DE102009027978A1 - Verfahren zur Herstellung von Decancarbonsäuren - Google Patents

Verfahren zur Herstellung von Decancarbonsäuren Download PDF

Info

Publication number
DE102009027978A1
DE102009027978A1 DE102009027978A DE102009027978A DE102009027978A1 DE 102009027978 A1 DE102009027978 A1 DE 102009027978A1 DE 102009027978 A DE102009027978 A DE 102009027978A DE 102009027978 A DE102009027978 A DE 102009027978A DE 102009027978 A1 DE102009027978 A1 DE 102009027978A1
Authority
DE
Germany
Prior art keywords
mixture
aldehydes
oxidation
catalyst
aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102009027978A
Other languages
English (en)
Inventor
Michael Dr. Grass
Alfred Dr. Kaizik
Hans-Gerd Dr. Lüken
Wilfried Dr. Büschken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Oxeno GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Oxeno GmbH and Co KG filed Critical Evonik Oxeno GmbH and Co KG
Priority to DE102009027978A priority Critical patent/DE102009027978A1/de
Priority to EP10722067A priority patent/EP2456745A2/de
Priority to CA2768604A priority patent/CA2768604A1/en
Priority to JP2012520973A priority patent/JP5787886B2/ja
Priority to KR1020127004566A priority patent/KR20120038514A/ko
Priority to MX2012000840A priority patent/MX2012000840A/es
Priority to SG2012004453A priority patent/SG178071A1/en
Priority to PCT/EP2010/057157 priority patent/WO2011009657A2/de
Priority to CN2010800334835A priority patent/CN102548946A/zh
Priority to BR112012001274A priority patent/BR112012001274A2/pt
Priority to US13/386,523 priority patent/US8907129B2/en
Priority to TW099123807A priority patent/TW201125845A/zh
Publication of DE102009027978A1 publication Critical patent/DE102009027978A1/de
Priority to ZA2012/01237A priority patent/ZA201201237B/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/126Acids containing more than four carbon atoms

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Gemisches isomerer Decancarbonsäuren, wobei folgende Schritte durchlaufen werden: a) Hydroformylierung eines Kohlenwasserstoffgemisches, enthaltend lineare C4-Olefine, unter Verwendung eines Rhodium enthaltenden Katalysatorsystems; b) Aldolkondensation eines Gemisches von aliphatischen C5-Aldehyden, erhalten aus Schritt a); c) Selektivhydrierung des Gemisches der ungesättigten C10-Aldehyde aus Schritt b) zu aliphatischen C10-Aldehyden; d) unkatalysierte Oxidation des Gemisches der aliphatischen C10-Aldehyde aus Schritt c), erhaltend ein Gemisch mit einem Anteil von mindestens 70 Masse-% 2-Propylheptansäure, bezogen auf den Gesamtgehalt der isomeren Decancarbonsäuren.

