DE102010062140A1 - Batterieelektrode und Verfahren zum Herstellen derselben - Google Patents

Batterieelektrode und Verfahren zum Herstellen derselben Download PDF

Info

Publication number
DE102010062140A1
DE102010062140A1 DE102010062140A DE102010062140A DE102010062140A1 DE 102010062140 A1 DE102010062140 A1 DE 102010062140A1 DE 102010062140 A DE102010062140 A DE 102010062140A DE 102010062140 A DE102010062140 A DE 102010062140A DE 102010062140 A1 DE102010062140 A1 DE 102010062140A1
Authority
DE
Germany
Prior art keywords
arrester
battery
collector substrate
electrode
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102010062140A
Other languages
English (en)
Other versions
DE102010062140B4 (de
Inventor
Rainer Stern
Michael Kasper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zentrum fuer Sonnenenergie und Wasserstoff Forschung Baden Wuerttemberg
Original Assignee
Zentrum fuer Sonnenenergie und Wasserstoff Forschung Baden Wuerttemberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102010062140.4A priority Critical patent/DE102010062140B4/de
Application filed by Zentrum fuer Sonnenenergie und Wasserstoff Forschung Baden Wuerttemberg filed Critical Zentrum fuer Sonnenenergie und Wasserstoff Forschung Baden Wuerttemberg
Priority to CN201180055999.4A priority patent/CN103503216B/zh
Priority to PCT/EP2011/005945 priority patent/WO2012072221A1/de
Priority to US13/990,366 priority patent/US9966592B2/en
Priority to DK11788777.8T priority patent/DK2647079T3/en
Priority to EP11788777.8A priority patent/EP2647079B1/de
Priority to JP2013540269A priority patent/JP5961624B2/ja
Priority to CA2816404A priority patent/CA2816404C/en
Priority to KR1020137017146A priority patent/KR101591388B1/ko
Publication of DE102010062140A1 publication Critical patent/DE102010062140A1/de
Application granted granted Critical
Publication of DE102010062140B4 publication Critical patent/DE102010062140B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • B23K2101/35Surface treated articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Um größtmögliche Designfreiheit bei der Auswahl einer Elektroden- bzw. Batterieform, eine kompakte Gestaltung und geringe Herstellungskosten zu ermöglichen, wird eine Batterieelektrode und ein Verfahren zum Herstellen derselben angegeben, wobei ein Kollektorsubstrat mit einem Beschichtungsfilm beschichtet und darauf durch Abtragen des Beschichtungsfilms mittels Laserablation mindestens ein Ableiterbereich hergestellt wird.

