DE10241004A1 - Verfahren zur Regeneration von eisenbelasteten Denox-Katalysatoren - Google Patents

Verfahren zur Regeneration von eisenbelasteten Denox-Katalysatoren Download PDF

Info

Publication number
DE10241004A1
DE10241004A1 DE10241004A DE10241004A DE10241004A1 DE 10241004 A1 DE10241004 A1 DE 10241004A1 DE 10241004 A DE10241004 A DE 10241004A DE 10241004 A DE10241004 A DE 10241004A DE 10241004 A1 DE10241004 A1 DE 10241004A1
Authority
DE
Germany
Prior art keywords
process according
catalyst
acid
reaction solution
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10241004A
Other languages
English (en)
Inventor
Marcel FÖRSTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENVICA GmbH
Original Assignee
ENVICA GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENVICA GmbH filed Critical ENVICA GmbH
Priority to DE10241004A priority Critical patent/DE10241004A1/de
Priority to PCT/EP2003/009794 priority patent/WO2004022226A1/de
Priority to AU2003260490A priority patent/AU2003260490A1/en
Priority to CA2496861A priority patent/CA2496861C/en
Priority to KR1020057003888A priority patent/KR100974688B1/ko
Priority to US10/526,336 priority patent/US7569506B2/en
Priority to JP2004533469A priority patent/JP2006505386A/ja
Priority to EP03793801A priority patent/EP1545769A1/de
Publication of DE10241004A1 publication Critical patent/DE10241004A1/de
Priority to US12/534,677 priority patent/US7858549B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/92Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • B01J38/62Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten

Abstract

Die Erfindung betrifft ein Verfahren zur Regeneration von Denox-Katalysatoren mit erhöhter SO¶s¶/SO¶3¶-Konversionsrate durch Kumulation von Eisenverbindungen und ist dadurch gekennzeichnet, daß der Katalysator mit einer im wesentlichen wäßrigen Säurelösung, vorzugsweise mit einem pH von 0,5 bis 4,0, und einem Zusatz von Antioxidantien behandelt wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Regeneration von eisenbelasteten Denox-Katalysatoren.
  • Bei der Stromerzeugung unter Verwendung fossiler Brennstoffe entstehen zwangsläufig Abgase, die neben Flugstaub vor allen Dingen Stickoxide und Schwefeldioxide als umweltschädigende Verbindungen enthalten. Die Abgase müssen daher, soweit wie möglich, von diesen Verbindungen gereinigt werden, bevor sie an die Außenwelt abgegeben werden können, d.h. mit anderen Worten, daß sowohl eine Entschwefelung wie auch eine Entstickung und eine Entfernung von Flugstaub durch Filter notwendig sind. Die Entschwefelung wird nach unterschiedlichen Verfahren durchgeführt, wobei aber im wesentlichen das bei der Verbrennung entstehende SO2 zu SO3 oxidiert, dann in Alkalilösung adsorbiert und schließlich meist in der Form von Gips entfernt wird. Parallel dazu wird die Entstickung durchgeführt, wobei Stickstoffmonoxid mit Ammoniak und Luftsauerstoff zu elementarem Stickstoff und Wasser umgesetzt wird bzw. Stickstoffdioxid ebenfalls mit Ammoniak und Luftsauerstoff zu elementarem Stickstoff und Wasser reagiert. Diese Reaktion erfordert Katalysatoren, die als sogenannte Denox-Katalysatoren bezeichnet werden. Es handelt sich dabei um Katalysatoren mit einem Glasfaserkörper oder um Katalysatoren unterschiedlicher Form, vorzugsweise Waben- oder Plattenform, auf der Basis von Titandioxid, die als aktive Komponenten die Oxide verschiedener Übergangsmetalle wie Vanadin, Molybdän bzw. Wolfram enthalten.
  • Derartige Katalysatoren lassen, je nachdem, welcher Brennstoff in dem Kraftwerk eingesetzt wird, nach Betriebsstunden beispielsweise in der Größenordnung von 30.000 Stunden in ihrer Wirksamkeit nach, was einerseits bedingt ist durch Auflage von bzw. Verstopfung der Durchgänge bei Katalysatoren durch Flugasche, andererseits aber auch durch Ausbildung von Sperrschichten durch das bei der im Zuge der Entstickung durch Restammoniak gebildete Ammoniumsulfat und außerdem durch eine Vergiftung der aktiven Zentren durch in der Abluft enthaltenen Elemente bzw. Verbindungen wie beispielsweise Arsen, Phosphor oder Metalle.
  • Ein spezielles Problem stellt die Leistungsminderung durch die nicht gewünschte Erhöhung der SO2/SO3 Konversionsrate im Bereich der Entstickung durch Eisenverbindungen dar. Bei Verwendung von Kohle als Brennstoff muß berücksichtigt werden, daß Kohle je nach Alter und Herkunft eine nicht unbeträchtliche Menge mineralischer Bestandteile aufweisen kann, wobei, bezogen auf die Gesamtmenge der mineralischen Bestandteile, der Eisengehalt im Bereich von meist 5 bis 7 oder 8 Gew.-% liegen kann.
  • Eisenverbindungen setzten sich im Katalysator auf den Oberflächen nicht nur mechanisch fest, sondern gehen auch chemische Reaktionen mit den Katalysatorbestandteilen ein und führen dadurch zu einer Verringerung der Katalysatorleistung bei der Entstickung.
  • Die Entfernung von Metallen aus Denox-Katalysatoren unter Beibehaltung von Struktur und Aktivität wird beispielsweise in der DE 43 00 933 beschrieben, wobei zwei verschiedene Gasphasen eingesetzt werden. Dieses Verfahren ist aber nicht geeignet, andere Schadstoffe aus dem Katalysator zu entfernen. Alle bisher bekannten Verfahren zur Regeneration von Denox-Katalysatoren, die mit Reaktionsflüssigkeiten arbeiten wie beispielsweise EP 0 910 472 , US 6,241,826 , DE 198 05 295 , DE 43 00 933 , EP 0 472 853 , US 4,914,256 können Eisen nicht spezifisch entfernen. D.h. mit anderen Worten, daß bisher keine Möglichkeit besteht, Katalysatorstörungen in Form einer Erhöhung der SO2/SO3 Konversionsrate, die auf Eisen zurückzuführen sind, zu behandeln.
  • Aufgabe der Erfindung ist es daher, ein Verfahren zu entwickeln, welches die spezifische Entfernung von Eisen aus Denox-Katalysatoren ermöglicht.
  • Untersuchungen haben ergeben, daß die auf dem Katalysator befindlichen Eisenverbindungen, die überwiegend zweiwertiges Eisen enthalten, durch den im Abgas vorhandenen Sauerstoffgehalt in dreiwertiges Eisen übergehen und damit das Lösungsverhalten stark verschlechtert wird. Bei der spezifischen Entfernung von Eisenverbindungen ist dabei zu berücksichtigen, daß Denox-Katalysatoren Kationenaustauschereigenschaften aufweisen, die zu besonderen Bindungen und Austauschreaktionen führen können.
  • Zur Lösung der Aufgabe wird daher ein Verfahren zur Regeneration von Denox-Katalysatoren vorgeschlagen, bei dem der Katalysator mit einer im wesentlichen wäßrigen Säurelösung mit einem Zusatz von Antioxidantien behandelt wird.
  • Überraschenderweise wurde festgestellt, daß durch die gemeinsame Verwendung einer Säure und eines Antioxidans eine Entfernung von Eisenverbindungen in einem Ausmaß bis zur gewünschten niedrigen SO2/SO3 Konversionsrate möglich ist und daß darüber hinaus durch Anpassung der Konzentrationen von Säure und Antioxidans eine Leistung der Katalysatoren wiedergewonnen werden kann, die im Vergleich zu fabrikneuen Katalysatoren im gleichen Bereich oder sogar darüber liegt.
