WO2024106476A1 - リチウムイオン二次電池シール材用光硬化型組成物 - Google Patents

リチウムイオン二次電池シール材用光硬化型組成物 Download PDF

Info

Publication number
WO2024106476A1
WO2024106476A1 PCT/JP2023/041122 JP2023041122W WO2024106476A1 WO 2024106476 A1 WO2024106476 A1 WO 2024106476A1 JP 2023041122 W JP2023041122 W JP 2023041122W WO 2024106476 A1 WO2024106476 A1 WO 2024106476A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
component
acrylate
weight
ion secondary
Prior art date
Application number
PCT/JP2023/041122
Other languages
English (en)
French (fr)
Inventor
佑太 鷹羽
和正 稲田
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Publication of WO2024106476A1 publication Critical patent/WO2024106476A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness

Definitions

  • the present invention relates to a photocurable composition for a sealing material for lithium ion secondary batteries, which can be preferably used in the production of lithium ion secondary batteries.
  • acrylate and/or methacrylate will be referred to as (meth)acrylate, acryloyl group and/or methacryloyl group as (meth)acryloyl group, and acrylic acid and/or methacrylic acid as (meth)acrylic acid.
  • lithium-ion secondary batteries which are lightweight and have high energy density, are preferable as high-output power sources for driving vehicles such as electric vehicles (EVs), plug-in hybrid vehicles (PHVs), and hybrid vehicles (HVs), and demand for them is expected to continue to expand in the future.
  • EVs electric vehicles
  • PSVs plug-in hybrid vehicles
  • HVs hybrid vehicles
  • Non-Patent Document 1 a so-called bipolar battery, in which one side of the current collector is a positive electrode and the other side is a negative electrode.
  • Non-Patent Document 1 By stacking bipolar batteries, a compact, high-voltage battery can be manufactured.
  • a single cell of such a bipolar battery has a planar structure, and a sealant is required at the end to seal the electrolyte.
  • Patent Document 1 illustrates the configuration of a bipolar lithium ion secondary battery, and describes that the sealing member is not particularly limited as long as it has adhesion to the positive and negative electrode current collectors and durability against the electrolyte, but that a polymer material, in particular a thermosetting resin, is preferable (Patent Document 1: [0047]).
  • Patent Document 2 illustrates the structure of a bipolar lithium-ion secondary battery, and shows a heat-sealable film as the sealing member. It also shows that wrinkles in the resin collector caused by heat fusion can be eliminated by using a reinforcing member.
  • Patent Document 3 discloses a photocurable composition that can be suitably used as a material for fixing and sealing the sides of an all-solid-state battery equipped with a laminated electrode body.
  • Patent Document 4 discloses an active energy ray-curable coating composition that can also be used as an electrode protectant for lithium-ion batteries.
  • thermosetting resin exemplified as a preferred material in Patent Document 1 requires at least several minutes, and usually several tens of minutes to several hours, to harden, and therefore poses a problem in terms of mass productivity.
  • the heat-sealable film described in Patent Document 2 has the advantage of being able to adhere in a short time, but has the problem of wrinkles occurring when heated to a high temperature. This document solves this problem by using a reinforcing member, but in this case, another problem occurs in that the product configuration and manufacturing process become complicated.
  • Patent Literature 3 discloses a photocurable composition suitable for fixing and sealing the side surfaces of an all-solid-state battery having a laminated electrode body. By using the photocurable composition, it becomes possible to cure in a short time without applying heat, and mass productivity is improved. However, since the all-solid-state battery exemplified here does not contain an electrolyte solution, it is unclear whether the photocurable composition exemplified here can be used as a sealing material for a lithium ion secondary battery that contains an electrolyte solution.
  • Patent Document 4 discloses a photocurable coating composition that has excellent adhesion to aluminum foil (positive electrode foil) and does not deteriorate in appearance or adhesion even after immersion in a solvent used in an electrolyte, but the performance required as a sealant is unclear. That is, there is no mention of the peel adhesion strength with the electrode substrate, the peel adhesion strength with the electrode substrate after immersion in an electrolyte, or the swelling rate of the cured product due to immersion in an electrolyte. Therefore, the present inventors evaluated the composition disclosed in Patent Document 4 and found that the peel adhesion strength to an aluminum foil (positive electrode foil) and/or a copper foil (negative electrode foil) after immersion in a solvent was not necessarily sufficient for use as a sealing material.
  • the inventors conducted extensive research to find a photocurable composition for use as a sealant for lithium-ion secondary batteries that can be applied at room temperature and cured in a short time, has good peel adhesion to the electrode substrate before and after immersion in electrolyte, and has a small swelling rate due to immersion in electrolyte.
  • the present inventors conducted various investigations to solve the above-mentioned problems, and as a result, found that a composition containing a compound having a polybutadiene and/or hydrogenated polybutadiene skeleton, and having two (meth)acryloyl groups with a specific molecular weight, a compound containing two specific types of compounds and having one (meth)acryloyl group in one molecule (hereinafter referred to as a "monofunctional (meth)acrylate”), and a photoradical polymerization initiator in a specific ratio, can be applied at room temperature and cured in a short time, has good peel adhesion strength with an electrode substrate before and after immersion in an electrolyte solution, and has a small swelling rate due to immersion in an electrolyte solution, thereby completing the present invention.
  • the present invention will be described in detail below.
  • composition of the present invention can be applied at room temperature and hardened in a short time, has good peel adhesion to the electrode substrate before and after immersion in electrolyte, and has a small swelling rate due to immersion in electrolyte.
  • FIG. 1 is a cross-sectional view of an example of a bipolar type lithium ion secondary battery.
  • FIG. 2 is a diagram showing an example of a method for producing a lithium ion secondary battery using the composition of the present invention.
  • FIG. 3 is a diagram showing an example of a method for producing a lithium ion secondary battery using the composition of the present invention.
  • Component (A) a compound having a polybutadiene and/or hydrogenated polybutadiene skeleton and two (meth)acryloyl groups in one molecule, the compound having a number average molecular weight of 1000 or more;
  • Component (B) a monofunctional (meth)acrylate containing the following components (B-1) and (B-2) as essential components;
  • Component (B-1) a monofunctional (meth)acrylate having an alkyl or alkenyl group in which the ester residue has 10 to 30 carbon atoms;
  • Component (B-2) a monofunctional (meth)acrylate having an ester residue with 5 to 30 carbon atoms and an alicyclic hydrocarbon group and/or an aromatic hydrocarbon group;
  • Component (C) a monofunctional (meth)acrylate containing a photoradical polymerization initiator,
  • the composition contains 10 to 80% by weight of component (A) and 20 to 90% by weight of component (B) relative to a
  • a method for producing a lithium ion secondary battery comprising applying or injecting the photocurable composition for a lithium ion secondary battery sealant according to any one of [1] to [3] onto a side surface of a constituent material of a lithium ion secondary battery, and then irradiating the applied surface or the injected surface with light.
  • Components (A) to (C) other components, the composition, and methods of use will be described below. The specific compounds given in the description of the components (A) to (C) below may be used alone or in combination of two or more kinds.
  • Component (A) is a compound having a polybutadiene skeleton and/or a hydrogenated polybutadiene skeleton in one molecule, and having an Mn of 1,000 or more and two or more (meth)acryloyl groups.
  • the (meth)acryloyl group in component (A) may be present in a side chain or at a terminal, and is preferably a compound having a (meth)acryloyl group at a terminal, and particularly preferably a compound having (meth)acryloyl groups at both terminals.
  • the Mn (number average molecular weight) of the component (A) is at least 1,000, preferably from 5,000 to 50,000, and more preferably from 10,000 to 30,000. If a compound with an Mn of less than 1,000 is used, the adhesive strength to the aluminum foil decreases.
  • Mn (number average molecular weight) is a value calculated by converting the molecular weight measured by gel permeation chromatography (hereinafter referred to as "GPC") into polystyrene equivalent value.
  • component (A) examples include an oligomer in which a polybutadiene or hydrogenated polybutadiene skeleton and two or more (meth)acryloyl groups are bonded via urethane bonds (hereinafter referred to as "(A1)”), and an oligomer in which a polybutadiene or hydrogenated polybutadiene skeleton and two or more (meth)acryloyl groups are bonded via ester bonds (hereinafter referred to as "(A2)").
  • component (A), (A1) and (A2) are preferred, with (A1) being preferred in that the cured product will have excellent mechanical properties, and a urethane (meth)acrylate oligomer having two (meth)acryloyl groups being more preferred.
  • the urethane (meth)acrylate oligomer having two (meth)acryloyl groups in (A1) is preferably a urethane (meth)acrylate oligomer having two (meth)acryloyl groups obtained by reacting a polybutadiene diol or a hydrogenated polybutadiene diol (a) [hereinafter referred to as "compound (a)”], a diisocyanate compound (b) [hereinafter referred to as “compound (b)”], and a hydroxyl group-containing (meth)acrylate (c) [hereinafter referred to as "compound (c)”].
  • the Mn of the compound (a) is preferably from 500 to 10,000, and more preferably from 1,000 to 10,000.
  • a polyol other than the compound (a) may be used in combination, if necessary.
  • ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, hydrogenated bisphenol A, and the like can be mentioned.
  • various compounds can be used so long as they have two isocyanate groups in one molecule.
  • Specific examples include tolylene diisocyanate, hydrogenated tolylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, tolidine diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, and hydrogenated xylylene diisocyanate.
  • various compounds can be used so long as they are (meth)acrylates having a hydroxyl group.
  • Specific examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, caprolactone-modified products of 2-hydroxyethyl (meth)acrylate, and glycidol di(meth)acrylate.
  • hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate are preferred.
  • (A2) include an esterification reaction product of polybutadiene or hydrogenated polybutadiene containing two or more hydroxyl groups with (meth)acrylic acid or (meth)acrylic acid halide, and an ester exchange reaction product of polybutadiene or hydrogenated polybutadiene containing two or more hydroxyl groups with (meth)acrylate.
  • Component (A) is commercially available, and specific examples of (A1) include "TEA-1000” (polybutadiene-based urethane acrylate oligomer, Mn: about 3,000) manufactured by Nippon Soda Co., Ltd., "TEAI-1000” (hydrogenated polybutadiene-based urethane acrylate oligomer, Mn: about 3,000) manufactured by Nippon Soda Co., Ltd., "TE-2000” (polybutadiene-based urethane methacrylate oligomer) manufactured by Nippon Soda Co., Ltd., "CN9014” (polybutadiene-based urethane acrylate) manufactured by Sartomer, "CN301” (polybutadiene-based dimethacrylate) manufactured by Sartomer, “CN303” (polybutadiene-based dimethacrylate) manufactured by Sartomer, and “CN307” (polybutadiene diacrylate) manufactured by
  • (A2) examples include "BAC-45” (polybutadiene diacrylate, Mn: 5,000) manufactured by Osaka Organic Chemical Industry Ltd.
  • BAC-45 polybutadiene diacrylate, Mn: 5,000
  • TEAI-1000 TEA-1000
  • CN9014 CN307
  • BAC-45 acryloyl group
  • component (A) a (meth)acrylate oligomer having a polybutadiene hydrogenated skeleton is preferred, and a urethane (meth)acrylate having a polybutadiene hydrogenated skeleton is more preferred.
  • the content of the component (A) should be 10 to 80% by weight, preferably 10 to 60% by weight, and particularly preferably 15 to 50% by weight, of the combined total of the components (A), (B), and (D).
  • components (A) and (B) are referred to as “curable components”, or, when component (D) described below is included, components (A), (B) and (D) are referred to as “curable components”. If the content of component (A) is less than 10% by weight, the swelling rate of the cured product after immersion in the electrolyte increases, and the adhesive strength to the electrode foil after immersion in the electrolyte decreases. On the other hand, if the content exceeds 80% by weight, the adhesive strength of the cured product decreases.