Description

  • Technisches Gebiet
  • Die Erfindung betrifft eine Batterieelektrode und ein Verfahren zum Herstellen derselben.
  • Hintergrund der Erfindung
  • Im Allgemeinen bezeichnet eine Batterie sowohl nicht-wiederaufladbare Primärzellen als auch wiederaufladbare Sekundärzellen (auch Akku genannt). Batterien werden anhand der zugrundeliegenden chemischen Redoxreaktion, der eingesetzten Materialien, der elektrischen Werte (z. B. Spannung oder Kapazität) oder der geometrischen oder konstruktiven Bauform eingeteilt. Beispielsweise gibt es Alkali-Mangan-Batterien, Zink-Kohle-Batterien oder Lithiumbatterien. Entsprechend ihrem inneren Aufbau werden bei Batterien des Weiteren Wickelzellen und Stapelbatterien unterschieden. Bei einer Wickelzelle werden die übereinander angeordneten Elektroden- und Separatorschichten spiralförmig aufgewickelt und beispielsweise in eine Rundbatterie mit zylindrischem Gehäuse eingebaut. Bei einer Stapelbatterie hingegen werden mehrere Elektroden- und Separatorschichten abwechselnd übereinander gestapelt.
  • In 1 ist beispielhaft eine Stapelbatterie gezeigt. Wie in 1 gezeigt, ist in der Batterie abwechselnd eine Anode 10 und eine Kathode 20 angeordnet, wobei jeweils zwischen der Anode 10 und der Kathode 20 ein Separator 30 angeordnet ist, um die beiden Elektroden räumlich und elektrisch zu trennen. Der Separator 30 muss jedoch für Ionen durchlässig sein, die die Umwandlung der gespeicherten chemischen Energie in elektrische Energie bewirken. Meistens werden für Separatoren 30 mikroporöse Kunststoffe oder Vliese aus Glasfaser oder Polyethylen verwendet. Die Anoden 10 sind in ihren Ableiterbereichen 40 miteinander verbunden ebenso wie die Kathoden 20, sodass alle gleichnamigen Elektroden in einer Batterie zusammengeschaltet sind. In den Ableiterbereichen 40 ist jeweils eine Anschlussfahne 50 (siehe 2B) für die Kathoden 20 und die Anoden 10 befestigt, die mit einem entsprechenden äußeren Spannungspol der Batterie verbunden wird.
  • 2A zeigt eine Draufsicht auf eine Kathode 20 mit einem Ableiterbereich 40. In den Ableiterbereichen 40 der übereinander angeordneten Kathoden 20 werden die Kathoden 20 miteinander verbunden. Wie in 2B gezeigt, wird die Anschlussfahne 50 an den miteinander verbundenen Ableiterbereichen 40 befestigt, die nach dem Zusammensetzen der Batterie mit dem Minus-Pol der Batterie in Kontakt steht.
  • Üblicherweise werden Batterieelektroden als Bulk- oder Rollenmaterial vorgefertigt, aus dem bei der Herstellung einer Batterie eine gewünschte Elektrodenform ausgeschnitten wird. Wie in 3 gezeigt, umfasst das Elektrodenmaterial ein Kollektorsubstrat 60, das mit einem Beschichtungsfilm 70 versehen ist. Dabei weist das Elektrodenmaterial ein oder mehrere unbeschichtete Ableiterbereiche 40 auf, die später im zusammengesetzten Zustand erforderlich sind, um Spannung bzw. Strom nach Außen abzuführen. An den Ableiterbereichen 40 werden mehrere gleichnamige Elektroden miteinander verbunden und eine metallische Anschlussfahne 50 befestigt. Wenn das Kollektorsubstrat 60 beidseitig beschichtet ist, sind deshalb auch auf beiden Seiten Ableiterbereiche 40 ausgebildet. Hierbei müssen die Ableiterbereiche nicht unbedingt gegenüberliegend ausgebildet sein, sondern können gegeneinander versetzt sein, wie in 3 gezeigt.
  • In 4A und 4B sind Verfahren zum Herstellen eines Elektrodenmaterials mittels eines Schlitzdüsensystems 300 gezeigt. Auf dem bandförmigen Kollektorsubstrat 60 wird ein tintenartiger Beschichtungsfilm 70 aufgetragen und ein unbeschichteter Ableiterbereich 40 ausgebildet. Dies kann entweder durch diskontinuierliche, intermittierende Beschichtung, wobei wie in 4A gezeigt durch regelmäßiges oder gelegentliches Unterbrechen der Beschichtung ein unbeschichteter Ableiterbereich 40 ausgebildet wird, oder durch kontinuierliche Beschichtung, wie in 4B gezeigt, erfolgen. Allerdings ist das Ausbilden von komplexeren Ableiterbereichen mit diesen Verfahren sehr aufwändig. Deshalb werden gelegentlich Maskierungsschritte eingesetzt. Alternativ können Ableiterbereiche 40 durch Bürsten oder ähnliche Verfahren auf einem Kollektorsubstrat 60 freigelegt werden.
  • Nach der Beschichtung wird das Elektrodenmaterial kalandriert, um den Beschichtungsfilm zu verdichten und Hohlräume zu beseitigen, die beim Trocknen des Beschichtungsfilms 70 entstehen. Das fertige Elektrodenmaterial kann dann aufgerollt und bis zur Weiterverarbeitung gelagert werden. Für das Herstellen einer Batterie wird aus dem Elektrodenmaterial eine gewünschte Form ausgeschnitten oder ausgestanzt, die je nach Batterietyp oder Batterieform unterschiedlich ist. Beim Ausschneiden der Batterieelektrode ist zudem zu beachten, dass ein Ableiterbereich 40 vorhanden sein muss. Ein Beispiel für eine rechteckige Elektrodenform mit Ableiterbereich 40 ist in 2A gezeigt.
  • In 5 ist ein Ablaufdiagramm gezeigt, anhand dessen der Herstellungsprozess einer Batterie, beispielsweise einer Wickelzelle oder einer Stapelbatterie, veranschaulicht wird. Zuerst wird das Kollektorsubstrat 60 mit dem Beschichtungsfilm 70 beispielsweise in einem intermittierenden Verfahren beschichtet (S10), wobei durch Unterbrechung oder Aussetzen beim Auftragen der tintenartigen Beschichtung mehrere unbeschichtete Ableiterbereiche 40 ausgebildet werden. Anschließend wird das Elektrodenmaterial kalandriert (S20). Aus dem Elektrodenmaterial kann dann eine gewünschte Elektrodenform ausgeschnitten oder ausgestanzt werden (S30), wobei die ausgestanzte Form einen Ableiterbereich 40 aufweisen muss. Diese Schritte erfolgen sowohl zum Herstellen der Anode 10 als auch zum Herstellen der Kathode 20. Als nächstes werden die ausgeschnittenen Elektroden so übereinander angeordnet (S40), dass abwechselnd eine Anode 10 und eine Kathode 20 mit einem Separator 30 dazwischen aufeinanderfolgen (siehe 1). Hierbei werden die Ableiterbereiche 40 der Kathoden 20 und die Ableiterbereiche 40 der Anoden 10 jeweils übereinander angeordnet und miteinander verbunden. Anschließend wird eine Anschlussfahne 50 daran befestigt (S50). Die Anzahl der übereinander angeordneten Anoden 10 und Kathoden 20 kann dabei je nach Art und Eigenschaft der Batterie variieren. Nach Fertigstellen der Elektrodenanordnung wird die Elektrodenanordnung in ein Gehäuse eingesetzt und die Anschlussfahnen 50 werden mit den äußeren Spannungspolen des Gehäuses verbunden (S60). Bei einer Wickelzelle wird die Elektrodenanordnung spiralförmig aufgewickelt und so in das Gehäuse eingesetzt. Nach Einfüllen des Elektrolyts (S70) wird die Zelle dann verschlossen (S80) und abschließend formiert (S90).
  • Bei den herkömmlichen Verfahren zum Herstellen von Batterieelektroden bestehen allerdings folgende Probleme. So ist das Herstellen von unbeschichteten Ableiterbereichen durch Maskierungsschritte oder Abbürsten der Beschichtung sehr aufwändig und teuer. Bei dem alternativen Herstellungsverfahren durch intermittierende oder kontinuierliche Beschichtung mit Hilfe eines Schlitzdüsensystems hingegen sind die möglichen Formen und Anordnungen der Ableiterbereiche auf dem Elektrodenmaterial stark eingeschränkt. Angesichts der vielfältigen Einsatzgebiete von Batterien insbesondere in Design-Produkten wie beispielsweise in Mobiltelefonen, Laptops oder Autos wird allerdings eine Flexibilität bei der Gestaltung der Batterieelektroden immer stärker gefordert. Hierbei stellt der Trend zu kleineren Geräten eine besondere Herausforderung an die Batterieherstellung dar. Zum einen müssen daher Batterien mit kleineren Abmessungen entwickelt werden, zum anderen sind häufig komplexe Formen gefordert, um den Innenraum eines Geräts möglichst effizient zu nutzen. Darüber hinaus ist es bei einem intermittierenden Beschichtungsverfahren schwierig, regelmäßige und saubere Randbereiche zwischen Beschichtungsbereich und Ableiterbereich herzustellen.
  • Darüber hinaus ist es mit den herkömmlichen Verfahren schwierig und teuer, eine Formenvielfalt der Elektroden zu realisieren. Aus Kostengründen wird üblicherweise ein Rollenmaterial als Elektrodenmaterial verwendet, bei dem mögliche Positionen des unbeschichteten Ableiterbereichs 40 bezüglich des Beschichtungsfilms 70 fest definiert sind. Dadurch ist allerdings die Designfreiheit für die Elektrodenform stark eingeschränkt, weil jede Elektrode einen Ableiterbereich 40 aufweisen muss. Außerdem entsteht beim Ausschneiden der gewünschten Elektrodenform mitsamt des Ableiterbereichs 40 viel überschüssiges Elektrodenmaterial, das verworfen werden muss. Wenn beispielsweise kleine Elektroden so ausgeschnitten werden, dass sie einen Ableiterbereich 40 enthalten, können bei einem großen Abstand zwischen aufeinanderfolgenden Ableiterbereichen 40 Bereiche des dazwischen liegenden beschichteten Substrats nicht mehr verwendet werden. Dadurch wird der Materialverbrauch erhöht und das Herstellungsverfahren verteuert. Des Weiteren muss für jede gewünschte Elektrodenform eine eigene Stanzform zum Ausstanzen der gewünschten Form angeschafft werden. Aufgrund der hohen Anforderungen an eine Schneidgüte sind diese Stanzformen jedoch sehr teuer.
  • In den herkömmlichen Herstellungsverfahren wird der Ableiterbereich 40 von einem beschichteten Elektrodenbereich vorstehend ausgebildet, um daran die Anschlussfahne 50 zu befestigen und gleichnamige Elektroden miteinander zu verbinden. Dies führt jedoch zu ungenutztem Raum in der Batterie, der nicht durch aktives Elektrodenmaterial gefüllt ist.
  • Dadurch wird die Größe der Batterie unnötig erhöht bzw. eine äußere Form der Batterie festgelegt.
  • Des Weiteren können die Ableiterbereiche 40 in den herkömmlichen Herstellungsverfahren oder auch während des Lagers leicht verunreinigt werden. Insbesondere bei einem Kalandrierprozess können Verunreinigungen auf die Ableiterbereiche 40 gelangen. Dies verschlechtert die Qualität eines elektrischen Kontakts zwischen gleichnamigen Elektroden untereinander und zwischen den Elektroden und einer dazugehörigen Anschlussfahne 50. Da beim Herstellen des Elektrodenmaterials zudem die Ableiterbereiche 40 vor dem Kalandrierprozess ausgebildet werden, ist das Kalandrieren aufgrund der ungleichmäßig dicken Struktur erschwert. Außerdem kann der durch herkömmliche Verfahren ausgebildete Ableiterbereich 40 schlecht definiert sein, wobei besonders ein Randbereich des Ableiterbereichs 40 ungenau und ungleichmäßig ausgebildet sein kann.
  • Zusammenfassung der Erfindung
  • Es ist daher Aufgabe der vorliegenden Erfindung, eine Batterieelektrode und ein Herstellungsverfahren für selbige anzugeben, wobei größtmögliche Designfreiheit bei der Gestaltung eines Ableiterbereichs und einer Batterieelektrode bei geringen Herstellungskosten ermöglicht wird.
  • Die Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst.
  • Die Erfindung basiert auf dem Gedanken, einen auf einem Kollektorsubstrat ausgebildeten Beschichtungsfilm in einem Ableiterbereich durch Laserablation zu entfernen. Auf diese Weise kann der Beschichtungsfilm großflächig und kontinuierlich auf dem Kollektorsubstrat hergestellt werden, ohne einen Ableiterbereich aussparen zu müssen. Wegen der gleichmäßigen Dicke des flächig beschichteten Kollektorsubstrats ist darüber hinaus ein Kalandrierprozess vereinfacht und kann mit besserer Qualität durchgeführt werden. Außerdem kann jede beliebige Elektrodenform aus dem beschichteten Kollektorsubstrat geschnitten werden, ohne durch eine vorgegebene Lage des Ableiterbereichs eingeschränkt zu sein. Folglich kann das Elektrodenmaterial effizienter genützt werden, sodass weniger Abfallmaterial entsteht. Durch die Verwendung eines Lasers zum Freilegen der Ableiterbereiche können die Ableiterbereiche außerdem in beliebiger Form und an jeder beliebigen Stelle mit sauberen und regelmäßigen Kanten auf dem beschichteten Kollektorsubstrat hergestellt werden. Dadurch besteht absolute Designfreiheit und die Möglichkeit, flächenoptimierte Ableiterstrukturen herzustellen. Beispielsweise können inaktive Bereiche auf der Elektrode, d. h. die Flächen der Ableiterbereiche, reduziert werden. Somit kann auch in der Batterie ein inaktives Volumen verringert werden, z. B. indem unbeschichtete Ableiterbereiche in einen beschichteten Bereich der Elektrode hineinragen oder innerhalb des beschichteten Bereichs ausgebildet werden. Alternativ kann ein Umfang des Ableiterbereichs mindestens zu einer Hälfte vom beschichteten Bereich umgegeben sein.
  • Für den Materialabtrag mittels Laserablation kann jedes geeignete Lasersystem verwendet werden, z. B. Schneid- oder Gravurlasersysteme. Aufgrund der hohen Kantenqualität und Schnittpräzision bezüglich Schnittführung und Eindringtiefe können Ableiterbereiche von hoher Qualität hergestellt werden. Durch die Verwendung von ultrakurzen Laserpulsen kann darüber hinaus der Energieeintrag reduziert werden, sodass eine thermische Belastung des Elektrodenmaterials gering gehalten wird. Da geeignete Lasersysteme vergleichbar teuer wie Schlitzdüsensysteme sind, entstehen keine hohen Anschaffungskosten.
  • Gemäß einem Aspekt der vorliegenden Erfindung wird. ein Verfahren zum Herstellen einer Batterieelektrode angegeben. In diesem Verfahren wird zuerst ein Beschichtungsfilm auf einem Kollektorsubstrat aufgebracht. Anschließend wird in mindestens einem Ableiterbereich der Beschichtungsfilm mit einem Laser entfernt. Dies kann durch gepulste Laserstrahlung oder kontinuierliche Laserstrahlung erfolgen. Möglicherweise wird der Beschichtungsfilm auf beiden Seiten des Kollektorsubstrats ausgebildet, um eine aktive Oberfläche der Elektrode zu vergrößern. Dann kann auf beiden Seiten des Kollektorsubstrats jeweils mindestens ein Ableiterbereich ausgebildet werden. Außerdem kann der Beschichtungsfilm so ausgebildet werden, dass er mindestens eine der beiden Oberflächen des Kollektorsubstrats im Wesentlichen vollständig bedeckt, ohne freie Ränder oder freie Bereiche unbeschichtet zu lassen. Zum Beschichten wird vorzugsweise ein kontinuierliches Beschichtungsverfahren eingesetzt, wie beispielsweise Doctor-blade, Comma-bar oder Kiss-coating. Dadurch kann bei geringen Herstellungskosten eine größere Prozesssicherheit und somit eine bessere Qualität des Elektrodenmaterials gewährleistet werden.
  • In einem weiteren Ausführungsbeispiel wird nicht nur der Beschichtungsfilm in einem Ableiterbereich mit einem Laser entfernt, sondern auch eine dünne Schicht an der Oberfläche des Kollektorsubstrats, so dass eine frische saubere Oberfläche entsteht. Dadurch können Verunreinigungen und oxidierte Schichten im Ableiterbereich entfernt werden, wodurch ein Kontaktwiderstand zwischen den Elektroden und einer Anschlussfahne verringert wird. Vorzugsweise wird die Anschlussfahne unmittelbar nach dem Herstellen des Ableiterbereichs am Ableiterbereich befestigt, wobei das Herstellen des Ableiterbereichs entweder nur das Entfernen des Beschichtungsfilms oder das Entfernen des Beschichtungsfilms sowie einer Oberflächenschicht des Kollektorsubstrats umfassen kann. Daher kann durch das Verwenden eines Lasers zum Abtragen des Beschichtungsfilms und/oder einer Oberflächenschicht des Kollektorsubstrats das Auftreten von Verunreinigungen vermieden werden, die eine ernsthafte Gefahr für eine fertige Batterie darstellen und Dendritenbildung mit daraus resultierendem Kurzschluss verursachen können, wie beispielsweise beim Bürsten entstehende Schleifpartikel oder Beschichtungsreste.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Batterieelektrode entweder vor oder nach dem Herstellen des mindestens einen Ableiterbereichs in einer vorgegebenen Form mit Hilfe des Lasers ausgeschnitten. Auf diese Weise kann jede beliebige Elektrodenform gewählt werden, ohne dass spezielle Werkzeuge, wie etwa besondere Stanzformen, angeschafft werden müssen. Dadurch wird die Designfreiheit beim Herstellen der Batterieelektrode weiter vergrößert und der Arbeitsablauf optimiert. Durch das Ausbilden des Ableiterbereichs und das Ausschneiden der Batterieelektrode mittels Laser kann Arbeitszeit und zusätzliches Werkzeug eingespart werden, da ein Umsetzen des zu bearbeitenden Elektrodenmaterials oder des Werkzeugs entfallt. Somit kann der Ableiterbereich oder auch die Batterieelektrode in jeder belieben Form hergestellt werden, z. B. rund, halbkreisförmig, ringförmig, rechteckig oder dreieckig. Außerdem kann der Ableiterbereich beliebig auf der beschichteten Elektrodenfläche angeordnet werden. Vorzugsweise ragt der Ableiterbereich in die beschichtete Elektrodenfläche so hinein, dass er an einem größeren Teil seines Umfangs bzw. wenigstens zur Hälfte von der beschichteten Elektrodenfläche umgeben ist. Dabei kann er mit dem restlichen Teil seines Umfangs an einen äußeren Rand der Batterieelektrode angrenzen. Alternativ kann der Ableiterbereich vollständig innerhalb der beschichteten Elektrodenfläche angeordnet sein. Auf diese Weise kann beim Zusammensetzen der Batterie ein inaktiver Bereich oder Totvolumen reduziert werden, sodass bei gleicher Batteriegröße eine Kapazität bzw. eine volumetrische Energiedichte erhöht wird.
