DE2602149C3 - Verfahren zur Aufarbeitung von Alkylphenolgemischen - Google Patents

Verfahren zur Aufarbeitung von Alkylphenolgemischen

Info

Publication number
DE2602149C3
DE2602149C3 DE2602149A DE2602149A DE2602149C3 DE 2602149 C3 DE2602149 C3 DE 2602149C3 DE 2602149 A DE2602149 A DE 2602149A DE 2602149 A DE2602149 A DE 2602149A DE 2602149 C3 DE2602149 C3 DE 2602149C3
Authority
DE
Germany
Prior art keywords
mixture
water
alkali
weight
alkylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE2602149A
Other languages
English (en)
Other versions
DE2602149A1 (de
DE2602149B2 (de
Inventor
Josef Dipl.-Chem. Dr. Haydn
Karlfried Dipl.-Chem. Dr. 5000 Köln Wedemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to DE2602149A priority Critical patent/DE2602149C3/de
Priority to US05/757,422 priority patent/US4113975A/en
Priority to GB1917/77A priority patent/GB1520091A/en
Priority to JP52004059A priority patent/JPS593974B2/ja
Priority to IT47696/77A priority patent/IT1086620B/it
Priority to FR7701793A priority patent/FR2338916A1/fr
Priority to NLAANVRAGE7700649,A priority patent/NL184569C/xx
Priority to BE2055612A priority patent/BE850604A/xx
Publication of DE2602149A1 publication Critical patent/DE2602149A1/de
Publication of DE2602149B2 publication Critical patent/DE2602149B2/de
Application granted granted Critical
Publication of DE2602149C3 publication Critical patent/DE2602149C3/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/72Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by liquid-liquid treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Aufarbeitung von durch Alkylierung von Phenolen in Gegenwart saurer Katalysatoren erhaltener Alkylphenole mit einer Behandlung des dabei anfallenden Abwassers.
Bei der Alkylierung von Phenolen, insbesondere von Kresolen mit Isobuten, wird üblicherweise Schwefelsäure als Katalysator verwendet (Ind. Engng. Chem. Band 35 [1943], S. 266). Ebenso können Oleum oder Phenolsulfonsäuren (GB-PS 701438) oder SO3 (DE OS 2215452) verwendet werden.
Nach Beendigung der Alkylierungsreaktion muß der im Aklylierungsgemisch enthaltene saure Katalysator unwirksam gemacht und/oder entfernt werden. Üblicherweise geschieht dies durch eine Behandlung mit wäßriger Natriumhydroxid- oder Natriumcarbonat-Lösung (DE-AS 1 145629; Ind. Chem. Engng., I. c, S. 269).
Die Alkali-Behandlung muß sehr intensiv durchgeführt werden; geschieht dies nicht, so können beim Lagern der Alkylphenolgemische rder bei den für die Destillation erforderlichen hohen Temperaturen aus potentiellen Säurebildnern sauer wirkende Substanzen entstehen, die beispielsweise bei tert.-Butylkresolcn zu einer Wiederabspaltung der tertiären Butylgruppe führen und eine Destillation der Alkylphenolgemische unmöglich machen. Von der Destillierbarkcit der Alkylphenolgemische kann jedoch die Durchführbarkeit eines weitere Schritte umfassenden Gesamtverfahrens abhängen. Dieser Fall liegt z. B. bei der Fraktionierung von Di-tert.-butyikresolen vor, die für die Trennung von m/p-Kresolgemischen große technische Bedeutung hat (Ind. Engng. Chem.. I. c, S. 271; Franck, Collin, Steinkohlenteer, Springer Verlag 1968, S. 82).
Die Entfernung der Säure und der säurebildenden Verbindungen erfolgt nach bekannten Methoden z. B.
ίο in der Weise, daß das rohe Butylphenolgemisch zusammen mit einer überschüssigen 5- bis 7gewichtsprozentigen wäßrigen Alkalihydroxid-Lösung mehrere hundert Male unter einem Druck von 5 bar bei etwa 120° C und einer mittleren Verweilzeit von 40 Minuten zirkuliert. Nach dem Abscheiden der wäßrigen Alkali-Lösung sind in der Butylphenol-Phase noch beträchtliche Mengen Wasser gelöst oder emulgiert und damit auch beträchtliche Mengen der gut wasserlöslichen Alkali-kresol-sulfonate enthalten (etwa 1 Gew.-%), wie aus Tabelle III in Ind. Engng. Chem. 1968, Seite 272, hervorgeht. Feiner ist im Butylphenol Alkali gelöst, welches zur Sicherung d< ··■ Destillatiunsstabilität des rohen Butylierungsgemisches erforderlich ist. Beim Destillieren, d. h. nach dem Abscheiden der wäßrigen Phase, scheiden sich hauptsächlich die Alkali-kresol-sulfonate im Butylierungsgemisch aus und können, besonders bei kontinuierlichen Destillationen, zu beträchtlichen Betriebsstörungen führen. In jedem Fall belasten diese, einen teerartigen Rückstand ergebenden Produkte sowohl von der Menge als auch von ihren Eigenschaften her die destillative Aufarbeitung des rohen Alkylierungsgemisches, wobei ein direkter Zusammenhang zwischen Schwefel- und damit Alkalisulfonat-Gehalt des Alkylierungsgemisches und seiner abnehmenden Destillationsstabilität besteht (Ind. Engng. Chem., 1. c. S. 271).
Um die Alkali-sulfonate weiterhin zu entfernen, ist bereits empfohlen worden, nach der Alkali-Wäsche mehrfach mit viel Wasser nachzuwaschen (GB-PS 701438; DE-OS 2215452). Dadurch wird jedoch auch die für die Sicherung der Destillationsstabil;tät erforderliche geringe Restalkalität beseitigt und die Abwassermenge stark erhöht.
Im übrigen ist aus der US-PS 2656312 zu entnehmen, daß Wäschen des Alkylierungsgemisches mit Wasser und/oder wäßriger Natronlauge, deren Konzentration unter 10 Gew.-% liegt, nicht zu einem destillationsstabiien Alkylierungsprodukt führen. Um
5() ein sicher destillationsstabiles Aikylierungsprodukt zu erhalten, ist noch eine nachträgliche Behandlung mit K)- bis 40gew.-%iger Natronlauge bei 75 bis 100° C erforderlich.
Die alkalisch reagierenden Waschwässer stellen ein besonderes Problem des Verfahrens nach dem Stand der Technik dar. In ihnen sind neben Phenolen und Alkylphenolen die Sulfonsäuren in Form der Alkali-Salze gelöst. Während aber die gelösten Phenole und Alkylphenole, speziell die Kresole und Butylkresole
z. B. durch eine Extraktion mit Benzol zumindest teilweise wiedergewonnen werden können (Ind. Engng. Chem. Band 35 [1943], Seite 271), ist dies bei den Alkalisulfonaten, in denen einige Gewichtsprozent des wertvollen Ausgangsmaterials Kresol gebunden sind und die die Hauptverunreinigung des Abwassers darstellen, nicht möglich. Auch die Beseitigung des Abwassers ist schwierig, da sich die Alkalisulfonate bekanntlich nicht mit Calciumoxid in Fjrm von Kalk-
10
milch ausfällen lassen, die beim Eindampfen der Waschwässer verbleibenden Salze wegen ihrer guten Wasserlöslichkeit nicht deponierfähig sind und auch eine Abwasserverbrennung wegen der damit verbundenen Schwefeldioxid-Entwicklung problematisch ist.
