等、また、複数の芳香族環よりなる芳香族炭化水素基のビフェニル基(フェニルフェニル基)、p-クミルフェニル基、ターフェニル基等が好ましく挙げられる。
 (B2)成分は、芳香族環を有する化合物、水酸基を有する化合物、または芳香族に加え水酸基を有する化合物、アミド基を有する化合物、またはアミド基に加え水酸基を有する化合物、イミド基を有する化合物がより好ましく、中でも、フェノキシエチル基及びフェニルフェノキシエチル基を有する化合物が更に好ましい。
 (B2)成分の好ましい具体例としては、芳香族基としてフェニル基を含有する、フェノキシエチル(メタ)アクリレート、フェノキシプロピル(メタ)アクリレート、フェノキシ(ポリアルキレンオキシ)(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート及び、芳香族基としてフェニルフェニル基(ビフェニル基)を含有する、o-フェニルフェノキシエチル(メタ)アクリレート、m-フェニルフェノキシエチル(メタ)アクリレート、p-フェニルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシプロピル(メタ)アクリレート、m-フェニルフェノキシプロピル(メタ)アクリレート、p-フェニルフェノキシプロピル(メタ)アクリレート、o-フェニルフェノキシ(ポリアルキレンオキシ)(メタ)アクリレート、m-フェニルフェノキシ(ポリアルキレンオキシ)(メタ)アクリレート、p-フェニルフェノキシ(ポリアルキレンオキシ)(メタ)アクリレート、o-フェニルフェニル(メタ)アクリレート、m-フェニルフェニル(メタ)アクリレート及びp-フェニルフェニル(メタ)アクリレート等;並びに芳香族基としてp-クミルフェニル基を含有する、p-クミルフェノキシエチル(メタ)アクリレート、p-クミルフェノキシプロピル(メタ)アクリレート、p-クミルフェノキシ(ポリアルキレンオキシ)(メタ)アクリレート及びp-クミルフェニル(メタ)アクリレート等が挙げられる。
 なお、前記化合物において、「ポリアルキレンオキシ」とは、エチレンオキサイド及びプロピレンオキサイド等のアルキレンオキサイド単位の繰り返しが2~10のものを意味する。
 (メタ)アクリルアミドとしては、N,N-ジメチル(メタ)アクリルアミド及び(メタ)アクリロイルモルフォリン等が挙げられる。
イミド基を有するものとしては、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド及び2-(シクロヘキサ-1-エン-1,2-ジカルボキシミド)エチル(メタ)アクリレート等が挙げられる。
 これら化合物の中でも、フェノキシエチルアクリレート、フェニルフェノキシエチルアクリレートが耐溶剤性に優れるためより好ましい。
 二官能(メタ)アクリレートとしては、具体的には、ポリエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、及びビスフェノールAのアルキレンオキサイド付加物のジ(メタ)アクリレート等が挙げられる。このほかに、ビスフェノール骨格や、ポリエーテル骨格、ポリアルキレン骨格を有するエポキシ(メタ)アクリレート、ポリエステル骨格、ポリエーテル骨格、ポリカーボネート骨格を有するウレタン(メタ)アクリレート、およびポリエステル(メタ)アクリレート等も用いることができる。
 三官能以上の(メタ)アクリレートとして、具体的には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート及びトリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート等が挙げられる。このほかに、水酸基を有する多官能(メタ)アクリレートとポリイソシアネートとをウレタン化させることで得られる、多官能ウレタン(メタ)アクリレート、ノボラック骨格を有する多官能エポキシ(メタ)アクリレート等、多官能ポリエステル(メタ)アクリレート等が挙げられる。
 これら化合物の中でも、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、多官能ウレタン(メタ)アクリレート、多官能エポキシ(メタ)アクリレートがより好ましい。
 これらは市販されており、具体的には、東亞合成(株)製アロニックスM-305(ペンタエリスリトールトリ及びテトラアクリレート混合物)、M-309(トリメチロールプロパントリアクリレート)、M-310(トリメチロールプロパンプロピレンオキサイド変性(3モル)トリアクリレート)、M-315(イソシアヌル酸エチレンオキサイド変性トリトリアクリレート)、M-320(トリメチロールプロパンプロピレンオキサイド変性(6モル)トリアクリレート)、M-350(トリメチロールプロパンエチレンオキサイド変性トリアクリレート)、M-360(トリメチロールプロパンエチレンオキサイド変性(6モル)トリアクリレート)、M-402(ジペンタエリスリトールペンタ及びヘキサアクリレート混合物)、M-404(ジペンタエリスリトールペンタ及びヘキサアクリレート混合物)、M-408(ジトリメチロールプロパンテトラアクリレート)、M-450(ペンタエリスリトールトリ及びテトラアクリレート混合物)、M-8060(ポリエステルアクリレート)、共栄社化学(株)製UA-306H(ペンタエリスリトールトリアクリレート・ヘキサメチレンジイソシアネートウレタンプレポリマー)、UA-306T(ペンタエリスリトールトリアクリレート・トリレンジイソシアネートウレタンプレポリマー)、UA-306I(ペンタエリスリトールトリアクリレート・イソホロンジイソシアネートウレタンプレポリマー)、UA-510H(ジペンタエリスリトールペンタアクリレート・ヘキサメチレンジイソシアネートウレタンプレポリマー)、エポキシエステル70PA(プロピレングリコールジグリシジルエーテルのエポキシアクリレート)、エポキシエステル80MFA(グリセリンジグリシジルエーテルのエポキシアクリレート)等が挙げられる。
 (B2)成分の割合は、硬化性成分合計量中に3~70重量%とする必要があり、好ましくは5~50重量%である。
 (B2)成分の割合を3重量%に満たないと、硬化膜の初期密着性が低下してしまい、一方、70重量%に超えると、組成物に分離による濁りが発生してしまい、又、良好な内部硬化性を得ることができない。
2)(C2)成分
 (C2)成分は、1個のエチレン性不飽和基を有する化合物の化合物であって、同重量のn-ヘキサンと混合でき、かつ同重量の(B2)成分とも溶解できる化合物である。
 但し、(C2)成分は、エステル部位に炭素数4~20のアルキル基、アルケニル基、環状アルキル基又は環状アルケニル基(以下、これらの基をまとめて「アルキル基等」という)を有し、1個の(メタ)アクリロイル基を有する(メタ)アクリレートを除いたものである。
 (C2)成分は、(B2)成分として用いる化合物との相溶性を実験的に確認し選べばよいが、エチレン性不飽和基としては、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニル基、アリル基等が挙げられ、これらの中でも他成分との共重合性に優れることから(メタ)アクリロイル基が好ましい。
 (C2)成分において1個の(メタ)アクリロイル基を有する化合物の具体例としては、炭素数3以下のアルキル(メタ)アクリレート、炭素数が3以下のカルビトール(メタ)アクリレート及びテトラヒドロフルフリル(メタ)アクリレート等の環状エーテル基を有する(メタ)アクリレート等が好しい。
 炭素数3以下のアルキル(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート及びプロピル(メタ)アクリレート等が挙げられる。
 炭素数3以下のカルビトール(メタ)アクリレートとしては、エチルカルビトール(メタ)アクリレート等が挙げられる。
 (C2)成分において、2個以上の(メタ)アクリロイル基を有する化合物としては、アルキル基を骨格に有する化合物が挙げられる。
 当該化合物の具体例としては、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート及び1,9-ノナンジオールジ(メタ)アクリレート等が挙げられる。
 (C2)成分としては、同重量のn-ヘキサンと均一に混合でき、かつ同重量の(B2)成分とも均一に溶解できる化合物が好ましく、前記に挙げた化合物は当該化合物に該当する。
 但し、n-ヘキサンと混合した時に、溶解し分液しないものの、溶液に若干の濁りが見られる、トリシクロデカンジメチロールジ(メタ)アクリレートのような化合物も(C2)成分として用いることができる。
 (C2)成分の割合としては、硬化性成分合計量中に0~57重量%とする必要があり、好ましくは5~40重量%である。(C2)成分は、(A)成分と(B2)成分の相溶性を向上させる目的で使用される。(C2)成分の割合が57重量%を超えると、1個のエチレン性不飽和基を有する化合物の場合、組成物の硬化膜の耐溶剤性が不十分となり、溶剤浸漬後に膨潤や部分的な硬化膜の溶解により硬化膜が剥がれるおそれがあり、2個以上のエチレン性不飽和基を有する化合物の場合、凝集力が不足して初期密着性が得られなくなるおそれがある。
4.その他の成分
 本発明の組成物は、第1発明では、前記(A)、(B1)及び(C1)成分を必須成分とし、第2発明では、前記(A)、(B2)及び(C2)成分を必須成分とするものであるが、コーティング剤として通常使用される種々の成分を、目的及び用途に応じて配合することができる。