  • Component (B) is a monofunctional (meth)acrylate containing the following components (B-1) and (B-2) as essential components.
  • Component (B-1) a monofunctional (meth)acrylate having an alkyl or alkenyl group in an ester residue having 10 to 30 carbon atoms;
  • Component (B-2) a monofunctional (meth)acrylate having an alicyclic hydrocarbon group and/or aromatic hydrocarbon group in an ester residue having 5 to 30 carbon atoms.
  • ester residue refers to a group represented by R obtained by removing the ester bond from the structural portion represented by -CO-O-R contained in the monofunctional (meth)acrylate.
  • the component (B-1) is a compound having an alkyl group or alkenyl group having 10 to 30 carbon atoms (hereinafter, these groups are collectively referred to as "alkyl group, etc.") and one (meth)acryloyl group.
  • examples of the ester residue having an alkyl group or the like having 10 to 30 carbon atoms include alkyl groups and alkenyl groups, and (poly)alkylene oxide groups having an alkyl group or an alkenyl group.
  • (poly)alkylene oxide group” means a group having one or more alkylene oxide units.
  • compounds having 9 or less carbon atoms, such as alkyl groups have the problem of increasing the swelling rate of the cured product after immersion in an electrolyte solution, while compounds having 31 or more carbon atoms, such as alkyl groups, have the problem of decreasing the adhesive strength to the electrode foil.
  • examples of the compound having an alkyl group include alkyl (meth)acrylates having an alkyl group having 10 to 30 carbon atoms, such as decyl (meth)acrylate, lauryl (meth)acrylate, hexadecyl (meth)acrylate, heptadecyl (meth)acrylate, n-stearyl (meth)acrylate, isostearyl (meth)acrylate, and behenyl (meth)acrylate.
  • Examples of the compound having an alkenyl group include 8-dodecenyl (meth)acrylate and 9-octadecenyl (meth)acrylate.
  • Examples of the (poly)alkylene oxide group having an alkyl group include an alkyl group-containing (poly)alkylene oxide group.
  • Examples of the compound having an alkyl group-containing (poly)alkylene oxide group include alkyl carbitol (meth)acrylates such as octadecyl carbitol (meth)acrylate. In this case, the number of repeating alkylene oxide units is preferably 1 to 8.
  • alkyl (meth)acrylates having a branched structure and 17 to 30 carbon atoms such as isostearyl (meth)acrylate, are preferred.
  • the component (B-2) is a compound having an ester residue with 5 to 30 carbon atoms, an alicyclic hydrocarbon group and/or an aromatic hydrocarbon group, and one (meth)acryloyl group.
  • examples of the alicyclic hydrocarbon group having 5 to 30 carbon atoms include cyclic alkyl groups and cyclic alkenyl groups.
  • examples of the alicyclic hydrocarbon group and aromatic hydrocarbon group include a (poly)alkylene oxide group having an alicyclic hydrocarbon group, and a (poly)alkylene oxide group having an aromatic hydrocarbon group.
  • the alicyclic hydrocarbon group and aromatic hydrocarbon group may be a functional group further having an alkyl group in a part of the cyclic skeleton.
  • examples of the compound having a cyclic alkyl group include (meth)acrylates having a cyclic alkyl group having 5 to 30 carbon atoms, such as cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, and t-butylcyclohexyl (meth)acrylate.
  • examples of the compound having a cyclic alkenyl group include cyclohexenyl (meth)acrylate and dicyclopentenyl (meth)acrylate.
  • An example of the compound having a cyclic alkyl group-containing (poly)alkylene oxide group is dicyclopentenyloxyethyl (meth)acrylate.
  • Examples of the monofunctional (meth)acrylate having an aromatic hydrocarbon group of the component (B-2) include aromatic monofunctional (meth)acrylates such as benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, o-phenylphenoxy (meth)acrylate, and p-cumylphenol ethylene (meth)acrylate.
  • aromatic monofunctional (meth)acrylates such as benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, o-phenylphenoxy (meth)acrylate, and p-cumylphenol ethylene (meth)acrylate.
  • Examples of the compound having a (poly)alkylene oxide group having an alkyl group-containing aromatic group include (meth)acrylates of alkylphenol alkylene oxide adducts having an alkyl group having 4 to 20 carbon atoms, such as (meth)acrylates of nonylphenol ethylene oxide adducts and (meth)acrylates of nonylphenol propylene oxide adducts.
  • the number of repeating alkylene oxide units is preferably 1 to 8.
  • the component (B) may contain a monofunctional (meth)acrylate other than the components (B-1) and (B-2) [hereinafter referred to as “component (B-3)”], but it is preferable that it does not contain such a monofunctional (meth)acrylate.
  • Examples of the component (B-3) include monofunctional (meth)acrylates having an alkyl group with 9 or less carbon atoms in the ester residue, such as n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, and n-octyl (meth)acrylate; monofunctional (meth)acrylates having an alkenyl group with 9 or less carbon atoms in the ester residue, such as pentenyl (meth)acrylate, butenyl (meth)acrylate, and hexenyl (meth)acrylate; monofunctional (meth)acrylates having a heterocycle, such as tetrahydrofurfuryl (meth)acrylate; 2-hydroxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, and the like.
  • Examples of such monofunctional (meth)acrylates include monofunctional (meth)acrylates having a hydroxyl group, such as 4-hydroxybutyl (meth)acrylate, and glycidyl (meth)acrylate; monofunctional (meth)acrylates having an epoxy group, such as glycidyl (meth)acrylate; monofunctional (meth)acrylates having a maleimide group, such as (meth)acrylolyloxyethylhexahydrophthalimide; and monofunctional (meth)acrylates containing an alkoxyl group, such as 3-(meth)acryloxypropylmethyldimethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropylmethyldiethoxysilane, and 3-(meth)acryloxypropyltriethoxysilane.
  • monofunctional (meth)acrylates having a hydroxyl group such as 4-hydroxybutyl (meth)acrylate, and glycid
  • the content of component (B) must be 20 to 90% by weight, preferably 40 to 90% by weight, and more preferably 50 to 85% by weight, based on 100% by weight of the total amount of the curable components. Furthermore, the content of (B-1) is 15 to 70% by weight, preferably 30 to 70% by weight, based on 100% by weight of the total amount of the curable components. If the content of the (B-1) component is less than 15% by weight, the swelling ratio of the cured product after immersion in the electrolyte increases, and the adhesive strength to the electrode foil after immersion in the electrolyte decreases. On the other hand, if the content exceeds 70% by weight, the adhesive strength of the cured product decreases.
  • the content of (B-2) is 5 to 50% by weight, preferably 10 to 40% by weight, based on 100% by weight of the total amount of the curable components. If the content of the (B-2) component is less than 5% by weight, the swelling ratio of the cured product after immersion in the electrolyte increases, and the adhesive strength to the electrode foil after immersion in the electrolyte decreases. On the other hand, if the content exceeds 70% by weight, the adhesive strength of the cured product decreases. It is preferable that the (B-3) component is not contained, and when it is contained, its content is preferably 8% by weight or less based on 100% by weight of the total amount of the curable components. By making the content ratio 8% by weight or less, the swelling rate of the cured product after immersion in an electrolyte solution can be reduced.
  • Component (C) is a photoradical polymerization initiator.
  • the component (C) is a compound that generates radicals when irradiated with active energy rays and initiates polymerization of a compound having an ethylenically unsaturated group.
  • component (C) examples include benzil dimethyl ketal, benzil, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, oligo[2-hydroxy-2-methyl-1-[4-1-(methylvinyl)phenyl]propanone, 2-hydroxy-1-[4-[4-(2-hydroxy-2-methyl-propionyl)benzyl]phenyl]-2-methylpropanone, propan-1-one, 2-methyl-1-[4-(methylthio)]phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one, 2-dimethylamino
  • the content of component (C) is 0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight, and more preferably 0.5 to 5 parts by weight, per 100 parts by weight of the total curable components. If the content of component (C) is less than 0.1 part by weight, the photocurability of the composition will decrease, and if it exceeds 20 parts by weight, the solvent resistance of the cured product after immersion in the electrolyte will decrease.
  • composition of the present invention contains the above-mentioned components (A), (B), and (C) as essential components, but can also contain various components that are commonly used as sealing materials.
  • the compound include a compound having an ethylenically unsaturated group other than the components (A) and (B) (hereinafter referred to as “component (D)”), a filler (hereinafter referred to as “component (E)”), a photoacid generator, a silane coupling agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a tackifier, a thiol compound, a plasticizer, a fluorescent agent, a colorant, a pigment, a dispersant and/or an antistatic agent.
  • Component (D) is a compound having an ethylenically unsaturated group and is a compound other than components (A) and (B).
  • the ethylenically unsaturated group in component (D) include a (meth)acryloyl group, a (meth)acrylamide group, a vinyl group, and an allyl group. Of these, a (meth)acryloyl group is preferred because of its excellent copolymerizability with other components.
  • component (D) Various compounds having an ethylenically unsaturated group can be used as component (D), such as compounds having two (meth)acryloyl groups in one molecule (hereafter referred to as “bifunctional (meth)acrylates”) and compounds having three or more (meth)acryloyl groups (hereafter referred to as “tri- or higher functional (meth)acrylates”).
  • bifunctional (meth)acrylates compounds having two (meth)acryloyl groups in one molecule
  • tri- or higher functional (meth)acrylates compounds having three or more (meth)acryloyl groups
  • bifunctional (meth)acrylate examples include di(meth)acrylates having a divalent alkyl group, such as ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, tetramethylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, and nonanediol di(meth)acrylate; polyalkylene glycol di(meth)acrylates, such as polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, and polytetramethylene glycol di(meth)acrylate; di(meth)acrylates having an alicyclic group, such as tricyclodecane dimethylol di(meth)acrylate; di(meth)acrylates of alkylene oxide adducts of bisphenol A; and urethane di(meth)acrylate.
  • trifunctional or higher (meth)acrylates include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and tris(2-(meth)acryloyloxyethyl)isocyanurate.
  • component (D) is preferably 8% by weight or less, and more preferably 0 to 5% by weight, based on 100% by weight of the curable component.
  • Component (E) is a filler.
  • the component (E) include metal oxides such as silica and alumina, and polymer fine particles such as polyethylene fine particles, polypropylene fine particles, crosslinked acrylic fine particles, and crosslinked polystyrene fine particles.
  • the particle size of the fine particles is preferably 0.1 to 200 ⁇ m, and more preferably 1 to 100 ⁇ m.
  • component (E) when applying by inkjet or spray, it is preferable to not include the (E) component or to keep it to a very small amount.
  • the content of component (E) is preferably 0 to 60% by weight based on 100% by weight of the composition.
  • the present invention relates to a photocurable composition for lithium-ion secondary battery sealing material, which contains the above-mentioned components (A) to (C) in the above-mentioned ratios.
  • the proportion of the curable component in the composition is preferably 40 to 99.9% by weight, and more preferably 50 to 99.5% by weight, based on 100% by weight of the composition.
  • the total content of the curable component and the component (E) in 100 weight% of the composition is preferably 80 to 99.9 weight%, more preferably 90 to 99.9 weight%, and even more preferably 95 to 99.9 weight%.
  • the composition can be produced by stirring and mixing the above-mentioned components (A) to (C) and, if necessary, other components, in a conventional manner. In this case, heating may be performed as necessary.
  • the heating temperature may be appropriately set depending on the components, base material, purpose, etc. used, but is preferably 30 to 80°C.
  • the viscosity of the composition may be adjusted depending on the coating method, but is preferably 10 to 100,000 mPa ⁇ s at 25° C., and more preferably 100 to 10,000 mPa ⁇ s.
  • the method of using the composition of the present invention may be a conventional method, and includes, for example, a method including a step of applying or injecting the composition of the present invention to a material constituting a lithium ion secondary battery, and a step of irradiating the applied or injected composition with light to cure it.