Insbesondere für das technische Verfahren der Butylierung der Kresole als Teil der Trennung von m- und p-Kresolgemischen stellt die Reinigung des gewonnenen Butylierungsgemisches ein weitgehend ungelöstes Teilproblem dar.
Wünschenswert ist ein Verfahren, bei dem Säuren möglichst weitgehend aus dem Alkylierungsgemisch entfernt werden, die potentiellen Säurebildner sicher unwirksam gemacht werden, wenig Alkalilauge verbraucht wird, wenig Abwasser entsteht, das Abwasser unter Rückgewinnung der in ihm enthaltenen wertvollen Substanzen aufgearbeitet werden kann, und das Abwasser sich ohne Umweltbelastung beseitigen läßt.
Es wurde ein Verfahren zur Aufarbeitung von Alkylphetiolgemischen, die bei der Alkylierung von Phenolen mit Isobuten in Gegenwart von Schwefelsäure, Oleuni oder Schwefeltrioxid erhalten worden sind, durch Behandlung mit Wasser und nachfolgend mit Alkalilösung gefunden, das dadurch gekennzeichnet ist, daß man
a) das Alkylphenolgemisch so mit Wasser extrahiert, daß die Restacidität des Alkylphenolgemisches weniger als 0,005 VaI HVkg beträgt,
b) das so erhaltene Alkylphenolgemisch mit einer 1- bis lOgewichtsprozentigen wäßrigen Alkalihydroxydlösung in einer Menge, die zur Neutralisation der gesamten, ursprünglich im Alkylphenolgemisch enthaltenen Säure nicht ausreicht, behandelt, so daß es eine Restalkalität von mindestens 0,001 VaI OH "/kg aufweist,
c) das Alkylphenolgemisch anschließend in an sich bekannter Weise destilliert, während man
d) die in den Schritten (a) und (b) erhaltenen wäßrigen Phasen vereinigt,
e) die vereinigten wäßrigen Phasen auf Temperaturen von 100 bis 200° C erhitzt, und
f) die dabei eihaltene organische Phase von der wäßrigen Phase abtrennt.
Das erfindungsgemäße Verfahren kann durch die Fig. 1 veranschaulicht werden.
Der für die Alkylierung verwendete saure Katalysator, üblicherweise Schwefelsäure, Oleum oder SO3 liegt im erhalienen rohen Alkylierungspemisch vorwiegend in Form verschiedener Phenolsulfonsäuren, bei der Butylierung von Kresol z. B. in Form von Kresol-, Mono-tert.-butylkresol- und Di-tert.-butylkresolsulfonsäuren vor. Summarisch kann der Säuregehalt des Alkylierungsgemisches beispielsweise durch
potentiometrische Titration mit 0,1 N-^auge be- ,_ ^>.„
stimmt werden. Die Acidität des erhaltenen Alkylie- 55 während ihre MengeVon den Gegebenheiten des"Knrungsgemisches hängt von der zuvor eingesetzten zelfalles, der Acidität des Alkylierungsgemisches und Menge Schwefelsäure oder der äquivalenten Verbin- den Forderungen des erfindungsgemäßen Verfahrens düngen ab^ Üblicherweise ist mit Aciditäten unter abhängig ist; femer werden für ihre Wahl innerhalb 0,25 VaI H /kg Alkylierungsgemisch zu rechnen, wo- dieser Grenzen sonstige technische Erwägungen eine bei eine Acidität von 0,1 VaI HVkg bedeutet, daß mi Rolle spielen.
für erforderliche Wassermenge ist unter sonst konstant gehaltenen Betriebsbedingungen der Ausgangsacidität proportional und der gewünschten Restacidität umgekehrt proportional und kann durch einige wenige Vorversuche leicht bestimmt werden. Um das Abwasser in der Menge gering und damit konzentriert zu erhalten, ist es im allgemeinen zweckmäßig, das Auswaschen der Säuren in mehreren Stufen unter Zwischenabscheidung der sauren Waschwässer durchzuführen. Erfindungsgemäß kann die mehrstufige Wäsche im Kreuzstrom, d. h. unter Verwendung von frischem Wasser in jeder Stufe oder besonders vorteilhaft im Gegenstrom durchgeführt werden, d. h. Frischwasser wird nur in der letzten Stufe der Wäsche verwendet und in den übrigen Stufen der Wäsche wird jeweils das abgeschiedene Waschwasser der folgenden Stufe der Wäsche eingesetzt. Hierdurch kann die gesamte Abwassermenge vorteilhaft verringert werden.
2(i Beispielsweise benötigt man bei einem rohen Alkylierungsgemisch mit einer Acidität von 0,100VaI H +/kg bei 60° C mit nur einer Waschstufe etwa 350 Gewichtsteile Wasser pro 100 Gewichtsteile Alkylierungsgemisch um die Restacidität bis auf 0,003 VaI HVkgzu erreichen, während bei zwei im Kreuzstrom betriebenen Waschstufen etwa jeweils 50, insgesamt 100 Gewichtsteile Wasser pro 1000 Gewichtsteile Alkylierungsgemisch und bei zwei im Gegenstrom betriebenen Waschstufen sogar nur 50 Gewichsteile in Wasser je 1000 Gewichsteile Alkylierungsgemisch benötigt werden.
Erfindungsgemäß folgt auf die Wasserwäsche (a) eine Wäsche mit verdünnter wäßriger Alkalilösung (b). Dabei werden die noch nicht ausgewaschenen .?5 Säuren neutralisiert, potentielle Säurebildner unwirksam gemacht und eine geringe Restalkalität von wenigstens 0,001 \ al Hydroxylion/kg Alkylierungsgemisch eingestellt, um ein dcstillationsstabiles Aikylierungsgemisch zu erhalten.
Als wäßrige Alkalilösungen kommen allgemein wäßrige Alkalicarbonat- und Alkalihydroxid-Lösungcn, insbesondere der entsprechenden Natrium- und Kaliumverbindungen in Frage. Menge und Konzentration dieser wäßrigen Alkali-Lösungen können in ■45 weiten Grenzen variiert werden, jedoch ist die Gesamtmenge Alkalihydroxid oder Alkalicarbonat so zu bemessen, daß die Abwässer dieser Alkaliwäsche noch deutlich alkalisch reagieren, d. h. einen pH-Wert größer als 9 haben, aber nach dem Vermischen mit so den Abwässern der Wasserwäsche ein deutlich sauer reagierendes Abwassergemisch ergeben, dessen pH-Wert kleiner als 2 ist. Im allgemeinen kann die Konzentration der Alkalilösung 1 bis 10, bevorzugt 2 bis 5 Gew.-7c, Alkali-hydroxyd oder -carbonat betragen.
etwa 25 g Sulfonsäuren in 1 kg Alkylierungsgemisch enthalten sind.
Die im rohen Alkylierungsgemisch enthaltenen Säuren sollen in dem erfindungsgemäßen Verfahren möglichst weitgehend bereits mit Wasser ausgewaschen werden. Im allgemeinen soll die Restacidität nach der Wasserwäsche iediglich 0,005 VaI H 7kg Alkylierungsgemisch oder weniger betragen. Die da-Insbesondere kann es vorteilhaft sein, sowohl die Menge des in der Verfahrensstufe (a) eingesetzten Wassers als auch der in der Verfahrensstufe (b) eingesetzten Alkalilösung aus Gründen der Abwasscrbelastung möglichst gering und damit die Alkalikonzentration entsprechend hoch zu wählen, da entsprechend der Löslichkeit organischer Verbindungen in Wasser und wäßrigen Lösungen mit der Menge des Abwassers
auch die Gesamtmenge organischer Verbindungen im Abwasser wächst, das nach der Verfahrensstufe (f) erhalten wird.