  • Des Weiteren kann mindestens eine Aussparung in der Batterieelektrode ausgebildet werden. Vorzugsweise entspricht die Aussparung einer Elektrode einem auf einer gegennamigen Elektrode ausgebildeten Ableiterbereich, damit die übereinander angeordneten Ableiterbereiche der gleichnamigen Elektroden bei einer alternierenden Elektrodenanordnung durch die anderen Elektroden hindurch miteinander verbunden werden können. Dies kann beispielsweise vorteilhaft sein, wenn der Ableiterbereich einer Elektrode in einen beschichteten Elektrodenbereich hineinragt oder von diesem vollständig umgeben ist. Wenn die Batterieelektrode mittels Laserschneiden ausgeschnitten wird, kann das Ausschneiden der Aussparung ebenfalls mit Hilfe des Lasers erfolgen, um einen Verfahrensablauf zu optimieren.
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird während der Laserablation des Beschichtungsfilms und/oder während der Laserablation der Oberflächenschicht des Kollektorsubstrats und/oder während des Laserschneidens ein Prozessgas auf das Substrat geblasen. Dadurch können durch die Laserbearbeitung entstandene Rückstände schon während des Vorgangs entfernt werden. Außerdem kann ein Prozessgas verwendet werden, das eine Oxidation oder andere unerwünschte chemische Oberflächenreaktionen unterdrückt. Vorzugsweise ist das Prozessgas kalt, um das Elektrodenmaterial während der Laserbearbeitung zu kühlen.
  • In einem weiteren Aspekt der vorliegenden Erfindung wird eine Batterieelektrode angegeben, die ein Kollektorsubstrat, einen auf dem Kollektorsubstrat ausgebildeten Beschichtungsfilm und einen Ableiterbereich enthält, wobei der Ableiterbereich durch Entfernen des Beschichtungsfilms unter Verwendung eines Lasers ausgebildet ist. Somit wird der Ableiterbereich durch einen unbeschichteten Bereich des Kollektorsubstrats gebildet. Die Batterieelektrode kann gemäß irgendeinem oben beschriebenen Ausführungsbeispiel des erfindungsgemäßen Verfahrens hergestellt werden.
  • Als weiterer Aspekt der vorliegenden Erfindung wird eine Batterie angegeben, die eine nach irgendeinem der oben beschriebenen Ausführungsbeispiele des erfindungsgemäßen Verfahrens hergestellte Batterieelektrode enthält.
  • Kurze Beschreibung der Figuren
  • In den Figuren zeigen:
  • 1 eine schematische Schnittansicht einer Elektrodenanordnung in einer herkömmlichen Batterie;
  • 2A und 2B eine Draufsicht auf eine herkömmliche Batterieelektrode;
  • 3 eine Schnittansicht eines herkömmlichen Elektrodenmaterials;
  • 4A und 4B Verfahren zum Herstellen eines herkömmlichen Elektrodenmaterials;
  • 5 ein Ablaufdiagramm eines herkömmlichen Herstellungsverfahrens einer Batterie;
  • 6 Batterieelektroden gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung;
  • 7 Batterieelektroden gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung;
  • 8 Batterieelektroden gemäß einem anderen Ausführungsbeispiel der vorliegenden Erfindung;
  • 9A9C Schnittansichten durch ein Elektrodenmaterial während eines Herstellungsprozesses gemäß der vorliegenden Erfindung; und
  • 10 ein Ablaufdiagramm eines Herstellungsverfahrens gemäß einem Ausführungsbeispiel der vorliegenden Erfindung.
  • Ausführliche Beschreibung der Erfindung
  • Im Folgenden wird die Erfindung anhand des Beispiels der Lithium-Ionen-Batterie beschrieben, die sich durch eine hohe Energiedichte und thermische Stabilität auszeichnet.
  • Die vorliegende Erfindung soll jedoch nicht auf Lithium-Ionen-Batterien beschränkt sein, sondern kann auf jede beliebige Batterie angewendet werden.
  • Bei einer Lithium-Ionen-Batterie besteht ein Kollektorsubstrat 60 einer Anode 10 beispielsweise aus Kupfer, das mit einem Beschichtungsfilm 70 aus Graphit, Bindemittel, Ruß und Lösungsmittel beschichtet ist. Gemäß der vorliegenden Erfindung wird der Beschichtungsfilm 70 in einem Ableiterbereich 40 entfernt, sodass das Kollektorsubstrat 60 im Ableiterbereich 40 freigelegt ist. Am Ableiterbereich 40 der Anode 10 kann eine Anschlussfahne 50 aus Nickel befestigt werden. Bei der Kathode 20 besteht ein Kollektorsubstrat 60 beispielsweise aus Aluminium und ist mit einem Beschichtungsfilm 70 aus einem zu einer Redoxreaktion beitragenden Aktivmaterial, Bindemittel, Ruß, Graphit und Lösungsmittel beschichtet. Die Anschlussfahne der Kathode besteht vorzugsweise ebenfalls aus Aluminium.
  • In 6 sind Batterieelektroden gemäß der vorliegenden Erfindung gezeigt, bei denen ein Ableiterbereich 40 an seinem Umfang überwiegend an den Beschichtungsfilm 70 auf dem Kollektorsubstrat 60 angrenzt. Sowohl die Anoden 10 als auch die Kathoden weisen einen innen liegenden Ableiterbereich 40 und eine Aussparung 80 auf. Die Aussparung 80 ist an einer Stelle ausgebildet, die dem Ableiterbereich 40 der jeweiligen gegennamigen Elektrode im zusammengesetzten Zustand entspricht. Die Aussparungen 80 der Anoden 10 sind folglich so angeordnet, dass sie im zusammengesetzten Zustand der Elektroden über bzw. unter den Ableiterbereichen 40 der Kathoden 10 liegen. Die Pfeile in 6 deuten eine Elektrodenanordnung im zusammengesetzten Zustand an, wobei jeweils abwechselnd eine Anode 10 und eine Kathode 20 übereinander angeordnet werden. Hierbei ist zwischen den Anoden 10 und Kathoden 20 ein Separator 30 angeordnet (nicht gezeigt), der aus mikroporösen Folien oder Vliesstoffen bestehen kann. In den Ableiterbereichen 40 können vor dem Zusammensetzen der Elektroden Anschlussfahnen 50 jeweils an mindestens einer der Anoden 10 und an mindestens einer der Kathoden 20 befestigt werden. Vorzugsweise werden die Anschlussfahnen 50 jedoch nach dem Zusammensetzen der Elektroden beispielsweise durch Ultraschallschweißen an den Ableiterbereichen 40 befestigt. Da bei diesem Ausführungsbeispiel ein Ableiterbereich 40 einer Elektrode einer Aussparung 80 einer gegennamigen Elektrode gegenüberliegt, können hierbei gleichzeitig jeweils die Anoden 10 bzw. die Kathoden 20 an ihren Ableiterbereichen 40 elektrisch miteinander verbunden werden.
  • Es ist auch möglich, nur die Kathoden oder nur die Anoden mit einem innen liegenden oder hineinragenden Ableiterbereich auszubilden, wobei die andere der zwei Elektroden nach dem herkömmlichen Verfahren mit vorstehendem Ableiterbereich hergestellt wird.
  • In 7 ist ein weiteres Ausführungsbeispiel für Batterieelektroden gemäß der vorliegenden Erfindung gezeigt. Die in 7 dargestellten Anoden 10 weisen eine runde Aussparung 80 in ihrer Mitte auf, während die Kathoden 20 in ihrer Mitte einen entsprechenden Ableiterbereich 40 aufweisen. Der Ableiterbereich 40 der Anoden 10 ist an ihren Umfangsrand ausgebildet, so dass die Kathoden 20 an dieser Stelle eine Aussparung 80 aufweisen. Wie zuvor beschrieben, werden die Ableiterbereiche 40 der gleichnamigen Elektroden miteinander verbunden und Anschlussfahnen 50 werden jeweils in den Ableiterbereichen 40 der Anoden 10 und der Kathoden 20 befestigt.
  • In 8 ist ein weiteres Beispiel für Batterieelektroden gemäß der vorliegenden Erfindung gezeigt. In diesem Ausführungsbeispiel sind die Ableiterbereiche 40 vollständig vom Beschichtungsfilm 70 umgeben. Hier weist die Anode 10 zwei Ableiterbereiche 40a und 40b auf und die Kathode 20 zwei entsprechende Aussparungen 80a und 80b. In diesem Fall ist an jedem der beiden Ableiterbereiche 40a und 40b der Anode 10 jeweils eine Anschlussfahne 50 angebracht. Das Ausbilden von mehreren Ableiterbereichen 40 auf einer Elektrode kann zu einer verbesserten Spannungsableitung führen und einen Widerstand reduzieren.
  • Im Folgenden wird die Herstellung der Batterieelektroden erläutert. Gemäß der vorliegenden Erfindung wird zunächst, wie in 9A gezeigt, ein Kollektorsubstrat 60 großflächig und beidseitig mit einem Beschichtungsfilm 70 beschichtet. Das Kollektorsubstrat 60 kann allerdings auch nur auf einer Oberfläche großflächig oder im Wesentlichen vollständig beschichtet sein. Der Beschichtungsfilm 70 wird in einem flüssigen Zustand auf das Kollektorsubstrat 60 aufgetragen. Hierbei können einfache, kontinuierliche Beschichtungstechnologien, wie beispielsweise Doctor-blade, Comma-bar oder Kiss-Coating eingesetzt werden. Anschließend wird der Beschichtungsfilm 70 getrocknet oder ausgehärtet, wobei eine Dicke des Beschichtungsfilms 70 im trockenen Zustand beispielsweise in etwa 25 μm beträgt. Nach dem Trocknen oder Aushärten des Beschichtungsfilms 70 wird das beschichtete Kollektorsubstrat 60 kalandriert, um den Beschichtungsfilm 70 zu verdichten. Aufgrund der gleichmäßigen Dicke des Kollektorsubstrats 60 ist der Kalandrierprozess vereinfacht und kann effizienter durchgeführt werden, sodass die Qualität des Elektrodenmaterials verbessert ist. Darüber hinaus ist das beschichtete Kollektorsubstrat 60 als Rollenmaterial lagerbar und steht als Elektrodenmaterial für die spätere Weiterverarbeitung zur Verfügung.
  • Wie in 9B gezeigt, wird anschließend mindestens ein Ableiterbereich 40 auf dem beschichteten Kollektorsubstrat 60 ausgebildet, indem im Ableiterbereich 40 der Beschichtungsfilm 70 durch Laserablation entfernt und das darunterliegende Kollektorsubstrat 60 freigelegt wird. Bei einer Laserablation wird Material von der Oberfläche durch Beschuss mit Laserstrahlung abgetragen. Hierfür wird beispielsweise gepulste Laserstrahlung mit hoher Leistungsdichte verwendet. Da die Wärmeleitung nur einen sehr langsamen Energietransport in das Volumen ermöglicht, wird die eingestrahlte Energie auf eine sehr dünne Schicht an der Oberfläche konzentriert. Dadurch wird die Oberfläche stark erhitzt und es kommt zum schlagartigen Verdampfen oder Schmelzen des Materials. Um eine ausreichende Absorption des Laserlichts zu gewährleisten, wird eine Wellenlänge der Laserstrahlung in Abhängigkeit des abzutragenden Materials gewählt. Vorzugsweise wird ein Gravur- oder Schneidlasersystem verwendet, beispielsweise mit einem Ytterbiumlaser bei einer Wellenlänge von 1070 nm. Es können allerdings auch andere Gas-, Festkörper- oder Faserlaser eingesetzt werden. Während des Verarbeitungsprozesses kann außerdem ein Prozessgas oder Blasgas auf die Oberfläche geleitet werden, um das abgetragene Material aus der Schnittfuge zu treiben oder unerwünschte chemische Reaktionen an der Oberfläche zu verhindern. Durch das Verdampfen oder Schmelzen des Materials werden keine schädlichen Verunreinigungen erzeugt.
  • Da die Ableiterbereiche 40 durch Laserablation hergestellt werden, können beliebige Ableiterbereichformen und -anordnungen ausgebildet werden. Insbesondere können die Ableiterbereiche 40 so auf der Elektrodenfläche angeordnet werden, dass sie nicht von der Batterieelektrode vorstehen. Dadurch kann ein Energiedichte/Volumen-Verhältnis erhöht und die Größe einer Batterie bei gleichen elektrischen Eigenschaften verringert werden. Das Ausbilden des Ableiterbereichs 40 erfolgt vorzugsweise unmittelbar vor dem Verbinden von gleichnamigen Elektroden oder dem Anbringen einer Anschlussfahne 50 in den Ableiterbereichen 40. Beispielsweise können übereinanderliegende gleichnamige Elektroden durch einen Schweißkontakt in den Ableiterbereichen 40 miteinander verbunden werden. Hierbei kann gleichzeitig eine Anschlussfahne 50 an einem der Ableiterbereiche 40 befestigt werden. Da die Ableiterbereiche 40 erst kurz vor der Weiterverarbeitung des Elektrodenmaterials ausgebildet werden, steht für die Kontaktierung der gleichnamigen Elektroden untereinander bzw. für das Anbringen der Anschlussfahne 50 eine frische saubere Oberfläche zur Verfügung. Dadurch können Passivierungsschichten wie beispielsweise oxidierte Oberflächen und andere Verunreinigungen im Ableiterbereich 40 vermieden werden.
  • Möglicherweise wird nicht nur der Beschichtungsfilm 70 im Ableiterbereich 40 mittels Laser entfernt, sondern wie in 9C gezeigt, auch eine dünne Schicht des Kollektorsubstrats 60. Durch die Verwendung von Lasersystemen mit hoher Schnittpräzision kann die Eindringtiefe des Lasers exakt gesteuert werden, sodass die Tiefe des Materialabtrags beliebig gewählt werden kann. Daher kann ein Kollektorsubstrat 60 im Ableiterbereich 40 gezielt verdünnt werden, um einen elektrischen Kontaktwiderstand zu reduzieren. Außerdem kann dadurch die Oberflächenbeschaffenheit für eine elektrische Kontaktierung verbessert werden.
  • 10 ist ein Ablaufdiagramm eines Herstellungsprozesses einer Batterie gemäß der vorliegenden Erfindung. Zuerst wird auf einem Kollektorsubstrat 60, das aus einem ungefähr 8–20 μm dicken Metallband besteht, ein tintenartiger Beschichtungsfilm 70 großflächig oder im Wesentlichen vollständig aufgetragen (S100). Nach dem Trocknen oder Aushärten des Beschichtungsfilms 70, der im trockenen Zustand ungefähr 25 μm dick ist, wird das gleichmäßig beschichtete Kollektorsubstrat 60 kalandriert (S200), um beim Trocknen entstandene Hohlräume und Unregelmäßigkeiten aus dem Beschichtungsfilm 70 zu entfernen. Das kalandrierte und beschichtete Kollektorsubstrat 60 kann nun als Rollenmaterial bis zur Weiterverarbeitung gelagert werden. Zur Fertigstellung der Batterieelektrode wird der Beschichtungsfilm 70 in einem vorgegebenen Ableiterbereich 40 auf dem beschichteten Kollektorsubstrat 60 durch Laserablation entfernt (S300). Möglicherweise wird zusätzlich eine dünne Schicht des Kollektorsubstrats 60 im Ableiterbereich 40 abgetragen, um eine Oberflächenqualität für elektrische Kontaktierung zu verbessern. Im nächsten Schritt S400 wird dann die Elektrode und gegebenenfalls die Aussparungen 80 in einer gewünschten Form aus dem beschichteten Kollektorsubstrat 60 ausgeschnitten. Vorzugsweise wird die Elektrode bzw. die Aussparung 80 mit Laser ausgeschnitten, alternativ kann aber auch eine Stanzvorrichtung verwendet werden. Die Reihenfolge der Schritte S400 und S300 kann auch vertauscht werden. Danach werden Anoden 10 und Kathoden 20 abwechselnd übereinander so angeordnet, dass sich jeweils die Ableiterbereiche 40 von gleichnamigen Elektroden gegenüberliegen, wobei zwischen den Ableiterbereichen 40 der Anoden 10 die Aussparungen 80 der Kathoden 20 und umgekehrt angeordnet sind. Anschließend werden jeweils die Ableiterbereiche 40 von gleichnamigen Elektroden beispielsweise durch Ultraschallschweißen miteinander verbunden, wobei jeweils eine Anschlussfahne 50 daran befestigt wird (S500). Altnernativ kann die Anschlussfahne 50 auch vor dem Zusammensetzen der Elektroden jeweils an einer der Kathoden 20 bzw. Anoden 10 angebracht werden.
  • Die weiteren Schritte entsprechen denen des herkömmlichen Verfahrens zum Herstellen einer Batterie. Die Elektrodenanordnung wird in einen Behälter eingesetzt und die Anschlussfahnen 50 werden mit den äußeren Spannungspolen der Batterie verbunden (S60). Anschließend wird ein Elektrolyt eingefüllt (S70) und die Zelle verschlossen (S80). Abschließend wird eine Formierung (S90) durchgeführt.
  • Gemäß der vorliegenden Erfindung können Batterieelektroden kostengünstig und mit hoher Qualität hergestellt werden, indem der Ableiterbereich durch Laserablation auf dem beschichteten Kollektorsubstrat hergestellt wird. Aufgrund der hohen Schnittpräzision bezüglich Schnittführung und Eindringtiefe von Laser können auch komplexe Umrisse präzise und schnell ausgeschnitten oder abgetragen werden. Außerdem wird maximale Designfreiheit möglich, da ein Ableiterbereich mit einem Lasersystem an beliebiger Stelle und in jeder beliebigen an einem Computer entworfenen Form ausgebildet werden kann. Insbesondere können die Ableiterbereiche so ausgebildet werden, dass sie nicht von einem Außenumfang der Batterieelektrode vorstehen, sondern in einen beschichteten Bereich der Batterieelektrode hineinragen. Dadurch kann bei gleicher Batteriegröße eine höhere Kapazität und Energiedichte erreicht werden. Darüber hinaus kann ein platzoptimierter Ableiterbereich ausgebildet werden, sodass lediglich ein unbedingt erforderlicher Bereich durch Laserablation freigelegt wird. Dies erspart weitere Arbeitsschritte zum Entfernen überflüssiger unbeschichteter Elektrodenflächen und überdies Material. Ferner ist die Herstellung von Batterieelektroden schon ab einer geringen Mindeststückzahl rentabel, so dass auch individuell gestaltete Batterien mit geringem Aufwand und niedrigen Kosten hergestellt werden können. Des Weiteren werden eine Flexibilität in der Herstellung und eine Materialausnutzung erhöht. Durch die Verwendung eines Lasers zum Ausbilden der Ableiterbereiche können außerdem einfache kontinuierliche Beschichtungstechnologien zum Herstellen des beschichteten Kollektorsubstrats verwendet werden, sodass ein Herstellungsprozess günstiger wird. Ein vollflächig beschichtetes Kollektorsubstrat ist zudem einfacher zu kalandrieren und besser zu lagern. Da der Ableiterbereich unmittelbar vor einem Kontaktieren hergestellt werden kann, können durch ein erfindungsgemäßes Herstellungsverfahren Verunreinigungen oder Passivierungsschichten im Kontaktbereich vermieden werden und ein Kontaktwiderstand reduziert werden.

Claims (10)

  1. Verfahren zum Herstellen einer Batterieelektrode, umfassend: Ausbilden (S100) eines Beschichtungsfilms (70) auf einem Kollektorsubstrat (60); und Herstellen (S200) von mindestens einem Ableiterbereich (40) durch Abtragen des Beschichtungsfilms (70) mittels Laserablation.
  2. Verfahren nach Anspruch 1, wobei der Beschichtungsfilm (70) auf beiden Seiten des Kollektorsubstrats (60) und/oder auf einer gesamten Oberfläche des Kollektorsubstrats (60) und/oder in einem kontinuierlichen Beschichtungsverfahren aufgetragen wird.
  3. Verfahren nach Anspruch 1 oder 2, wobei auf mindestens einer Seite des Kollektorsubstrats (60) mindestens ein Ableiterbereich (40) durch Laserablation ausgebildet wird.
  4. Verfahren nach einem der obigen Ansprüche, wobei bei der Herstellung des Ableiterbereichs (40) eine Schicht des Kollektorsubstrats (60) im Ableiterbereich (40) mittels Laserablation abgetragen wird.
  5. Verfahren nach einem der obigen Ansprüche, wobei eine Kontaktierung des Kollektorsubstrats (60) im Ableiterbereich (40) mit einer Anschlussfahne (50) unmittelbar nach der Ausbildung des Ableiterbereichs (40) erfolgt (S500).
  6. Verfahren nach einem der obigen Ansprüche, wobei das Verfahren zum Herstellen einer Batterieelektrode ferner umfasst: Ausschneiden der Batterieelektrode und/oder von Aussparungen aus dem beschichteten Kollektorsubstrat mittels Laserschneiden (S400).
  7. Verfahren nach einem der obigen Ansprüche, wobei der Ableiterbereich (40) und/oder die Batterieelektrode im Wesentlichen in einer runden, ringförmigen, rechteckigen, dreieckigen oder beliebigen Form oder als ein Ausschnitt davon hergestellt wird.
  8. Verfahren nach einem der obigen Ansprüche, wobei während der Laserablation (S300) und/oder während des Laserschneidens (S400) ein Prozessgas auf das Kollektorsubstrat (60) geblasen wird.
  9. Batterieelektrode, umfassend: ein Kollektorsubstrat (60); einen Beschichtungsfilm (70) auf dem Kollektorsubstrat (60); und mindestens einen durch Abtragen des Beschichtungsfilms (70) mittels Laserablation ausgebildeten Ableiterbereich (40).
  10. Batterie, die eine Batterieelektrode nach Anspruch 9 enthält.
DE102010062140.4A 2010-11-29 2010-11-29 Batterieelektrode und Verfahren zum Herstellen derselben, sowie Batterie Active DE102010062140B4 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE102010062140.4A DE102010062140B4 (de) 2010-11-29 2010-11-29 Batterieelektrode und Verfahren zum Herstellen derselben, sowie Batterie
PCT/EP2011/005945 WO2012072221A1 (de) 2010-11-29 2011-11-25 Batterieelektrode und verfahren zum herstellen derselben
US13/990,366 US9966592B2 (en) 2010-11-29 2011-11-25 Battery electrode and method for producing same
DK11788777.8T DK2647079T3 (en) 2010-11-29 2011-11-25 BATTERY ELECTRODE AND PROCEDURE FOR PRODUCING THE SAME
CN201180055999.4A CN103503216B (zh) 2010-11-29 2011-11-25 电池电极及其生产方法
EP11788777.8A EP2647079B1 (de) 2010-11-29 2011-11-25 Batterieelektrode und verfahren zum herstellen derselben
JP2013540269A JP5961624B2 (ja) 2010-11-29 2011-11-25 バッテリー電極、及びバッテリー電極の製造方法
CA2816404A CA2816404C (en) 2010-11-29 2011-11-25 Battery electrode and method for producing same
KR1020137017146A KR101591388B1 (ko) 2010-11-29 2011-11-25 배터리 전극 및 이를 제조하는 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010062140.4A DE102010062140B4 (de) 2010-11-29 2010-11-29 Batterieelektrode und Verfahren zum Herstellen derselben, sowie Batterie