Description

  • Die vorliegende Erfindung betrifft die Herstellung von Decancarbonsäuren, insbesondere von Decancarbonsäuregemischen mit einem hohen Anteil an 2-Propylheptansäure.
  • Decancarbonsäuren können beispielsweise als Vorstufe für die Herstellung vor Perestern, Detergenzien und Schmiermitteln verwendet werden.
  • In den Patentschriften DE 101 08 474 , DE 101 08 475 , DE 101 08 476 und DE 102 25 282 wird die Herstellung von Pentanalgemischen durch Hydroformylierung eines Gemisches linearer Butene beschrieben. Alle Patenschriften haben gemeinsam, dass in mindestens einem Hydroformylierungsschritt ein Rhodiumkatalysator mit einem Diphosphinliganden, der ein Xanthengerüst aufweist, verwendet wird. Mit diesem Katalysator können 2-Butene unter isomerisierenden Bedingungen hydroformyliert werden. Das Verhältnis von n-Pentanal zu 2-Methylbutanal liegt bei 85 zu 15. Die Schriften DE 101 08 474 und DE 101 08 475 legen Verfahren offen, bei denen die Hydroformylierung zweistufig erfolgt. In der ersten Hydroformylierungsstufe wird unter Verwendung eines Katalysators, bestehend aus Rhodium und einem Monophosphin als Ligand, 1-Buten in einer Selektivität von 95% zu n-Pentanal umgesetzt. Die nicht umgesetzten Butene, hauptsächlich 2-Butene, werden in der zweiten Hydroformylierungsstufe unter Verwendung des oben genannten Rhodium/Bisphosphin umgesetzt. Die Schriften DE 101 08 476 und DE 102 25 282 beanspruchen einstufige Hydroformylierungsverfahren. Als Verwendung des n-Pentanal/2-Methylbutanal-Gemisches werden in allen vier Patentschriften u. a. die Herstellung von einem Gemisch von isomeren Decancarbonsäuren beansprucht. Es wird ein Syntheseweg skizziert, der folgende Schritte umfasst: Aldolkondensation des Pentanalgemisches zu einem Decenalgemisch, Selektivhydrierung des Decenalgemisches zu einem Decanalgemisch und dessen Oxidation zu einem Gemisch isomerer Decancarbonsäuren. Weder die Durchführbarkeit dieser Synthese noch eine Ausführungsart ist belegt. Es wird lediglich darauf verwiesen, dass sie in Analogie zur Herstellung von 2-Ethylhexansäure aus Butyraldehyd durchgeführt werden könnte, wobei insbesondere folgende zwei Literaturstellen angegeben werden. Die erste Stelle ist Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A1, p. 330. Hierin wird in einem Satz gesagt, wie 2-Ethylhexenal zu 2-Ethylhexanal hydriert werden kann. Es werden keine Reaktionsbedingungen genannt. Es gibt auch keine Literaturbezüge. Die zweite Stelle ist Ullmanns Encyclopädie der Technischen Chemie, 4. Auflage 1975, Band 9, Seite 144. Hierin wird ohne Angaben von Einzelheiten aufgeführt, dass 2-Ethylhexansäure durch Oxidation von 2-Ethylhexanal hergestellt werden kann, wobei Zusätze von Alkalimetallsalzen der 2-Ethylhexansäure die Ausbeuten erhöhen. Literaturhinweise fehlen ebenfalls. In DE 101 08 476 steht, dass das Kondensationsgemisch (Decenal) je nach Wahl der Reaktionsbedingungen entweder partiell zu Decanalen in Gegenwart Palladium haltiger Katalysatoren oder vollständig zu Decanolen hydriert werden kann. Beschreibungen des Katalysators und Angabe zu Reaktionsbedingunen und Reaktionsausführung fehlen.
  • Es ist also kein Verfahren zur Herstellung von Decancarbonsäuren so vollständig offenbart, dass es von einem Fachmann ohne Durchführung aufwändiger Versuche ausgeübt werden kann.
  • Der vorliegenden Erfindung lag die Aufgabe zugrunde ein Verfahren anzugeben, das auf Basis eines lineare C4-Olefine enthaltenden Kohlenwasserstoffgemisches, welches zusätzlich noch Isobuten enthält, in wenigen Schritten Decanale bereitstellt, die mit Sauerstoff enthaltenden Gasen in hohen Ausbeuten zu den entsprechenden Decancarbonsäuren oxidiert werden, ohne das weder ein Katalysator noch stabilisierende Zusätze Verwendung finden.
  • Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung eines Gemisches isomerer Decancarbonsäuren, wobei folgende Schritte durchlaufen werden:
    • a) Hydroformylierung eines Kohlenwasserstoffgemisches, enthaltend lineare C4-Olefine, unter Verwendung eines Rhodium enthaltenden Katalysatorsystems;
    • b) Aldolkondensation eines Gemisches von aliphatischen C5-Aldehyden, erhalten aus Schritt a);
    • c) Selektivhydrierung des Gemisches der ungesättigten C10-Aledhyde aus Schritt b) zu aliphatischen C10-Aldehyden;
    • d) unkatalysierte Oxidation des Gemisches der aliphatischen C10-Aldehyde aus Schritt c)
    erhaltend ein Gemisch mit einem Anteil von mindestens 70 Massen-% 2-Propylheptansäure bezogen auf den Gesamtgehalt der isomeren Decancarbonsäuren.
  • Das erfindungsgemäße Verfahren weist folgende Vorteile auf: Die Oxydation ist auch bei sehr hohen Umsätzen sehr selektiv, sodass nur geringe Stoffverluste entstehen. Dementsprechend fallen auch nur geringe Mengen an Nebenprodukten an, die entsorgt werden müssen. Da kein Katalysator eingesetzt wird, fallen keine Kosten für Katalysator, Abtrennung des gebrauchten Katalysators oder dessen Folgeprodukte sowie deren Entsorgung an.
  • In der vorliegenden Erfindung wird das Decanalgemisch, das ausgehend von linearen Butenen in einer dreistufigen Synthese hergestellt worden ist und bezogen auf den Decanalanteil mindestens 80 Massen-% 2-Propylheptanal enthält, zu den entsprechenden Decancarbonsäuren oxidiert. Erfindungsgemäß erfolgt die Oxidation weder unter Zusatz eines Katalysators, üblicherweise einer Übergangsmetallverbindung, noch unter Zusatz eines Stabilisators, beispielsweise eines Alkali- oder Erdalkalisalzes einer Carbonsäure.
  • Als Oxidationsmittel können Sauerstoff, Luft oder andere Sauerstoff enthaltene Gasmischungen eingesetzt werden. Bevorzugt wird im erfindungsgemäßen Verfahren Sauerstoff oder Sauerstoff/Stickstoffmischungen mit mehr als 10 Volumen-% Sauerstoff verwendet.
  • Die Oxidation wird im Temperaturbereich von 10 bis 80°C, insbesondere im Temperaturbereich von 20 bis 50°C, ganz besonders im Temperaturbereich von 25 bis 35°C durchgeführt.
  • Der absolute Reaktionsdruck, gemessen in der Gasphase am Kopf des Reaktors, beträgt 0,1 bis 1 MPa, insbesondere 0,1 bis 0,5 MPa.
  • Die Oxidation wird in der Flüssig/Gas-Mischphase durchgeführt. Das Decanalgemisch und/oder das daraus entstandene Decancarbonsäuregemisch liegt als eine kontinuierliche Flüssigphase vor, in die das oxidierende Gas oder Gasgemisch eingeleitet wird. Der größte Teil des Gasgemisches liegt als disperse Phase vor.
  • Als Reaktoren können Rührkessel oder Blasensäulenreaktoren verwendet werden, in die nahe des Bodens mittels einer Gasverteilungsvorrichtung, beispielsweise einer Fritte oder Düse, Gas eingebracht wird.
  • Um die Bildung eines explosiven Gemisches zu vermeiden, wird in den Gasraum oberhalb des Flüssigkeitsspiegels so viel Stickstoff eingeleitet, dass der Gehalt an Sauerstoff im Gasraum (Abgas) 6 Volumen-% nicht übersteigt.
  • Die Oxidation kann kontinuierlich oder diskontinuierlich in einem oder mehreren Reaktor(en) durchgeführt werden. Bei Verwendung von mehreren Reaktoren können diese in Reihe und/oder parallel miteinander verbunden sein.
  • Bei diskontinuierlicher Fahrweise wird ein Umsatz der Aldehyde von 60 bis 98%, insbesondere einer von 85 bis 95% angestrebt.
  • Bei kontinuierlichen Betrieb wird ein Umsatz der Aldehyde von 50 bis 95%, insbesondere einer von 70 bis 90% angestrebt.
  • Nach der Oxidation besteht das Reaktionsgemisch aus Decancarbonsäuren mit einem Anteil an 2-Propylheptansäure von mindestens 70 Massen-%, nicht umgesetzten C10-Aldeyden, Nebenprodukte und gegebenenfalls aus Stoffen, die bereits im Einsatz-Decanal vorhanden waren. Der Gehalt an Decancarbonsäuren in diesem Gemisch liegt im Bereich von 50 bis 98 Massen-%, insbesondere im Bereich von 80 bis 93 Massen-%.
  • Dieses Gemisch wird vorzugsweise destillativ aufgetrennt. Die destillative Auftrennung kann bei Normaldruck oder verminderten Druck erfolgen. Bevorzugt wird die destillative Auftrennung im Vakuum durchgeführt.
  • Das Oxidationsgemisch wird vorzugsweise in folgende vier Fraktionen getrennt:
    • a) Eine Leichtsiederfraktion, die im Wesentlichen bei der Oxidation entstandene Abbauprodukte enthält
    • b) eine Aldehydfraktion, die hauptsächlich aus Decanalen besteht
    • c) eine Produktfraktion, die praktisch nur Decancarbonsäuren enthält
    • d) eine Hochsiederfraktion
  • Vorzugsweise wird die destillative Auftrennung kontinuierlich oder semikontinuierlich in drei in Reihe geschalteten Kolonnen durchgeführt. In der ersten Kolonne werden die Leichtsieder, in der zweiten Kolonne die Aldehyde und in der dritten Kolonne die Decancarbonsäuren jeweils als Kopfprodukt abgetrennt. Als Sumpfprodukt der dritten Kolonne fallen die Hochsieder an.
  • Die abgetrennten Leichtsieder und Hochsieder können thermisch verwertet oder als Einsatzstoff für eine Synthesegasanlage verwendet werden. Enthält die Hochsiederfraktion einen großen Anteil an Decancarbonsäureester, kann sie optional auf Decancarbonsäuren aufgearbeitet werden.
  • Die abgetrennte Aldehydfraktion kann ganz oder teilweise in die Oxidationsstufe zurückgeführt werden.
  • Die gewonnenen Decancarbonsäuren können beispielsweise für die Herstellung von Perestern, Sikkativen, Detergenzien, Weichmachern oder Schmiermitteln verwendet werden.