 好ましい成分としては、光ラジカル重合開始剤〔以下、「(D)成分」という〕が挙げられ、これ以外にも、光酸発生剤、シランカップリング剤、酸化防止剤、紫外線吸収剤、光安定剤、粘着性付与剤、チオール化合物、可塑剤、フィラー、蛍光剤、色素、顔料、分散剤及び/又は帯電防止剤等が挙げられる。
 例えば太陽電池用途のように、屋外での熱や光に対して長期にわたり十分な耐久性を保持する目的では、硬化膜の耐熱性及び耐候性等の耐久性を高めるため、酸化防止剤、紫外線吸収剤又は/及び光安定剤を使用することが好ましい。硬化膜と基材との界面接着強度を改善する目的では、光酸発生剤又は/及びシランカップリング剤を使用することが好ましい。密着性向上の目的では、基材界面との応力を低減することで効果があるチオール化合物を使用することが好ましい。絶縁不良個所の検出を容易にする導電性物質等のフィラーを使用することが好ましい。組成物の塗膜又は活性エネルギー線照射後の硬化膜を容易に確認できるという工程管理を容易にする目的では、蛍光剤又は色素を使用することが好ましい。
 以下、これらの成分について具体的に説明する。
 尚、その他の成分の説明で挙げた具体的化合物は、当該化合物を単独で使用しても良く、又は2種類以上組合せて使用しても良い。
1)(D)成分
 (D)成分は、光ラジカル重合開始剤である。
 (D)成分は、活性エネルギー線の照射によってラジカルを発生し、エチレン性不飽和基を有する化合物の重合を開始する化合物である。活性エネルギー線として、電子線を用いる場合には(D)成分を必ずしも配合する必要はない。
 (D)成分の具体例としては、ベンジルジメチルケタール、ベンジル、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、オリゴ[2-ヒドロキシ-2-メチル-1-[4-1-(メチルビニル)フェニル]プロパノン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチループロピオニル)ベンジル]フェニル]-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)]フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)ブタン-1-オン、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-オクチルカルバゾール、フェニルグリオキシ酸メチル、エチルアントラキノン及びフェナントレンキノン等の芳香族ケトン化合物;
ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、4-(メチルフェニルチオ)フェニルフェニルメタン、メチル-2-ベンゾフェノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルフォニル)プロパン-1-オン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン及び4-メトキシ-4′-ジメチルアミノベンゾフェノン等のベンゾフェノン系化合物;
ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)フェニルフォスフィネート及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のアシルホスフィンオキサイド化合物;
チオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン、3-[3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イル-オキシ]-2-ヒドロキシプロピル-N,N,N―トリメチルアンモニウムクロライド及びフルオロチオキサントン等のチオキサントン系化合物等が挙げられる。
 これら化合物の中でも、α-ヒドロキシフェニルケトン類が、大気下において、薄膜のコーティングであっても表面硬化性が良好で好ましく、具体的には、1-ヒドロキシシクロヘキシルフェニルケトン、及び2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オンがより好ましい。
 又、硬化膜の膜厚を厚くする必要がある場合、例えば50μm以上とする必要がある場合は、硬化膜内部の硬化性を向上させる目的で、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル-(2,4,6-トリメチルベンゾイル)フェニルフォスフィネート及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のアシルホスフィンオキサイド化合物や、2-メチル-1-[4-(メチルチオ)]フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタンー1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン等を併用することが好ましい。
 (D)成分の含有割合は、硬化性成分合計量100重量部に対して0.1~20重量部が好ましく、より好ましくは1~10重量部である。(D)成分の割合を0.1重量部以上にすることで、組成物の光硬化性を良好にし、密着性に優れるものとすることができ、20重量部以下とすることで、硬化膜の内部硬化性が良好にすることができ、基材との密着性を良好にすることができる。
2)光酸発生剤
 光酸発生剤は、本成分を含む組成物に活性エネルギー線を照射することで酸を発生する化合物である。本成分を用いることで、得られる硬化膜の基材に対する密着性が向上する。本発明の組成物の主反応は、ラジカル反応であるため、本成分がどのような関与をしているのかは不明であるが、金属基材表面に対して、何らかの改質作用をしているものと推測される。
 光酸発生剤としては、光カチオン重合開始剤として知られている化合物を使用することができる。具体的な例としては、スルホニウム塩、ヨードニウム塩、ジアゾニウム塩、セレニウム塩、ピリジニウム塩、フェロセニウム塩、ホスホニウム塩、及びチオピリニウム塩等のオニウム塩が挙げられるが、より好ましくは、芳香族スルホニウム塩及び芳香族ヨードニウム塩である。又、アニオン成分としては、BF4 -、PF6 -、AsF6 -、SbF6 -、及びB(C654 -等が挙げられるが、特に好ましくはPF6 -、及びB(C654 -である。
 光酸発生剤は、市販されており、例えば下記の化合物が挙げられる。
 芳香族スルホニウム塩としては、ダウ・ケミカル(株)製のサイラキュアーUVI-6992及びUVI-6974や、旭電化工業(株)製のアデカオプトマーSP-150、SP-152、SP-170、及びSP-172、サンアプロ(株)製のCPI-100P及びCPI-101A等が挙げられる。
 芳香族ヨードニウム塩としては、GE東芝シリコーン社製UV-9380C、ローディア社製PHOTOINITIATOR2074、和光純薬工業(株)製WPI-116及びWPI-113、日本曹達(株)製CI-5102等が挙げられる。
 光酸発生剤の配合割合として、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して、0.1~20重量部が好ましく、より好ましくは0.5~10重量部、特に好ましくは1~5重量部である。光酸発生剤の配合割合を、0.1~20重量部とすることにより、基材の腐食を防止したうえで、密着性を向上させることができる。
3)シランカップリング剤
 シランカップリング剤は、硬化膜と基材との界面接着強度を改善する目的で配合する。
 シランカップリング剤としては、基材との接着性向上に寄与できるものであれば特に限定されるものではない。
 シランカップリング剤としては、具体的には、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が挙げられる。
 シランカップリング剤の配合割合は、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して0.1~10重量部が好ましく、より好ましくは1~5重量部である。
 配合割合を0.1重量部以上にすることで、組成物の接着力を向上させることができ、一方、10重量部以下とすることで、接着力の経時変化を防止することができる。
4)酸化防止剤
 酸化防止剤は、硬化膜の耐熱性、耐候性等の耐久性を向上させる目的で配合する。
 酸化防止剤としては、たとえばフェノール系酸化防止剤やリン系酸化防止剤、硫黄系酸化防止剤等が挙げられる。
 フェノール系酸化防止剤としては、たとえば、ジt-ブチルヒドロキシトルエン等のヒンダードフェノール類を挙げることができる。市販されているものとしては、(株)アデカ製のAO-20、AO-30、AO-40、AO-50、AO-60、AO-70、AO-80等が挙げられる。
 リン系酸化防止剤としては、トリアルキルホスフィン、トリアリールホスフィン等のホスフィン類や、亜リン酸トリアルキルや亜リン酸トリアリール等が挙げられる。これらの誘導体で市販品としては、たとえば(株)アデカ製、アデカスタブPEP-4C、PEP-8、PEP-24G、PEP-36、HP-10、260、522A、329K、1178、1500、135A、3010等が挙げられる。
 硫黄系酸化防止剤としては、チオエーテル系化合物が挙げられ、市販品としては(株)アデカ製AO-23、AO-412S、AO-503A等が挙げられる。