Wesentlich ist, daß durch die Behandlung des Alkylierungsgemisches mit Alkalilösung (b) eine mögliehst vollständige Entfernung und/oder Umsetzung potentieller Säurebildner erfolgt. Dies kann nur durch eine ausreichende Kontaktzeit zwischen Alkylierungsgemisch und Alkalilösung erreicht werden, wobei sich diese Zeit nach den Gegebenheiten des Ein- κι zelfalles bemißt. Sie ist dann ausreichend, wenn das Alkylierungsgemisch beim Erhitzen kein Alkylen mehr abspaltet. Die ausreichende Kontaktzeit kann also durch einige wenige Versuche festgestellt werden, beispielsweise durch einen Test, wie er nachstehend für ein Butyüeruiigsgemisch beschrieben ist.
Selbstverständlich kann auch die Alkali-Wäsche (b) mehrstufig im Kreuz- oder Gegenstrom erfolgen, jedoch ist im allgemeinen eine einstufige Wäsche bei Temperaturen zwischen etwa 40 und 100° C mit 2-bis Sgewichtsprozentiger Alkalicarbonat- oder Alkalihydroxid-Lösungausrcichend, wenn die Kontaktzeit ausreichend ist. Dabei läßt sich die ausreichend lange Kontaktzeit nicht allgemein festlegen; sie hängt z. B. von der Temperatur und der Vorbehandlung des Akylierungsgemisches ab und kann im gegebenen Fall leicht wie folgt ermittelt werden. Die Kontaktzeit der Alkali-Lösung mit dem Alkylierungsgemisch ist bei gegebener Temperatur ausreichend, wenn eine Probe des gewaschenen Alkylierungsgemisches nach Abde- 3» stillieren der Leichtsieder beim anschließenden 30minütigen Erhitzen auf 250° C kein Isobuten abspaltet. Bei etwa 60° C kann beispielsweise eine mittlere Kontaktzeit von etwa 30 Minuten für eine Wäsche von 1000 Gewichtsteilen Alkylierungsgemisch mit 3gewichtsprozentiger wäßriger Natriumhydroxidlösung ausreichen. Die erforderliche Kontaktzeit sinkt mit steigender Temperatur.
Weiterhin soll nach dem erfindungsgemäßen Verfahren das Alklyierungsgemisch nach der Alkali-Wäsehe (b) eine Rest-Alkalität von mindestens 0,001 VaI OH"/kg besitzen; diese Forderung wird beim Einsatz ausreichender Alkalimengen, wie vorstehend beschrieben, bereits nach nicht ausreichender Kontaktzeit häufig erreicht. Wesentlich ist aber, daß auch die thermische und zeitliche Stabilität des Alkylierungsgemisches sichergestellt ist.
Sowohl die Wasser- (a) als auch die Alkali-Wäsche (b) kann absatzweise oder kontinuierlich durchgeführt werden. 5ii
Im allgemeinen wird in den Verfahrensstufen (a) und (l">) bei Normaldruck oder dem Druck gearbeitet, der sich bei der gewählten Temperatur einstellt. Dabei kann der Druck bis zu 5, insbesondere bis zu 3 bar betragen. Vorzugsweise wird unter dem Druck gearbeitet, mit dem das zu reinigende Alkylphenol-Gemisch — ohne Zwischenentspannung — aus der Alkylierung anfällt, z. B. mit einem Druck bis zu 2 bar.
Bevorzugt wird in den Verfahrensstufen (a) und (b) bei Temperaturen zwischen 40 und 95 ° C gearbeitet, jedoch kann man auch bei niedrigerer Temperatur und gegebenenfalls unter Druck auch bei höherer Temperatur arbeiten.
Wenn die Waschen (a) und (b) absatzweise durchgeführt werden, können Apparaturen verwendet werden, die sowohl als Mischer als auch als Abscheider dienen können oder spezielle Mischer-Abscheider-Anordnungen, wie sie nach dem Stand der Technik üblich sind.
Für die kontinuierliche Durchführung der Wäschen kommt neben Kolonnen, die nach dem Schwerkraft-Prinzip, mil rotierenden Einbauten, pulsierenden Flüssigkeitssäule!! oder pulsierenden Einbauten arbeiten, oder Apparaturen, die die Zentrifugalkraft zum Vermischen und Trennen der Phasen ausnutzen, insbesondere Mischer-Abschcidcr-Batterien in Betracht. Dabei können für die Wasser- und Alkali-Wäsehe auch verschiedene Apparaturen verwendet werden. Beispielsweise kann es zweckmäßig sein, wegen der erforderlichen Kontaktzeit die Alkali-Wäsche in einem Mischcr-Abscheider-Paar und die vorangehende Wasserwäsche in einem nach einem anderen Prinzip arbeitenden Apparat durchzuführen. In jedem Fall können für das erfindungsgemäße Verfahren übliche und nach dem Stand der Technik bekannte Apparaturen verwendet werden.
Anschließend werden die sauren Abwässer der Wasserwäsche (a) und die alkalischen Abwässer der Alkali-Wäsche (b) vereinigt (d) und reagieren anschließend sauer, da in der zweiten Stufe (b) erfindungsgemäß eine zur vollständigen Neutralisation der gesamten ursprünglich vorhandenen Säure nicht ausreichende Menge Alkali-Lösung verwendet wird.
Das nach der Vereinigung (d) erhaltene Abwassergemisch enthält neben freien Säuren, insbesondere Sulfonsäuren auch deren Alkalisalze, insbesondere Natriumsalze sowie in geringerer Menge gelöste Anteile des Alkylierungsgemisches. Es hat einen sehr hohen Chemischen-Sauerstoff-Bedarf (CSB-Wert) und ein sehr ungünstiges CSB/BSB-Verhältnis (BSB = Biologischer Sauerstoffbedarf). Erfindungsgemäß wird dieses Abwassergemisch nun in einer weiteren Verfahrensstufe (e) auf Temperaturen von etwa 100 bis 200° C erhitzt, vorzugsweise zwischen 140 und 190° C erhitzt. Dadurch werden die Sulfonsäuren und ihre Alkalisalze in die Phenole und Schwefelsäure und/oder deren Salze gespalten.
Da diese Erhitzung auf Temperaturen oberhalb des Siedepunktes des Abwassers erfolgt, muß sie in druckfesten Apparaturen vorgenommen werden. Vorzugsweise wird ohne äußere Druckeinwirkung bei dem sich in der geschlossenen Apparatur bei der gewählten Spaltungstemperatur einstellenden Druck gearbeitet.
Die erforderliche Reaktionszeit für diese Abwasserbehandlung (e) ist der gewählten Temperatur umgekehrt proportional; je höher die Temperatur ist, desto kürzer ist der Zeitbedarf für die Abwasserbehandlung. Zum Beispiel kann 5stündiges Erhitzen auf etwa 170° C ausreichen; bei einer Steigerung der Reaktionstemperatur um 10° C wird nur etwa die halbe Reaktionszeit benötigt, bei einer Erniedrigung der Reaktionstemperatur um 10° C muß die Reaktionszeit etwa verdoppelt werden. Die für die praktisch vollständige Spaltung der Sulfonsäure im Einzelfall erforderliche Reaktionszeit kann durch wenige Vorversuche leicht ermittelt werden.
Die erfindungsgemäße Erhitzung (e) des Abwassergemisches kann absatzweise oder kontinuierlich, isotherm oder adiabatisch durchgeführt werden. Bei kontinuierlicher Durchführung kann eine längere mittlere Verweilzeit als bei absatzweiser Durchführung erforderlich sein. Vorteilhaft kann man die kontinuierliche Erhitzung in Rührkesseln, Rohrreaktoren, turmförmigen Reaktoren, die mit Füllkörper!! oder Einbauten versehen sind, oder in Reaktorkaskaden
durchführen.