  • Einsatzstoffe für das erfindungsgemäße Verfahren sind Kohlenwasserstoffgemische, die keine mehrfach ungesättigten Verbindungen und keine Acetylenverbindungen aufweisen und mindestens eines der Olefine cis-2-Buten, trans-2-Buten und 1-Buten enthalten. Darüber hinaus kann in den Einsatzstoffen bis zu 5 Massen-%, insbesondere bis zu 1 Massen-%, ganz besonders bis zu 0,2 Massen-% Isobuten, jeweils bezogen auf die C4-Olefinfraktion, vorhanden sein.
  • Technische Gemische, die lineare C4-Olefine enthalten, sind Leichtbenzinfraktionen aus Raffinerien, C4-Fraktionen aus FC- oder Steamcrackern, Gemische aus Fischer-Tropsch-Synthesen, Gemische aus Dehydrierung von Butanen, Gemische, entstanden durch Metathese, oder Gemische aus anderen technischen Prozessen.
  • Beispielsweise können für das erfindungsgemäße Verfahren geeignete Gemische linearer Butene aus der C4-Fraktion eines Steamcrackers gewonnen werden. Dabei wird im ersten Schritt Butadien entfernt. Dies geschieht entweder durch Extraktion oder Extraktionsdestillation des Butadiens oder dessen Selektivhydrierung. In beiden Fällen wird ein praktisch butadienfreier C4-Schnitt erhalten, das Raffinat I. Im zweiten Schritt wird Isobuten aus dem C4-Strom entfernt, z. B. durch Herstellung von Methyl-tert.-butylether (MTBE) durch Umsetzung mit Methanol oder Herstellung von Ethyl-tert.-butylether durch Umsetzung mit Ethanol. Andere Möglichkeiten sind die Umsetzung des Isobutens aus dem Raffinat I mit Wasser zu tert.-Butanol oder die sauer katalysierte Oligomerisierung des Isobutens zu Diisobuten. Der jetzt Isobuten-freie C4-Schnitt, das Raffinat II, enthält, wie gewünscht, die linearen Butene und gegebenenfalls Butane. Optional kann noch das 1-Buten destillativ abgetrennt werden. Beide Fraktionen, die mit But-1-en oder die mit But-2-en, können im erfindungsgemäßen Verfahren eingesetzt werden.
  • Eine weitere Möglichkeit, ein geeignetes Edukt herzustellen, besteht darin, Raffinat I, Raffinat II oder ein ähnlich zusammengesetztes Kohlenwasserstoffgemisch in einer Reaktivkolonne zu hydroisomerisieren. Dabei kann u. a. ein Gemisch gewonnen werden, das aus 2-Butenen, geringen Anteilen 1-Buten und gegebenenfalls n-Butan sowie Isobutan und Isobuten besteht.
  • Ein weiteres Einsatzgemisch für das erfindungsgemäße Verfahren ist das bei der Oligomerisation von einem Gemisch linearer Olefine (beispielsweise Raffinat II oder Raffinat III) übrig bleibende C4-Gemisch, das aus Butan, gegebenenfalls aus Isobuten, 2-Butenen und geringen Mengen an 1-Buten besteht.
  • Vorzugsweise werden Kohlenwasserstoffgemische mit vorzugsweise mindestens 15 Massen-% an linearen Butenen eingesetzt.
  • Der erste Schritt des erfindungsgemäßen Verfahrens ist die Hydroformylierung. Um im Endprodukt einen Anteil von 2-Propylheptansäure von über 80% zu erhalten, ist es erforderlich, dass bei der Hydroformylierung von linearen Butenen n-Pentanal in einer Selektivität größer 85% entsteht. Soll nur 1-Buten umgesetzt werden, kann dies beispielsweise mit Hilfe eines Katalysatorsystems, bestehend aus Rhodium und einem Monophosphin, beispielsweise Triphenylphosphin, erfolgen. Wenn auch 2-Butene umgesetzt werden sollen, muss die Hydroformylierung unter isomerisierenden Bedingungen durchgeführt werden. Das heißt, es wird ein Katalysator verwendet, der unter Reaktionsbedingungen in der Lage ist, sowohl die Doppelbindungen in allen linearen Butenen zu verschieben, d. h. zu isomerisieren, als auch endständig zu hydroformylieren. Es werden Katalysatoren eingesetzt, die lineare Butene mit beliebigen Verhältnissen der Isomere mit einer n-Selektivität (Verhältnis von n-Pentanal zu Summe aller C5-Aldehyde) von größer als 85% zu Pentanalen umsetzen. Als Katalysator dafür können beispielsweise die in den Patentschriften DE 101 08 474 , DE 101 08 476 , DE 101 08 476 und DE 102 25 282 beschriebenen Bisphosphine verwendet werden. Ebenfalls können dafür Rhodiumkatalysatoren mit sperrigen aromatischen Bisphoshiten als Liganden, wie beispielsweise in EP 0 213 639 beschrieben, eingesetzt werden.
  • Der zweite Reaktionsschritt des erfindungsgemäßen Verfahrens ist die Aldolkondensation der C5-Aldehyde zu Decenalen. Das Reaktionsprodukt der ersten Stufe besteht nach Abtrennung der nicht umgesetzten Kohlenwasserstoffen aus n-Pentanal (Valeraldehyd), 2-Methylbutanal und geringen Mengen an n-Pentanol und 2-Methylbutanol. Enthielt das Einsatzkohlenwasserstoffgemisch Isobuten, ist im Reaktionsgemisch der ersten Stufe 3-Methylbutanal enthalten. Die Aldehydfraktion enthält mindestens 85 Massen-% n-Pentanal, weniger als 15 Massen-% 2-Methylbutanal und weniger als 5 Massen-% 3-Methylbutanal, insbesondere weniger 1 Massen-%, ganz besonders weniger als 0,2 Massen-% 3-Methylbutanal. Ein Verfahren zur Herstellung von n-Pentanalreichen C5-Aldehydgemischen aus Gemischen reich an linearen C4-Olefinen wird in DE 10 2008 002 187.3 beschrieben. Wird eine bestimmte Isomerenzusammensetzung im Aldolisierungsprodukt gewünscht, so kann sie beispielsweise über einen der Aldolisierung vorgelagerten Destillationsschritt erhalten werden. In der Destillation werden n-Valeraldehyd und 2-Methylbutanal entsprechend der gewünschten Zusammensetzung getrennt. Gegegebenfalls kann auch schärfer destilliert werden und die Zusammensetzung durch anschließende Wieder-zumischung einer der Komponenten eingestellt werden.
  • Als Katalysator können Hydroxide, Hydrogencarbonate, Carbonate, Carboxylate oder ihre Gemische in Form ihrer Alkali- oder Erdalkaliverbindungen oder tertiäre Amine jeweils als wässrige Lösungen verwendet werden. Vorzugsweise kommen als wässrige Katalysatorlösungen Alkalimetalllaugen wie beispielsweise Natronlauge zum Einsatz.
  • Die Konzentration des basischen Katalysators in der wässrigen Katalysatorlösung liegt in der Regel zwischen 0,1 und 10 Massen-%, insbesondere zwischen 0,1 und 3 Massen-%. Da bei der Umsetzung Wasser entsteht, ist die Konzentration der Katalysatorlösung im Reaktorzulauf höher als im Reaktorablauf. Aufgrund der als Nebenreaktion ablaufenden Cannizzaro-Reaktion entstehen aus dem Edukt und in geringerem Maße aus dem Produkt Alkohole und Carbonsäuren, die sich in der Katalysatorphase in Form ihrer Salze anreichern. Durch Ausschleusung eines Teils der Katalysatorlösung und durch Ersetzen mit einer äquivalenten Menge an Frischlauge kann die Konzentration der Carbonsäuresalze in der wässrigen Katalysatorlösung zwischen 5 und 40 Massen-% gehalten werden.
  • Der Anteil der wässrigen Katalysatorlösung bezogen auf die organische Eduktphase kann in weiten Grenzen schwanken. Wird im erfindungsgemäßen Verfahren ein Rohrreaktor verwendet, so bieten sich Massenverhältnisse von organischer zu Katalysatorphase von mindestens 1 zu 2, bevorzugt größer als 1 zu 10 an. Analoges gilt für den Einsatz von Rührkesseln.
  • In den speziellen Ausführungsformen der vorliegenden Erfindung wird die Konzentration der Katalysatorlösung durch Ausschleusungs- oder Rückführungsmaßnahmen kontrolliert.
  • Die Temperatur der Reaktionsmischung am Reaktorausgang liegt zweckmäßig über dem Siedepunkt der wässrigen Katalysatorlösung zwischen 80°C und 180°C, insbesondere zwischen 120 und 150°C. Bei Verwendung eines Rührkessels entspricht dies der Temperatur des Reaktionsgemisches. Im Strömungsrohr bzw. Rohrreaktor wird bei adiabatischer Reaktionsführung diese Temperatur erst am Reaktorende erreicht.
  • Der Druck in der Reaktionsvorrichtung ist bedingt durch die Dampfdrücke der Komponenten im Reaktionsgemisch bei den entsprechenden Temperaturen. Die erfindungsgemäße Aldolkondensation wird bevorzugt zwischen 0,1 und 2,0 MPa, besonders bevorzugt zwischen 0,2 und 0,5 MPa ausgeübt.
  • Die Reaktionsvorrichtung der Aldolkondensation kann mindestens ein Rührkessel bzw. eine Rührkesselkaskade oder mindestens ein Rohrreaktor bzw. Strömungsrohr sein. In jedem Reaktortyp kann mit Hilfe von Rühreinrichtungen oder statischen Mischern für eine intensive Vermischung der beiden Phasen gesorgt werden.
  • Im erfindungsgemäßen Verfahren wird die Aldolkondensation der C5-Aldehyde bevorzugt in einem mit statischen Mischern befüllten Rohrreaktor durchgeführt, wie beispielsweise in DE 10 2009 001594.9 beschrieben.
  • Das den Reaktor verlassende Reaktionsgemisch verlassende Reaktionsgemisch wird in die Katalysatorphase und die organische Produktphase getrennt. Vorzugsweise erfolgt die Reaktionsführung und Aufarbeitung wie in DE 199 56 410 beschrieben.
  • Das den Reaktor verlassene Reaktionsgemisch wird in eine Kurzdestillationsapparatur entspannt, vorzugsweise auf Normaldruck. Bei hoch siedenden Edukten kann in ein leichtes Vakuum (0,01 bis 0,1 MPa) entspannt werden.