  • Da die zur regenerierenden Katalysatoren aus verschiedenen Kraftwerken stammen, die Kohle unterschiedlicher Herkunft und Qualität als Brennstoff einsetzen, ist vor der Durchführung des Verfahrens eine Analyse der chemischen Zusammensetzung des Katalysators und seines Verschmutzungsgrades unbedingt notwendig. Anhand der Analysenwerte und der Gehalte an störenden Eisenverbindungen ist es für den Fachmann ohne weiteres möglich, die benötigten Konzentrationen an Reaktionsflüssigkeit und evtl. Vor- und Nachbearbeitungsschritte im Vorwege zu bestimmen und an die jeweilige Lage anzupassen.
  • In der Regel weisen Katalysatoren, die regeneriert werden müssen, eine starke Staubbelastung auf, so daß sich eine mechanische Vorbehandlung zur Entfernung von Flugasche von den Katalysatoroberflächen bzw. – durchgängen beispielsweise durch Einsatz von Industriestaubsaugern oder Preßluft meist als notwendig erwiesen hat. Für den Fall, daß die Katalysatoren eine starke Sperrschicht aus Salzen wie Ammoniumsulfat aufweisen, kann noch eine Behandlung mit Wasser erfolgen, um diese Sperrschichten abzulösen. Falls die Sperrschichten schwer wasserlösliche Salze enthalten wie Kalziumsulfat kann die Wasserbehandlung unter zusätzlichem Einsatz von Ultraschall erfolgen.
  • Die Katalysatoren werden in eine Reaktionslösung eingebracht, die im wesentlichen eine wäßrige Lösung einer anorganischen oder organischen Säure mit einem Zusatz von einem oder mehreren Antioxidantien darstellt, wobei ggf. diese Lösung einen gewissen Zusatz von polaren organischen Lösungsmitteln wie beispielsweise Alkoholen je nach Art der vorliegenden Kontaminierungen enthalten kann.
  • Als wäßrige Säurelösung werden vorzugsweise anorganische Säuren eingesetzt, und zwar Salzsäure, Phosphorsäure, Salpetersäure und insbesondere Schwefelsäure, wobei die Lösungen so verdünnt sind, daß sich ein pH-Wert zwischen 0,5 und 4,0 ergibt. In der Regel wird bei einem pH um etwa 2, insbesondere 1,9, gearbeitet, was einer etwa 1/100 molaren Lösung entspricht. Anstelle anorganischer Säuren können auch relativ starke organische Säuren eingesetzt werden, die im Ergebnis in der Wirksamkeit der Regeneration vergleichbar sind, aber aufgrund ihres höheren Preises in der Regel nicht zum Einsatz kommen. Verwendbare Säuren sind beispielsweise Oxasäure, Zitronensäure, Malonsäure, Ameisensäure, Chloressigsäuren oder Benzolsulfonsäure. Ggf. können auch Mischungen der erwähnten Säuren zum Einsatz kommen.
  • Der wäßrigen Säure werden Antioxidantien in Mengen von 0,1 bis 5,0, vorzugsweise zwischen 0,2 und 2,0 Gew.-% zugesetzt, wobei als Antioxidantien beispielsweise substituierte Phenole einschließlich Phenolcarbonsäuren, Hydrochinone, Brenzkatechine und/oder anorganische oder organische, aliphatische, araliphatische oder aromatische Mercaptoverbindungen, Dithiocarbamate, Hydroxycarbonsäuren oder Endiole und/oder Phosphite oder Phosphonate, wobei hierunter auch Salze, Ester, Metallkomplexe oder Mischungen solcher Verbindungen zu verstehen sind, verwendet werden.
  • Als besonders günstig haben sich das normale Hydrochinon und Brenzkatechin sowie substituierte Phenole, nämlich Gallussäure und Gallate und insbesondere Ascorbinsäure, das aufgrund seiner Endiolstruktur ein wirksames Antioxidans ist, herausgestellt.
  • Vorzugsweise enthalten die Reaktionslösungen außerdem einen gewissen Zusatz an Tensiden, wobei es sich um anionische, kationische, amphotere, nichtionische oder zwitterionische Tenside handeln kann, die die Benetzbarkeit der Katalysatoroberflächen und das Eindringen der Reaktionsflüssigkeit in die Poren des Katalysators verbessern. Der Zusatz von Tensiden erfolgt in einer Konzentration von etwa 0,01 bis 0,2 Gew.-%.
  • Bei der Durchführung des Verfahrens wird das Katalysatormodul – ggf. nach mechanischer Vorreinigung – in die Reaktionslösung eingetaucht, in der es je nach Verschmutzungsgrad und zusätzlicher Behandlung während einer Zeitspanne von 5 Minuten bis etwa 24 Stunden verbleiben kann. Um die Behandlungszeit abzukürzen, sollte die Temperatur der Lösung, die im Prinzip zwischen Umgebungstemperatur und höheren Werten bis 100°C liegen kann, erhöht werden, und zwar vorzugsweise auf etwa 60°C. Außerdem kann die Behandlungszeit dadurch abgekürzt und die Effektivität der Behandlung erhöht werden, daß entweder das Katalysatormodul selbst bewegt wird oder dadurch, daß die Reaktionsflüssigkeit regelmäßig bewegt wird, wobei letzteres in einfacher Weise durch Rührwerke oder Tauchpumpen bewerkstelligt werden kann. Wenn der Katalysator bewegt werden soll, würde dies vorzugsweise in Längsrichtung der Kanäle im Wabenkatalysator oder in Längsrichtung der Platten als Hubbewegung geschehen, die beispielsweise dadurch erzeugt werden kann, daß das Modul an einen Kran angehängt und entsprechend bewegt wird. Grundsätzlich kann die Effektivität der Behandlung erhöht und die Bearbeitungszeit dadurch verkürzt werden, daß das Modul niederfrequenten Schwingungen der Reaktionsflüssigkeit oder Ultraschall ausgesetzt wird, wobei der Ultraschall vorzugsweise bei einer Frequenz im Bereich von 10.000 bis 100.000 Hz oder die niederfrequente Schwingung im Bereich von 20 bis 1000 Hz eingesetzt werden sollte. Die Behandlung mit Ultraschall führt zu einer wellenlokalen Bewegung der Flüssigkeit an der Katalysatoroberfläche und zur Ausbildung von Kavitationen, wodurch die Ablösung evtl. noch vorhandener Sperrschichten und die Ablösung von Eisenverbindungen von der Keramik begünstigt werden.
  • Als besonders günstige Arbeitsvariante hat sich ein zweiteiliges Verfahren herausgestellt, bei dem das Katalysatormodul einer primären Behandlung mit der Reaktionsflüssigkeit unter Bewegung des Moduls und/oder der umgebenden Flüssigkeit, vorteilhafterweise mit Hub- bzw. Rührbewegungen unterzogen wird und daß das Modul dann in das Ultraschallbecken überführt wird, wobei es in eine Reaktionsflüssigkeit gleicher Zusammensetzung eingetaucht und beschallt wird. Die verunreinigte Reaktionsflüssigkeit im ersten Becken kann dann je nach Verschmutzungsgrad entweder weiter verwendet oder durch Filtration gereinigt werden.
  • Nach der Ultraschallbehandlung wird das Katalysatormodul mehrfach gespült mit Wasser und dann getrocknet, beispielsweise durch Heißluft mit 50 bis 400°C.
  • Da die als Aktivatoren bzw. aktive Zentren wirkenden Übergangsmetalloxide nicht nur in Alkalien, sondern auch in Säuren bis zu einem gewissen Grad löslich sind, sollte zum Ende der Behandlung eine weitere Analyse zur Bestimmung des Gehaltes an Übergangsmetallen erfolgen. Falls der Austrag an Aktivatoren während der Regeneration zu einer Reduzierung des Gehaltes an Übergangsmetallen geführt hat, kann umgehend eine Nachimprägnierung auf den gewünschten Gehalt durch Zusatz einer entsprechenden wäßrigen Lösung und einer anschließenden Trocknung erfolgen.
  • Mit dem erfindungsgemäßen Verfahren ist es möglich, die bisher nicht „behandelbaren" Denox-Katalysatoren, die aufgrund der Akkumulation von Eisenverbindungen zu einer Erhöhung der SO2/SO3-Konvertionsrate führen, vollständig zu regenerieren bis zu einer Aktivität, die fabrikneuen Katalysatoren entspricht oder sogar etwas darüber liegt.
  • Die Erfindung wird im folgenden anhand der Beispiele näher erläutert:
  • Beispiel 1
  • Der durch einen Vorbereitungsschritt weitgehend von Flugasche befreite Katalysator wird im trockenen Zustand in eine Schwefelsäurelösung mit einem pH-Wert von 1,9, welche 5 g/l Ascorbinsäure und einen Tensidzusatz von 0,05 Gew.-% enthält, bei einer Temperatur von 20°C eingestellt. Die Reaktionslösung wird mittels Tauchpumpe im Behälter umgepumpt.
  • Der Katalysator verbleibt 4 Stunden im Becken mit der Reaktionslösung. Danach wird das Modul aus dem Behälter entnommen, gespült und getrocknet sowie ggf. nachimprägniert.
  • Beispiel 2
  • Der mechanisch vorbehandelte Katalysator wird in die in Beispiel 1 beschriebene Reaktionslösung eingestellt und die Reaktionslösung wird auf 60°C erwärmt und mittels Tauchpumpe umgepumpt. Das Modul verbleibt 25 Minuten in der Reaktionslösung. Danach wird es entnommen und in der beschriebenen Weise weiterbehandelt.
  • Beispiel 3
  • Der in der beschriebenen Weise vorbehandelte Katalysator wird in eine Schwefelsäurelösung mit einem pH-Wert von 1,9, die den angegebenen Tensidzusatz und 15 g/l Ascorbinsäure enthält, bei einer Temperatur von 60°C eingestellt. Der Katalysator wird durch einen Hubmechanismus im Behälter bewegt. Gleichzeitig erfolgt eine Ultraschallbehandlung mit einer Energiedichte von 3 W/l. Der Katalysator verbleibt 20 Minuten in dem Becken und wird dann nach dem Ende der Behandlung in der beschriebenen Weise weiterbehandelt.
  • Beispiel 4
  • Das Katalysatormodul wird entsprechend Beispiel 1 mit der Reaktionslösung behandelt und verbleibt 12 Stunden in dem entsprechenden Becken. Nach Ablauf dieser Zeit wird der Katalysator entnommen und in einem weiteren Becken in eine Schwefelsäurelösung mit einem pH-Wert von 1,9, die 15 g/l Ascorbinsäure enthält, bei einer Temperatur von 60°C eingestellt und durch einen Hubmechanismus im Behälter bewegt. Gleichzeitig erfolgt eine Ultraschallbehandlung mit einer Energiedichte von 3 W/l. Die weitere Behandlung wird nach 20 Minuten beendet und das Modul entnommen und in üblicher Weise gespült und weiterbehandelt.
  • Beispiel 5
  • Der mechanisch vorbehandelte Katalysator wird im trockenen Zustand in eine Schwefelsäurelösung mit einem pH-Wert von 2,0, welche 10 g/l Ascorbinsäure und Tenside enthält, bei einer Temperatur von 60°C eingestellt, wobei die Lösung mittels Tauchpumpe im Becken umgepumpt und der Katalysator durch einen Hubmechanismus bewegt wird. Gleichzeitig erfolgt eine Ultraschallbestrahlung mit einer Energiedichte von 3 W/l. Nach 30 Minuten wird das Modul dem Becken entnommen, mit Wasser gespült und wie beschrieben weiterbehandelt.
  • Beispiel 6
  • Der mechanisch und zur Entfernung von Alkalioxiden, Arsen und Phosphor in an sich vorbekannter Weise vorbehandelte und danach getrocknete Katalysator wird in eine Schwefellösung mit einem pH von 1,9, welche 10 g/l Ascorbinsäure und 0,02 Gew.-% nichtionische Tenside enthält, bei einer Temperatur von 22°C eingestellt und verbleibt in der bewegten Reaktionslösung für 4 Stunden. Der Katalysator wird dann entnommen und in der beschriebenen Weise gespült und weiterbehandelt.
  • Beispiel 7
  • Das Katalysatormodul wird wie in Beispiel 1 beschrieben behandelt, wobei die verdünnte Schwefelsäure statt Ascorbinsäure einen Zusatz von 7g/l Hydrochinon aufweist.
  • Beispiel 8
  • Das Katalysatormodul wird wie in Beispiel 1 beschrieben behandelt, wobei der verdünnten Schwefelsäure 5g/l Gallussäure zugesetzt werden.
  • Bei den in den Beispielen beschriebenen Verfahren wird eine Regeneration – auch ohne Verfahrensoptimierung – von über 95% im Vergleich zu fabrikneuen Katalysatoren erreicht, die durch Nachimprägnierung auf 100% oder sogar darüber erhöht werden kann.

Claims (18)

  1. Verfahren zur Regeneration von Denox-Katalysatoren mit erhöhter SO2/SO3-Konversionsrate durch Kumulation von Eisenverbindungen, dadurch gekennzeichnet, daß der Katalysator mit einer im wesentlichen wäßrigen Säurelösung mit einem Zusatz von Antioxidantien behandelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die wäßrige Säurelösung einen pH von 0,5 bis 4,0 aufweist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Säure anorganische oder organische Säuren eingesetzt werden.
  4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß als anorganische Säuren vorzugsweise H2So4, HCL, HP3O4, HNO3 und als organische Säuren vorzugsweise Oxalsäure, Zitronensäure, Malonsäure, Ameisensäure, Chloressigsäuren, Benzolsulfonsäure oder Mischungen dieser Säuren eingesetzt werden.
  5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß als Antioxidantien Verbindungen aus den Gruppen der substituierten Phenole, Hydrochinone, Brenzkatechine, und/oder aliphatische, araliphatische oder aromatische Mercaptoverbindungen, Dithiocarbamate, Hydroxycarbonsäuren, Endiole und/oder Phosphite und Phosphonate einschließlich Salze, Ester und Metallkomplexe dieser Verbindungen eingesetzt werden.
  6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß Ascorbinsäure eingesetzt wird.
  7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß zusätzlich anionische, kationische, amphotere, nichtionische oder zwitterionische Tenside eingesetzt werden.
  8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß der Gehalt an Antioxidantien 0,2 bis 2,0 Gew.-% beträgt.
  9. Verfahren nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß die Behandlung in der Reaktionslösung aus Säure und Antioxidantien bei Temperaturen von Umgebungstemperatur bis 100°C erfolgt.
  10. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß der Katalysator in der Reaktionslösung während der Einwirkungszeit bewegt und/oder die Reaktionslösung in Bewegung gehalten wird.
  11. Verfahren nach Anspruch 1 bis 10, dadurch gekennzeichnet, daß der Katalysator durch Hub bewegt und/oder die Reaktionslösung durch Rühren oder Umpumpen in Bewegung gehalten wird.
  12. Verfahren nach Anspruch 1 bis 11, dadurch gekennzeichnet, daß in der Reaktionslösung zusätzlich eine Ultraschallbehandlung oder eine Behandlung mit niederfrequenten Schwingungen erfolgt.
  13. Verfahren nach Anspruch 1 bis 12, dadurch gekennzeichnet, daß eine niederfrequente Schwingung im Bereich von etwa 20 bis 1000 Hz oder Ultraschall im Bereich von 10.000 bis 100.000 Hz eingesetzt werden.
  14. Verfahren nach Anspruch 1 bis 13, dadurch gekennzeichnet, daß die primäre Behandlung mit Reaktionslösung und die Ultraschallbehandlung in getrennten Becken nacheinander durchgeführt werden.
  15. Verfahren nach Anspruch 1 bis 14, dadurch gekennzeichnet, daß der Katalysator einer mechanischen Vorbehandlung zur Entfernung von Flugstaub und/oder einer Vorbehandlung mit Wasser unterzogen wird.
  16. Verfahren nach Anspruch 1 bis 15, dadurch gekennzeichnet, daß der Katalysator nach der Behandlung mit Reaktionslösung mit Wasser gespült und getrocknet wird.
  17. Verfahren nach Anspruch 1 bis 16, dadurch gekennzeichnet, daß ggf. nach dem Trocknen eine Nachimprägnierung mit wasserlöslichen Verbindungen der Aktivatorenelemente durchgeführt wird.
  18. Regenerierter Denox-Katalysator, dadurch gekennzeichnet, daß er einem Verfahren gemäß den Ansprüchen 1 bis 17 unterzogen wurde.
DE10241004A 2002-09-05 2002-09-05 Verfahren zur Regeneration von eisenbelasteten Denox-Katalysatoren Withdrawn DE10241004A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE10241004A DE10241004A1 (de) 2002-09-05 2002-09-05 Verfahren zur Regeneration von eisenbelasteten Denox-Katalysatoren
PCT/EP2003/009794 WO2004022226A1 (de) 2002-09-05 2003-09-04 Verfahren zur regeneration von eisenbelasteten denox-katalysatoren
AU2003260490A AU2003260490A1 (en) 2002-09-05 2003-09-04 Method for regenerating iron-loaded denox catalysts
CA2496861A CA2496861C (en) 2002-09-05 2003-09-04 Method for the regeneration of iron-loaded denox catalysts
KR1020057003888A KR100974688B1 (ko) 2002-09-05 2003-09-04 철 로딩된 디녹스 촉매를 재생하는 방법
US10/526,336 US7569506B2 (en) 2002-09-05 2003-09-04 Method for regenerating iron-loaded denox catalysts
JP2004533469A JP2006505386A (ja) 2002-09-05 2003-09-04 鉄負荷されたdeNOx触媒の再生方法
EP03793801A EP1545769A1 (de) 2002-09-05 2003-09-04 Verfahren zur regeneration von eisenbelasteten denox-katalysatoren
US12/534,677 US7858549B2 (en) 2002-09-05 2009-08-03 Method for regeneration of iron-loaded denox catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10241004A DE10241004A1 (de) 2002-09-05 2002-09-05 Verfahren zur Regeneration von eisenbelasteten Denox-Katalysatoren

Publications (1)

Publication Number Publication Date
DE10241004A1 true DE10241004A1 (de) 2004-03-11

Family

ID=31502383

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10241004A Withdrawn DE10241004A1 (de) 2002-09-05 2002-09-05 Verfahren zur Regeneration von eisenbelasteten Denox-Katalysatoren

Country Status (8)

Country Link
US (2) US7569506B2 (de)
EP (1) EP1545769A1 (de)
JP (1) JP2006505386A (de)
KR (1) KR100974688B1 (de)
AU (1) AU2003260490A1 (de)
CA (1) CA2496861C (de)
DE (1) DE10241004A1 (de)
WO (1) WO2004022226A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723251B2 (en) 2008-03-11 2010-05-25 Evonik Energy Services Llc Method of regeneration of SCR catalyst
US7727307B2 (en) 2007-09-04 2010-06-01 Evonik Energy Services Gmbh Method for removing mercury from flue gas after combustion
US7741239B2 (en) 2008-03-11 2010-06-22 Evonik Energy Services Llc Methods of regeneration of SCR catalyst poisoned by phosphorous components in flue gas
US8063246B2 (en) 2007-05-02 2011-11-22 Evonik Energy Services Gmbh Method for purifying flue gases from combustion plants and then producing urea
US8153542B2 (en) 2005-12-16 2012-04-10 Steag Energy Services Gmbh Method for treating flue gas catalysts
US8187388B2 (en) 2005-01-05 2012-05-29 Steag Energy Services Gmbh Method for treating catalysts
US8946105B2 (en) 2013-03-13 2015-02-03 Steag Energy Services Gmbh Methods for removing iron material from a substrate

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241004A1 (de) * 2002-09-05 2004-03-11 Envica Gmbh Verfahren zur Regeneration von eisenbelasteten Denox-Katalysatoren
DE10242081A1 (de) * 2002-09-11 2004-03-25 Envica Gmbh Verfahren zur Regeneration von phosphorbelasteten Denox-Katalysatoren
JP4436124B2 (ja) * 2003-12-25 2010-03-24 三菱重工業株式会社 脱硝触媒の再生方法
KR100668926B1 (ko) * 2005-08-30 2007-01-12 한국전력공사 선택적촉매환원용 촉매의 재생방법
JP5495001B2 (ja) * 2007-06-27 2014-05-21 バブコック日立株式会社 触媒の再生方法
US20110015056A1 (en) * 2009-07-17 2011-01-20 Coalogix Technology Holdings Inc. Method for removing a catalyst inhibitor from a substrate
US20110015055A1 (en) * 2009-07-17 2011-01-20 Cooper Michael D Method for removing a catalyst inhibitor from a substrate
US8906819B2 (en) 2009-12-30 2014-12-09 Coalogix Technology Holdings Inc. Method for removing calcium material from substrates
US20110250114A1 (en) 2010-04-13 2011-10-13 Millennium Inorganic Chemicals, Inc. Vanadia-Based DeNOx Catalysts and Catalyst Supports
KR101153569B1 (ko) * 2010-05-24 2012-06-11 주식회사 아주엔비씨 Scr 촉매의 재생방법
KR101236987B1 (ko) 2010-12-07 2013-02-26 주식회사 아주엔비씨 촉매 활성보존제를 사용한 폐 탈질 촉매 재생 세정용액의 개발
US8389431B2 (en) 2011-02-03 2013-03-05 Steag Energy Services Gmbh Method for treating SCR catalysts having accumulated iron compounds
US9061275B2 (en) * 2013-03-14 2015-06-23 Steag Energy Services Gmbh Methods of removing calcium material from a substrate or catalytic converter
WO2016029089A1 (en) * 2014-08-22 2016-02-25 Jsk Capital Llc Method for removing materials from coal fire generated catalysts
CN104437673B (zh) * 2014-11-27 2016-08-24 华南理工大学 一种去除失活scr脱硝催化剂表面铁化合物的方法
CN107921420A (zh) * 2015-07-10 2018-04-17 三菱日立电力系统株式会社 脱硝催化剂的再生方法和脱硝催化剂的再生系统、以及脱硝催化剂的清洗剂
JP2017018919A (ja) * 2015-07-14 2017-01-26 三菱日立パワーシステムズ株式会社 使用済み脱硝触媒の再生方法
CN105311963A (zh) * 2015-12-01 2016-02-10 苏州华乐大气污染控制科技发展有限公司 Scr脱硝催化剂再生设备清洗处理装置
CN106179529B (zh) * 2016-06-30 2018-09-28 大唐南京环保科技有限责任公司 一种用于失效脱硝催化剂再生的清洗液及其制备方法和应用
CN110072621A (zh) * 2016-12-15 2019-07-30 三菱日立电力系统株式会社 使用过的脱硝催化剂的再生方法
US11560339B2 (en) 2019-05-30 2023-01-24 Koch Agronomie Services, LLC Micronutrient foliar solutions
CN113546689B (zh) * 2021-07-22 2023-10-31 安徽元琛环保科技股份有限公司 一种废旧scr脱硝催化剂再生回收降低铁含量的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380731A (en) * 1941-12-09 1945-07-31 Socony Vacuum Oil Co Inc Restoration of catalysts
US5099014A (en) * 1981-11-05 1992-03-24 Young Donald C Demetallizing organometallic compounds using sulphuric acid-urea adducts
EP0161206A3 (de) * 1984-04-03 1987-11-04 Mitsubishi Jukogyo Kabushiki Kaisha Methode zur Regenerierung eines Denitrierungskatalysators
FR2578447B1 (fr) * 1985-03-08 1987-05-15 Inst Francais Du Petrole Procede de regeneration d'un catalyseur usage par une solution aqueuse de peroxyde d'hydrogene stabilisee par un compose organique
US4914256A (en) 1988-06-30 1990-04-03 Mobil Oil Corp. Reactivation of partially deactivated catalyst employing ultrasonic energy
DE4027419A1 (de) 1990-08-30 1992-03-05 Huels Chemische Werke Ag Verfahren zur reaktivierung von desaktivierten hydrierkatalysatoren
US6136222A (en) * 1991-12-11 2000-10-24 Bend Research, Inc. Liquid absorbent solutions for separating nitrogen from natural gas
DE4300933C1 (de) 1993-01-15 1994-05-19 Huels Chemische Werke Ag Verfahren zur Regeneration von mit Arsen vergifteten Katalysatoren auf Basis von Titandioxid zur Entfernung von Stickoxiden aus Abgasen
DE19628212B4 (de) 1996-07-12 2008-06-05 Enbw Energy Solutions Gmbh Verfahren zum Reinigen und/oder Regenerieren von ganz oder teilweise desaktivierten Katalysatoren zur Entstickung von Rauchgasen
JPH10156192A (ja) 1996-12-03 1998-06-16 Ishikawajima Harima Heavy Ind Co Ltd 脱硝触媒の活性再生方法及び装置
JP3377715B2 (ja) 1997-02-27 2003-02-17 三菱重工業株式会社 脱硝触媒の再生方法
US6080696A (en) * 1998-04-01 2000-06-27 Midamerican Energy Holdings Company Method for cleaning fouled ion exchange resins
DE19829916B4 (de) 1998-07-06 2005-03-24 Envica Gmbh Verfahren zur Regeneration von Katalysatoren und regenerierte Katalysatoren
KR100626925B1 (ko) * 1998-08-26 2006-09-20 인테크랄 엔지니어링 운트 움벨테크니크 게엠베하 사용된 탈NOx 또는 탈다이옥신 촉매의 재생방법
DE10241004A1 (de) * 2002-09-05 2004-03-11 Envica Gmbh Verfahren zur Regeneration von eisenbelasteten Denox-Katalysatoren

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187388B2 (en) 2005-01-05 2012-05-29 Steag Energy Services Gmbh Method for treating catalysts
US8153542B2 (en) 2005-12-16 2012-04-10 Steag Energy Services Gmbh Method for treating flue gas catalysts
US8637418B2 (en) 2005-12-16 2014-01-28 Steag Energy Services Gmbh Method for treating flue gas catalyst
US8637417B2 (en) 2005-12-16 2014-01-28 Steag Energy Services Gmbh Method for treating flue gas catalysts
US8063246B2 (en) 2007-05-02 2011-11-22 Evonik Energy Services Gmbh Method for purifying flue gases from combustion plants and then producing urea
US8541619B2 (en) 2007-05-02 2013-09-24 Steag Energy Services Gmbh Method for purifying flue gases from combustion plants and then producing urea
US7727307B2 (en) 2007-09-04 2010-06-01 Evonik Energy Services Gmbh Method for removing mercury from flue gas after combustion
US7723251B2 (en) 2008-03-11 2010-05-25 Evonik Energy Services Llc Method of regeneration of SCR catalyst
US7741239B2 (en) 2008-03-11 2010-06-22 Evonik Energy Services Llc Methods of regeneration of SCR catalyst poisoned by phosphorous components in flue gas
US8946105B2 (en) 2013-03-13 2015-02-03 Steag Energy Services Gmbh Methods for removing iron material from a substrate

Also Published As

Publication number Publication date
KR100974688B1 (ko) 2010-08-06
CA2496861A1 (en) 2004-03-18
US20090291823A1 (en) 2009-11-26
JP2006505386A (ja) 2006-02-16
CA2496861C (en) 2011-07-19
KR20050067143A (ko) 2005-06-30
WO2004022226A1 (de) 2004-03-18
AU2003260490A1 (en) 2004-03-29
US7858549B2 (en) 2010-12-28
US20060148639A1 (en) 2006-07-06
US7569506B2 (en) 2009-08-04
EP1545769A1 (de) 2005-06-29

Similar Documents

Publication Publication Date Title
DE10241004A1 (de) Verfahren zur Regeneration von eisenbelasteten Denox-Katalysatoren
DE10242081A1 (de) Verfahren zur Regeneration von phosphorbelasteten Denox-Katalysatoren
DE19829916B4 (de) Verfahren zur Regeneration von Katalysatoren und regenerierte Katalysatoren
DE2511581C3 (de) Verfahren zur Reinigung von Phenol und Formaldehyd enthaltender Entlüftungsluft
EP0353467B1 (de) Verfahren zum Regenerieren von Katalysatoren
DE2346000C3 (de) Verfahren zur Entfernung von Stickstoffoxiden aus Industrieabgasen
EP0748254A1 (de) Verfahren zur regenerierung eines katalysators
DE4443301A1 (de) Verfahren zur Herstellung eines Katalysators und Verfahren zur Reinigung von Gasen und Abgasen von NOx
DE10222915B4 (de) Verfahren zur erneuten Aktivierung wabenförmig aufgebauter Katalysatorelemente für die Entstickung von Rauchgasen
DE3324570C2 (de) Verfahren zur Entfernung von Schwefeloxiden und/oder Stickstoffoxiden aus Abgasen
DE3335499A1 (de) Verfahren zur entfernung von stickstoffoxyden aus abgasen
EP0038969B1 (de) Verfahren zum Behandeln einer wässrigen alkalischen Lösung von Salzen der Anthrachinondisulfonsäure
EP1756011A1 (de) Photokatalytische emulsionsspaltung
AT512613B1 (de) Verfahren zum abbau von in abwässern und/oder abgasen enthaltenen toxischen organischen verbindungen
DE112009002108T5 (de) Katalysator zum Reinigen von Stickstoffoxiden und Verfahren zu dessen Herstellung
DE1494795C3 (de) Verfahren zum gleichzeitigen Entfernen von Schwefelwasserstoff und organischen Schwefelverbindungen aus solche enthaltenden Gasen
DE2635652C2 (de) Verfahren zur Beseitigung von Stickstoffoxiden aus sauerstoffarmen Verbrennungsabgasen und anderen Abgasen
DE591096C (de) Regeneration pulverfoermiger Adsorptionskohle
EP1266689A1 (de) Verfahren zur Regeneration eines für die Stickoxidminderung ausgebildeten Katalysators
DE2261543A1 (de) Verfahren zur herstellung von katalysatortraegern
AT158138B (de) Verfahren zur Vorbereitung von Fellen u. dgl. für das Verfilzen und Beizlösung hiezu.
DE398775C (de) Verfahren zur Reinigung von zur Oxydation bestimmtem Ammoniakgas
DE1792666C (de) Verfahren zum Entfernen von abgelagertem elementarem Schwefel auf festen Oxydationskataiysatoren
DE301263C (de)
DE3710433A1 (de) Verfahren zur herstellung von amorphen metall-magnesiumsilikaten

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8139 Disposal/non-payment of the annual fee