  • Materials that make up a lithium-ion secondary battery include a current collector foil, a positive electrode active material, a negative electrode active material, a separator, and an electrolyte.
  • collector foil examples include aluminum and copper.
  • the active material may be appropriately selected depending on the type of battery.
  • the positive electrode active material may be a lithium-transition metal composite oxide, a lithium-transition metal phosphate compound, or a lithium-transition metal sulfate compound.
  • the negative electrode active material include metals such as Si and Sn; metal oxides such as TiO, Ti2O3 , TiO2 , SiO2 , SiO, and SnO2 ; composite oxides of lithium and transition metals; Li-Pb alloys, Li-Al alloys; and carbon materials such as graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, and hard carbon.
  • Separators include microporous membrane films made of polyolefins such as polyethylene and polypropylene, multilayer films of porous polyethylene film and polypropylene, nonwoven fabrics made of polyester fibers, aramid fibers, glass fibers, etc., and those with ceramic particles such as silica, alumina, and titania attached to their surfaces.
  • electrolyte examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, and a mixture of these may also be used.
  • Application and injection methods may be any known method, including the use of a dispenser, jet dispenser, screen printing, natural coater, knife belt coater, floating knife, knife over roll, knife on blanket, spray, dip, kiss roll, squeeze roll, reverse roll, air blade, curtain flow coater, comma coater, gravure coater, microgravure coater, die coater, and curtain coater.
  • Examples of light include visible light and ultraviolet light, with ultraviolet light being preferred since inexpensive equipment can be used.
  • various light sources can be used, such as pressurized or high-pressure mercury lamps, metal halide lamps, xenon lamps, electrodeless discharge lamps, carbon arc lamps, and LEDs.
  • high-pressure mercury lamps, metal halide lamps, and LEDs are preferred.
  • the amount of ultraviolet light irradiation is preferably 50 to 5,000 mJ/cm 2 in the UV-A region (near 365 nm), and more preferably 100 to 3,000 mJ/cm 2.
  • the illuminance of ultraviolet light is preferably 10 to 5,000 mW/cm 2 in the UV-A region (near 365 nm), and more preferably 100 to 2,000 mW/cm 2 .
  • FIG. 1 is a cross-sectional view of an example of a bipolar type lithium ion secondary battery.
  • a positive electrode active material 12, a separator 13, and a negative electrode active material 14 are disposed in a space sandwiched between current collector foils 11.
  • An electrolyte solution is present in the space between the positive electrode active material 12, the separator 13, and the negative electrode active material 14.
  • the outer periphery is sealed by a sealing member 15 which is a cured product of a composition to prevent leakage of the electrolyte solution.
  • the composition of the present invention is particularly suitable as a sealing material for lithium ion secondary batteries having such a structure.
  • Fig. 1 shows an example of two layers for ease of understanding, in reality, a structure having several tens of layers may be used.
  • FIG. 2 shows an example in which the battery constituent materials are laminated, the composition of the present invention is applied from the side so as to fill the laminate, and light is irradiated from the side.
  • FIG. 2(1) shows an example of a process in which battery constituent materials are laminated (21 in FIG. 2) and then the composition of the present invention is applied from the side so as to fill the laminate.
  • Specific examples of the application method include a dispenser, a jet dispenser, an inkjet, a spray, etc.
  • Figure 2 (1) shows an example in which a 22 dispenser is used.
  • the electrolyte can be injected into the inside with a syringe or the like after the composition has been cured.
  • the composition of the present invention can be injected again from above the hole with a dispenser or the like, and then photocured. This allows the hole of the injection port to be sealed.
  • the composition may be applied to three of the four side surfaces and cured, and the electrolyte may be poured from the open side surface while leaving the remaining side open. After pouring a predetermined amount of electrolyte, the composition may be applied to the last side surface and cured, thereby sealing all four sides.
  • FIG. 3 shows an example of a method for producing a lithium ion secondary battery by applying and curing a composition in the process of laminating battery constituent materials.
  • a current collector foil is prepared having active material (12 positive electrode active material or 14 negative electrode active material) applied to the center portion of both sides.
  • the composition (15') of the present invention is applied to the outer periphery as shown in 32.
  • the application method is preferably screen printing or a dispenser.
  • the separator 13 is placed over the substrate as shown at 33, and ultraviolet (UV) rays are irradiated from above by the ultraviolet irradiator 23 as shown at 34.
  • a polyolefin-based material is used for the separator 13, which is preferable because it transmits ultraviolet rays.
  • the composition (15') of the present invention is applied to the outer peripheral portion, and as shown in 36, ultraviolet rays are irradiated from above by the ultraviolet irradiation device 23 to cause curing.
  • a current collector foil having active material (12 positive electrode active material or 14 negative electrode active material) applied to the center portion of both sides is laminated.
  • the composition can be bonded by applying pressure at room temperature. If the composition does not have adhesive properties, it can be bonded by applying pressure with a press at about 60 to 100° C. The temperature at this time is lower than that of a heat-sealing sealant, so wrinkles and warping due to thermal expansion can be suppressed.
  • the electrolyte can be injected in the same manner as described in Fig. 2. Alternatively, ultraviolet light may be irradiated between 32 and 33, and the electrolyte may be injected before laminating the separator 13 and before laminating the electrode foil 37.
  • Production Example 1 [Production of bifunctional urethane acrylate having a hydrogenated polybutadiene skeleton] A 3 L four-neck separable flask was charged with 962 g (0.48 moles of hydroxyl groups) of GI-3000 (hydroxyl value 28.0 mg KOH/g, Mn approximately 4,000) manufactured by Nippon Soda Co., Ltd.
  • IBXA isobornyl acrylate
  • HBA 4-hydroxybutyl acrylate
  • the resulting product was a mixture containing 70% of a urethane acrylate having a hydrogenated polybutadiene skeleton (hereinafter referred to as "PUA-1") and 30% of IBXA as a diluent monomer.
  • the product was analyzed by GPC, and the peak of the PUA-1 component was confirmed to be distinct from that of the monomer component.
  • the polystyrene-equivalent molecular weight of the PUA-1 component was Mn 19,000 and Mw 34,500.
  • Production Example 2 [Production of bifunctional urethane acrylate having hydrogenated polybutadiene skeleton] The same procedure as in Production Example 1 was repeated except that IBXA in Production Example 1 was changed to isostearyl acrylate (hereinafter, referred to as "ISTA"), and a mixture containing 70% PUA-1 and 30% ISTA was obtained.
  • IBXA isostearyl acrylate
  • the flask was equipped with a thermometer, a gas inlet tube, a dropping funnel, and a reflux condenser, and the contents were stirred while blowing in a mixed gas of oxygen and nitrogen (5% oxygen), and further refluxed in an oil bath at 120° C. for 2 hours.
  • This solution was transferred to a separating funnel and washed with pure water three times.
  • 0.012 g of 4-methoxyphenol was added as a polymerization inhibitor, and the mixture was stirred at 80°C while blowing in dry air, and gradually distilled off under reduced pressure.
  • GI-AA bifunctional acrylate
  • the molecular weight of GI-AA was Mn of 3,000 and Mw of 4,200.
  • Examples 1 to 7 and Comparative Examples 1 to 10 1) Production of photocurable composition for lithium ion secondary battery sealing material Each component shown in Tables 1 and 2 below was blended in the ratio shown in Tables 1 and 2, and stirred and mixed in a conventional manner to obtain a photocurable composition for lithium ion secondary battery sealing material. In preparing the composition, heating to about 80° C. was performed as necessary.
  • the number of parts of PUA-1 in the table indicates the number of parts of only the urethane acrylate component contained in the product of Production Example 1 or Production Example 2. Furthermore, the number of parts of component (B) includes the component (B) contained in the product of Production Example 1, and the number of parts of component (B) indicates the total number of parts of component (B) contained in the product of Production Example 1 and component (B) added later.
  • ⁇ (C) Component ONE ⁇ -hydroxyalkylphenone photopolymerization initiator (ESACURE ONE manufactured by IGM Resins)
  • O-184 1-hydroxy-cyclohexyl-phenyl-ketone (Omnirad 184, manufactured by IGM Resins)
  • O-651 2,2-dimethoxy-1,2-diphenylethan-1-one (Omnirad 651, manufactured by IGM Resins)
  • compositions obtained above were used to evaluate initial peel strength, peel strength after immersion in an electrolyte solvent, and swelling after immersion in an electrolyte solvent according to the following methods. The results are shown in Tables 1 and 2.
  • the curing conditions were as follows: a 365 nm LED (surface-type LED irradiator manufactured by CCS Corporation) was used, and irradiation was performed from the PET film side for 5 seconds with an illuminance of 1000 mW/ cm2 (measured with a C12684 illuminometer manufactured by Hamamatsu Photonics K.K.). The cured sample was cut into a 10 mm wide strip, the PET film side was attached to a metal plate with double-sided tape, the metal foil was bent 180° and slightly peeled off, and the 180° peel strength was measured using an Instron 5564 (manufactured by Instron Japan Co., Ltd.). The tensile speed was 60 mm/s. Measurement results of 1 N/cm or less were marked x, 1 N/cm to 5 N/cm were marked ⁇ , and 5 N/cm or more were marked ⁇ .
  • composition obtained above was poured into a silicone mold cut to an arbitrary size and 1 mm thick, and then laminated with a 75 ⁇ m thick silicone-treated release PET film (HTA manufactured by Fujimori Kogyo Co., Ltd.) to eliminate polymerization inhibition due to oxygen, and photocured.
  • the curing conditions were 365 nm LED (surface type LED irradiator manufactured by CCS Co., Ltd.) and irradiated from both sides for 5 seconds at an illuminance of 1000 mW/cm 2 (measured with a C12684 illuminometer manufactured by Hamamatsu Photonics Co., Ltd.).
  • the PET film was then peeled off to obtain a cured product.
  • the compositions of the present invention were excellent in the initial peel strength and the peel strength after immersion in the electrolyte solvent against aluminum and copper, and further, had a small swelling ratio after immersion in the electrolyte solvent.
  • the comparative compositions not containing the component (B-1) were as follows.
  • the composition of Comparative Example 1 had a significant decrease in initial peel strength against aluminum and peel strength after immersion in an electrolyte solvent.
  • the composition of Comparative Example 5 had a significant decrease in initial peel strength against aluminum and copper and peel strength after immersion in an electrolyte solvent.
  • the composition of Comparative Example 6 had no problem with the initial peel strength against aluminum and copper, but the peel strength after immersion in an electrolyte solvent was significantly decreased and the swelling ratio after immersion in an electrolyte solvent was large.
  • the compositions of Comparative Examples 2 to 4 not containing the component (B-2) showed a significant decrease in the initial peel strength to aluminum and copper and in the peel strength after immersion in the electrolyte solvent.
  • the comparative compositions not containing the component (A) were as follows.
  • the compositions of Comparative Examples 7 and 8 showed a slight decrease in initial peel strength against aluminum and copper, a large decrease in peel strength after immersion in an electrolyte solvent, and a large swelling ratio after immersion in an electrolyte solvent.
  • Comparative Example 9 showed a large decrease in initial peel strength against aluminum and copper and peel strength after immersion in an electrolyte solvent.
  • the composition of Comparative Example 10 showed no problem in initial peel strength against aluminum and copper, but a large decrease in peel strength after immersion in an electrolyte solvent.
  • the present invention relates to a photocurable composition for use as a sealing material for lithium ion secondary batteries, which can be preferably used in the manufacture of lithium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明のリチウムイオン二次電池シール材用光硬化型組成物は、(A):ポリブタジエン及び/又は水素添加ポリブタジエンの骨格を有し、数平均分子量が1000以上である2個の(メタ)アクリロイル基を有する化合物、(B-1):エステル残基の炭素数が10~30であるアルキル基又はアルケニル基を有する単官能(メタ)アクリレート、(B-2):エステル残基の炭素数が5~30であり、脂環式炭化水素基及び/又は芳香族炭化水素基を有する単官能(メタ)アクリレート、及び(C):光ラジカル重合開始剤を特定割合で含有する。

Description

リチウムイオン二次電池シール材用光硬化型組成物
 本発明は、リチウムイオン二次電池シール材用光硬化型組成物に関し、リチウムイオン二次電池の製造に好ましく使用できるものである。
 尚、本明細書においては、アクリレート及び/又はメタクリレートを(メタ)アクリレートと、アクリロイル基及び/又はメタクリロイル基を(メタ)アクリロイル基と、アクリル酸及び/又はメタクリル酸を(メタ)アクリル酸と表す。
 近年、環境問題をはじめとする種々の問題解決に向けて、電気自動車の普及が期待されている。
 電気自動車の普及においては、安い価格に加えて、ガソリン車に劣らない馬力、及び航続可能距離が必要とされて二次電池の開発が鋭意行われている。それらの中でも、軽量で高いエネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、プラグインハイプリッド自動車(PHV)、及びハイブリッド自動車(HV)等の車両の駆動用高出力電源として好ましく、今後ますます需要が拡大することが予想される。
 このような状況の中、リチウムイオン二次電池の性能を向上するべく、様々な検討がなされている。
 その中の一つとして、集電体の一方の面が正極、他方の面が負極である、いわゆるバイポーラ型の電池がある(非特許文献1)。バイポーラ型電池を積層すると、コンパクトで高電圧の電池を製造することができる。このようなバイポーラ型電池の単セルは、平面構造を有しており、その端部に、電解液を封止するためのシール材が必要となる。
 バイポーラ型リチウムイオン二次電池の端部を封止するためのシール材としては、種々の検討がなされている。
 例えば、特許文献1には、バイポーラ型リチウムイオン二次電池の構成が図示されており、シール部材としては、正極、負極集電体との接着性と電解液に対する耐久性があれば特に限定されないが、高分子材料、特に熱硬化性樹脂が好ましいと記載されている(特許文献1:[0047])。
 特許文献2には、バイポーラ型リチウムイオン二次電池の構成が図示されており、シール部材としては、熱融着性のフィルムが示されている。又、熱融着によって生じる樹脂集電体の皺を、補強部材によって解決できることが示されている。
 特許文献3には、積層電極体を備えた全固体電池の側面を固定、封止する材料として好適に使用できる光硬化型組成物が開示されている。
 特許文献4には、リチウムイオン電池の電極保護剤にも好適に使用できる、活性エネルギー線硬化型コーティング剤組成物が開示されている。
日経エレクトロニクス2017年9月号、13~15頁 特開2017-103219号公報 特開2017-16825号公報 特開2022-15477号公報 国際公開2013/157624号パンフレット
 しかしながら、従来のバイポーラ型リチウムイオン二次電池のシール材としては、種々の問題を有するものであった。
 特許文献1で好ましい材料として例示されている熱硬化性樹脂は、硬化するまでに速くても数分間、通常は数10分から数時間の時間を要するため、量産性において課題がある。
 特許文献2に記載の熱融着性フィルムには、短時間接着の長所はあるものの、熱を加えて高温にすることにより、皺が発生してしまうという問題を有している。この文献では、当該問題を補強部材により解決しているが、この場合、製品構成や製造プロセスが複雑になってしまうという別の問題が発生してしまう。
 特許文献3では、積層電極体を備えた全固体電池の側面を固定、封止するのに好適な光硬化型組成物が開示されている。光硬化型組成物を適用することで、熱を加えることなく短時間硬化が可能となり、量産性が向上する。
 しかし、ここで例示された全固体電池には電解液が含まれないため、ここで挙げられた光硬化型組成物が、電解液を含むリチウムイオン二次電池のシール材として適用できるか否かは不明である。
 特許文献4には、アルミ箔(正極箔)に対する密着性に優れ、電解液に使用される溶剤に浸漬した後でも外観や密着性に悪化がみられない光硬化型コーティング剤組成物が開示されているが、シール材として必要な性能は不明である。すなわち、電極基材との剥離接着力、電解液に浸漬した後の電極基材との剥離接着力、電解液浸漬による硬化物の膨潤率については、言及されていない。
 そこで、本発明者らが、特許文献4で開示された組成物を評価した結果、溶剤浸漬後のアルミ箔(正極箔)及び/又は銅箔(負極箔)との剥離接着力は、シール材として使用するには、必ずしも十分とはいえないことが分かった。
 本発明者らは、常温塗布と短時間硬化が可能で、電極基材との剥離接着力が電解液浸漬前後において良好であり、電解液浸漬による膨潤率も小さい、リチウムイオン二次電池シール材用光硬化型組成物を見出すため鋭意検討を行ったのである。
 本発明者らは、前記の課題を解決するため種々の検討を行った結果、ポリブタジエン及び/又は水素添加ポリブタジエンの骨格を有し、特定分子量を有する2個の(メタ)アクリロイル基を有する化合物、特定2種の化合物を含む1分子中に1個の(メタ)アクリロイル基を有する化合物(以下、「単官能(メタ)アクリレート」という)、及び光ラジカル重合開始剤を特定割合で含む組成物が、常温塗布と短時間硬化が可能で、電極基材との剥離接着力が電解液浸漬前後において良好であり、電解液浸漬による膨潤率も小さいことを見出し、本発明を完成した。
 以下、本発明を詳細に説明する。
 本発明の組成物によれば、常温塗布と短時間硬化が可能で、電極基材との剥離接着力が電解液浸漬前後において良好であり、電解液浸漬による膨潤率も小さい。
図1は、バイポーラー型リチウムイオン二次電池の断面図の一例を示した図である。 図2は、本発明の組成物を使用して、リチウムイオン二次電池を製造する方法の一例を示した図である。 図3は、本発明の組成物を使用して、リチウムイオン二次電池を製造する方法の一例を示した図である。
 本発明は、以下の通りである。
〔1〕(A)成分:1分子中に、ポリブタジエン及び/又は水素添加ポリブタジエンの骨格を有し、数平均分子量が1000以上である2個の(メタ)アクリロイル基を有する化合物
(B)成分:下記(B-1)成分及び(B-2)成分を必須成分として含む単官能(メタ)アクリレート
・(B-1)成分:エステル残基の炭素数が10~30であるアルキル基又はアルケニル基を有する単官能(メタ)アクリレート
・(B-2)成分:エステル残基の炭素数が5~30であり、脂環式炭化水素基及び/又は芳香族炭化水素基を有する単官能(メタ)アクリレート
(C)成分:光ラジカル重合開始剤
を含有し、
  硬化性成分の合計100重量%中に、(A)成分を10~80重量%、及び(B)成分を20重量%~90重量%含み、
 (B-1)成分を硬化性成分の合計100重量%に対して15~70重量%、(B-2)成分を硬化性成分の合計100重量%に対して5~50重量%含み、
 硬化性成分の合計100重量部に対して、(C)成分を0.1~20重量部含む
リチウムイオン二次電池シール材用光硬化型組成物。
〔2〕前記(A)成分が、数平均分子量5,000~50,000のウレタン(メタ)アクリレートである〔1〕に記載のリチウムイオン二次電池シール材用光硬化型組成物。
〔3〕前記(B-1)成分が、分岐構造を有する炭素数17~30のアルキル(メタ)アクリレートを含む〔1〕又は〔2〕に記載のリチウムイオン二次電池シール材用光硬化型組成物。
〔4〕リチウムイオン二次電池の構成材料の側面に、前記〔1〕~〔3〕のいずれかに記載のリチウムイオン二次電池シール材用光硬化型組成物を塗布又は注入した後、塗布面又は注入面に光照射するリチウムイオン二次電池の製造方法。
〔5〕リチウムイオン二次電池の構成材料の側面が、前記〔1〕~〔3〕のいずれかに記載のリチウムイオン二次電池シール材用光硬化型組成物の硬化物によりシールされてなるリチウムイオン二次電池。
 以下、(A)~(C)成分、その他の成分、組成物、及び使用方法について説明する。
 尚、以下の(A)~(C)成分の説明で挙げた具体的化合物は、当該化合物を単独で使用しても良く、又は2種類以上組合せて使用しても良い。
1.(A)成分
 (A)成分は、1分子中に、ポリブタジエン系の骨格及び/又は水素添加ポリブタジエン系の骨格を有し、Mnが1,000以上である2個以上の(メタ)アクリロイル基を有する化合物である。
 (A)成分中の(メタ)アクリロイル基としては、側鎖又は末端に有して良く、好ましくは末端に(メタ)アクリロイル基を有する化合物であり、特に好ましくは、両末端に(メタ)アクリロイル基を有する化合物である。
 (A)成分のMn(数平均分子量)は、1,000以上であり、好ましくは5,000~50,000であり、より好ましくは10,000~30,000である。
 Mnが1,000に満たない化合物を使用すると、アルミ箔との接着力が低下してしまう。
 尚、本発明において、Mn(数平均分子量)とは、ゲルパーミエーションクロマトグラフィー(以下、「GPC」という)により測定した分子量をポリスチレン換算した値である。
 (A)成分としては、ポリブタジエン又は水素化ポリブタジエン骨格と2個以上の(メタ)アクリロイル基がウレタン結合により結合したオリゴマー〔以下、「(A1)」という〕、ポリブタジエン又は水素化ポリブタジエン骨格と2個以上の(メタ)アクリロイル基がエステル結合により結合したオリゴマー〔以下、「(A2)」という〕等が挙げられる。
 (A)成分としては、(A1)及び(A2)が好ましく、硬化物の機械特性が優れる点で、(A1)が好ましく、(メタ)アクリロイル基を2個有するウレタン(メタ)アクリレートオリゴマーがより好ましい。
 さらに、(A1)における2個の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートオリゴマーとしては、ポリブタジエンのジオール又は水素化ポリブタジエンのジオール(a)〔以下、「化合物(a)」という〕、ジイソシアネート化合物(b)〔以下、「化合物(b)」という〕及び水酸基含有(メタ)アクリレート(c))〔以下、「化合物(c)」という〕を反応させて得られる(メタ)アクリロイル基を2個有するウレタン(メタ)アクリレートオリゴマーが好ましい。
 化合物(a)のMnとしては、500~10,000が好ましく、より好ましくは1,000~10,000である。
 本発明においては、化合物(a)に加え、必要に応じて化合物(a)以外のその他のポリオールを併用しても良い。
 例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、及び水素添加ビスフェノールA等が挙げられる。
 化合物(b)としては、1分子中にイソシアネート基を2個有する化合物であれば種々の化合物を使用することができる。
 具体的には、トリレンジイソシアネート、水添トリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、トリジンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、及び水添キシリレンジイソシアネート等を挙げることができる。
 化合物(c)としては、水酸基を有する(メタ)アクリレートであれば種々の化合物を使用することができる。
 具体例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートのカプロラクトン変性物及びグリシドールジ(メタ)アクリレート等が挙げられる。
 これらの中でも、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートが好ましい。
 (A2)の具体例としては、2個以上の水酸基を含有するポリブタジエン又は水素化ポリブタジエンと(メタ)アクリル酸又は(メタ)アクリル酸ハライドのエステル化反応物、2個以上の水酸基を含有するポリブタジエン又は水素化ポリブタジエンと(メタ)アクリレートのエステル交換反応物が挙げられる。
 (A)成分は市販されており、(A1)の具体例としては、日本曹達(株)製「TEA-1000」(ポリブタジエン系ウレタンアクリレートオリゴマー、Mn:約3,000)、日本曹達(株)製「TEAI-1000」(水素添加ポリブタジエン系ウレタンアクリレートオリゴマー、Mn:約3,000)、日本曹達(株)製「TE-2000」(ポリブタジエン系ウレタンメタクリレートオリゴマー)、サートマー社製「CN9014」(ポリブタジエン系ウレタンアクリレート)、サートマー社製「CN301」(ポリブタジエン系ジメタクリレート)、サートマー社製「CN303」(ポリブタジエン系ジメタクリレート)、サートマー社製「CN307」(ポリブタジエン系ジアクリレート)等が挙げられる。
 (A2)の具体例としては、大阪有機化学工業(株)製「BAC-45」(ポリブタジエン系ジアクリレート、Mn:5,000)等が挙げられる。
 これら化合物の中でも、アクリロイル基を有する「TEAI-1000」、「TEA-1000」、「CN9014」、「CN307」及び「BAC-45」は光硬化性が良好な点で好ましい。
 (A)成分としては、ポリブタジエンが水素添加された骨格を有する(メタ)アクリレートオリゴマーが好ましく、ポリブタジエンが水素添加された骨格を有するウレタン(メタ)アクリレートがより好ましい。
 (A)成分の含有割合は、(A)成分及び(B)成分の合計量100重量%中に、後記(D)成分を含む場合は、(A)成分、(B)成分及び(D)成分の合計量100重量%中に10~80重量%とする必要があり、好ましくは10~60重量%であり、特に好ましくは15~50重量%である。
 尚、以下において、(A)成分及び(B)成分を、又は、後記(D)成分を含む場合は、(A)成分、(B)成分及び(D)成分を、「硬化性成分」という。
 (A)成分の含有割合が10重量%に満たないと、電解液浸漬後の硬化物の膨潤率が増加して、電解液浸漬後の電極箔との接着力が低下してしまい、一方、80重量%を超えると、硬化物の接着力が低下してしまう。
2.(B)成分
 (B)成分は、下記(B-1)成分及び(B-2)成分を必須成分として含む単官能(メタ)アクリレートである。
・(B-1)成分:エステル残基の炭素数が10~30であるアルキル基又はアルケニル基を有する単官能(メタ)アクリレート
・(B-2)成分:エステル残基の炭素数が5~30である脂環式炭化水素基及び/又は芳香族炭化水素基を有する単官能(メタ)アクリレート
 ここで、記載「エステル残基」とは、単官能(メタ)アクリレートに含まれる-CO-O-Rで示される構造部分からエステル結合を除いたRで示される基を表す。
 (B-1)成分は、炭素数が10~30のアルキル基又はアルケニル基(以下、これらの基をまとめて「アルキル基等」という)を有し、1個の(メタ)アクリロイル基を有する化合物である。
 (B)成分において、炭素数10~30のアルキル基等を有するエステル残基の例としては、アルキル基、及びアルケニル基、並びに、アルキル基又はアルケニル基を有する(ポリ)アルキレンオキサイド基等が挙げられる。
 尚、「(ポリ)アルキレンオキサイド基」とは、アルキレンオキサイド単位を1個又は2個以上有する基を意味する。
 (B-1)成分において、アルキル基等の炭素数が9以下の化合物は、電解液浸漬後の硬化物の膨潤率が増加してしまうという問題がある。一方、アルキル基等の炭素数が31以上の化合物は、電極箔との接着力が低下してしまうという問題がある。
 (B-1)成分において、アルキル基を有する化合物の例としては、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、及びベヘニル(メタ)アクリレート等の炭素数10~30のアルキル基を有するアルキル(メタ)アクリレート等が挙げられる。
 アルケニル基を有する化合物の例としては、8-ドデセニル(メタ)アクリレート、9-オクタデセニル(メタ)アクリレート等が挙げられる。
 アルキル基等を有する(ポリ)アルキレンオキサイド基の例としては、アルキル基含有(ポリ)アルキレンオキサイド基等が挙げられる。
 アルキル基含有(ポリ)アルキレンオキサイド基を有する化合物の例としては、オクタデシルカルビトール(メタ)アクリレート等のアルキルカルビトール(メタ)アクリレート等が挙げられる。
 この場合のアルキレンオキサイド単位の繰り返し数としては1~8が好ましい。
 (B-1)成分としては、イソステアリル(メタ)アクリレート等の分岐構造を有する炭素数17~30のアルキル(メタ)アクリレートが好ましい。
 (B-2)成分は、エステル残基の炭素数が5~30であり、脂環式炭化水素基及び/又は芳香族炭化水素基を有し、1個の(メタ)アクリロイル基を有する化合物である。
 (B-2)成分において、炭素数が5~30である脂環式炭化水素基としては、環状アルキル基及び環状アルケニル基が挙げられる。
 又、脂環式炭化水素基及び芳香族炭化水素基の例としては、脂環式炭化水素基を有する(ポリ)アルキレンオキサイド基、及び芳香族炭化水素基を有する(ポリ)アルキレンオキサイド基であっても良い。
 脂環式炭化水素基及び芳香族炭化水素基としては、環状骨格の一部にさらにアルキル基を有している官能基であっても良い。
 (B-2)成分の脂環式炭化水素基を有する化合物において、環状アルキル基を有する化合物の例としては、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、及びt-ブチルシクロヘキシル(メタ)アクリレート等の炭素数5~30の環状アルキル基を有する(メタ)アクリレート等が挙げられる。
 環状アルケニル基を有する化合物の例としては、シクロヘキセニル(メタ)アクリレート及びジシクロペンテニル(メタ)アクリレート等が挙げられる。
 環状アルキル基含有(ポリ)アルキレンオキサイド基を有する化合物の例としては、ジシクロペンテニルオキシエチル(メタ)アクリレート等を挙げることができる。
 (B-2)成分の芳香族炭化水素基を有する単官能(メタ)アクリレートの例としては、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、o-フェニルフェノキシ(メタ)アクリレート及びp-クミルフェノールエチレン(メタ)アクリレート等の芳香族単官能(メタ)アクリレート等が挙げられる。
 アルキル基含有芳香族基を有する(ポリ)アルキレンオキサイド基を有する化合物の例としては、ノニルフェノールエチレンオキサイド付加物の(メタ)アクリレート及びノニルフェノールプロピレンオキサイド付加物の(メタ)アクリレート等の炭素数4~20のアルキル基を有するアルキルフェノールアルキレンオキサイド付加物の(メタ)アクリレート等が挙げられる。
 この場合のアルキレンオキサイド単位の繰り返し数としては1~8が好ましい。
 (B)成分としては、前記(B-1)成分及び(B-2)成分以外の単官能(メタ)アクリレート〔以下、「(B-3)成分」という〕を含んでいても良いが、含まないことが好ましい。
 (B-3)成分の例としては、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、及びn-オクチル(メタ)アクリレート等のエステル残基の炭素数が9以下のアルキル基を有する単官能(メタ)アクリレート;ペンテニル(メタ)アクリレート、ブテニル(メタ)アクリレート、及びヘキセニル(メタ)アクリレート等のエステル残基の炭素数が9以下のアルケニル基を有する単官能(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する単官能(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する単官能(メタ)アクリレート;グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレート;(メタ)アクリロリルオキシエチルヘキサヒドロフタルイミド等のマレイミド基を有する単官能(メタ)アクリレート;並びに3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン及び3-(メタ)アクリロキシプロピルメチルジエトキシシラン及び3-(メタ)アクリロキシプロピルトリエトキシシラン等のアルコキシル基含有単官能(メタ)アクリレート等を挙げることができる。
 (B)成分の含有割合は、硬化性成分合計量100重量%中に20~90重量%とする必要があり、好ましくは40~90重量%、さらに好ましくは50~85重量%である。
 さらに、(B-1)の含有割合は、硬化性成分合計量100重量%中に15~70重量%であり、好ましくは30~70重量%である。
 (B-1)成分の含有割合が15重量%に満たないと、電解液浸漬後の硬化物の膨潤率が増加して、電解液浸漬後の電極箔との接着力が低下してしまい、一方、70重量%を超えると、硬化物の接着力が低下してしまう。
 さらに、(B-2)の含有割合は、硬化性成分合計量100重量%中に5~50重量%であり、好ましくは10~40重量%である。
 (B-2)成分の含有割合が5重量%に満たないと、電解液浸漬後の硬化物の膨潤率が増加し、電解液浸漬後の電極箔との接着力が低下してしまい、一方、70重量%を超えると、硬化物の接着力が低下してしまう。
 (B-3)成分は含まないことが好ましく、含有させる場合は、硬化性成分合計量100重量%中に8重量%以下が好ましい。含有割合を8重量%以下とすることで、電解液浸漬後の硬化物の膨潤率を低下させることができる。
3.(C)成分
 (C)成分は、光ラジカル重合開始剤である。
 (C)成分は、活性エネルギー線の照射によってラジカルを発生し、エチレン性不飽和基を有する化合物の重合を開始する化合物である。
 (C)成分の具体例としては、ベンジルジメチルケタール、ベンジル、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、オリゴ[2-ヒドロキシ-2-メチル-1-[4-1-(メチルビニル)フェニル]プロパノン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチループロピオニル)ベンジル]フェニル]-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)]フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)ブタン-1-オン、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-オクチルカルバゾール、フェニルグリオキシ酸メチル、エチルアントラキノン及びフェナントレンキノン等の芳香族ケトン化合物;ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、4-(メチルフェニルチオ)フェニルフェニルメタン、メチル-2-ベンゾフェノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルフォニル)プロパン-1-オン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン及び4-メトキシ-4′-ジメチルアミノベンゾフェノン等のベンゾフェノン系化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)フェニルフォスフィネート及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のアシルホスフィンオキサイド化合物;チオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン、3-[3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イル-オキシ]-2-ヒドロキシプロピル-N,N,N―トリメチルアンモニウムクロライド及びフルオロチオキサントン等のチオキサントン系化合物等が挙げられる。
 (C)成分の含有割合は、硬化性成分合計100重量部に対して0.1~20重量部であり、好ましくは0.2~10重量部であり、より好ましくは0.5~5重量部である。(C)成分の含有割合が0.1重量部に満たないと、組成物の光硬化性が低下してしまい、20重量部を超過すると、電解液浸漬後の硬化物の耐溶剤性が低下してしまう。
4.その他の成分
 本発明の組成物は、上記(A)、(B)、及び(C)成分を必須成分とするものであるが、シール材として通常使用される種々の成分を配合することができる。
 例えば、エチレン性不飽和基を有する化合物であって、(A)及び(B)成分以外の化合物〔以下、「(D)成分」という〕、フィラー〔以下、「(E)成分」という〕、光酸発生剤、シランカップリング剤、酸化防止剤、紫外線吸収剤、光安定剤、粘着性付与剤、チオール化合物、可塑剤、、蛍光剤、色素、顔料、分散剤又は/及び帯電防止剤等が挙げられる。
1)(D)成分
 (D)成分は、エチレン性不飽和基を有する化合物であって、(A)及び(B)成分以外の化合物である。
 (D)成分におけるエチレン性不飽和基としては、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニル基、アリル基等が挙げられ、これらの中でも他成分との共重合性に優れることから(メタ)アクリロイル基が好ましい。
 (D)成分としては、エチレン性不飽和基を有する化合物であれば種々の化合物が使用可能であり、例えば、1分子中に2個の(メタ)アクリロイル基を有する化合物〔以下、「2官能(メタ)アクリレート」という〕及び3個以上の(メタ)アクリロイル基を有する化合物〔以下、「3官能以上の(メタ)アクリレート」という〕が挙げられる。
 2官能(メタ)アクリレートとして、具体的には、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、及び1,6-ヘキサンジオールジ(メタ)アクリレート、及びノナンジオールジ(メタ)アクリレート等の2価のアルキル基を有するジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、及びポリテトラメチレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;トリシクロデカンジメチロールジ(メタ)アクリレート等の脂環式基を有するジ(メタ)アクリレート;ビスフェノールAのアルキレンオキサイド付加物のジ(メタ)アクリレート;並びにウレタンジ(メタ)アクリレート等が挙げられる。
 ウレタンジ(メタ)アクリレートとしては、ポリブタジエン及び/又は水素添加ポリブタジエンの骨格を有しないウレタン(メタ)アクリレート等が挙げられる。
 3官能以上の(メタ)アクリレートとして、具体的には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート及びトリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート等が挙げられる。
 (D)成分の含有割合としては、硬化性成分100重量%中に、8重量%以下が好ましく、より好ましく0~5重量%である。
2)(E)成分
 (E)成分はフィラーである。
 (E)成分の好ましい例としては、シリカ、及びアルミナ等の金属酸化物、並びに、ポリエチレン微粒子、ポリプロピレン微粒子、架橋アクリル微粒子、及び架橋ポリスチレン微粒子等のポリマー微粒子が挙げられる。
 微粒子の好ましい粒径は、0.1~200μmであり、より好ましくは1~100μmである。
 (E)成分を配合することで、硬化物の透湿性や電解液の透過性を低減したりすることができる。又、スクリーン印刷性を向上させることができる。しかし、フィラーの含有割合が多すぎると印刷性が低下することがあるため、好ましい含有割合で含むことが好ましい。一方、インクジェットやスプレー等で塗布する場合には、(E)成分を含まないか、又は、ごく少量に留めることが好ましい。
 以上のことから、(E)成分の好ましい含有割合は、組成物100重量%中に、0~60重量%である。
5.リチウムイオン二次電池シール材用光硬化型組成物
 本発明は、前記(A)~(C)成分を含有し、これらを前記した割合で含むリチウムイオン二次電池シール材用光硬化型組成物に関する。
 組成物中の硬化性成分の割合としては、組成物100重量%中に、40~99.9重量%が好ましく、より好ましくは50~99.5重量%である。
 又、(E)成分を含有する場合において、硬化性成分と(E)成分の合計の含有割合としては、組成物100重量%中に、80~99.9重量%が好ましく、より好ましくは90~99.9重量%、さらに好ましくは95~99.9重量%である。
 組成物の製造方法としては、前記(A)~(C)成分を、必要に応じてさらにその他成分を、常法に従い攪拌・混合することにより製造することができる。
 この場合、必要に応じて加熱することもできる。加熱温度としては、使用する成分、基材及び目的等に応じて適宜設定すれば良いが、30~80℃が好ましい。
 組成物の粘度は、塗工方法に応じて調整すればよいが、25℃で、10~100,000mPa・sであることが好ましく、より好ましくは100~10,000mPa・sである。
6.使用方法
 本発明の組成物の使用方法としては、常法に従えば良く、リチウムイオン二次電池を構成する材料に、本発明の組成物を塗布又は注入する工程、及び、塗布又は注入された組成物に光を照射して硬化させる工程、を含む方法が例示される。
 リチウムイオン二次電池を構成する材料としては、集電箔、正極活物質、負極活物質、セパレータ、及び電解液等が挙げられる。
 集電箔としては、アルミニウム及び銅等が挙げられる。
 活物質は、電池の種類に応じて適宜選択すれば良い。
 例えば、正極活物質としては、例えば、リチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、及びリチウム-遷移金属硫酸化合物等が挙げられる。
 又、負極活物質としては、Si及びSn等の金属;TiO、Ti23、TiO2、SiO2、SiO、及びSnO2等の金属酸化物;リチウムと遷移金属との複合酸化物;Li-Pb系合金、Li-Al系合金;並びにグラファイト、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、及びハードカーボン等の炭素材料等が挙げられる。
 セパレータとしては、ポリエチレン及びポリプロピレン等のポリオレフィン製の微多孔膜フィルム、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布、並びにそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等が挙げられる。
 電解液としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート及びジエチルカーボネート等が挙げられ、これらの混合液であっても良い。
 塗布及び注入方法としては、従来知られている方法に従えばよく、ディスペンサー、ジェットディスペンサー、スクリーン印刷、ナチュラルコーター、ナイフベルトコーター、フローティングナイフ、ナイフオーバーロール、ナイフオンブランケット、スプレー、ディップ、キスロール、スクイーズロール、リバースロール、エアブレード、カーテンフローコーター、コンマコーター、グラビアコーター、マイクログラビアコーター、ダイコーター及びカーテンコーター等の方法が挙げられる。
 光としては、可視光線、及び紫外線が挙げられるが、安価な装置を使用することができるため、紫外線が好ましい。
 紫外線により硬化させる場合の光源としては、様々のものを使用することができ、例えば加圧或いは高圧水銀灯、メタルハライドランプ、キセノンランプ、無電極放電ランプ、カーボンアーク灯及びLED等が挙げられる。これらの中でも、高圧水銀灯、メタルハライドランプ、LEDが好ましい。紫外線の照射量は、UV-A領域(365nm近傍)において、50~5,000mJ/cm2であることが好ましく、100~3,000mJ/cm2がより好ましい。紫外線の照度は、UV-A領域(365nm近傍)において、10~5,000mW/cm2であることが好ましく、100~2,000mW/cm2がより好ましい。
 本発明の組成物の使用方法について、具体例を、図1~図3を用いて説明する。
 図1は、バイポーラー型リチウムイオン二次電池の断面図の一例である。
 図1の構成では、11集電箔に挟まれた空間に、12正極活物質、13セパレータ、及び14負極活物質が配置されている。12正極活物質、13セパレータ、及び14負極活物質の空間内には電解液が存在する。この電解液が漏れないように、外周部が組成物の硬化物である15シール部材によってシールされている。
 本発明の組成物は、このような形態のリチウムイオン二次電池のシール材として特に好適である。尚、図1は、理解し易いように2層の例を示しているが、実際には数十層重ねた構造でも良い。
 次に、本発明の組成物を使用して、リチウムイオン二次電池を製造する方法の一例を、図2に基づき説明する。
 図2は、電池構成材料を積層した後、側面から本発明の組成物を充填するように塗布し、側面から光照射する例を示したものである。
 図2の(1)は、電池構成材料を積層し(図2の21)、この後、側面から本発明の組成物を充填するように塗布する工程の例を示したものである。
 このときの塗布方法の具体例としては、ディスペンサー、ジェットディスペンサー、インクジェット、及びスプレー等が挙げられる。図2の(1)は、22ディスペンサーを使用した例を示している。
 図2の(2)は、組成物を塗布した後、側面から23紫外線照射装置から紫外線(UV)を照射して硬化させる工程を示す。
 以上の工程の場合、電解液は、組成物を硬化させた後で、シリンジ等により内部に注入することができる。シリンジを挿入するときに生じる注入口の穴には、本発明の組成物を、穴の上から再度ディスペンサー等によって注入し、光硬化させればよい。これにより、注入口の穴を封止することができる。
 もしくは、4辺の側面のうち3辺に組成物を塗布して硬化させ、1辺は解放した状態で、その開放された側面より電解液を注入してもよい。電解液を所定量注入した後に、最後の1辺に組成物を塗布して硬化すれば、4辺ともシールすることができる。
 又、本発明の組成物を使用して、上記とは別の方法でリチウムイオン二次電池を製造する方法の一例を、図3に基づき説明する。
 図3は、電池構成材料を積層する過程で、組成物を塗布して硬化させてリチウムイオン二次電池を製造する方法の一例を示す。
 まず、31に示すように、両面の中央部分に活物質(12正極活物質又は14負極活物質)が塗布された集電箔を用意する。
 次いで、32に示すように、その外周部分に、本発明の組成物(15’)を塗布する。塗布方法としては、スクリーン印刷又はディスペンサーが好ましい。
 次いで、33に示すように13セパレータを被せ、34に示すように、この上から23紫外線照射装置により、紫外線(UV)を照射する。13セパレータは、多くの場合ポリオレフィン系の材料が使用され、紫外線を透過するため好ましい。
 次いで、35に示すように、外周部分に本発明の組成物(15’)を塗布し、36に示すように、この上から23紫外線照射装置により、紫外線を照射して硬化させる。
 最後に、37に示すように、両面の中央部分に活物質(12正極活物質又は14負極活物質)が塗布された集電箔を積層する。