  • Die Kurzdestillation kann als Flashdestillation, als Destillation in einem Fallfilmverdampfer, als Destillation in einem Dünnschichtverdampfer oder als Destillation in einem kombinierten Fallfilm/Dünnschichtverdampfer durchgeführt werden. Die im Folgenden beschriebene Flashdestillation stellt die bevorzugte, weil technisch einfachste Variante dar. Die Kurzdestillation soll das Reaktionsprodukt einer möglichst geringen thermischen und chemischen Belastung durch den Katalysator aussetzen und wird daher bevorzugt mit Verweilzeiten von maximal einer Minute durchgeführt. Vergleichbare Destillationen weisen Verweilzeiten von über 5 Minuten auf. Die Kurzdestillation, insbesondere die Flashung wird bevorzugt adiabatisch vorgenommen, dadurch ist die Temperatur des Sumpfproduktes niedriger als die des Zulaufs.
  • Das Reaktionsprodukt wird durch die Kurzdestillation weitgehend in ein Kopfprodukt, umfassend Wasser und C5-Aldehyde, und ein Sumpfprodukt, umfassend Aldolkondensationsprodukte, hauptsächlich Decenale, und wässrige Katalysatorphase, getrennt.
  • Das Kopfprodukt erhält neben dem bereits genannten Gemisch aus Wasser und Edukt gegebenenfalls sonstige Leichtsieder (z. B. Pentanole) und geringe Mengen an α,β-ungesättigten Aldehyden (Decenale). Das Sumpfprodukt enthält neben dem Gemisch aus Decenalen und Katalysatorphase gegebenenfalls höhere Kondensationsprodukte, Produkte aus der Cannizarro-Reaktion der Edukte und geringe Mengen an Edukten.
  • Das bevorzugt ungekühlte Sumpfprodukt aus der Kurzdestillation kann in einem Absitzbehälter in eine organische Phase (Produktphase) und eine wässrige Phase, d. h. die wässrige Katalysatorphase getrennt werden.
  • Die organische Produktphase wird nach Auswaschung von Katalysatorspuren mit Wasser, vorzugsweise unter Verwendung der wässrigen Phase des Kopfproduktes der Kurzdestillation, aus dem Verfahren entfernt. Dieses Rohprodukt kann direkt für weitere in die dritte Reaktionsstufe, nämlich der Selektivhydrierung, eingesetzt werden. Optional können zusätzlich Hochsieder (höhere Aldoladdition- und Aldolkondensationsprodukte) abgetrennt und zumindest teilweise in den Kondensationsreaktor zurückgefahren werden.
  • Die wässrige Katalysatorphase wird, gegebenenfalls zusammen mit anfallendem Waschwasser, in die Aldolkondensationsreaktion zurückgefahren. Aus der Katalysatorphase kann zur Konstanthaltung des Nebenproduktspiegels ein geringer Teil ausgeschleust und durch eine äquivalente Menge an Frischkatalysator ersetzt werden.
  • Das Kopfprodukt der Kurzdestillation wird bei einer Temperatur, die sowohl unter dem Siedepunkt des Wassers als auch unter dem eines Minimumazeotrops liegt, kondensiert. Es entsteht ein Flüssigkeitsgemisch, das in eine organische Phase und eine wässrige Phase getrennt werden kann.
  • Die organische Phase des Kopfproduktes wird optional in den Aldolkondensations-Reaktor zurückgepumpt, gegebenenfalls wird ein Teil ausgeschleust.
  • Ein Teil der wässrigen Unterphase kann z. B. für die Wäsche der Produktphase, wie bereits oben erwähnt worden ist, verwendet werden.
  • Der andere Teil der wässrigen Phase des Kopfprodukts oder die gesamte wässrige Phase dient zur Ausschleusung des Reaktionswassers. In der wässrigen Phase sind noch organische Stoffe, vor allem Edukt, gelöst. Das Abwasser kann direkt oder nach Vorreinigung zum Klärwerk gegeben werden. Die Vorreinigung kann durch Dampfstrippung oder durch azeotrope Abdestillation von organischen Stoffen erfolgen.
  • Bei der Kondensation von n-Pentanal entsteht als primäres Aldolkondensationsprodukt 2-Propylhept-enal. Ist im C5-Aldehyd 2-Methylbutanal vorhanden, entsteht durch gekreuzte Aldolkondensation 2-Propyl-4-methylhex-2-enal. Liegt darüber hinaus auch 3-Methylbutanal im C5-Aldehydgemisch vor, können als weitere primäre Aldolkondensationsprodukte folgende ungesättigte Aldehyde entstehen: 2-Isopropyl-5-methylhex-2-enal, Isopropyl-4-methylhex-2-enal, 2-Propyl-5-methylhex-2-enal und 2-Isopropyl-hept-2-enal. Erfindungsgemäß liegt der Anteil an 2-Propylhept-2-enal bezogen auf Summe aller Decenale bei über 90 Massen-%.
  • Das rohe Aldolkondensationsprodukt, das neben den Decenalen hauptsächlich höhere Aldolkondensate enthält, kann vor der nächsten Stufe gereinigt werden, beispielsweise durch Destillation. Vorzugsweise werden rohe Decenalgemische in der dritten Stufe, der Selektivhydrierung eingesetzt.
  • Zur Selektivhydrierung, bei der nur die olefinische Doppelbindung im Decenal hydriert wird, werden Katalysatoren eingesetzt, die als hydrieraktive Komponente Palladium, Platin, Rhodium und/oder Nickel enthalten können. Die Metalle können in reiner Form, als Verbindungen mit Sauerstoff oder als Legierungen verwendet werden. Bevorzugte Katalysatoren sind jene, bei denen das hydrieraktive Metall auf einen Träger aufgebracht ist. Geeignete Trägermaterialien sind Aluminiumoxid, Magnesiumoxid, Siliziumoxid, Titandioxid und ihre Mischoxide sowie Aktiv-Kohle. Von diesen Katalysatoren sind besonders bevorzugte Katalysatoren Palladium auf Aktiv-Kohle und Palladium auf Aluminiumoxid.
  • Bei Kontakten, die aus Palladium und einem Träger bestehen, beträgt der Palladiumgehalt 0,1 bis 5 Massen-%, bevorzugt 0,2 bis 1 Massen-%. Besonders bevorzugt wird ein Katalysator bestehend aus Aluminiumoxid, bevorzugt γ-Aluminiumoxid mit einem Pd-Gehalt von 0,3 bis 0,7 Massen-% eingesetzt. Der Katalysator kann gegebenenfalls moderierende Stoffe, beispielweise Alkalikomponenten wie Natriumverbindungen in Konzentrationen bis 3 Massen-% enthalten.
  • Die Hydrierung kann kontinuierlich oder diskontinuierlich und sowohl in der Gasphase als auch in der flüssigen Phase durchgeführt werden. Die Hydrierung in flüssiger Phase wird bevorzugt, weil das Gasphasenverfahren wegen der notwendigen Kreisführung großer Gasvolumina einen höheren Energieaufwand erfordert. Für die kontinuierliche Flüssigphasenhydrierung können unterschiedliche Verfahrensvarianten gewählt werden. Sie kann adiabatisch oder praktisch isotherm, d. h., mit einem Temperaturanstieg kleiner als 10°C, ein- oder mehrstufig durchgeführt werden. Im letzteren Fall kann man die Reaktoren adiabatisch oder praktisch isotherm oder die einen adiabatisch und die anderen praktisch isotherm betreiben. Weiterhin ist es möglich, die Selektivhydrierung im geraden Durchgang oder mit Produktrückführung durchzuführen. Die Hydrierung wird in der Flüssig/Gas-Mischphase oder in der Flüssigphase in Dreiphasenreaktoren im Gleichstrom durchgeführt, wobei der Wasserstoff in an sich bekannter Weise in der zu hydrierende Flüssigkeit fein verteilt wird. Im Interesse einer gleichmäßigen Flüssigkeitsverteilung, einer verbesserten Reaktionswärmeabfuhr und einer hohen Raum-Zeit- Ausbeute bei hoher Selektivität werden die Reaktoren vorzugsweise mit hohen Flüssigkeitsbelastungen von 15 bis 300, insbesondere von 25 bis 150 m3 pro m2 Querschnitt des leeren Reaktors und Stunde betrieben. Ein Hydrierverfahren zur Herstellung von Decanalen ist beispielsweise die Flüssigphasenhydrierung in zwei oder mehreren Reaktoren, die alle mit Produktrückführung betrieben werden, wie in US 5,831,135 beschrieben.
  • Bei der Verwendung von Palladium-Katalysatoren, beispielweise 0,5 Massen-% auf Aluminiumoxid wird selektive Hydrierung von 2-Propylheptenal zu 2-Propylheptanal vorzugsweise bei Temperaturen zwischen 120 und 180°C, insbesondere zwischen 140 und 160°C und einem Druck von 1,5 bis 5 MPa, insbesondere bei 2 bis 3 MPa, durchgeführt.
  • Das Hydrierprodukt enthält neben Decenalen geringe Mengen an Decanolen, die durch Überhydrierung entstanden sind, geringe Mengen an C5-Aldehyden und C5-Alkoholen und Schwersieder, hauptsächlich höhere Aldolkondensationsprodukte und deren Hydrierungsprodukte. Der Gehalt an 2-Propylheptanal darin liegt bezogen auf die Decanalfraktion bei über 85 Massen-%.
  • Von dem rohen Hydrieraustrag können vor dem nächsten Reaktionsschritt, der Oxidation, Schwersieder und/oder Leichtsieder abgetrennt werden. Vorzugsweise wird auf eine destillative Aufarbeitung verzichtet.
  • Die Oxidation des Decanalgemisches zu dem entsprechenden Gemisch isomerer Carbonsäuren kann prinzipiell nach an sich bekannter Weise erfolgen. Als Oxidationsmittel können Sauerstoff, Luft oder andere Sauerstoff enthaltende Gasgemische eingesetzt werden. Die Oxidation kann unkatalysiert oder katalysiert durchgeführt werden. Im letzteren Falle werden Übergangsmetallverbindungen, insbesondere Kobalt- und Mangan-Verbindungen, als Katalysator verwendet. Dabei kann die Oxydation bei Normaldruck oder erhöhtem Druck durchgeführt werden. Nach dem erfindungsgemäßen Verfahren wird die Oxidation ohne Katalysator und ohne weitere stabilisierende Zusätze durchgeführt. Die folgenden Beispiele sollen die Erfindung erläutern.
  • Beispiele
  • Herstellung von 2-Propylheptanal (Edukt für die Aldehyd-Oxydation)
  • Ausgehend von einem Gemisch an linearen C4-Olefinen wurde zuerst ein Gemisch mit einem hohen Anteil an n-Pentanal hergestellt. Nachfolgend wurde n-Pentanal (n-Valeraldehyd) und weitere, mit entstandene aliphatische C5-Aldehyde durch Aldolkondensation in die α,β-ungesättigten C10-Aldehyde mit einem Anteil von mindestens 80 Massen-% 2-Propylheptenal, bezogen auf die Gesamtmenge an Aldolkondensationsprodukten, umgewandelt. Anschließend wurde 2-Propylheptenal durch selektive Hydrierung zu dem gewünschten Produkt 2-Propylheptanal umgesetzt.
  • Hydroformylierung:
  • Ein Verfahren zur Herstellung von n–Pentanalreichen C5-Aldehydgemischen aus einem Gemisch enthaltend lineare C4-Olefine wird in DE 10 2008 002187.3 beschrieben, welches als Grundlage dient.
  • Aldolisierung:
  • In einer kontinuierlichen Versuchsanlage bestehend aus einem mit statischen Mischelementen der Fa. Sulzer befüllten Rohreaktor (20 mm Durchmesser, 4000 mm Länge) wurde n-Valeraldehyd mit einem Durchsatz von 8 l/h in Gegenwart einer wässrigen 2%igen Natronlauge als Katalysator (Durchsatz von 80 l/h) bei 130°C und 0,3 MPa zum 2-Propylheptenal umgesetzt. Nach dem Verlassen des Reaktors wurde die wässrige Katalysator-Phase in einem 5 l Trennbehälter bei 80°C von der Aldehyd-Phase abgetrennt und mittels einer Kreislaufpumpe zurück in den Reaktor geführt. Die abgetrennte organische Phase wurde in einem 100 l Behälter aus Edelstahl gesammelt.
  • Der Rohproduktaustrag der n-Valeraldehyd-Aldolisierung weist nach einer GC-Analyse folgende Zusammensetzung in Massen-% auf: 4,93% n-Valeraldehyd, 0,47% 2-Methylbutanol, 0,30% Pentanol, 0,51% 2-Propyl-4-Methyl-hexenal, 91,81% 2-Propylheptenal und 1,98% Rückstand.
  • Selektivhydrierung:
  • Der Austrag der Aldolisierung mit Roh-2-Propylheptenal wurde in einer Kreislaufapparatur selektiv in der Flüssigphase an dem Palladium-Katalysator H 14535 (0,5%Pd auf Aluminiumoxid), bezogen von der Fa. Degussa, bei 160°C und 2,5 MPa zu 2-Propylheptanal hydriert. Hierzu wurden kontinuierlich 200 ml/h Edukt über 400 ml Katalysator, entsprechend einer Katalysatorbelastung von 0,5 h–1, geleitet.
  • Folgende typische Zusammensetzung in Massen.-% des Hydrierproduktes wurde nach GC ermittelt: 2,80% % n-Valeraldehyd, 0,15% 2-Methylbutanol, 2,14% n-Pentanol, 1,09% Nonan, 0,12% Nonanon, 86,65% 2-Propylheptanal, 0,68% 2-Propylheptenal, 4,27% 2-Propylheptanal und 2,1% Hochsiedser.
  • Beispiel 1
  • Herstellung von 2-Propylheptansäure/Vergleichsbeispiel
  • Die Herstellung der 2-Propylheptansäure durch Flüssigphasenoxidation von 2-Propylheptanal erfolgte in einem beheizbaren 6 l Doppelmantel-Rührkessel. Als Edukt wurde das Hydrierungsprodukt aus der zuvor beschriebenen Selektivhydrierung mit rd. 86,7 Massen-% 2-Propylheptanal verwendet. Für einen Reaktionsansatz wurden im Reaktor 5050 g flüssiges Edukt vorgelegt. Als Reaktionsgas wurde ein Stickstoff-Sauerstoff-Gemisch verwendet, das in dem unteren Reaktorteil gleichmäßig über eine Fritte in die Flüssigkeit verteilt wurde. In den Reaktor wurden ein konstanter Stickstoffstrom von 30 Nl/h und ein je nach dem Verbrauch durch die Reaktion über eine Online-Messung des Sauerstoffgehaltes im Abgas geregelter Sauerstoffstrom dosiert. In den Gasraum des Reaktors in oberem Reaktorteil wurde ein konstanter Stickstoffstrom von 330 Nl/h dosiert. Es wurde ein maximaler Sauerstoffgehalt im Abgas von 6 Vol.-% zugelassen. Die Oxidation des C10-Aldehydgemisches wurde bei Reaktionstemperaturen von 50 und 70°C und einem Reaktionsdruck von 0,3 MPa durchgeführt. Der Fortschritt der Oxidation wurde durch eine regelmäßige Probennahme und anschließende GC-Analyse ermittelt.
  • Unter den gewählten Reaktionsbedingungen wurde nach 4,5 Stunden Versuchszeit Roh-Produkte erhalten, deren Zusammensetzung in Tabelle 1, Spalte 2 und Spalte 3 aufgelistet sind. Tabelle 1 Produkt-Zusammensetzung/Vergleichsbeispiel
    Komponente Oxidation bei 50°C Massen-Prozent Oxidation bei 70°C Massen-Prozent
    n-Valeraldehyd 0,56 0,23
    2-Methylbutanol 0,17 0,12
    n-Pentanol 2,45 1,73
    Pentylformiat 0,02 0,62
    C5-Säuren 1,81 2,25
    Nonan 1,09 9,82
    Nonanon 1,55 8,91
    C9-Alkohole 8,68 18,34
    2-Propylheptanal 27,32 0,26
    2-Propylheptenal 0,48 0,16
    C10-Alkohole 5,73 5,47
    2-Propylheptansäure 49,79 51,62
    Hochsieder 0,35 0,43
  • Wie aus der Tabelle 1 zu entnehmen ist, wurde das 2-Propylheptanal bei einer Reaktionstemperatur von 70°C praktisch vollständig umgesetzt. Neben den gewünschten Wertprodukt 2-Propylheptansäure wurden bei dieser Temperatur eine Reihe von Nebenprodukte, wie das C9-Paraffin Nonan, der C9-Keton Nonanon. und die C9-Alkohole, erhalten. Die Bildung von Nebenprodukten führte zur starken Selektivitätsminderung. Durch Herabsetzung der Reaktionstemperatur auf 50°C konnte die Selektivität der 2-Propylheptansäure-Bildung, allerdings bei deutlich geringerem Umsatz, verbessert werden.
  • Beispiel 2
  • Herstellung von 2-Propylheptansäure/erfindungsgemäß
  • Nach dem im Beispiel 1 beschriebenen experimentellen Vorgehen wurden 5100 g Edukt mit rd. 86,6 Massen-% 2-Propylheptanal bei erfindungsgemäßen Reaktionstemperaturen von 25 und 35°C, einem Reaktionsdruck von 0,3 MPa und 6 Vol.-% Sauerstoffgehalt im Abgas in der flüssigen Phase zum 2-Propylheptansäure oxidiert
  • Unter den gewählten Reaktionsbedingungen wurde nach 6 Stunden Versuchszeit Roh-Produkte erhalten, deren Zusammensetzung in Tabelle 2, Spalte 2 und Spalte 3 aufgelistet sind. Tabelle 2 Produkt-Zusammensetzung
    Komponente Oxidation bei 25°C Massen-Prozent Oxidation bei 35°C Massen-Prozent
    n-Valeraldehyd 0,00 0,08
    2-Methylbutanol 0,15 0,16
    n-Pentanol 2,10 2,21
    Pentylformiat 0,00 0,04
    C5-Säuren 0,00 2,43
    Nonan 0,79 0,72
    Nonanon 0,35 0,89
    C9-Alkohole 6,96 8,85
    2-Propylheptanal 7,48 3,88
    2-Propylheptenal 0,61 0,57
    C10-Alkohole 6,34 6,21
    2-Propylheptansäure 74,55 73,46
    Hochsieder 0,58 0,44
  • Wie aus der Tabelle 2 zu entnehmen ist, konnte die Selektivität der 2-Propylheptanal-Oxidation durch Herabsetzung der Reaktionstemperaturen auf 35°C entscheidend verbessert werden. Bei einer Reaktionstemperatur von 25°C (Tabelle 2, Spalte 2) werden praktisch keine C9-Paraffine, keine C5-Säuren und kein C9-Keton gebildet. Die Selektivität der Säure-Bildung wird bei dieser Temperatur lediglich durch die Bildung von C9-Alkoholen gemindert. Gleiches Verhalten gilt auch für den Oxidationsversuch bei 35°C. Auch hier wurde die Selektivität hauptsächlich durch die unerwünschte Bildung von C9-Alkoholen herabgesetzt
  • Beispiel 3
  • Herstellung von 2-Propylheptansäure in Gegenwart von Mn/Cu-Katalysator/Vergleichsbeispiel
  • Nach dem erfindungsgemäßen Verfahren wird die Oxidation des C10-Aldehydgemisches zu entsprechender C10-Carbonsäure ohne Katalysator durchgeführt. Im Folgenden Beispiel werden die Ergebnisse der vergleichenden Oxidation von 2-Propylheptanal in Gegenwart von Cu- und Mn-Salze als Katalysator dargestellt.
  • Hierfür wurden in 5040 g Edukt mit rd. 86,6 Gew.-% 2-Propylheptanal vor der Oxidation je 250 ppm Kupfer und Mangan in Form von Acetaten gelöst. Danach wurde die Reaktionsmischung nach dem im Beispiel 1 dargestellten Vorgehen bei 35°C, 0,3 MPa Reaktionsdruck und 6 Vol.-% Sauerstoff im Abgas oxidiert. Für Vergleichszwecke wurde die Oxidation ohne Katalysator unter gleichen Bedingungen durchgeführt. Nach 4 Stunden Versuchszeit wurde die Zusammensetzung des Produktgemisches mit GC-Analyse bestimmt. Die Zusammensetzung der Roh-Produkte, erhalten mit und ohne Katalysator, ist in Tabelle 3, Spalten 2 und 3 aufgeführt. Tabelle 3 Produkt-Zusammensetzung
    Komponente Ohne Katalysator Massen-Prozent Mit Cu-, Mn-Katalysator Massen-Prozent
    n-Valeraldehyd 0,28 0,21
    2-Methylbutanol 0,17 0,10
    n-Pentanol 2,38 1,95
    Pentylformiat 0,00 0,03
    C5-Säuren 1,89 1,67
    Nonan 0,67 12,34
    Nonanon 0,72 4,43
    C9-Alkohole 7,03 7,12
    2-Propylheptanal 24,71 10,42
    2-Propylheptenal 0,46 0,18
    C10-Alkohole 5,59 5,85
    2-Propylheptansäure 55,75 55,02
    Hochsieder 0,39 0,68
  • Wie in Tabelle 3 dargestellt, wurde der Umsatz der 2-Propylheptanal-Oxidation in Gegenwart eines homogenen Kupfer-Mangan-Katalysators im Vergleich zur unkatalysierten Umsetzung deutlich verbessert. Die ermittelten Restgehalte an 2-Propylheptanal von rd. 10,42 Massen-% nach 4 Stunden in Gegenwart von Katalysator sind geringer als die entsprechenden Restgehalte von 24,71 Massen-% 2-Propylheptanal bei der unkatalysierten Oxidation. Die Selektivität der katalysierten Oxidation war allerdings im Vergleich zur Oxidation ohne Katalysator deutlich schlechter. Wie aus der Tabelle 3, Spalte 3 zu entnehmen ist, wurde die Selektivität bei der homogen katalytisierten Oxidation durch die Bildung von Nebenprodukten, wie Nonan und Nonanon, gemindert. Dies hat zur Folge, dass die Ausbeute an isomeren Decancarbonsäuren trotz hoher Umsätze mit rd. 55 Massen-% an 2-Propylheptansäure der Ausbeute der unkatalysierten Oxidation vergleichbar ist.
  • Somit zeigen die Versuche, dass zur Herstellung von 2-Propylheptansäure in hoher Ausbeute aus 2-Propylheptanal eine unkatalysierte Oxydation mit Sauerstoff bei tiefen Temperaturen vorteilhaft ist.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - DE 10108474 [0003, 0003, 0031]
    • - DE 10108475 [0003, 0003]
    • - DE 10108476 [0003, 0003, 0003, 0031, 0031]
    • - DE 10225282 [0003, 0003, 0031]
    • - EP 0213639 [0031]
    • - DE 102008002187 [0032, 0063]
    • - DE 102009001594 [0040]
    • - DE 19956410 [0041]
    • - US 5831135 [0057]
  • Zitierte Nicht-Patentliteratur
    • - Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A1, p. 330 [0003]
    • - Ullmanns Encyclopädie der Technischen Chemie, 4. Auflage 1975, Band 9, Seite 144 [0003]