Nach der erfinduiigsgemäßen Erhitzung (e) des Abwassergemisches kann die dabei entstandene organische Phase, die die gebildeten nicht wasserlöslichen organischen Verbindungen, nämlich Phenole wie Kresole, Mono-tert.-butylkresole, Di-tert.-butylkresole enthält, in üblicher Weise abgetrennt werden. Die Abtrennung der als Oberphase vorliegenden organischen Phase kann entweder bei erhöhter Temperatur unter Druck oder nach entsprechender Abkühlung bei Normaldruck erfolgen. Bevorzugt wird die Abtrennung bei Temperaturen unterhalb 60° C bei Normaldruck vorgenommen.
Nach Abtrennung der organischen Phase verbleibt als untere wäßrige Phase eine fast farblose verdünnte Schwefelsäure, die zwar Alkalisulfate, aber praktisch keine Sulfonsäuren mehr enthält und deren CSB-Wert nur noch einen Bruchteil des ursprünglichen CSB-Wertes beträgt. Beispielsweise zeigte ein Abwasser mit einem CSB-Wert von 451000 mg O2 je Liter nach 5stündigem Erhitzen auf 170° C, Abkühlen auf Raumtemperatur und Abtrennen der organischen Phase nach gutem Absitzen nur noch einen CSB-Wert von 21000 mg O2 je Liter. Der Gehalt an Sulfonsäuren war von ursprünglich über 250 g/l auf unter 0,3 g/l gesunken.
Der verbliebene CSB-Wert wurde im wesentlichen durch die in der wäßrigen Phase noch gelösten Phenole verursacht, deren Menge etwa dem Verteilungsgleichgewicht der Phenole zwischen organischer und schwefelsaurer wäßriger Phase bei der entsprechenden Temperatur entspricht. Durch Entfernen der gelösten Phenole kann der CSB-Wert des Abwassers noch weiter vermindert werden. Dies kann in üblicher Weise beispielsweise durch Wasserdampfdestillation, Extraktion mit organischen Lösungsmitteln, Absorption an Aktivkohle oder durch chemische, oxidative Zerstörung erfolgen. Im allgemeinen genügt es jedoch, dieses schwefelsaure wäßrige Abwasser zu neutralisieren, z. B. mit Kalkmilch, um es einer biologischen Abwasseraufbereitung zuführen zu können. Es zeigt sich nämlich, daß das so erhaltene Abwasser nach der Neutralisation keine Schadwirkung gegen Pseudomonas fluorescens besitzt und der BSB10-Wert etwa gleich dem CSB-Wert ist, d. h. daß ein vollständiger biologischer Abbau, der in diesem Abwasser noch vorhandenen organischen Substanz möglich ist.
Wie bereits ausgeführt, besitzt das erfindungsgemäße Verfahren eine erhebliche Variationsbreite, die noch zusätzlich zur Verringerung der anfallenden Abwassermenge genutzt werden kann, obwohl die in dem erfindungsgemäßen Verfahren anfallende Abwassermenge an sich bereits gering ist. Da die Gesamtmenge der im Abwasser enthaltenen organischen Stoffe in folge der vorgegebenen Löslichkeiten der Wassermenge proportional ist, wird durch Verringerung der Abwassermenge auch die Umweltbelastung der natürlichen Gewässer durch organische Substanzen verringert. Mit verringerter Abwassermenge erhöht sich jedoch die Säure- und Salz-Konzentration des Abwassers, das daher vor einer Ableitung gegebenenfalls noch einer weiteren Behandlung in bekannter Weise bedarf, je nachdem ob es in einem betrieblichen Abwasser-Sammelkanal, eine Kläranlage oder direkt in ein natürliches Gewässer abgegeben wird. In letzterem Fall ist wegen seines Säuregehaltes noch eine Neutralisation erforderlich; auch vor Abgabe in eine Kläranlage kann eine Neutralisation notwendig sein, wenn sie nicht in der Kläranlage erfolgt, während bei Abgabe in einen betrieblichen Abwasser-Sammelkanal gegebenenfalls jede weitere Behandlung unterbleiben kann. Eine gegebenenfalls erforderliche Behandlungder im Verfahrensschritt (f) anfallenden, als Abwasser abzuleitenden, wäßrigen Phase ist jedoch Stand der Technik. Die nach der Erhitzung des Abwassers (e) abgetrennte organische Phase (f) kann vorteilhaft in das Verfahren zurückgeführt werden, da
ίο sie im wesentlichen nur aus Verbindungen besteht, die ebenso in dem eingesetzten Alkylierungsgemisch vorhanden sind. Da sie noch geringe Säurespuren enthalten kann, wird sie besonders vorteilhaft in Verfahrensschritt (a) oder (b) zurückgeführt. Sie kann jedoch auch, gegebenenfalls nach vorhergehender Destillation unter AJkaü-Zusatz dem Ausgangsmateria! für die Alkylierung zugegeben werden.
Nach einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens extrahiert man die Säuren aus dem rohen Alkylierungsgemisch mit Wasser in der ersten Stufe unter Verwendung von zwei oder mehr in Serie geschalteten Extraktionseinheiten, insbesondere Mischer-Abscheider-Paaren und führt das Wasser im Kreuz- oder bevorzugt Gegenstrom.
Die nachstehenden Fig. 2 und 3 sollen die Wasser-Wäsche im Kreuzstrom- und Gegenstrom-Prinzip veranschaulichen, wobei schematisch in beiden Fällen hierfür 3 Extraktionsstufen gezeichnet sind, die z. B. wie im Schema jeweils aus einem Mischer( M)-Abscheider(v4 )-Paar bestehen können. In analoger Weise zeigen die Figuren auch die Alkaliwäsche (b). Die Pfeile (1) zeigen den Fluß des Alkylierungsgemisches, während (2) die Einspeisung von Wasser und (3) von Alkalilösung, (4) das abfließende saure und
(5) das alkalische Abwasser sowie (21) und (22) den Wasser-Fluß versinnbildlichen.
Die Figuren zeigen jeweils nur die Verfahrensstufe (a) und (b), wobei die Darstellung der Verfahrensstufe (a) und (b) nur schematisch und beispielhaft erfolgt ist, ebenso wie die Zahl der Extraktionsstufe in den Verfahrensstufen (a) und (b) ebenfalls nur beispielhaft ist.
Selbstverständlich können die beiden Varianten der Verfahrensstufe (a) auch nur zwei oder mehr als drei Extraktionsstufen verwendet werden.
Selbstverständlich können in allen Varianten des erfindungsgemäßen Verfahrens, sofern einer der Verfahrensschritte (a) oder (b) in mehreren Stufen kontinuierlich durchgeführt werden, diese Stufen auch so
so gefahren werden, daß man Wasser oder Alkalilösung zirkulieren läßt und jeweils nur einen Teil der wäßrigen Phase nach der Wäsche ausschleust und durch frisches Wasser oder Alkalilösung entsprechender Konzentration die ausgeschleusten Mengen ersetzt.
Nach einer besonderen Variante des erfindungsgemäßen Verfahrens kann man auch die zwischen den Verfahrensstufen (b) und (d) erfolgende Vereinigung (d) der sauren Abwasser aus der Verfahrensstufe (a) und alkalischen Abwasser aus der Verfahrensstufe (b) so vornehmen, daß man das alkalische Abwasser der Verfahrensstufe (b) anstelle von Wasser in die Verfahrensstufe (a) zurückleitet. Da der Alkali-Gehalt des Abwassers der Verfahrensstufe (b) zur Neutralisation der gesamten im rohen Alkylierungsgemisch enthaltenen Säuren nicht ausreicht, wird er bald neutralisiert und entspricht damit einem neutralsalzhaltigen Wasser, wie es in Stufe (a) verwendet werden kann; auch üblicherweise für derartige Waschen ver-