 これらは1種を用いても2種類以上を用いてもよい。これら酸化防止剤の好ましい組合せとしては、フェノール系酸化防止剤とリン系酸化防止剤との併用、及びフェノール系酸化防止剤と硫黄系酸化防止剤の併用が挙げられる。
 酸化防止剤の配合割合としては、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して0.01~5重量部が好ましく、より好ましくは0.1~1重量部である。
 配合割合を0.1重量部以上とすることで、組成物の耐久性を向上させることができ、一方、5重量部以下とすることで、硬化性や密着性を良好にすることができる。
5)光安定剤
 本発明に用いられる光安定剤としては、たとえばヒンダードアミン系光安定剤等が挙げられる。市販品としては、BASF社製、TINUVIN 111FDL、TINUVIN123、TINUVIN 144、TINUVIN 152、TINUVIN 292、TINUVIN 5100等が挙げられる。これら酸化防止剤は1種を用いても2種類以上を用いてもよい。
 光安定剤の配合割合は、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して0.01~5重量部が好ましく、より好ましくは0.1~1重量部である。0.01重量部以上にすることで、組成物から得られるコーティング膜の耐久性を向上させることができ、5重量部以下とすることで良好な硬化性が得られる。
6)紫外線吸収剤
 紫外線吸収剤は、硬化膜の耐光性を向上させる目的で配合する。
 紫外線吸収剤としては、BASF社製TINUVIN400、TINUVIN405、TINUVIN460、TINUVIN479等のトリアジン系紫外線吸収剤や、TINUVIN900、TINUVIN928、TINUVIN1130等のベンゾトリアゾール系紫外線吸収剤を挙げることができる。
 紫外線吸収剤の配合割合としては、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して0.01~5重量部が好ましく、より好ましくは0.1~1重量部である。配合割合を0.01重量%以上とすることで、硬化膜の耐光性を良好なものとすることができ、一方、5重量%以下とすることで、組成物の硬化性に優れるものとすることができる。
7)粘着性付与剤
 本発明の組成物には、基材に対する密着性をさらに向上させる目的で、粘着付与剤(タッキファイヤー)を添加することもできる。
 これらの種類は特に限定されず、例えば、ロジン系樹脂、ロジンフェノール系樹脂、テルペン系樹脂、石油樹脂、フェノール系樹脂、ケトン系樹脂、アミド系樹脂、エポキシ系樹脂等が挙げられる。具体的には、ロジン系樹脂としては、例えば、ガムロジン、ウッドロジン、トール油ロジン等の原料ロジン類の他、これらに対応するロジン誘導体が挙げられる。ロジンフェノール系樹脂としては、例えば、ガムロジン、ウッドロジン、トール油等のロジンとフェノールとを共重合したロジンフェノール樹脂の他、これらに対応するロジンフェノール系樹脂をエステル化、水素添加、不均化、二量化したロジンフェノール樹脂等が挙げられる。テルペン系樹脂としては、例えば、α-ピネン、β―ピネン等のテルペンを重合したテルペン樹脂等が挙げられる。石油樹脂としては、例えば、脂肪族炭化水素系石油樹脂、例えば、芳香族炭化水素系石油樹脂、例えば、ノルボルネン樹脂等の脂環式炭化水素系石油樹脂等が挙げられる。フェノール系樹脂としては、例えば、フェノール、クレゾール等のフェノール類と、アルデヒドとを重縮合したフェノール樹脂等が挙げられる。ケトン系樹脂としては、例えば、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、シクロヘキサノン、メチルシクロヘキサノン等のケトンと、ホルムアルデヒドとを重縮合したケトン樹脂等が挙げられる。アミド系樹脂としては、例えば、ヘキサメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-又は2,4,4-トリメチルヘキサメチレンジアミン、1,3-又は1,4-ビス(アミノメチル)シクロヘキサン、ビス(p-アミノシクロヘキシルメタン)、m-又はp-キシリレンジアミン等のジアミンと、アジピン酸、スベリン酸、セバシン酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸等のジカルボン酸とを重縮合したポリアミド、例えば、ε-アミノカプロン酸、11-アミノウンデカンカルボン酸等のアミノカルボン酸が重縮合したポリアミド、例えば、ε-カプロラクタム、ω-ラウロラクタム等のラクタムが重縮合したポリアミド等が挙げられる。エポキシ系樹脂としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリコールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル等が挙げられる。
 粘着付与剤の配合割合としては、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して5~100重量部が好ましい。粘着付与剤は、組成物中に均一に存在していてもよいし、偏在していてもよい。又、組成物のヘイズについても、活性エネルギー線硬化に支障がない範囲であれば特に制限されない。
8)チオール化合物
 本発明の組成物は、硬化膜が基材に対する密着性に優れるものであるが、さらなる密着性向上の目的や基材の種類に従い、必要に応じてチオール化合物を添加することができる。チオール化合物は、硬化過程において、硬化膜と基材界面との応力を緩和し密着性をさらに向上させることができる。
 チオール化合物は、分子中にチオール基が一つの単官能チオール化合物と、分子中に複数のチオール基を有する多官能チオール化合物のいずれも用いることができる。具体的なものとしては、チオグリコール酸、チオグリコール酸モノエタノールアミン、チオグリコール酸メチル、チオグリコール酸オクチル、チオグリコール酸メトキシブチル、エチレングリコールビスチオグリコレート、ブタンジオールビスチオグリコレート、ヘキサンジオールビスチオグリコレート、トリメチロールプロパントリスチオグリコレート、ペンタエリスリトールテトラキスチオグリコレート、3-メルカプトプロピオン酸、メルカプトプロピオン酸メチル、メルカプトプロピオン酸メトキシブチル、メルカプトプロピオン酸オクチル、メルカプトプロピオン酸トリデシル、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオプロピオネート、トリメチロールプロパントリスチオプロピオネート、ペンタエリスリトールテトラキスチオプロピオネート、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトブチレート)及びトリメチロールエタントリス(3-メルカプトブチレート)等を挙げることができる。
 これらの中でも、組成物の保存安定性が要求される場合には、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトブチレート)及びトリメチロールエタントリス(3-メルカプトブチレート)等の2級チオールを使用することが好ましい。
 チオール化合物の配合割合としては、硬化性成分合計量100重量部に対して0.1~30重量部であることが好ましく、より好ましくは1~10重量部である。添加部数を0.1重量部以上とすることで基材に対する密着性が改善でき、30重量部以下とすることで良好な耐溶剤性が得られる。
9)可塑剤
 本発明の組成物には、基材に対する密着性をさらに向上させる目的で、可塑剤を添加することもできる。
 可塑剤として、本発明の組成物における必須成分と相溶するものが好ましく、ポリマー、オリゴマー、フタル酸エステル類及びヒマシ油類等を挙げることができる。
 オリゴマー又はポリマーとしては、ポリイソプレン系、ポリブタジエン系又はキシレン系のオリゴマー又はポリマーを例示できる。これらオリゴマー又はポリマーは市販されており、(株)クラレ製LIRシリーズ、デグッサ社製ポリオイルシリーズ等が挙げられる。
 可塑剤の配合割合は、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して300重量部以下が好ましく、より好ましくは200重量部以下である。
10)フィラー
 本発明の組成物は、コーティング剤で通常使用されるフィラーを使用することができる。
 さらに、得られる硬化膜に絶縁性が要求される場合には、不良個所検出の目的等で部分的に抵抗値を下げる目的で、フィラーとしてアセチレンブラック等のカーボンブラックや、カーボンナノチューブ等を添加してもよい。
 フィラーの配合割合は、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して50重量部以下が好ましく、より好ましくは20重量部以下である。
 カーボンブラックとしては、種々の化合物を使用することができる。具体的には、三菱化学(株)製#2650、#2600、#2350、#2300、#1000、#980、#970、#960、#950、#900、#850、MCF88、MA600、#750B、#650B、#52、#47、#45、#45L、#44、#40、#33、#32、#30、#25、#20、#10、#5、#95、#85、#260、MA77、MA7、MA8、MA11、MA100、MA100R、MA100S、MA230、MA220、MA14、#4000B、#3030B、#3050B、#3250B、#3230B、#3400B、オリオン・エンジニアド・カーボンズ社製Color Black FW200、Color Black FW2、Color Black FW2V、Color Black FW1、Color Black FW18、Special Black 6、Color Black S170、Color Black S160、Special Black5、Special Black4、Special Black4A、Printex 150T、Printex U、Printex V、Printex 140U、Printex 140V、Printex 95、Printex 90、Printex 85、Printex 80、Printex 75、Printex 55、Printex 45、Printex 40、Printex P、Printex 60、Printex L6、Printex L、Printex 300、Printex 30、Printex ES23、Printex 3、Printex 35、Printex 25、Printex 200、Printex A、Printex G、Printex XE2等を挙げることができる。
 カーボンブラックを使用する場合の配合割合としては、硬化性成分合計量100重量部に対して5重量部以下が好ましく、2重量部以下が好ましい。
 カーボンナノチューブとしては、種々の化合物を使用することができ、単層カーボンナノチューブ及び多層カーボンナノチューブのいずれも使用することができる。
 多層カーボンナノチューブとしては、具体的には、バイエルマテリアルサイエンス社製Baytubes C70P、C150P等、NANOCS社製CNTM5、CNTM15、CNTM30、CNTM40、CNTM60等、昭和電工(株)製VGCF-H等を挙げることができる。
 単層カーボンナノチューブとしては、KH Chemicals社製カーボンナノチューブである、KH SWCNT HP、シグマ-アルドリッチ社製SWeNT CG100、SG65、SG76、CG200等を挙げることができる。
 カーボンナノチューブを使用する場合の好ましい配合割合としては、硬化性成分合計量100重量部に対して5重量部以下、より好ましくは0.01重量部以下が好ましい。当該配合割合とすることで、カーボンナノチューブが凝集して塊となってしまい、コーティング剤組成物のハンドリング性が損なわれてしまうことを防止することができる。
 又、カーボンブラックやカーボンナノチューブを1重量部以上用いる場合は、組成物に紫外線や可視光線が透過しにくくなるため、電子線を照射して硬化させることが好ましい。
11)蛍光剤・色素・顔料
 本発明の組成物は、硬化膜が透明な所謂クリアコート剤として使用することができるが、基材上において、組成物を基材に塗工した後に塗膜の有無を確認したり、活性エネルギー線照射後に硬化膜の有無を目視等で確認する目的で、蛍光剤、色素又は/及び顔料を添加してもよい。
 蛍光剤の具体例としては、ベンゾオキサゾリルチオフェン誘導体及びジスチリル・ビフェニル誘導体等を挙げることができる。
 蛍光光剤は市販されており、例えば、BASF社製、UVITEX OB、UVITEX NFW Liquid等が挙げられる。
 色素の具体例としては、油溶性タール色素、カロテン色素及びアナトー色素等が挙げることができる。
 顔料としては、有機顔料及び無機顔料等が挙げられる。
 有機顔料の具体例としては、トルイジンレッド、トルイジンマルーン、ハンザエロー、ベンジジンエロー及びピラゾロンレッド等の不溶性アゾ顔料;リトールレッド、ヘリオボルドー、ピグメントスカーレット及びパーマネントレッド2B等の溶性アゾ顔料;アリザリン、インダントロン及びチオインジゴマルーン等の建染染料からの誘導体;フタロシアニンブルー及びフタロシアニングリーン等のフタロシアニン系有機顔料;キナクリドンレッド及びキナクリドンマゼンタ等のキナクリドン系有機顔料、ペリレンレッド及びペリレンスカーレット等のペリレン系有機顔料;イソインドリノンエロー及びイソインドリノンオレンジ等のイソインドリノン系有機顔料;ピランスロンレッド及びピランスロンオレンジ等のピランスロン系有機顔料;チオインジゴ系有機顔料;縮合アゾ系有機顔料;ベンズイミダゾロン系有機顔料;キノフタロンエロー等のキノフタロン系有機顔料、イソインドリンエロー等のイソインドリン系有機顔料;並びにその他の顔料として、フラバンスロンエロー、アシルアミドエロー、ニッケルアゾエロー、銅アゾメチンエロー、ペリノンオレンジ、アンスロンオレンジ、ジアンスラキノニルレッド及びジオキサジンバイオレット等が挙げられる。
 又、前記無機顔料の具体例としては、酸化チタン、硫酸バリウム、炭酸カルシウム、亜鉛華、硫酸鉛、黄色鉛、亜鉛黄、べんがら(赤色酸化鉄(III))、カドミウム赤、群青、紺青、酸化クロム緑、コバルト緑、アンバー、チタンブラック及び合成鉄黒等を挙げることができる。尚、前記フィラーで例示したカーボンブラックは、無機顔料としても使用することができる。
 蛍光剤を用いた場合には、組成物の塗膜又は硬化膜を有する基材表面にブラックライトやUV-LEDを照射することで硬化膜の有無を容易に判別でき、色素を用いた場合は、目視により簡便に硬化膜の有無を判別することができる。
 蛍光剤及び色素のいずれを使用するかは、目的に応じて適宜設定すれば良い。判定しやすさの観点からは色素が好ましいが、組成物の硬化速度や内部硬化性を低下させる場合がある。一方、蛍光剤は、たとえば0.0001重量部というような極めてわずかな添加部数でも感度よく判定でき、さらに組成物の硬化速度や内部硬化性への影響がほとんどないため、より好ましい。
 蛍光剤及び色素の配合割合としては、多くなりすぎると、活性エネルギー線として紫外線や可視光線を用いた場合に組成物の硬化性を悪化させる恐れがあるため、なるべく少量の添加とすることが好ましい。
 蛍光剤及び色素の配合割合としては、いずれの場合も硬化性成分合計量100重量部に対して1重量部以下が好ましく、より好ましくは0.1重量部以下である。
12)分散剤
 本発明の組成物にカーボンブラック等のフィラーや顔料等を配合する場合、これらの沈降や凝集を防ぐために分散剤を添加することもできる。
 分散剤の使用量はフィラー及び顔料等の合計量100重量部に対して0.001~10重量部が好ましく、0.01~5重量部がより好ましい。
 分散剤としては、低分子量の共重合体が挙げられる。分子中にカルボン酸を持つものや、アミン又はアンモニウム塩を持つもの、あるいはこれらの両方を持つもの、ポリエーテル、ポリエーテル重合物のリン酸エステル、変性ポリエステル、脂肪酸誘導体、大豆レシチン変性物などが使用でき、これらにシリコーン系添加剤が含まれていてもよい。
 具体例としては、ビックケミー・ジャパン株式会社製DISPERBYK-170/171、DISPERBYK-174、DISPERBYK-180、DISPERBYK-182、DISPERBYK-183/185、DISPERBYK-184、DISPERBYK-2000、DISPERBYK-2001、DISPERBYK-2008、DISPERBYK-2009、DISPERBYK-2025、DISPERBYK-2050、DISPERBYK-2070、DISPERBYK-2096、DISPERBYK-2150、DISPERBYK-2155、DISPERBYK-2163、DISPERBYK-2164、BYK-P104/P104S、BYK-P105、BYK-9076、BYK-9077、BYK-220S、ANTI-TERRA-U/U100、ANTI-TERRA-204/205、DISPERBYK-204/205、DISPERBYK-101、DISPERBYK-102、DISPERBYK-103、DISPERBYK-106、DISPERBYK-108、DISPERBYK-109、DISPERBYK-110/111、DISPERBYK-112、DISPERBYK-116、DISPERBYK-130、DISPERBYK-140、DISPERBYK-142、DISPERBYK-145、DISPERBYK-161、DISPERBYK-162/163、DISPERBYK-164、DISPERBYK-166、DISPERBYK-167、DISPERBYK-168等、エボニックデグサ社製、TEGO Dispers 610、TEGO Dispers 610S、TEGO Dispers 630、TEGO Dispers 650、TEGO Dispers 655、TEGO Dispers 652、TEGO Dispers 662C、TEGO Dispers 670、TEGO Dispers 685、TEGO Dispers 700、TEGO Dispers 710等、共栄社化学(株)製フローレンDOPA-15B、DOPA-15BHFS、DOPA-17HF、DOPA-22、DOPA-33、G-600、G-700、G-820、G-900、NC-500、KDG-2400、AF-205、AF-405、AF-505、AF-1000、AF-1005、NAF-250等、を挙げることができるが、これらに限定されない。
 フィラーや顔料等を使用する場合において、これら分散剤を用いない場合は塗工前に撹拌することで均一な組成物とすることもできる。撹拌方法は特に限定されず任意の方法を用いることができるが、例としてはディスパー、遊星式撹拌脱泡装置、超音波撹拌装置等を挙げることができる。
13)帯電防止剤
 本発明の組成物は、絶縁性に優れるものであるが、必要に応じて帯電防止剤を加えることにより、さらなる抵抗値の低減が可能となる。又、帯電防止剤を配合することにより硬化膜の抵抗値を低下させることで、不良個所を検出することができる。
 帯電防止剤としては、電導性帯電防止剤が好ましい。電導性帯電防止剤としては、アルカリ金属塩、4級アンモニウム塩、イミダゾリウム塩及びピリジニウム塩等のカチオン性化合物、有機ホウ素錯体、並びにイオン性液体等が挙げられる。これらの帯電防止剤は、組成物中に溶解し、沈降することがない点でも好ましい。
 電導性帯電防止剤としては、カチオン性化合物が好ましく、アルカリ金属塩が好ましい。アルカリ金属塩としては、さらにリチウム金属塩が好ましい。
 リチウム金属塩の具体例としては、イミドリチウム、リチウムトリス(トリフルオロメタンスルホニル)メタン等のリチウムトリフレート及びトリフルオロメタンスルホン酸リチウム等が挙げられる。
 カチオン性化合物としては、各種の市販品を利用することができる。
 その具体例としては、例えば、吉村油化学(株)製のエリークLS-30、エリークPS-909及びエリークSEI-52等のアルキルアミン4級アンモニウム塩型帯電防止剤;
ライオンアクゾ(株)製のアーカードC-50、アーカードT-50、第一工業製薬(株)製のカチオーゲンL、コルコート(株)製のコルコートNR-121X、コルコートNR-121X-9、コルコートNR-121X-9IPA及びサンノプコ(株)製のノプコスタット092等の4級アンモニウム塩型帯電防止剤;
サンノプコ(株)製のノプコスタットSN A-2等のイミダゾリン型帯電防止剤;並びに
三光化学工業(株)製のサンコノールMEK-50R(化学名:リチウムビス(トリフルオロメタンスルホニル)イミド)、サンコノールPETA-20R、サンコノールA600-30R、サンコノールPEO-20R、サンコノールA600-50R及びサンコノールA400-50R等のアルカリ金属塩型帯電防止剤等が挙げられる。
 帯電防止剤の含有割合としては、硬化性成分合計量100重量部に対して0.5~15重量部が好ましく、より好ましくは1~10重量部である。
 帯電防止剤は、さらに色素を組み合わせることにより、視認性も向上させることができる。
 帯電防止剤と併用する色素としては、前記と同様の化合物を挙げることができる。
 帯電防止剤と色素の併用割合としては、0.0005~2重量部が好ましい。
5.活性エネルギー線硬化型コーティング剤組成物
 組成物の製造方法としては、第1発明の場合は、前記(A)、(B1)及び(C1)成分と必要に応じてさらにその他成分を、第1発明の場合は、前記(A)、(B2)及び(C2)成分と必要に応じてさらにその他成分を常法に従い攪拌・混合することにより製造することができる。
 この場合、必要に応じて加熱することもできる。加熱温度としては、使用する成分、基材及び目的等に応じて適宜設定すれば良いが、30~80℃が好ましい。
 本発明の組成物は、金属基材上に塗工し硬化させた硬化膜が、炭酸ジアルキル及び環状カーボネート混合有機溶剤中に25℃24時間浸漬した後に金属基材から剥離しないものであることが好ましい。
 前記炭酸ジアルキルと環状カーボネートの混合比としては、炭酸ジアルキル含有重量:環状カーボネート含有重量が、95:5~55:45が好ましく、80:20~60:40がより好ましい。
6.使用方法
 本発明の組成物は、コーティング剤として種々の用途に使用することができる。特に、本発明の組成物は、基材変形に対する追従性、耐溶剤性を要求される用途に使用することができる。
 本発明の組成物の使用方法としては、常法に従えば良く、基材上の一部又は全部に、本発明の組成物を塗工する工程、及び、塗工された組成物に活性エネルギー線を照射して硬化させる工程、を含む方法が例示される。
 基材としては、金属及びプラスチックフィルム等が挙げられる。
 本発明の組成物は、基金属基材のコーティング剤として好ましく使用することができる。
 金属としては、導電性金属が好ましく、アルミニウム、銅等がより好ましい。基材形状としては、フイルム状、箔が好ましい。アルミ箔(アルミニウムを圧延した薄紙のように伸ばしたフイルム状アルミニウム、アルミホイルともいう。)、銅箔等がより好ましく、アルミニウム箔が特に好ましい。
 プラスチックフィルム等における材質としては、例えばポリ塩化ビニル樹脂、ポリ塩化ビニリデン、セルロース系樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、ポリアミド、ポリエステル、ポリカーボネート、ポリウレタン、ポリビニルアルコール、トリアセチルセルロース、シクロオレフィンポリマー、ポリメチルメタクリレート、アクリル/スチレン樹脂、エチレン-酢酸ビニル共重合体及び塩素化ポリプロピレン等が挙げられる。
 本発明の組成物は、フイルム状基材のコーティング剤として好ましく使用することができる。
 さらに、前記フイルム状基材が金属基材であるコーティング剤として好ましく使用することができ、さらに又、前記金属基材がアルミニウムであるコーティング剤として好ましく使用することができる。
 基材に対する塗工は、従来知られている方法に従えばよく、ナチュラルコーター、ナイフベルトコーター、フローティングナイフ、ナイフオーバーロール、ナイフオンブランケット、スプレー、ディップ、キスロール、スクイーズロール、リバースロール、エアブレード、カーテンフローコーター、コンマコーター、グラビアコーター、マイクログラビアコーター、ダイコーター及びカーテンコーター等の方法が挙げられる。
 本発明の組成物の基材への塗工厚さは、使用する基材及びコーティングされた材料の用途に応じて選択すればよいが、好ましくは1~100μmであり、より好ましくは5~40μmである。
 又、基材に塗工する前に、層間接着力を大きくするために基材表面に活性化処理を行うことができる。表面活性化処理としてはプラズマ処理、コロナ放電処理、薬液処理、粗面化処理及びエッチング処理、火炎処理等が挙げられ、これらを併用してもよい。
 塗工後の組成物に活性エネルギー線を照射して硬化膜を形成、即ちコーティング層を形成する。
 活性エネルギー線としては、可視光線、紫外線、X線及び電子線等が挙げられるが、安価な装置を使用することができるため、紫外線が好ましい。
 紫外線により硬化させる場合の光源としては、様々のものを使用することができ、例えば加圧或いは高圧水銀灯、メタルハライドランプ、キセノンランプ、無電極放電ランプ、カーボンアーク灯及びLED等が挙げられる。
 電子線により硬化させる場合には、使用できるEB照射装置としては種々の装置が使用でき、例えばコックロフトワルトシン型、バンデグラフ型及び共振変圧器型の装置等が挙げられる。
7.金属基材のコーティング剤及び硬化膜を有する金属基材の製造方法
 前記した通り、本発明の組成物は、金属基材のコーティング剤として好ましく使用することができ、フィルム状金属基材のコーティング剤としてより好ましく使用することができる。
 本発明の組成物を使用する硬化膜を有する金属基材の製造方法(以下、膜付き金属基材製造方法ともいう。)は、金属基材上の一部又は全部に、本発明の組成物を塗工する工程、及び、塗工された組成物に活性エネルギー線を照射して硬化させる工程を含む。
 本発明の組成物及び膜付き金属基材製造方法で得られた硬化膜は、金属基材、特にフイルム状金属基材の変形に対する追従性や耐溶剤性に優れているため、PDP用電極保護材、電動自転車用基板回路保護材及びリチウムイオン電池等に用いる電極保護コーティング剤に好適に使用できる。
 以下、金属基材製造方法について説明する。
1)金属基材
 本発明の膜付き金属基材製造方法で使用する金属基材としては、アルミニウム、銅等が好ましい。基材形状としては、フイルム状、箔状が好ましい。アルミニウム箔、銅箔等がより好ましく、アルミニウム箔が特に好ましい。
 用いられるフイルム状金属基材としては、PDP用電極保護材、電動自転車用基板回路保護材及びリチウムイオン電池の正極金属が好ましく、特にリチウムイオン電池用途においては金属基材としてアルミニウム箔が好適に用いられる。
 本発明の膜付き金属基材製造方法により形成される金属基材上の硬化層は、前述の金属基材の変形に対する追従性や耐溶剤性に優れているだけではなく、絶縁コーティング剤としても優れた性能を有している。
2)塗工工程
 本発明の膜付き金属基材製造方法は、金属基材上の一部又は全部に、本発明の組成物を塗工する工程(塗工工程)を含む。
 金属基材に対する塗工方法としては、従来知られている方法に従えばよく、前記と同様の方法が挙げられる。
 この場合の本発明の組成物の基材上への塗工厚さは、使用する基材及びコーティングされたコーティング剤の用途に応じて選択すればよいが、好ましくは1~100μmであり、より好ましくは5~40μmである。
 又、基材上への本発明の組成物の塗工は、必要に応じて、フイルム状金属基材上の一部又は全部に、塗工することが好ましい。
3)硬化工程
 本発明の膜付き金属基材製造方法は、塗工された組成物に活性エネルギー線を照射して硬化させる工程(硬化工程)を含むことが好ましい。
 この場合に用いられる活性エネルギー線としては、前記と同様のものを使用することができる。
 本発明の組成物及び膜付き金属基材製造方法で形成された硬化膜は有機溶剤に対する耐性が良好である。本発明の組成物及び膜付き金属基材製造方法で形成された硬化膜は、種々の有機溶剤に対して良好な耐性を有し、特にリチウムイオン電池の電極材料において電解液として用いられるような有機溶剤に良好な耐性を有する。例えば、炭酸ジエチル等の炭酸ジアルキル、エチレンカーボネート等の環状カーボネート、並びにこれらの混合有機溶媒のような有機溶剤に対する耐性が良好である。
 本発明の膜付き金属基材製造方法で形成された硬化膜は、炭酸ジアルキル及び環状カーボネート混合有機溶剤中に25℃24時間浸漬した後に、金属基材から剥離しない優れた性能を有している。
 本発明の組成物を用いた本発明の膜付き金属基材製造方法により、所望のフイルム状金属基材上に硬化した絶縁コーティング層を製造することができる。本発明を用いて製造された絶縁コーティング層は優れた基材密着性、耐溶剤性、及び絶縁性を有している。
 以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。尚、以下の各例における「部」は重量部を意味する。
1.第1発明の実施例
1)実施例1-1~同1-9、比較例1-1~同1-4(活性エネルギー線硬化型コーティング剤組成物の製造)
 下記表1及び表2に示す成分を、表1及び表2に示す割合で、60℃で1時間加熱撹拌して溶解させ、活性エネルギー線硬化型コーティング剤組成物を製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2における数字は部数を意味する。又、表1及び表2における略号は、下記の通りである。
(1)(A)成分
・BAC45:ポリブタジエン骨格の両末端にアクリロイル基を有するオリゴマー〔大阪有機化学工業(株)製 BAC-45〕
・TEAI1000:水添ポリブタジエン骨格の両末端にウレタンアクリロイル基を有するオリゴマー〔日本曹達(株)製 TEAI-1000〕
(2)(B1)成分
・M-5700:2-ヒドロキシ-3-フェノキシプロピルアクリレート〔東亞合成(株)製 アロニックス M-5700〕
・HPMA:2-ヒドロキシプロピルメタクリレート〔共栄社化学(株)製 ライトエステルHOP〕
・HPA:2-ヒドロキシプロピルアクリレート〔大阪有機化学工業(株) 製 HPA〕
・HBA:4-ヒドロキシブチルアクリレート〔大阪有機化学工業(株) 製 HBA〕
(3)(C1)成分
・HDDA:1,6-ヘキサンジオールジアクリレート〔共栄社化学(株)製 ライトアクリレート1,6HX-A〕
・POA:フェノキシエチルアクリレート〔共栄社化学(株)製 ライトアクリレートPO-A〕
・M-309:トリメチロールプロパントリアクリレート〔東亞合成(株)製 アロニックスM-309〕
・THFA:テトラヒドロフルフリルアクリレート〔共栄社化学(株)製 ライトアクリレートTHF-A〕
(4)(D)成分
・Dar1173:2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン (BASF社製 DAROCUR1173)
・Irg184:1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製 IRGACURE184)
・Irg379:2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モリフォリン-4-イル-フェニル)-ブタン-1-オン〔BASF社製 IRGACURE379EG〕
(6)その他の成分
・KBM503:3-メタクリロキシプロピルトリエトキシシラン〔信越化学工業(株)製 KBM-503、シランカップリング剤〕
・TMTP:トリメチロールプロパントリスチオプロピオネート〔淀化学(株)製 トリメチロールプロパントリスチオプロピオネート(TMTP)〕
・CPI:p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロホスフェートのプロピレンカーボネート溶液〔サンアプロ(株)製のCPI-100P〕
・OB:2,5-チオフェネジイルビス(5-tert-ブチル-1,3-ベンゾキサゾール〔BASF社製 UVITEX OB〕
2)硬化膜を有する金属基材の製造
 フィルム状金属基材としてアルミ箔〔日本製箔(株)製、商品名:ニッパクホイル(厚さ12μm)〕を用いて、以下の試験を行った。
 前記で得られた組成物をバーコーター(#16~18)により前記アルミ箔フィルム上に25μmの厚みに塗布し、120W/cm集光型の高圧水銀ランプ〔アイグラフィックス(株)製〕を用いて、コンベアスピ-ド10m/minで硬化させ、試験体である硬化膜を有する金属基材を製造した。
 紫外線強度は1,250mW/cm2、積算光量は1,800mJ/cm2であった(いずれも光源波長365nmでの値)。
 尚、塗工・活性エネルギー線照射は25℃で行ったが、(B1)成分としてステアリルアクリレートを含む組成物は、組成物が室温で結晶化するため、60℃にて塗工・活性エネルギー線照射を行った。
 得られた試験体を長さ15cm、幅25mmに裁断し、以下の評価を行った。それらの結果を表4に示す。
(1)評価方法
(a)初期密着性
 試験体の硬化膜表面に、カッターで×印の切り込みを付け、その上に住友スリーエム(株)製メンディングテープを貼り付け、手で剥がして評価した。密着性を以下の3水準で評価した。
 ◎:硬化膜がアルミ箔表面から剥がれず、さらに切り込み部分からも硬化膜の剥離がなかった。
 ○:わずかに切り込み部分が欠けたものの、硬化膜がアルミ箔上にほぼ残存した。
 ×:硬化膜がテープ側に付着した。
(b)耐変形密着性
 試験体を、直径10mmの金属製の棒に巻き付け、アルミ箔が変形した時の硬化膜の追従性を、以下の2水準で評価した。
 ○:基材の変形に追従し剥がれなかった。
 ×:基材の変形に追従できずに剥がれた。
(c)耐溶剤性:外観
 試験体を、炭酸ジエチル/エチレンカーボネート=70/30(重量比)混合液に一晩(25℃で24時間)浸漬し、取り出した後にエアーガンにより空気を吹き付けて表面の溶剤を揮散させ、硬化膜外観を目視で評価し、以下の3水準で評価した。
○:硬化膜外観が浸漬前と変化がなかった。
△:風圧により硬化膜表面が波打った。
×:硬化膜が剥がれていたものや、風圧で塗膜が剥がれた。
(d)耐溶剤性:絶縁性
 前記外観を評価した試験体の硬化膜表面と、アルミ箔の非塗工部分とにテスターをあて、導通を調べ、以下の2水準で評価した。
 ○:導通がなく良好な絶縁性を維持していた。
 ×:導通が認められた。
Figure JPOXMLDOC01-appb-T000003
(2)評価結果
 本発明の組成物である実施例1-1~1-9の組成物は、その硬化膜が、基材との密着性、変形に対する追従性に優れ、有機溶剤浸漬後の基材密着性や絶縁性にも優れるものであった。
 さらに、蛍光増白剤を含む実施例1-9の組成物を用いて形成した硬化膜付き基材に、365nmのUV-LEDを備えた懐中電灯NS365HBS(ナイトライド・セミコンダクター(株)製)による照射を行うと、硬化膜部分は発光するが、硬化膜がない基材部分は発光せず、硬化膜の有無を容易に判別することができた。
 これに対して(B1)成分を含まない比較例1-1及び同1-4の組成物、(A)成分を含まない比較例1-2及び同1-3の組成物は、その硬化膜が、密着性、変形に対する追従性、有機溶剤浸漬後の基材密着性や絶縁性を満足できないものであった。
3)実施例1-10及び同1-11(カーボンブラックを含む活性エネルギー線硬化型コーティング剤組成物)
 下記表4に示す成分を、60℃で1時間加熱撹拌して溶解させ、活性エネルギー線硬化型コーティング剤組成物を製造した。
 表4におけるFA512は、ジシクロペンテニルオキシエチルアクリレ-ト〔日立化成(株)製 ファンクリルFA-512AS〕を意味する。
 尚、カーボンブラックとしては、三菱化学(株)製#3050B〔粒子径:50nm※カーボンブラック粒子を電子顕微鏡で観察して求めた算術平均径。比表面積:50m2/g※窒素吸着量からS-BET式で求めた比表面積(JISK6217)。以下、「#3050」という〕を使用した。
 尚、実施例1-11では、さらに分散剤としてDISPERBYK-2001(ビック・ケミー(株)製、以下「DISP」という)を使用した。
 得られた組成物を使用して、前記2)と同様の方法で硬化膜を有する金属基材を製造した。
 得られた試験体を長さ15cm、幅25mmに裁断し、前記初期密着性、耐変形密着性及び耐溶剤性(外観)の評価を行った。
 さらに、これらの実施例では、(株)アドバンテスト製 ULTRA HIGH RESISTANCE METER R8340(以下、「R8340」という)を用いて、硬化膜の(絶縁)抵抗値を測定した。
 それらの結果を表5に示す。
 本発明の組成物は、絶縁性に優れるものであるが、必要に応じてカーボンブラックを加えることで抵抗値の低減や塗布工程での視認性向上が可能となる。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
4)実施例1-12及び同1-13(電導性帯電防止剤を含む活性エネルギー線硬化型コーティング剤組成物)
 下記表6に示す成分を、60℃で1時間加熱撹拌して溶解させ、活性エネルギー線硬化型コーティング剤組成物を製造した。尚、電導性帯電防止剤としては、三光化学工業(株)製サンコノールA600-50R(イミドリチウム系電導性帯電防止剤、イミドリチウム含有量50%、「A600」という)を使用した。
 尚、実施例1-13では、さらに色素として下記色素を使用した。
・Kaya-B:青色色素(日本化薬(株)製Kayaset Blue A-2R)
 得られた組成物を使用して、前記2)と同様の方法で硬化膜を有する金属基材を製造した。
 得られた試験体を長さ15cm、幅25mmに裁断し、前記初期密着性、耐変形密着性及び耐溶剤性(外観)の評価を行った。
 さらに、これらの実施例では、R8340を用いて、硬化膜の(絶縁)抵抗値を測定した。
 それらの結果を表7に示す。