 ここで、組成物が粘着性を有している場合、常温で圧力を加えることで接着させることができる。粘着性を有さない場合、60~100℃程度のプレス機で圧力を加え、接着させることができる。このときの温度は、熱融着性のシール材に比べて低温であるため、熱膨張による皺やソリを抑制することができる。
 以上の操作(31~37)を繰り返すことで、図1に示したような積層体を製造することができる。
 電解液の注入は、図2で説明したときと同様の方法で実施することができる。又、32と33の間に紫外線照射し、13セパレータをラミネートする前と、37の電極箔ラミネート前に、電解液を注液しても良い。
 以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。尚、以下の各例における「部」は重量部を意味し、「%」は重量%を意味する。
1.製造例(ウレタンアクリレートの製造)
1)製造例1〔水素添加ポリブタジエン骨格を有する2官能ウレタンアクリレートの製造〕
 3Lの四つ口セパラブルフラスコに、両末端に水酸基を有する水素添加ポリブタジエンとして日本曹達(株)製のGI-3000(水酸基価28.0mgKOH/g、Mn約4,000)962g(水酸基として0.48モル)、2,6-ジ-t-ブチル-p-クレゾール0.75g、イソボルニルアクリレート(以下、「IBXA」という。)448gを仕込み、攪拌機を取り付けて撹拌混合し溶解させた。
 このフラスコに、温度計、ガス導入管、滴下漏斗、還流冷却器を取り付け、酸素と窒素の混合ガス(酸素5%)をバブリングさせながら撹拌し、さらに50℃に昇温させた。この溶液に、触媒としてアセチルアセトン第二鉄0.03gを加えて溶解させた後、イソホロンジイソシアネート66.6g(イソシアネート基として0.60モル)を滴下漏斗より仕込んだ。80℃で2時間撹拌混合した後、4-ヒドロキシブチルアクリレート(以下、「HBA」という。)17.3g(水酸基として0.12モル)を仕込んで5時間反応させ、IRスペクトルによりイソシアネート基の消失を確認し、合成を終了した。
 得られた生成物は、水素添加ポリブタジエン骨格を有するウレタンアクリレート(以下、「PUA-1」という。)を70%、希釈モノマーとしてのIBXAを30%含む混合物である。
 得られた生成物をGPC分析した結果、PUA-1成分のピークがモノマー成分と区別できる形で確認できた。PUA-1成分のポリスチレン換算分子量は、Mnで19,000、Mwで34,500であった。
2)製造例2〔水素添加ポリブタジエン骨格を有する2官能ウレタンアクリレートの製造〕
 製造例1のIBXAを、イソステアリルアクリレート(以下、「ISTA」という)に変更する以外は製造例1と同様に実施し、PUA-1を70%、ISTAを30%含む混合物を得た。
3)製造例3〔両末端水酸基の水素添加ポリブタジエンを直接アクリレート化した2官能アクリレートの製造〕
 3Lのセパラブルフラスコに、両末端に水酸基を有する水添ポリブタジエンとして日本曹達(株)製のGI-1000(水酸基価68.7mgKOH/g、Mn約1,600)571.9g(水酸基として0.70モル)、アクリル酸60.5g、ヘプタン632.4g、p-トルエンスルホン酸一水和物12.6gを仕込み、攪拌機を取り付けて撹拌混合し溶解させた。
 このフラスコに、温度計、ガス導入管、滴下漏斗、還流冷却器を取り付け、酸素と窒素の混合ガス(酸素5%)を吹き込みながら撹拌し、さらに120℃のオイルバスで2時間還流させた。
 この溶液を分液漏斗へ移し、純水による洗浄を3回実施した。重合禁止剤として4-メトキシフェノールを0.012g添加し、ドライエアーを吹き込みながら80℃で攪拌し、徐々に減圧留去した。オイルバスを85℃へ昇温し、10Torr下で溶液から泡が出なくなるまで減圧攪拌することで両末端水酸基の水素添加ポリブタジエンを直接アクリレート化した2官能アクリレート(以下、GI―AAという)を合成した。
 GI―AAの分子量は、Mnで3,000、Mwで4,200であった。
2.実施例1~同7、比較例1~同10
1)リチウムイオン二次電池シール材用光硬化型組成物の製造
 下記表1及び表2に示す各成分を、表1及び表2に示す割合で配合し、常法に従って攪拌混合して、リチウムイオン二次電池シール材用光硬化型組成物を得た。
 組成物の製造においては、必要に応じて約80℃に加熱した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 尚、表中のPUA-1の部数は、製造例1又は製造例2の生成物に含まれるウレタンアクリレート成分のみの部数を示す。又、(B)成分の部数は製造例1の生成物中に含まれる(B)成分を含んでおり、(B)成分は製造例1の生成物中に含まれる(B)成分と後から添加した(B)成分の合計部数を示す。
 表1及び表2おける数字は部数を意味する。又、表1及び表2における略号は、下記を意味する。
◆(A)成分
・PUA-1:水素添加ポリブタジエン骨格を有する2官能ウレタンアクリレート。製造例1及び製造例2の生成物に含まれるウレタンアクリレート成分。
・TEAI:水素添加ポリブタジエン骨格を有する2官能ウレタンアクリレート(日本曹達(株)製TEAI-1000)(Mn:3,200、Mw:6,100)
・GI-AA:両末端水酸基の水素添加ポリブタジエンを直接アクリレート化した2官能アクリレート。製造例3の生成物。
◆(B-1)成分
・LA:ラウリルアクリレート(大阪有機化学工業(株)製LA)
・ISTA:イソステアリルアクリレート(大阪有機化学工業(株)製ISTA)
・STA:ステアリルアクリレート(大阪有機化学工業(株)製STA)
◆(B-2)成分
・IBXA:イソボルニルアクリレート(大阪有機化学工業(株)製IBXA)
・FA-513:ジシクロペンタニルアクリレート(昭和電工マテリアルズ(株)製ファンクリルFA-513AS)
・M-111:ノニルフェノールのエチレンオキサイド1モル付加物のアクリレート。東亞合成(株)製アロニックスM-111
◆(B-3)成分
・HBA:4-ヒドロキシブチルアクリレート(大阪有機化学工業(株)製HBA)
◆(C)成分
・ONE:α-ヒドロキシアルキルフェノン系光重合開始剤(IGMレジン社製ESACURE ONE)
・O-184:1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGMレジン社製Omnirad 184)
・O-651:2,2-ジメトキシー1,2-ジフェニルエタンー1-オン(IGMレジン社製Omnirad 651)
◆(D)成分
・HX-A:1,6-ヘキサンジオールジアクリレート(共栄社化学(株)製ライトアクリレートHX-A)
・NP-A:ネオペンチルグリコールジアクリレート(共栄社化学(株)製ライトアクリレートNP-A)
・UN-9200A:ポリカーボネート骨格を有し、ポリブタジエン及び水素添加ポリブタジエン骨格を有しない2官能ウレタンアクリレート(根上工業(株)製アートレジンUN-9200A)
・UN-6301:ポリエーテル骨格ウレタンアクリレートを有し、ポリブタジエン及び水素添加ポリブタジエン骨格を有しない2官能ウレタンアクリレート(根上工業(株)製アートレジンUN-6301)
・UC-203:ポリイソプレンの無水マレイン酸付加物と2-ヒドロキシエチルアクリレートとのエステル化物((株)クラレ製UC-203)
2)組成物の評価
 前記で得られた組成物を使用し、下記の方法に従い、初期剥離強度、電解液溶媒浸漬剥離強度、及び電解液溶媒浸漬膨潤を評価した。
 それらの結果を表1及び表2に示す。
(1)初期剥離強度
 前記で得られた組成物を金属箔((株)UACJ製箔製の厚さ25μmのアルミ箔、及び、福田金属箔粉工業(株)製の厚さ35μmの低粗度圧延銅箔)上に設置した厚さ0.5mmのシリコーン枠型に流し込み、金属箔よりも強く接着する基材として易接着PETフィルム(東レ(株)製ルミラーA4360)でラミネートして光硬化した。硬化条件は、365nmのLED(CCS(株)製面型LED照射器)を使用し、照度1000mW/cm2(浜松ホトニクス(株)製C12684照度計で測定)でPETフィルム側から5秒照射とした。この硬化サンプルを幅10mmの短冊状にカットし、PETフィルム側を金属板に両面テープで貼り付け、金属箔を180°に曲げて少し剥がし、インストロン5564(インストロンジャパン(株)社製)を用いて180°剥離強度を測定した。引張速度は60mm/sとした。
 測定結果の値が1N/cm以下を×とし、1N/cm~5N/cmを〇、5N/cm以上を◎とした。
(2)電解液溶媒浸漬後の剥離強度
 (1)と同様の方法に従い、10mm幅の短冊状の硬化物を作成し、十分量のEC/DEC=3/7(重量比)に浸漬した。尚、「EC」とは、エチレンカーボネートを意味し、「DEC」とは、ジエチルカーボネートを意味する。
 23℃下24時間静置した後、硬化物を取り出して表面の液滴を除いた後、直ちに(1)と同様に剥離強度を測定した。
 測定結果の値が1N/cm以下を×とし、1N/cm~5N/cmを〇、5N/cm以上を◎とした。
(3)電解液溶媒浸漬後の膨潤率
 前記で得られた組成物を任意の大きさに切り抜いた厚さ1mmのシリコーン型に流し込み、酸素による重合阻害を無くすために75μm厚のシリコーン処理離型PETフィルム(藤森工業(株)製HTA)でラミネートして光硬化した。硬化条件は、365nmのLED(CCS(株)製面型LED照射器)を使用し、照度1000mW/cm2(浜松ホトニクス(株)製C12684照度計で測定)で、両面から各5秒照射とした。その後、PETフィルムを剥がして硬化物を得た。硬化物の初期重量を少数点以下4桁まで重量測定した後、十分量のEC/DEC=3/7(重量比)に浸漬した。23℃下24時間静置した後、硬化物を取り出して表面の液滴を除いた後直ちに重量を測定した。初期重量に対する浸漬後の重量増分を膨潤率として評価した。
 又、膨潤率が30%未満を◎、30~50%を〇、50%以上を×とした。
3)評価結果
 表1の結果から明らかな通り、本発明の組成物は、いずれもアルミニウム及び銅に対して、初期剥離強度及び電解液溶媒浸漬後の剥離強度に優れ、さらに、電解液溶媒浸漬後の膨潤率が小さいものであった。
 これに対して、表2の結果から明らかな通り、(B-1)成分を含まない比較例の組成物は、それぞれ以下の通りであった。比較例1の組成物は、アルミニウムに対する初期剥離強度及び電解液溶媒浸漬後の剥離強度が大きく低下してしまった。比較例5の組成物は、アルミニウム及び銅に対する初期剥離強度及び電解液溶媒浸漬後の剥離強度が大きく低下してしまった。比較例6の組成物は、アルミニウム及び銅に対する初期剥離強度は問題なかったものの、電解液溶媒浸漬後の剥離強度が大きく低下し、電解液溶媒浸漬後の膨潤率が大きくなってまった。
 (B-2)成分を含まない比較例2~同4の組成物は、アルミニウム及び銅に対する初期剥離強度及び電解液溶媒浸漬後の剥離強度が大きく低下してしまった。
 (A)成分を含まない比較例の組成物は、それぞれ以下の通りであった。比較例7及び同8の組成物は、アルミニウム及び銅に対する初期剥離強度がやや低下し、電解液溶媒浸漬後の剥離強度が大きく低下してしまい、さらに、電解液溶媒浸漬後の膨潤率が大きくなってまった。比較例9の組成物は、アルミニウム及び銅に対する初期剥離強度及び電解液溶媒浸漬後の剥離強度が大きく低下してしまった。比較例10の組成物は、アルミニウム及び銅に対する初期剥離強度は問題なかったものの、電解液溶媒浸漬後の剥離強度が大きく低下してしまった。
 本発明は、リチウムイオン二次電池シール材用光硬化型組成物に関し、リチウムイオン二次電池の製造に好ましく使用できるものである。
11 集電箔
12 正極活物質
13 セパレータ
14 負極活物質
21 電池構成材料
22 ディスペンサー
23 紫外線照射装置