wendetes Leitungswasser enthält ja Neutralsalze oder ist sogar schwach sauer oder alkalisch. Vorteilhaft kann man diese Ausführungsform dann verwenden, wenn die Verfahrensstufe (a) nach dem Gegenstromprinzip in zwei oder mehreren Extraktionsstufen durchgeführt wird.
Dies ist in nachstehender Fig. 4 beispielhaft und schematisch in insgesamt 4 Extraktionsstufen (JV/, A) angedeutet; die Pfeile (1) versinnbildlichen den Fluß des Alkylierungsgemisches, während der Pfeil (3) die Einspeisung der Alkalilösung andeutet. Das alkalische Abwasser (5) wird dann anstelle von Wasser, gegebenenfalls unter Zusatz von Wasser (2) in die Verfahrensstufe (a) eingeführt, wobei (21/51) und (22) seinen weiteren Fluß bezeichnen.
Dabei läßt sich jedoch nur im Schema eine eindeutige Trennung zwischen den Verfahrensstufen (a) und (b) festlegen, während in Wirklichkeit der Punkt, an dem die Grenze zwischen beiden Verfahrensstufen liegt und die Neutralisation der Alkalilösung stattgefunden hat und damit auch die Mischung (d) erfolgt, sich nicht eindeutig festlegen läßt und von den Gegebenheiten des Einzelfalles abhängig ist.
In der nachstehenden Fig. 5 ist schematisch eine weitere Variante des erfindungsgemäßen Verfahrens verdeutlicht, bei der das alkalische Abwasser (5) der Alkaliwäsche (b) in die erste Extraktionsstufe der Wasser-Wäsche (a) anstelle von Wasser eingeleitet wird, während die weiteren Extraktionsstufen der Wasserwäsche (a), für die im Schema 2 Mischer(M)-Abscheider(/4)-Paare beispielhaft gezeichnet sind, in einem eigenen Gegenstrom mit Wasser gefahren werden. Die Mischung (d) findet in der ersten Extraktionsstufe der Wasser-Wäsche (a) statt, das Abwassergemisch (6) und das restliche saure Abwasser (4) werden gemeinsam in die Hitzebehandlung (e) eingeführt.
Der durch das erfindungsgemäße Verfahren erzielte technische Fortschritt besteht in der Vermeidung der vorstehend beschriebenen Nachteile des Verfahrens des Standes der Technik oder positiv ausgedrückt, es wird ein biologisch leicht abbaubares Abwasser gewonnen und damit eine Belastung der Umwelt vermieden; ferner werden eingesetzte Rohstoffe und Verfahrensprodukte möglichst vollständig wiedergewonnen, der Verbrauch an Hilfsstoffer. wie Wasser und Alkalihydroxid oder -carbonat erheblich vermindert und die Qualität des erhaltenen Alkylierungsgemisches dadurch erhöht, daß seine Destillierbarkeit erheblich verbessert wird.
Ein weiterer Vorteil des erfindungsgemäßen Verfahrens liegt darin, daß die insgesamt erhaltene Abwassermenge auf einfachem Wege wesentlich verringert wird. Da der Gehalt des Abwassers an organischen Stoffen von ihrer Löslichkeit abhängt, erfolgt gleichlaufend avch eine wesentliche Verminderung der Gesamtmenge organischer Stoffe, so daß auch hierdurch die Umweltbelastung zurückgeht, gleichgültig in welcher Weise das nach dem erfindungsgemäßen Verfahren anfallende Abwasser vor seinei Einleitung in ein natürliches Wasser in bekannter Weise weiter behandelt wird. Soweit bei dieser nachfolgenden Behandlung der Gehalt des Wassers an organischen Stoffen bereits an sich eine Minderung erfährt, wirkt sich der Vorteil der geringen Gesamtmenge bereits hier insoweit aus, als diese Behandlung infolge der geringeren Gesamtmenge erleichtert wird. Das erfindungsgemäße Verfahren ist damit insbesondere für die Durchführung der Kresol-Trennung durch die sogenannte Butylierung des Kresolgemisches und seine destillative Trennung von Bedeutung und Vorteil. Es stellt gegenüber dem Stand der Technik somit eine wesentliche Bereicherung dar.
Beispiel 1
a) Ein m-/p-K.resol-Gemisch im Verhältnis 70:30, das mit 2 Gew.-% konzentrierter Schwefelsäure,
κι bezogen auf Kresol, versetzt war, wurde bei
60-70° C in bekannter Weise mit 1,9 Mol Isobuten von 99%iger Reinheit je Mol Kresol butyliert.
b) 1000 Gewichtsteile des nach a) erhaltenen rohen is Alkylierungsgemisches mit einer durch poten-
tiometrische Titration mit 0,1 N-Natron!auge bestimmten Acidität von 0.100 VaI H'7kg werden bei etwa 70° C mit 350 Gewichtsteilen Wasser gut durchmischt. Nach dem Absitzen beträgt 2(i die in gleicher Weise bestimmte Acidität der organischen Alkylphenol-Phase nur noch 0,003 VaI H +/kg.
c) Diese organische Phase wird abgetrennt und anschließend 20 Minuten bei etwa 60° C mit 50 Gewichtsteilen wäßriger 3gewichtsprozentiger Natronlauge gut vermischt. Nach der Phasentrennung beträgt der Alkaligehalt der organischen Alkylphenol-Phase 0,001 VaI OH~/kg.
d) 100 g dieses Alkylierungsgemisches werden bei 3d Normaldruck in einem Kolben, der mit Destillationsbrücke, Vorlage und nachgeschalteter Gasuhr versehen ist, erhitzt. Mit steigender Temperatur destillieren die Leichtsieder ab, jedoch entwickelt sich auch bei längerem Erhitzen auf etwa 250° C (etwa 1,5 Stunden) kein Isobuten.
Das erfindungsgemäß behandelte Alkylierungsgemisch ist also thermisch stabil.
Beispiel 2
an 1000 Gewichtsteile des nach Beispiel la} erhaltenen säurehaltigen Alkylierungsgemisches mit der Acidität von 0,100 VaI H +/kg werden zweimal mit je 50 Gewichtsteilen Wasser bei etwa 60° C und dann einmal mit 50 Gewichtsteilen wäßriger 2,5gewichtsprozentiger Natronlauge bei etwa 70° C jeweils 30 Minuten gut durchgeschüttelt, wobei die wäßrige Phase jeweils abgetrennt und verworfen wurde.
Nach der ersten Wasserwäsche war die Acidität des Alkylierungsgemisches auf 0,010 ValHVkg, nach der zweiten Wasserwäsche auf 0,002 VaI H+/kg gesunken; nach der Alkaliwäsche betrug die Alkalität des Alkylierungsgemisches 0.001 VaI OH"/kg.
Auch dieses Alkylierungsgemisch war entsprechend der in Beispiel 1 b) beschriebenen Probe destillationsstabil.
Beispiel 3 (Vergleichsbeispiel) 1000 Gewichsteile des nach Beispiel 1 a) erhaltenen Alkylierungsgemisches mit einer Acidität von 0,100 VaI H+/kg wurden bei etwa 60° C mit 100 Gewichtsteilen Wasser gut duichmischt. Nach dem Absitzen wurde die Alkylphenolphase abgetrennt (sie hat jetzt eine Restacidität von 0,0055 VaI H+/kg) und bei 60° C 20 Minuten mit 50 Gewichtsteilen wäßriger 3gewichtsprozentiger Natronlauge gut durchgeschüttelt. Nach dem Abtrennen der Alkylphenolphase ergab die potentiometrische Titration mit 0,1 N-SaIzsäure eine Alkalität von 0,001 VaI OH"/kg.