 本発明の組成物は、絶縁性に優れるものであるが、必要に応じて電導性帯電防止剤を加えることで抵抗値の低減や塗布工程での視認性向上が可能となる。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
2.第2発明の実施例
1)実施例2-1~同2-11、比較例2-1~同2-4(活性エネルギー線硬化型コーティング剤組成物の製造)
 下記表表8~表10に示す成分を、下記表8~表10に示す割合で、60℃で1時間加熱撹拌して溶解させ、活性エネルギー線硬化型コーティング剤組成物を製造した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表8~表10における数字は部数を意味する。又、表8~表10における略号は、前記で定義したもの以外は下記の通りである。
(1)(A)成分
・UC203:ポリイソプレンの無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物である、メタクリロイル基を有するオリゴマー〔クラレ(株)製 UC-203〕
(2)(B2)成分
・POA:フェノキシエチルアクリレート〔共栄社化学(株)製 ライトアクリレートPO-A〕
・M-106:o-フェニルフェノキシエチルアクリレート〔東亞合成(株)製 アロニックス M-106〕
・M-140:N-アクリロイルオキシエチルヘキサヒドロフタルイミド〔東亞合成(株)製 アロニックス M-140〕
・M-305:ペンタエリスリトールトリアクリレート〔東亞合成(株)製 アロニックス M-305〕
・DMAA:N,N-ジメチルアクリルアミド〔(株)興人製 DMAA〕
(3)(C2)成分
・#190:エチルカルビトールアクリレート〔大阪有機化学工業(株)製 ビスコート190〕
(4)(D)成分
・Irg651:2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(BASF社製 IRGACURE651)
・Irg819:ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド〔BASF社製 IRGACURE819〕
2)硬化膜を有する金属基材の製造
 フィルム状金属基材として前記と同様のアルミ箔を用いて、以下の試験を行った。
 前記で得られた組成物をバーコーター(#16~18)により前記アルミ箔フィルム上に25μmの厚みに塗布し、前記と同様の高圧水銀ランプを用い、前記と同様の条件で硬化させ、試験体である硬化膜を有する金属基材を製造した。
 尚、塗工・活性エネルギー線照射は25℃で行ったが、(B2)成分としてステアリルアクリレートを含む組成物は、組成物が室温で結晶化するため、60℃にて塗工・活性エネルギー線照射を行った。
 得られた試験体を長さ15cm、幅25mmに裁断し、前記と同様の評価を行った。それらの結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
(1)評価結果
 本発明の組成物である実施例2-1~2-11の組成物は、その硬化膜が、基材との密着性、変形に対する追従性に優れ、有機溶剤浸漬後の基材密着性や絶縁性にも優れるものであった。
 さらに、蛍光増白剤を含む実施例2-8の組成物を用いて形成した硬化膜付き基材に、365nmのUV-LEDを備えた懐中電灯NS365HBS(ナイトライド・セミコンダクター(株)製)による照射を行うと、硬化膜部分は発光するが、硬化膜がない基材部分は発光せず、硬化膜の有無を容易に判別することができた。
 これに対して(B2)成分を含まない比較例2-1及び同2-4の組成物、(A)成分を含まない比較例2-2及び同2-3の組成物は、その硬化膜が、密着性、変形に対する追従性、有機溶剤浸漬後の基材密着性や絶縁性を満足できないものであった。
 本発明の組成物は、各種基材表面へのコーティング剤として、特に金属基材のコーティング剤としてPDP用電極保護材、電動自転車用基板回路保護材及びリチウムイオン電池の正極保護材等に好適に使用できる。

Claims (19)

  1. 必須成分として下記(A)成分を硬化性成分合計量中に30~97重量%含む組成物であって、
    下記(B1)成分及び(C1)成分を、それぞれ硬化性成分合計量中に3~70重量%及び0~67重量%含むか、又は、
    下記(B2)成分及び(C2)成分を、それぞれ硬化性成分合計量中に3~70重量%及び0~57重量%含む
    活性エネルギー線硬化型コーティング剤組成物。
    (A)成分:2個以上の(メタ)アクリロイル基を有し、且つジエン系の骨格又は水素添加されたジエン系の骨格を有する(メタ)アクリレートオリゴマー
    (B1)成分:1個のエチレン性不飽和基と1個以上の親水性基とを有する化合物
    (C1)成分:エチレン性不飽和基を有する化合物であって、(A)及び(B1)成分以外の化合物
     但し、(C1)成分は、エステル部位に炭素数4~20のアルキル基、アルケニル基、環状アルキル基又は環状アルケニル基を有し、1個の(メタ)アクリロイル基を有する(メタ)アクリレートを除いたものである。
    (B2)成分:1個以上のエチレン性不飽和基を有し、同重量部のn-ヘキサンに対し相溶せずに分液する化合物
    (C2)成分:1個以上のエチレン性不飽和基を有する化合物であって、同重量部のn-ヘキサンと混合でき、かつ同重量部の(B2)成分とも混合できる化合物
     但し、(C2)成分は、エステル部位に炭素数4~20のアルキル基、アルケニル基、環状アルキル基又は環状アルケニル基を有し、1個の(メタ)アクリロイル基を有する(メタ)アクリレートを除いたものである。
  2.  前記(A)成分が、ポリブタジエン、ポリイソプレン及び/又はこれらが水素添加された骨格を有するオリゴマーである請求項1に記載の活性エネルギー線硬化型コーティング剤組成物。
  3.  前記(A)成分が、数平均分子量500~50,000の化合物である請求項1又は請求項2に記載の活性エネルギー線硬化型コーティング剤組成物。
  4.  前記(B1)成分が、水酸基含有(メタ)アクリレートである請求項1~請求項3のいずれか1項に記載の活性エネルギー線硬化型コーティング剤組成物。
  5.  (C1)成分が、1個以上のエチレン性不飽和基を有する化合物であって、同重量部のn-ヘキサンと混合でき、かつ同重量部の(B1)成分とも混合できる化合物を含む請求項1~請求項4のいずれか1項に記載の活性エネルギー線硬化型コーティング剤組成物。
  6.  前記(C1)成分が、アルキル基を骨格に有し(メタ)アクリロイル基を2個以上有する化合物を含む請求項1~請求項5のいずれか1項に記載の活性エネルギー線硬化型コーティング剤組成物。
  7.  さらに、(D)光ラジカル重合開始剤を、硬化性成分合計量100重量部に対して0.1~20重量部を含む請求項1~請求項6のいずれか1項に記載の活性エネルギー線硬化型コーティング剤組成物。
  8.  さらに、蛍光剤、色素又は/及び顔料を含む請求項1~請求項7のいずれか1項に記載の活性エネルギー線硬化型コーティング剤組成物。
  9.  金属基材上に塗工・硬化させた硬化膜が、炭酸ジアルキル及び環状カーボネート混合有機溶媒中に25℃で24時間浸漬したのちに、前記硬化膜が金属基材から剥離しないものである請求項1~請求項8のいずれか1項に記載の活性エネルギー線硬化型コーティング剤組成物。
  10.  金属基材のコーティング剤である請求項9に記載の活性エネルギー線硬化型コーティング剤組成物。
  11.  前記基材がフィルム状金属基材である、請求項10に記載の活性エネルギー線硬化型コーティング剤組成物。
  12. 前記金属基材がアルミニウムである請求項10又は請求項11に記載の活性エネルギー線硬化型コーティング剤組成物。
  13.  金属基材表面に、請求項10~請求項12のいずれか1項に記載の活性エネルギー線硬化型コーティング剤組成物の硬化膜が形成された硬化膜を有する金属基材。
  14.  金属基材上の一部又は全部に、請求項1~請求項12のいずれか1項に記載の活性エネルギー線硬化型コーティング剤組成物を塗工する工程、及び、
     塗工された組成物に活性エネルギー線を照射して硬化させる工程を含む
     硬化膜を有する金属基材の製造方法。
  15.  前記金属基材がフィルム状金属基材である請求項14に記載の硬化膜を有する金属基材の製造方法。
  16.  前記金属基材がアルミニウムである請求項14又は請求項15に記載の硬化膜を有する金属基材の製造方法。
  17.  前記金属基材がフィルム状金属基材であり、かつリチウムイオン電池の正極金属である請求項15又は請求項16に記載の硬化膜を有する金属基材の製造方法。
  18.  活性エネルギー線を照射して硬化させた硬化膜が、炭酸ジアルキル及び環状カーボネート混合有機溶剤中に25℃で24時間浸漬した後に、金属基材から剥離しない、請求項14~請求項17のいずれか1項に記載の硬化膜を有する金属基材の製造方法。
  19.  前記活性エネルギー線硬化型コーティング剤組成物が蛍光剤を含み、
     活性エネルギー線による硬化前又は後に、蛍光を利用して基材上における活性エネルギー線硬化型コーティング剤組成物の塗膜又は硬化膜の有無を確認する工程をさらに含む、
    請求項14~請求項18のいずれか1項に記載の硬化膜を有する金属基材の製造方法。
PCT/JP2013/071119 2012-08-06 2013-08-05 活性エネルギー線硬化型コーティング剤組成物 WO2014024826A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012173516 2012-08-06
JP2012173517 2012-08-06
JP2012-173516 2012-08-06
JP2012-173517 2012-08-06
JP2013-158717 2013-07-31
JP2013158718A JP2014051654A (ja) 2012-08-06 2013-07-31 活性エネルギー線硬化型コーティング剤組成物
JP2013158717A JP6183036B2 (ja) 2012-08-06 2013-07-31 絶縁性硬化膜を有する金属基材の製造方法
JP2013-158718 2013-07-31

Publications (1)

Publication Number Publication Date
WO2014024826A1 true WO2014024826A1 (ja) 2014-02-13

Family

ID=50068052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071119 WO2014024826A1 (ja) 2012-08-06 2013-08-05 活性エネルギー線硬化型コーティング剤組成物

Country Status (1)

Country Link
WO (1) WO2014024826A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098713A1 (ja) * 2014-12-16 2016-06-23 横浜ゴム株式会社 紫外線硬化型樹脂組成物および積層体
WO2021200853A1 (ja) * 2020-04-01 2021-10-07 キヤノン化成株式会社 コーティング用樹脂組成物およびコーティング膜の製造方法
EP4239002A4 (en) * 2020-10-29 2024-04-24 Denka Company Ltd CURABLE COMPOSITION, ARTICLE, CONFIRMATION METHOD AND ADHESIVE COMPOSITION

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116893A (en) * 1975-04-08 1976-10-14 Ube Ind Ltd Photo-setting compositions
JPS5456692A (en) * 1977-10-13 1979-05-07 Toyo Ink Mfg Co Ltd Curable resin composition
JPS54123160A (en) * 1978-03-17 1979-09-25 Ube Ind Ltd Photo-setting composition
JPH11508637A (ja) * 1996-02-23 1999-07-27 ダイマックス コーポレーション 改良された蛍光反応を示す組成物
JP2003522229A (ja) * 2000-02-07 2003-07-22 サートーマー・カンパニー・インコーポレイテッド 強化接着性を有する放射線/熱硬化性ポリマー組成物
JP2010100831A (ja) * 2008-09-26 2010-05-06 Denki Kagaku Kogyo Kk 組成物及びそれを用いる部材の仮固定方法
WO2011044310A1 (en) * 2009-10-07 2011-04-14 Miltec Corporation Actinic and electron beam radiation curable electrode binders and electrodes incorporating same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116893A (en) * 1975-04-08 1976-10-14 Ube Ind Ltd Photo-setting compositions
JPS5456692A (en) * 1977-10-13 1979-05-07 Toyo Ink Mfg Co Ltd Curable resin composition
JPS54123160A (en) * 1978-03-17 1979-09-25 Ube Ind Ltd Photo-setting composition
JPH11508637A (ja) * 1996-02-23 1999-07-27 ダイマックス コーポレーション 改良された蛍光反応を示す組成物
JP2003522229A (ja) * 2000-02-07 2003-07-22 サートーマー・カンパニー・インコーポレイテッド 強化接着性を有する放射線/熱硬化性ポリマー組成物
JP2010100831A (ja) * 2008-09-26 2010-05-06 Denki Kagaku Kogyo Kk 組成物及びそれを用いる部材の仮固定方法
WO2011044310A1 (en) * 2009-10-07 2011-04-14 Miltec Corporation Actinic and electron beam radiation curable electrode binders and electrodes incorporating same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098713A1 (ja) * 2014-12-16 2016-06-23 横浜ゴム株式会社 紫外線硬化型樹脂組成物および積層体
JPWO2016098713A1 (ja) * 2014-12-16 2017-07-20 横浜ゴム株式会社 紫外線硬化型樹脂組成物および積層体
WO2021200853A1 (ja) * 2020-04-01 2021-10-07 キヤノン化成株式会社 コーティング用樹脂組成物およびコーティング膜の製造方法
EP4239002A4 (en) * 2020-10-29 2024-04-24 Denka Company Ltd CURABLE COMPOSITION, ARTICLE, CONFIRMATION METHOD AND ADHESIVE COMPOSITION

Similar Documents

Publication Publication Date Title
JP5928578B2 (ja) 硬化膜を有する金属基材の製造方法
JP5935668B2 (ja) 活性エネルギー線硬化型コーティング剤組成物
JP6107640B2 (ja) 活性エネルギー線硬化型コーティング剤組成物
JP6137172B2 (ja) 活性エネルギー線硬化型組成物、並びに、硬化膜を有する金属基材及びその製造方法
JP5988567B2 (ja) ウレタン(メタ)アクリレート及びその製造方法、架橋ウレタン(メタ)アクリレート及びその製造方法、並びに光硬化型水性エマルション
EP3239182B1 (en) Modified liquid diene rubber, and resin composition containing said modified liquid diene rubber
JP6526368B1 (ja) 接着剤、積層体、電池外装用包装材、電池ケース、及び電池ケースの製造方法
JP6106355B2 (ja) プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
TW201500224A (zh) 氣體阻障薄膜積層體、其製造方法及電子裝置
JP2014051654A (ja) 活性エネルギー線硬化型コーティング剤組成物
JP7447484B2 (ja) 樹脂組成物及び積層体
WO2014024826A1 (ja) 活性エネルギー線硬化型コーティング剤組成物
JP6183036B2 (ja) 絶縁性硬化膜を有する金属基材の製造方法
JP5900297B2 (ja) 活性エネルギー線硬化型金属防蝕コーティング剤組成物
JP2014009339A (ja) プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
JP6561912B2 (ja) プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
JP7318366B2 (ja) 触媒層用活性エネルギー線硬化型組成物及び積層体
JP2015117349A (ja) 活性エネルギー線硬化型コーティング組成物
JP2018104635A (ja) 活性エネルギー線硬化性接着剤組成物、偏光板用接着剤組成物、偏光板用接着剤およびそれを用いた偏光板
WO2024106476A1 (ja) リチウムイオン二次電池シール材用光硬化型組成物
JP7235037B2 (ja) 高分子電解質接着用、又は高分子電解質シール用硬化型組成物
JP7275875B2 (ja) 触媒層を有する積層体の製造方法
WO2023228803A1 (ja) 活性線硬化性組成物、硬化膜の製造方法、硬化膜および硬化膜の製造装置
WO2024019001A1 (ja) 光硬化型熱伝導性組成物
WO2019230977A1 (ja) 光成形用led硬化型組成物及びその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827645

Country of ref document: EP

Kind code of ref document: A1