Claims (5)

  1. Verfahren zur Herstellung eines Gemisches isomerer Decancarbonsäuren, wobei folgende Schritte durchlaufen werden: a) Hydroformylierung eines Kohlenwasserstoffgemisches, enthaltend lineare C4-Olefine, unter Verwendung eines Rhodium enthaltenden Katalysatorsystems; b) Aldolkondensation eines Gemisches von aliphatischen C5-Aldehyden, erhalten aus Schritt a); c) Selektivhydrierung des Gemisches der ungesättigten C10-Aledhyde aus Schritt b) zu aliphatischen C10-Aldehyden; d) unkatalysierte Oxidation des Gemisches der aliphatischen C10-Aldehyde aus Schritt c) erhaltend ein Gemisch mit einem Anteil von mindestens 70 Massen-% 2-Propylheptansäure bezogen auf den Gesamtgehalt der isomeren Decancarbonsäuren.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Kohlenwasserstoffgemisch in Schritt a), enthaltend lineare C4-Olefine, bis zu 5 Massen-% Isobuten bezogen auf die Fraktion der linearen C4-Olefine aufweist.
  3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass die Oxidation des Gemisches der aliphatischen C10-Aldehyde in einem Temperaturbereich von 25 bis 35°C erfolgt.
  4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Oxidation des Gemisches der aliphatischen C10-Aldehyde bei einem Druck zwischen 0,1 bis 1 MPa erfolgt.
  5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Oxidation des Gemisches der aliphatischen C10-Aldehyde bei einem Druck zwischen 0,1 bis 0,5 MPa erfolgt.
DE102009027978A 2009-07-23 2009-07-23 Verfahren zur Herstellung von Decancarbonsäuren Withdrawn DE102009027978A1 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
DE102009027978A DE102009027978A1 (de) 2009-07-23 2009-07-23 Verfahren zur Herstellung von Decancarbonsäuren
PCT/EP2010/057157 WO2011009657A2 (de) 2009-07-23 2010-05-25 Verfahren zur herstellung von decancarbonsäuren
CN2010800334835A CN102548946A (zh) 2009-07-23 2010-05-25 制备癸酸的方法
JP2012520973A JP5787886B2 (ja) 2009-07-23 2010-05-25 デカンカルボン酸の製造法
KR1020127004566A KR20120038514A (ko) 2009-07-23 2010-05-25 데칸카르복실산의 제조 방법
MX2012000840A MX2012000840A (es) 2009-07-23 2010-05-25 Proceso para la preparacion de acidos decanocarboxilicos.
SG2012004453A SG178071A1 (en) 2009-07-23 2010-05-25 Method for the production of decanecarboxylic acids
EP10722067A EP2456745A2 (de) 2009-07-23 2010-05-25 Verfahren zur herstellung von decancarbonsäuren
CA2768604A CA2768604A1 (en) 2009-07-23 2010-05-25 Process for preparing decanecarboxylic acids
BR112012001274A BR112012001274A2 (pt) 2009-07-23 2010-05-25 processo para produção de ácidos decancarboxílicos
US13/386,523 US8907129B2 (en) 2009-07-23 2010-05-25 Process for preparing decanecarboxylic acids
TW099123807A TW201125845A (en) 2009-07-23 2010-07-20 Process for preparing decanecarboxylic acids
ZA2012/01237A ZA201201237B (en) 2009-07-23 2012-02-20 Process for preparing decanecarboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009027978A DE102009027978A1 (de) 2009-07-23 2009-07-23 Verfahren zur Herstellung von Decancarbonsäuren