Publications (2)

Publication Number Publication Date
DE102010062140A1 true DE102010062140A1 (de) 2012-05-31
DE102010062140B4 DE102010062140B4 (de) 2014-04-03

Family

ID=45063094

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010062140.4A Active DE102010062140B4 (de) 2010-11-29 2010-11-29 Batterieelektrode und Verfahren zum Herstellen derselben, sowie Batterie

Country Status (9)

Country Link
US (1) US9966592B2 (de)
EP (1) EP2647079B1 (de)
JP (1) JP5961624B2 (de)
KR (1) KR101591388B1 (de)
CN (1) CN103503216B (de)
CA (1) CA2816404C (de)
DE (1) DE102010062140B4 (de)
DK (1) DK2647079T3 (de)
WO (1) WO2012072221A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204852A1 (de) 2013-03-20 2014-09-25 Robert Bosch Gmbh Elektrode und Verfahren zum Herstellen einer Elektrode
DE102013204851A1 (de) 2013-03-20 2014-09-25 Robert Bosch Gmbh Elektrode und Verfahren zum Herstellen einer Elektrode
DE102013204875A1 (de) 2013-03-20 2014-09-25 Robert Bosch Gmbh Elektrode und Verfahren zum Herstellen einer Elektrode
US9786901B2 (en) 2013-03-20 2017-10-10 Robert Bosch Gmbh Electrode and method for manufacturing an electrode
DE102020112500A1 (de) 2020-05-08 2021-11-11 Einhell Germany Ag Kontaktlose Aufbereitung einer Trägerfolie für eine Elektrode eines Lithium-Ionen-Akkumulators

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9383593B2 (en) * 2014-08-21 2016-07-05 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators
KR101738776B1 (ko) * 2014-10-24 2017-05-22 주식회사 엘지화학 배터리 용량 향상을 위한 전극 제조방법 및 이에 의하여 제조된 전극
JP6344347B2 (ja) * 2015-09-11 2018-06-20 トヨタ自動車株式会社 セパレータ層付き電極の製造方法、及び、セパレータ層付き電極の製造装置
US10312547B2 (en) 2015-11-25 2019-06-04 Robert Bosch Battery Systems Llc Cross-woven electrode assembly
KR20180001229A (ko) * 2016-06-27 2018-01-04 삼성에스디아이 주식회사 이차 전지의 제조 방법 및 이를 이용한 이차 전지
TWI617073B (zh) 2016-11-25 2018-03-01 財團法人工業技術研究院 電池電極結構及其製作方法
DE102016225221A1 (de) 2016-12-16 2018-06-21 Robert Bosch Gmbh Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
KR102155029B1 (ko) 2017-06-27 2020-09-11 주식회사 엘지화학 전극 탭의 용접 방법 및 이에 따라 용접된 전극을 포함하는 케이블형 이차전지
CN110323410B (zh) * 2019-05-24 2022-04-22 宁波中车新能源科技有限公司 一种制备超薄电极的装置和方法
CN115555852B (zh) * 2021-06-30 2023-06-30 宁德时代新能源科技股份有限公司 极片成型方法及设备
DE212022000208U1 (de) * 2021-07-19 2024-02-20 Lg Energy Solution, Ltd. Verarbeitetes Elektrodenblatt und Vorrichtung zur Verarbeitung eines Elektrodenblatts
US20230249291A1 (en) * 2022-02-09 2023-08-10 Ford Global Technologies, Llc Laser notching apparatus for cutting of electrode sheets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825659A2 (de) * 1996-08-22 1998-02-25 Dai Nippon Printing Co., Ltd. Elektrodenplatte für Sekundärbatterie mit nichtwasserigem Elektrolyt sowie Herstellungsverfahren
EP0924783A1 (de) * 1997-12-22 1999-06-23 Japan Storage Battery Company Limited Poröse, mit aktiver Masse gefüllte Elektrode, Verfahren zu ihrer Herstellung und elektrochemische Zelle diese enthaltend
DE102008053595A1 (de) * 2008-10-15 2010-04-29 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Schichtmaterialabtragverfahren mittels Laserstrahlung

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124361A (ja) * 1986-11-12 1988-05-27 Matsushita Electric Ind Co Ltd 電池用極板
JPH05314969A (ja) * 1992-05-12 1993-11-26 Yuasa Corp 電池の製造方法
JP3850467B2 (ja) * 1995-08-22 2006-11-29 東芝電池株式会社 電池電極製造用張力調整機構
JPH0982332A (ja) * 1995-09-12 1997-03-28 Furukawa Battery Co Ltd:The 電池用極板並びにその製造法
DE19536684A1 (de) 1995-09-30 1997-04-03 Varta Batterie Prismatische, galvanische Zelle
JPH09259873A (ja) * 1996-03-25 1997-10-03 Furukawa Battery Co Ltd:The 二次電池用電極とその製造方法、ならびに、その製造に用いるフッ素樹脂の塗布装置
JPH1154106A (ja) * 1997-08-05 1999-02-26 Japan Storage Battery Co Ltd 活物質の除去方法及びこの方法を用いた電極の製造 方法
JP3819570B2 (ja) * 1997-11-18 2006-09-13 三洋電機株式会社 非焼結電極を用いた円筒状アルカリ蓄電池
JP4701463B2 (ja) * 1998-11-05 2011-06-15 パナソニック株式会社 電池用電極板の活物質除去方法
JP2000208129A (ja) * 1999-01-13 2000-07-28 Ngk Insulators Ltd リチウム二次電池
JP2002246009A (ja) * 2001-02-19 2002-08-30 Sanyo Electric Co Ltd アルカリ蓄電池
JP2002279964A (ja) * 2001-03-19 2002-09-27 Toshiba Battery Co Ltd アルカリ二次電池及びその製造方法
JP2003109654A (ja) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd 電池用極板およびその製造方法
JP3960033B2 (ja) 2001-12-19 2007-08-15 松下電器産業株式会社 積層型電気化学素子
JP2003308833A (ja) 2002-04-17 2003-10-31 Shin Kobe Electric Mach Co Ltd 極板切断方法
DE10219424A1 (de) 2002-05-02 2003-11-20 Varta Microbattery Gmbh Galvanisches Element mit dünnen Elektroden
DE10224452C1 (de) 2002-05-29 2003-11-20 Fraunhofer Ges Forschung Protonenleitende Polymermembran sowie Verfahren zu deren Herstellung
WO2004062022A1 (ja) * 2002-12-27 2004-07-22 Matsushita Electric Industrial Co., Ltd. 電気化学素子およびその製造方法
WO2008011061A1 (en) * 2006-07-18 2008-01-24 Cymbet Corporation Method and apparatus for solid-state microbattery photolithographic manufacture, singulation and passivation
JP2008123939A (ja) * 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd 非水系二次電池用電極板およびこれを用いた非水系二次電池
JP2008235134A (ja) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd リチウムイオン二次電池の製造方法
TWI396315B (zh) 2007-10-25 2013-05-11 Applied Materials Inc 大量製造薄膜電池的方法
KR101359605B1 (ko) * 2008-01-21 2014-02-11 삼성전자주식회사 Smt 시스템
US8168265B2 (en) * 2008-06-06 2012-05-01 Applied Materials, Inc. Method for manufacturing electrochromic devices
DE102008041713A1 (de) 2008-08-29 2010-03-04 Gaia Akkumulatorenwerke Gmbh Verfahren zur Herstellung einer elektrischen Zelle
JP2010074113A (ja) * 2008-09-16 2010-04-02 Jcc Engineering Co Ltd 電子部品の製造方法及び装置
JP2010182620A (ja) * 2009-02-09 2010-08-19 Panasonic Corp リチウムイオン二次電池
FR2943181B1 (fr) * 2009-03-16 2011-05-13 Commissariat Energie Atomique Microbatterie au lithium et son procede de fabrication
US8679677B1 (en) * 2009-12-21 2014-03-25 Quallion Llc Incorportation of reference electrode into electrodes of electrochemical device
JP5771417B2 (ja) * 2010-03-26 2015-08-26 株式会社半導体エネルギー研究所 リチウム二次電池の電極の作製方法及びリチウムイオンキャパシタの電極の作製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825659A2 (de) * 1996-08-22 1998-02-25 Dai Nippon Printing Co., Ltd. Elektrodenplatte für Sekundärbatterie mit nichtwasserigem Elektrolyt sowie Herstellungsverfahren
EP0924783A1 (de) * 1997-12-22 1999-06-23 Japan Storage Battery Company Limited Poröse, mit aktiver Masse gefüllte Elektrode, Verfahren zu ihrer Herstellung und elektrochemische Zelle diese enthaltend
DE102008053595A1 (de) * 2008-10-15 2010-04-29 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Schichtmaterialabtragverfahren mittels Laserstrahlung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204852A1 (de) 2013-03-20 2014-09-25 Robert Bosch Gmbh Elektrode und Verfahren zum Herstellen einer Elektrode
DE102013204851A1 (de) 2013-03-20 2014-09-25 Robert Bosch Gmbh Elektrode und Verfahren zum Herstellen einer Elektrode
DE102013204875A1 (de) 2013-03-20 2014-09-25 Robert Bosch Gmbh Elektrode und Verfahren zum Herstellen einer Elektrode
US9786901B2 (en) 2013-03-20 2017-10-10 Robert Bosch Gmbh Electrode and method for manufacturing an electrode
DE102020112500A1 (de) 2020-05-08 2021-11-11 Einhell Germany Ag Kontaktlose Aufbereitung einer Trägerfolie für eine Elektrode eines Lithium-Ionen-Akkumulators

Also Published As

Publication number Publication date
CA2816404A1 (en) 2012-06-07
KR20140058398A (ko) 2014-05-14
JP2013544424A (ja) 2013-12-12
CN103503216B (zh) 2016-06-08
US20130252086A1 (en) 2013-09-26
US9966592B2 (en) 2018-05-08
WO2012072221A1 (de) 2012-06-07
DE102010062140B4 (de) 2014-04-03
CN103503216A (zh) 2014-01-08
KR101591388B1 (ko) 2016-02-03
EP2647079A1 (de) 2013-10-09
EP2647079B1 (de) 2018-11-07
CA2816404C (en) 2019-03-26
DK2647079T3 (en) 2019-03-04
JP5961624B2 (ja) 2016-08-02

Similar Documents

Publication Publication Date Title
DE102010062140B4 (de) Batterieelektrode und Verfahren zum Herstellen derselben, sowie Batterie
DE102010062143B4 (de) Batterieelektrode und Verfahren zum Herstellen derselben
DE60128020T2 (de) Nichtwässrige elektrolytische Sekundärzellen
DE69925532T2 (de) Elektrische Verbindungsanordnung in einer Lithium- Sekundärbatterie
EP2705556B1 (de) Verfahren und vorrichtung zur herstellung von elektrodenwickeln
DE102017124181B4 (de) Vorrichtung zum Speichern elektrischer Energie
DE112015000539T5 (de) Zylindrische elektrochemische zellen und verfahren zur herstellung
EP3069404B1 (de) Elektrodenanordnung, verfahren zu ihrer herstellung und elektrochemische zelle
DE102017218137A1 (de) Verfahren zur Herstellung einer Elektrodenanordnung, Elektrodenanordnung und Batteriezelle mit einer solchen Elektrodenanordnung
DE102012113062A1 (de) Anschlussleiter
DE102017218130A1 (de) Verfahren zur Herstellung eines Stromableiters, Elektrode und Batteriezelle
EP2697850B9 (de) Über verbesserungen an elektrolyt-batterien
DE102019129470A1 (de) Elektrode und Herstellungsverfahren dafür
DE102012005229B4 (de) Verfahren zum Herstellen einer Batteriezelle und Batteriezelle
WO2021160222A2 (de) Elektrode, deren verwendung, akkumulator sowie verfahren zur herstellung einer elektrode
EP0966768B1 (de) Wiederaufladbare batterieanordnung und deren verwendung
WO2022263095A1 (de) Elektrode und elektrochemische speicherzelle
DE102017207766A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
EP4117106A1 (de) Elektrochemische zelle mit verlustarmem anschluss zwischen elektrode und gehäuse
DE102021118405A1 (de) Verfahren zur Herstellung einer Batteriezelle bzw. eines Stapels von Batteriezellen unter Anwendung additiver Fertigungsverfahren
DE102020105281A1 (de) Lithium-Ionen-Zelle mit delithierter Interkalationskathode und Lithiumanode
DE102022210702A1 (de) Prismatische Batteriezelle
DE202023107249U1 (de) Batteriezelle mit verbesserter Sicherheit
DE2803212A1 (de) Prismatische alkalimetallanode fuer eine elektrochemische zelle
WO2013068068A1 (de) Elektrodenstapel für eine energiespeicherzelle und verfahren zur herstellung eines solchen elektrodenstapels

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R020 Patent grant now final

Effective date: 20150106