Wie in Beispiel 1 b) beschrieben, wurde eine Probe dieses Alkylierungsgeinisches erhitzt; nach dem Abdestillieren der Leichtsieder und Erreichen einer Sumpftemperatur von etwa 200° C trat eine deutliche Isobuten-Entwicklung ein, wie sich an der Gasuhr ablesen ließ.
Beispiel 4
In diesem Beispiel wurde eine Apparatur verwendet, die aus 3 hintereinandergeschaltctcn Mischcr-Abscheider-Paaren bestand. Als Mischer dienten Rührkessel, als Abscheider Trennflaschen. Durch die Kühlmäntel der Mischer und Trennflaschen zirkulierte Warmwasser, wodurch die Apparatur auf 60° C Innenteinperatur gehalten wurde.
Das zu reinigende Alkyücrungsgemisch durchlief die Mischer-Abscheider-Batterie kontinuierlich, durch Überläufe geregelt und mit natürlichem Gefälle. Seine mittlere Verweilzeit in den ersten beiden Mischkesseln betrug jeweils etwa 10 Minuten, im letzten Mischkessel, der Alkaliwäsche, ca. 25 Minuten. Die mittlere Verweilzeit des Alkylierungsgemisches in den Trennflaschen betrug jeweils etwa K) Minuten.
In den ersten Misehkessel wurde das Abwasser der zweiten Trennnaschen kontinuierlich eingepumpt, während in den zweiten Misehkessel auf je 1000 Gewichtsteile Alkylieriingsgemisch 50 Gewichtsteile Frischwasser eiiulosiert 'viirden. In den dritten Misehkessel wurden auf je 1000 Gewichtsteile Alkylierungsgemisch 50 Gewichsteile wäßrige 3gewichtsprozentige Natronlauge eindosiert.
Das dem ersten Misehkessel zulaufende Alkylieriingsgemisch wurde gemäß Beispiel 1 a) erhalten und hatte eine Acidität von 0,100 VaI H+/kg.
Nach dem Austritt aus der ersten Trennflasche betrug die Acidität des Alkylierungsgemisches 0,013 VaI H +/kg, nach dem Austritt aus der zweiten Trennflasche 0,003 VaI H +/kg.
Nach dem Passieren der Alkaliwäsche, also nach dem Austritt aus der letzten Trennflasche betrug die Alkalität des Alkylierungsgemisches 0,002 VaI OH"/kg, dei Wassergehalt etwa 1 Gewichtsprozent.
Das aus der ersten Trennflasche ablaufende, stark sauer reagierende Abwasser wurde mit dem alkalischen Abwasser, das aus der letzten Trennflasche ablief, vereinigt, dabei wurden je 1000 Gewichtsteile Alkylierungsgemisch etwa 115 Gewichtsteile eines stark sauer reagierenden Abwassergemisches erhalten.
Beispiel 5
1000 Volumenteile nach vorstehenden Beispielen erhaltenen Abwassergemisches mit einem pH- Wert S 1 und einem CSB-Wert von 385 000 mg O2/l wurden in einem Email-Autoklaven 10 Stunden auf 140° C/5 bar erhitzt. Nach Abkühlen auf Raumtemperatur und Absitzen wurden 120 g organische Phase und 910 g wäßrige Phase mit einer Acidität von 1,28 VaI H+/l und einem CSB-Wert von 42000 mg O2/l erhalten.
Beispiel 6
1000 Volumteile nach vorstehenden Beispielen erhaltenen sauren Abwassergemisches mit einem CSB-Wert von384000 mgO2/l wurden in einem Glasautoklaven, der mit einem mit Poly-tetrafluoräthylen umkleideten Rührer ausgerüstet war, 7 Stunden auf 155° C/6 bar erhitzt. Nach Abkühlen auf Raumtemperatur und Absitzen wurden 133 Gewichtsteile organische Phase und 896 Gewichtsteile wäßrige Phase mit einer Acidität von 1,47VaI H + /l und einem CSB-Wert von 26000 mg O,/l erhalten, in der ein Kresolgehalt von 6 g/l analytisch bestimmt wurde.
Bespiel 7
1000 Volumteile nach Beispiel 4 erhaltenen sauren Abwassergemisches mit einem CSB-Wert von κι 451000 mg O,/l und einem CSB/BSB,-Verhältnis von 10:1 wurden in einem Email-Rührautoklaven 5 Stunden auf 170°C/ubar erhitzt. Nach Abkühlen und Absitzen bei 25° C wurden 157 Gewichtsteile organische Phase mit folgender Zusammensetzung, die is gaschromatographisch bestimmt wurde, abgetrennt: 3 Gewichtsteile Aliphaten (Diisobuleu, etwas tert.-Butanol und Triisobuten), 28 Gewichtsprozent m- und p-Kresol, 59 Gewichtsprozent Mono-tert.-butylkresole, :ii 9 Gewichtsprozent Di-tert.-butylkresole,
1 Gewichtsprozent Zwischen- und Nachläufe. Es verbliebei: 883 Gewichtsteile einer fast farblosen wäßrigen, sch vcfelsauren Phase mit 1,9 VaI Hl und einem CSB-Wert von 21 000 mg O2Zl; sie enthielt etwa 25 g Na1SO4Zi. weniger als 0.3 g Kresolsulfonsäure/1 und etwa 7 g Kresol/1.
Nach Neutralisation der wäßrigen Phase mit Kalkmilch betrug der CSU-Wert der überstehenden neutralen Lösung 16000 mg Ο,.-Τ der BSB-Wert betrug nach 5 Tagen 7100, nach H) Tagen 15 SOO und nach 20 Tagen 16000 mg O2ZI. Weiterhin zeigte die überstehende neutrale wäßrige Lösung beim Verdünnen mit Wasser im Verhältnis 1 :4 nur eine schwache und bei Verdünnung 1: S keine Schadwirkung mehr gegen .15 Pseudomonas fluorescens.
Die nach dem Erhitzen des sauren Abwassergemisches nach Abtrennen der organischen Phase erhaltene wäßrige Phase ist also nach der Neutralisation mit Kalkmilch vollständig biologisch abbaubar.
Beispiel 8
1000 Volumteile des nach Beispiel 4 erhaltenen sauren Abwassergemisches mit einem CSB-Wert von 451 000 mg O1ZI wurden in einem Emailkessel 3 Stun- 4:1 den auf 180° C/12bar erhitzt. Nach Abkühlen und Absitzen bei etwa 25° C wurden 158 Gewichtsteile organische Phase und 828 Gewichtsteile wäßrige schwefelsaure Phase erhalten, wobei die Eigenschaften der erhaltenen Phasen denen in Beispiel 7 bea schriebenen entsprachen.
Durch Wasserdampfdestillation konnte der Kresol-Gehalt der wäßrig-schwefelsauren Phase von 7 g 1 auf weniger als 1 g/l verringert werden; der CSB-Wert betrug dann nur noch 2000 mg Ο-,/Ι.
Beispiel 9
In diesem Beispiel wurde eine aus vier in Serie geschalteten emaillierten Rührkesseln gleicher Größe bestehende Kaskade verwendet; die Rührkessel waren durch emaillierte Rohre verbunden und durch Außenbeheizung mit Dampf auf 170° C Innentempe- ratur und 9 bar Innendruck gehalten. In die Kaskade wurden stündlich 1000 Volumteile des nach Beispiel 4
f.=, erhaltenen sauren Abwassergemisches mit einem CSB-Wert von 450000 mg O2/l eindosiert; die mittlere Verweilzeit des Abwassers je Kessel betrug etwa 4 Stunden.
Nach Verlassen der letzten Kaskadenstufe wurde das Reaktionsgemisch in einem Kühler auf etwa 35 ° C abgekühlt und über ein Reduzierventil in einen Abscheider geleitet, aus dem stündlich unter Normaldruck 155 Gewichtsteile organische Phase abgezogen wurden.
Die aus dem Abscheider erhaltene wäßrig-schwc-
feisaure Phase betrug je Stunde etwa S85 Gewichtsteile; sie enthielt IU g Kresol/1 und hatte einen CSB-Wert von etwa 25000 mg O,/l.
Diese wäßrige Phase wurde kontinuierlich nach Neutralisation mit Kalkmilch einer biologischen Abwasseraufbereitungsanlage zugeführt und konnte dort ohne jede Schwierigkeit verarbeitet werden.
Hierzu 2 Blatt Zeichnungen