Publications (1)

Publication Number Publication Date
DE102009027978A1 true DE102009027978A1 (de) 2011-01-27

Family

ID=43242579

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009027978A Withdrawn DE102009027978A1 (de) 2009-07-23 2009-07-23 Verfahren zur Herstellung von Decancarbonsäuren

Country Status (13)

Country Link
US (1) US8907129B2 (de)
EP (1) EP2456745A2 (de)
JP (1) JP5787886B2 (de)
KR (1) KR20120038514A (de)
CN (1) CN102548946A (de)
BR (1) BR112012001274A2 (de)
CA (1) CA2768604A1 (de)
DE (1) DE102009027978A1 (de)
MX (1) MX2012000840A (de)
SG (1) SG178071A1 (de)
TW (1) TW201125845A (de)
WO (1) WO2011009657A2 (de)
ZA (1) ZA201201237B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113724A1 (de) 2013-12-09 2015-06-11 Oxea Gmbh Verfahren zur Herstellung von Pentanderivaten und Derivaten alpha, beta-ungesättigter Decenale aus Propylen
WO2015082044A1 (de) * 2013-12-05 2015-06-11 Oxea Gmbh VERFAHREN ZUR HERSTELLUNG VON 2-METHYLBUTANAL AUS DEN BEI DER HERSTELLUNG VON GEMISCHEN ISOMERER A,β-UNGESÄTTIGTER DECENALE ANFALLENDEN NEBENSTRÖMEN
DE102013113719A1 (de) 2013-12-09 2015-06-11 Oxea Gmbh Verfahren zur Herstellung von Pentanderivaten und Derivaten α,β-ungesättigter Decenale
US9517995B2 (en) 2013-12-05 2016-12-13 Oxea Gmbh Method for producing isomeric hexanoic acids from the subsidiary flows arising during the production of pentanals

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9688599B2 (en) 2014-04-18 2017-06-27 Texmark Chemicals, Inc. Production of mixed aldol products from the products of hydroformylation reactions
JP6493829B2 (ja) * 2014-05-30 2019-04-03 Khネオケム株式会社 ペンタエリスリトールのエステル及びそれに用いるイソトリデカン酸
CN110187026B (zh) * 2019-05-30 2022-10-25 扬子石化-巴斯夫有限责任公司 一种2-丙基庚醇及其杂质的分析方法
SE543297C2 (en) * 2019-07-18 2020-11-17 Perstorp Ab USE OF A METHOD FOR REDUCTION OF HEAVY END FORMATION AND CATALYST LOSS IN A HYDROFORMYLATION PROCESS COMPRISING A BIDENTATE PHOSPHITE LIGAND
WO2021006795A1 (en) * 2019-07-05 2021-01-14 Perstorp Ab A method for reducing heavy end formation and catalyst loss in a hydroformylation process

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213639A2 (de) 1985-09-05 1987-03-11 Union Carbide Corporation Bis-phosphit-Verbindungen
US5831135A (en) 1995-07-08 1998-11-03 Huels Aktiengesellschaft Process for the catalytic selective hydrogenation of polyunsaturated organic substances
DE19956410A1 (de) 1999-11-24 2001-05-31 Oxeno Olefinchemie Gmbh Verfahren zur Durchführung von Aldolkondensationen
DE10108474A1 (de) 2001-02-22 2002-09-12 Celanese Chem Europe Gmbh Verfahren zur Herstellung von Aldehyden
DE10108476A1 (de) 2001-02-22 2002-09-12 Celanese Chem Europe Gmbh Verfahren zur Herstellung von Aldehyden
DE10108475A1 (de) 2001-02-22 2002-09-12 Celanese Chem Europe Gmbh Verfahren zur Herstellung von Aldehyden
DE10225282A1 (de) 2002-06-07 2003-12-18 Celanese Chem Europe Gmbh Verfahren zur Herstellung von Aldehyden
DE102008002187A1 (de) 2008-06-03 2009-12-10 Evonik Oxeno Gmbh Verfahren zur Herstellung von C5-Aldehydgemischen mit hohem n-Pentanalanteil
DE102009001594A1 (de) 2009-03-17 2010-09-30 Evonik Oxeno Gmbh Verfahren zur Herstellung von alpha, beta-ungesättigten C10-Aldehyden