Claims (5)

  1. (A)成分:1分子中に、ポリブタジエン及び/又は水素添加ポリブタジエンの骨格を有し、数平均分子量が1000以上である2個の(メタ)アクリロイル基を有する化合物
    (B)成分:下記(B-1)成分及び(B-2)成分を必須成分として含む1分子中に1個の(メタ)アクリロイル基を有する化合物(以下、「単官能(メタ)アクリレート」という)
    ・(B-1)成分:エステル残基の炭素数が10~30であるアルキル基又はアルケニル基を有する単官能(メタ)アクリレート
    ・(B-2)成分:エステル残基の炭素数が5~30であり、脂環式炭化水素基及び/又は芳香族炭化水素基を有する単官能(メタ)アクリレート
    (C)成分:光ラジカル重合開始剤
    を含有し、
     硬化性成分の合計100重量%中に、(A)成分を10~80重量%、及び(B)成分を20重量%~90重量%含み、
     (B-1)成分を硬化性成分の合計100重量%に対して15~70重量%、(B-2)成分を硬化性成分の合計100重量%に対して5~50重量%含み、
     硬化性成分の合計100重量部に対して、(C)成分を0.1~20重量部含む
    リチウムイオン二次電池シール材用光硬化型組成物。
  2.  前記(A)成分が、数平均分子量5,000~50,000のウレタン(メタ)アクリレートである請求項1に記載のリチウムイオン二次電池シール材用光硬化型組成物。
  3.  前記(B-1)成分が、分岐構造を有する炭素数17~30のアルキル(メタ)アクリレートを含む請求項1又は請求項2に記載のリチウムイオン二次電池シール材用光硬化型組成物。
  4.  リチウムイオン二次電池の構成材料の側面に、請求項1~請求項3のいずれかに記載のリチウムイオン二次電池シール材用光硬化型組成物を塗布又は注入した後、塗布面又は注入面に光照射するリチウムイオン二次電池の製造方法。
  5.  リチウムイオン二次電池の構成材料の側面が、請求項1~請求項3のいずれかに記載のリチウムイオン二次電池シール材用光硬化型組成物の硬化物によりシールされてなるリチウムイオン二次電池。

     
PCT/JP2023/041122 2022-11-17 2023-11-15 リチウムイオン二次電池シール材用光硬化型組成物 WO2024106476A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022183810 2022-11-17
JP2022-183810 2022-11-17

Publications (1)

Publication Number Publication Date
WO2024106476A1 true WO2024106476A1 (ja) 2024-05-23

Family

ID=91084523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041122 WO2024106476A1 (ja) 2022-11-17 2023-11-15 リチウムイオン二次電池シール材用光硬化型組成物

Country Status (1)

Country Link
WO (1) WO2024106476A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733837A (ja) * 1993-07-20 1995-02-03 Three Bond Co Ltd 光硬化性樹脂組成物
KR20110101331A (ko) * 2010-03-08 2011-09-16 주식회사 엘지화학 신규한 구조의 전지팩 제조방법
JP2019175778A (ja) * 2018-03-29 2019-10-10 凸版印刷株式会社 バイポーラ電池ユニット及びバイポーラ電池
CN114316809A (zh) * 2022-01-10 2022-04-12 南亚新材料科技股份有限公司 锂电池用密封胶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733837A (ja) * 1993-07-20 1995-02-03 Three Bond Co Ltd 光硬化性樹脂組成物
KR20110101331A (ko) * 2010-03-08 2011-09-16 주식회사 엘지화학 신규한 구조의 전지팩 제조방법
JP2019175778A (ja) * 2018-03-29 2019-10-10 凸版印刷株式会社 バイポーラ電池ユニット及びバイポーラ電池
CN114316809A (zh) * 2022-01-10 2022-04-12 南亚新材料科技股份有限公司 锂电池用密封胶及其制备方法

Similar Documents

Publication Publication Date Title
JP5928578B2 (ja) 硬化膜を有する金属基材の製造方法
JP6828230B2 (ja) 燃料電池用光硬化性シール剤、燃料電池およびシール方法
JP6106355B2 (ja) プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
JP5935668B2 (ja) 活性エネルギー線硬化型コーティング剤組成物
CN110023442B (zh) 粘合剂用树脂组合物及粘合片
TW201923012A (zh) 接著劑、層合體、電池外裝用包裝材、電池殼及電池殼之製造方法
JP5853859B2 (ja) プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
JP6107640B2 (ja) 活性エネルギー線硬化型コーティング剤組成物
JP6137172B2 (ja) 活性エネルギー線硬化型組成物、並びに、硬化膜を有する金属基材及びその製造方法
WO2016194937A1 (ja) (メタ)アクリル系共重合体、それを含む粘着組成物および粘着シート、並びにそれを用いた被覆材及び塗装物
JP2012114243A (ja) (メタ)アクリロイル基を有するウレタン・ウレア樹脂及び該ウレタン・ウレア樹脂を含有する活性エネルギー線硬化性接着剤、並びに太陽電池用裏面保護シート
WO2024106476A1 (ja) リチウムイオン二次電池シール材用光硬化型組成物
JP2014051654A (ja) 活性エネルギー線硬化型コーティング剤組成物
JP2014009339A (ja) プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
WO2014024826A1 (ja) 活性エネルギー線硬化型コーティング剤組成物
JP7106848B2 (ja) 粘着剤用樹脂組成物及び粘着シート
JP7318366B2 (ja) 触媒層用活性エネルギー線硬化型組成物及び積層体
JP6183036B2 (ja) 絶縁性硬化膜を有する金属基材の製造方法
JP2018104635A (ja) 活性エネルギー線硬化性接着剤組成物、偏光板用接着剤組成物、偏光板用接着剤およびそれを用いた偏光板
JP7235037B2 (ja) 高分子電解質接着用、又は高分子電解質シール用硬化型組成物
JP2007002193A (ja) (メタ)アクリル基含有ケイ素化合物、それを用いる感光性樹脂組成物及びその硬化物
KR20030024905A (ko) 절연 및 밀봉 조성물
KR102670018B1 (ko) 전고체 전지 및 당해 전고체 전지에 이용하는 광경화형 조성물
JP5835055B2 (ja) プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
EP4230669A1 (en) Photocurable sheet-shaped sealing agent for fuel cell, cured product, fuel cell, and sealing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891623

Country of ref document: EP

Kind code of ref document: A1