Claims (2)

Patentansprüche:
1. Verfahren zur Aufarbeitung von Alkylphenolgemischen, die bei der Alkylierung von Phenolen mit Isobuten in Gegenwart von Schwefelsäure, Oleum oder Schwefeltrioxid erhalten worden sind, durch Behandlung mit Wasser und nachfolgend mit Alkalilösung, dadurch gekennzeichnet, daß man
a) das Alkylphenolgemisch so mit Wasser extrahiert, daß die Restacidität des Alkylphenolgemisches weniger als 0,005 VaI H+/kg beträgt,
b) das so erhaltene Alkylphenolgemisch mit einer 1- bis lOgewichtsprozentigen wäßrigen Aikalihydroxydlösung in einer Menge, die zur Neutralisierung der gesamten, ursprünglich im Alkylphenolgemisch enthaltenen Säure nicht ausreicht, behandelt, so daß es eine Restalkalität von mindestens 0,001 VaI OH"/kg aufweist,
c) das Alkylphenolgemisch anschließend in an sich bekannter Weise destilliert, während man
d) die in den Schritten (a) und (b) erhaltenen wäßrigen Phasen vereinigt,
e) die vereinigten wäßrigen Phasen auf Temperaturen von 100 bis 200° C erhitzt, und
f) die dabei erhaltene organische Phase von der wäßrigen Phase abtrennt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die im Verfahrensschritt (f) erhaltene organische Phase ganz oder teilweise in das Verfahren zurückführt.
DE2602149A 1976-01-21 1976-01-21 Verfahren zur Aufarbeitung von Alkylphenolgemischen Expired DE2602149C3 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE2602149A DE2602149C3 (de) 1976-01-21 1976-01-21 Verfahren zur Aufarbeitung von Alkylphenolgemischen
US05/757,422 US4113975A (en) 1976-01-21 1977-01-06 Process for purifying alkylphenolz
GB1917/77A GB1520091A (en) 1976-01-21 1977-01-18 Process for purifying alkylphenols
IT47696/77A IT1086620B (it) 1976-01-21 1977-01-19 Procedimento per depurare alchilfenoli
JP52004059A JPS593974B2 (ja) 1976-01-21 1977-01-19 アルキルフエノ−ルの精製法及び排液の処理法
FR7701793A FR2338916A1 (fr) 1976-01-21 1977-01-21 Procede de purification d'alkylphenols
NLAANVRAGE7700649,A NL184569C (nl) 1976-01-21 1977-01-21 Werkwijze voor het opwerken van alkylfenolmengsels.
BE2055612A BE850604A (fr) 1976-01-21 1977-01-21 Procede de purification d'alkylphenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2602149A DE2602149C3 (de) 1976-01-21 1976-01-21 Verfahren zur Aufarbeitung von Alkylphenolgemischen

Publications (3)

Publication Number Publication Date
DE2602149A1 DE2602149A1 (de) 1977-07-28
DE2602149B2 DE2602149B2 (de) 1980-08-21
DE2602149C3 true DE2602149C3 (de) 1982-02-11

Family

ID=5967923

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2602149A Expired DE2602149C3 (de) 1976-01-21 1976-01-21 Verfahren zur Aufarbeitung von Alkylphenolgemischen

Country Status (8)

Country Link
US (1) US4113975A (de)
JP (1) JPS593974B2 (de)
BE (1) BE850604A (de)
DE (1) DE2602149C3 (de)
FR (1) FR2338916A1 (de)
GB (1) GB1520091A (de)
IT (1) IT1086620B (de)
NL (1) NL184569C (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050106B4 (de) * 2005-10-18 2008-04-30 Josef Meissner Gmbh & Co. Kg Rückgewinnung von Nitriersäuregemischen aus Nitrienprozessen
CN109231538B (zh) * 2018-09-06 2024-02-27 江苏永安化工有限公司 一种二甲戊灵产生过程产生的酸水与碱水中和反应装置及cod去除方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2248828A (en) * 1937-04-12 1941-07-08 Gulf Oil Corp 2,4,6-tri-tertiary-butyl phenol
US2236811A (en) * 1938-04-28 1941-04-01 Universal Oil Prod Co Alkylation of phenols
GB557519A (en) * 1941-04-01 1943-11-24 Shell Dev Process of separating meta-substituted alkyl phenols from mixtures of meta and para-substituted alkyl phenols
GB582057A (en) * 1944-06-19 1946-11-04 Horace Andrew Basterfield Improvements in and relating to the separation of phenols
US2537337A (en) * 1946-05-17 1951-01-09 Ici Ltd Alkylation of phenols
US2493781A (en) * 1946-06-04 1950-01-10 Standard Oil Dev Co Purification of phenols
US2499236A (en) * 1947-12-03 1950-02-28 Standard Oil Dev Co Purification of phenols
US2714087A (en) * 1949-10-31 1955-07-26 Gulf Research Development Co Stabilization of phenol alkylates
US2656312A (en) * 1949-10-31 1953-10-20 Gulf Research Development Co Stabilization of phenol alkylates
FR1035779A (fr) * 1950-04-11 1953-08-31 Ici Ltd Production de phénols
GB701438A (en) * 1950-04-11 1953-12-23 Ici Ltd Improvements in and relating to the production of phenols
US2865966A (en) * 1956-07-16 1958-12-23 Monsanto Chemicals Process for alkylating phenol
GB1370325A (en) * 1971-04-02 1974-10-16 Coalite Chemical Products Ltd Separation of mixtures of phenols

Also Published As

Publication number Publication date
GB1520091A (en) 1978-08-02
US4113975A (en) 1978-09-12
NL184569C (nl) 1989-09-01
FR2338916A1 (fr) 1977-08-19
NL184569B (nl) 1989-04-03
NL7700649A (nl) 1977-07-25
IT1086620B (it) 1985-05-28
FR2338916B1 (de) 1983-11-10
JPS593974B2 (ja) 1984-01-27
DE2602149A1 (de) 1977-07-28
DE2602149B2 (de) 1980-08-21
BE850604A (fr) 1977-07-22
JPS5291830A (en) 1977-08-02

Similar Documents

Publication Publication Date Title
DE69401218T2 (de) Verfahren zur Herstellung von Alkyl-(meth)acrylaten durch direkte Veresterung
EP0005203A2 (de) Verfahren zur Aufarbeitung von Nitro-hydroxy-aromaten enthaltenden Abwässern
CH663781A5 (de) Verfahren zur reinigung von abwaessern.
CH632223A5 (de) Verfahren zur reinigung von abwasser.
DE2637553B2 (de) Verfahren zum Trennen von Öl-Wasser-Emulsionen
DE2602149C3 (de) Verfahren zur Aufarbeitung von Alkylphenolgemischen
DE3308879A1 (de) Verfahren zur herstellung von acrylsaeure- oder methacrylsaeureestern
EP0037883A1 (de) Verfahren zur Abtrennung von Schwefelsäure aus dem bei der Umsetzung von Paraffinen mit Schwefeldioxid, Sauerstoff und Wasser in Gegenwart von UV-Licht anfallenden Sulfoxidationsaustrag
DE2443246A1 (de) Verfahren zum reinigen der abwaesser aus der herstellung von dialkylphthalaten
DE2230226C3 (de) Verfahren zur kontinuierlichen Herstellung von Dicarbonsäurediestern unter weitgehender Abwasserreinigung
DE1219484B (de) Verfahren zur Herstellung von Peroxycarbonsaeuren
DE2657189B2 (de) Verfahren zur Reinigung von NaBverfahrensphosphorsäure
DE1963846C3 (de) Verfahren zur Gewinnung von Kaliumhydrogentartrat
DD149364A5 (de) Verfahren zur reinigung von mercaptobenzothiazol
DE3620822A1 (de) Verfahren zur aufarbeitung von mutterlaugen aus der herstellung von benzthiazol-verbindungen
DE944012C (de) Verfahren zur Reinigung von Rohacrylsaeurenitril
DE3011588C2 (de)
DE4212086C2 (de) Verfahren zur kontinuierlichen Herstellung von C¶1¶¶0¶-C¶2¶¶2¶-Alkan-alkalisulfonaten
DE2428081B2 (de) Kontinuierliches Verfahren zum Reinigen von Glyoxal
EP0143416A2 (de) Verfahren zur Isolierung von Alkalisulfat-armen Paraffinsulfonaten und Schwefelsäure aus Paraffin-Sulfoxidation-Reaktionsgemischen
EP0019305B1 (de) Verfahren zur Aufbereitung von Phenolatlaugen
DE2837694B2 (de)
DE3639464A1 (de) Verfahren zur isolierung von alkalisulfat-armen paraffinsulfonaten und schwefelsaeure aus paraffin-sulfoxidation-reaktionsgemischen ohne zwangsanfall von natriumsulfat
DE2637923C2 (de) Verfahren zur Reinigung von rohem Vinylphenol
DE60312646T2 (de) Verfahren zur herstellung von 2,4&#39;-dihydroxydiphenyl sulfon

Legal Events

Date Code Title Description
C3 Grant after two publication steps (3rd publication)