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439013B1 (de) 1990-01-04 1993-11-24 Praxair Technology, Inc. Vergrösserte Gas-Flüssigkeit-Reaktionen
JP3517950B2 (ja) * 1993-06-10 2004-04-12 三菱化学株式会社 アルデヒド類の製造方法
DE19617178A1 (de) * 1995-05-04 1996-11-07 Basf Ag Verfahren zur Herstellung von höheren Aldehyden
FR2769624B1 (fr) 1997-10-09 2000-03-03 Atochem Elf Sa Procede de preparation d'acide carboxylique
DE19957522A1 (de) * 1999-11-30 2001-05-31 Oxeno Olefinchemie Gmbh Verfahren zur katalytischen Durchführung von Aldolkondensationen mittels Mehrphasenreaktion
AU1806001A (en) 1999-12-22 2001-07-03 Celanese International Corporation Oxidation process
KR100682232B1 (ko) 2003-06-05 2007-02-12 주식회사 엘지화학 유기산 제조방법
DE102004011081A1 (de) 2004-03-06 2005-09-22 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von tertiären Carbonsäuren
US20080317977A1 (en) * 2007-06-22 2008-12-25 Chiefway Engineering Co., Ltd. Light-regulation membrane
JP5733979B2 (ja) * 2007-08-21 2015-06-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 有機化合物を酸化するための方法および装置
DE102009001230A1 (de) 2009-02-27 2010-09-02 Evonik Oxeno Gmbh Verfahren zur Abtrennung und teilweiser Rückführung von Übergangsmetallen bzw. deren katalytisch wirksamen Komplexverbindungen aus Prozessströmen
DE102009045718A1 (de) 2009-10-15 2011-04-21 Evonik Oxeno Gmbh Verfahren zur Herstellung von Decanolen durch Hydrierung von Decenalen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213639A2 (de) 1985-09-05 1987-03-11 Union Carbide Corporation Bis-phosphit-Verbindungen
US5831135A (en) 1995-07-08 1998-11-03 Huels Aktiengesellschaft Process for the catalytic selective hydrogenation of polyunsaturated organic substances
DE19956410A1 (de) 1999-11-24 2001-05-31 Oxeno Olefinchemie Gmbh Verfahren zur Durchführung von Aldolkondensationen
DE10108474A1 (de) 2001-02-22 2002-09-12 Celanese Chem Europe Gmbh Verfahren zur Herstellung von Aldehyden
DE10108476A1 (de) 2001-02-22 2002-09-12 Celanese Chem Europe Gmbh Verfahren zur Herstellung von Aldehyden
DE10108475A1 (de) 2001-02-22 2002-09-12 Celanese Chem Europe Gmbh Verfahren zur Herstellung von Aldehyden
DE10225282A1 (de) 2002-06-07 2003-12-18 Celanese Chem Europe Gmbh Verfahren zur Herstellung von Aldehyden
DE102008002187A1 (de) 2008-06-03 2009-12-10 Evonik Oxeno Gmbh Verfahren zur Herstellung von C5-Aldehydgemischen mit hohem n-Pentanalanteil
DE102009001594A1 (de) 2009-03-17 2010-09-30 Evonik Oxeno Gmbh Verfahren zur Herstellung von alpha, beta-ungesättigten C10-Aldehyden

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ullmanns Encyclopädie der Technischen Chemie, 4. Auflage 1975, Band 9, Seite 144
Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A1, p. 330

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015082044A1 (de) * 2013-12-05 2015-06-11 Oxea Gmbh VERFAHREN ZUR HERSTELLUNG VON 2-METHYLBUTANAL AUS DEN BEI DER HERSTELLUNG VON GEMISCHEN ISOMERER A,β-UNGESÄTTIGTER DECENALE ANFALLENDEN NEBENSTRÖMEN
DE102013020322A1 (de) 2013-12-05 2015-06-11 Oxea Gmbh Verfahren zur Herstellung von 2-Methylbutanal aus den bei der Herstellung von Gemischen isomerer a,ß-ungesättigter Decenale anfallenden Nebenströmen
US9517995B2 (en) 2013-12-05 2016-12-13 Oxea Gmbh Method for producing isomeric hexanoic acids from the subsidiary flows arising during the production of pentanals
US9517991B2 (en) 2013-12-05 2016-12-13 Oxea Gmbh Method for producing 2-methylbutanal from the secondary flows arising in the production of mixtures of isomeric alpha, beta-unsaturated decenals
DE102013020322B4 (de) 2013-12-05 2019-04-18 Oxea Gmbh Verfahren zur Gewinnung von 2-Methylbutanal aus den bei der Herstellung von Gemischen isomerer a,ß-ungesättigter Decenale anfallenden Nebenströmen
DE102013113724A1 (de) 2013-12-09 2015-06-11 Oxea Gmbh Verfahren zur Herstellung von Pentanderivaten und Derivaten alpha, beta-ungesättigter Decenale aus Propylen
DE102013113719A1 (de) 2013-12-09 2015-06-11 Oxea Gmbh Verfahren zur Herstellung von Pentanderivaten und Derivaten α,β-ungesättigter Decenale

Also Published As

Publication number Publication date
WO2011009657A2 (de) 2011-01-27
WO2011009657A3 (de) 2011-04-21
MX2012000840A (es) 2012-02-28
KR20120038514A (ko) 2012-04-23
TW201125845A (en) 2011-08-01
CA2768604A1 (en) 2011-01-27
CN102548946A (zh) 2012-07-04
US8907129B2 (en) 2014-12-09
SG178071A1 (en) 2012-03-29
JP2012533589A (ja) 2012-12-27
BR112012001274A2 (pt) 2016-02-10
ZA201201237B (en) 2012-10-31
US20120172624A1 (en) 2012-07-05
EP2456745A2 (de) 2012-05-30
JP5787886B2 (ja) 2015-09-30

Similar Documents

Publication Publication Date Title
EP1674441B1 (de) Verfahren zur Hydroformylierung von Olefinen
DE102009027978A1 (de) Verfahren zur Herstellung von Decancarbonsäuren
EP1713749B1 (de) Verfahren zur herstellung von olefinen mit 8 bis 12 kohlenstoffatomen
EP0987242B1 (de) Verfahren zur Herstellung von höheren Oxo-Alkoholen aus Olefingemsichen
EP2567949B1 (de) Verfahren zur Abtrennung von 1-Buten aus C4-haltigen Kohlenwasserstoffströmen durch Hydroformylierung
DE19842368A1 (de) Verfahren zur Herstellung von höheren Oxoalkoholen aus Olefingemischen durch zweistufige Hydroformylierung
EP1485341A2 (de) Verfahren zur hydroformylierung von olefinen
EP2872465A1 (de) Verfahren zur herstellung von isononansäureestern, ausgehend von 2-ethylhexanol
EP2220017A1 (de) Mehrstufiges kontinuierliches verfahren zur hydroformylierung von höheren olefinen oder olefingemischen
DE102008007080A1 (de) Verfahren zur Herstellung von C9-Alkohol aus C8-Olefinen
DE10251262A1 (de) Verfahren zur Herstellung von Aldehyden aus Alkanen
DE10227995A1 (de) Verfahren zur Hydroformylierung von Olefinen
EP2872478A1 (de) Vinvlester der isononansäure ausgehend von 2-ethvlhexanol, verfahren zu seiner herstellung sowie seine verwendung
DE10149349A1 (de) Verfahren zur Herstellung von 6-Methylheptan-2-on und dessen Verwendung
EP3077357B1 (de) Verfahren zur herstellung von 2-methylbuttersäure mit einem vermindertem gehalt an 3-methylbuttersäure aus den bei der herstellung von pentansäuren anfallenden nebenströmen
DE102013020323B3 (de) Verfahren zur Herstellung von isomeren Hexansäuren aus den bei der Herstellung von Pentanalen anfallenden Nebenströmen
EP3077358B1 (de) Verfahren zur herstellung von 2-methylbutanal aus den bei der herstellung von gemischen isomerer a, -ungesättigter decenale anfallenden nebenströmen
EP3693355A1 (de) Flexible herstellung von mtbe oder etbe und isononanol
DE10326237A1 (de) Verfahren zur Gewinnung von Alkoholen
DEB0026574MA (de)
DE10147775A1 (de) Herstellung von 1-Olefinen

Legal Events

Date Code Title Description
R081 Change of applicant/patentee

Owner name: EVONIK DEGUSSA GMBH, DE

Free format text: FORMER OWNER: EVONIK OXENO GMBH, 45772 MARL, DE

Effective date: 20130905

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee