DE102007016139A1 - Verfahren zur regioselektiven Oxygenierung von N-Heterozyklen - Google Patents

Verfahren zur regioselektiven Oxygenierung von N-Heterozyklen Download PDF

Info

Publication number
DE102007016139A1
DE102007016139A1 DE102007016139A DE102007016139A DE102007016139A1 DE 102007016139 A1 DE102007016139 A1 DE 102007016139A1 DE 102007016139 A DE102007016139 A DE 102007016139A DE 102007016139 A DE102007016139 A DE 102007016139A DE 102007016139 A1 DE102007016139 A1 DE 102007016139A1
Authority
DE
Germany
Prior art keywords
reaction
heterocycles
pyridine
formula
peroxygenase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102007016139A
Other languages
English (en)
Inventor
Rene Dr. rer. nat. Ullrich
Martin Dipl.-Ing. Kluge
Martin Prof. Dr. rer. nat. habil. Hofrichter
Katrin Prof. Dr. rer. nat. Scheibner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novozymes AS
Original Assignee
JENABIOS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JENABIOS GmbH filed Critical JENABIOS GmbH
Priority to DE102007016139A priority Critical patent/DE102007016139A1/de
Priority to JP2010500298A priority patent/JP5411121B2/ja
Priority to US12/532,870 priority patent/US8367387B2/en
Priority to DK08718350.5T priority patent/DK2158313T3/da
Priority to EP12161074A priority patent/EP2471911A3/de
Priority to EP08718350A priority patent/EP2158313B1/de
Priority to AT08718350T priority patent/ATE548449T1/de
Priority to CA2682451A priority patent/CA2682451C/en
Priority to EP12158017.9A priority patent/EP2468852B1/de
Priority to PCT/EP2008/053798 priority patent/WO2008119780A2/en
Priority to CN200880017970.5A priority patent/CN101802180B/zh
Publication of DE102007016139A1 publication Critical patent/DE102007016139A1/de
Priority to US13/722,019 priority patent/US20130115662A1/en
Priority to JP2013171739A priority patent/JP2014000086A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)

Abstract

Die Erfindung betrifft ein Verfahren zur enzymatischen, regioselektiven Oxygenierung von N-Heterocyclen der allgemeinen Formel (I) zu den entsprechenden N-Oxiden der Formel (II) durch Umsetzung von N-Heterocyclen der Formel (I) mit einer pilzlichen Agrocybe-aegerita-Peroxidase (AaP) in Gegenwart mindestens eines Oxidationsmittels in einem Einstufen-Reaktionsverfahren. Die erfindungsgemäße Reaktion verläuft stark regioselektiv, so dass am Ende Isomrenreinheiten von mehr als 95% und Ausbeuten zwischen 20 und 90% erreicht werden. Das Verfahren kann in den verschiedensten Bereichen der Synthesechemie eingesetzt werden, u.a. zur Herstellung von Pharmaka-Vorstufen sowie zur Synthese spezieller Katalysatoren, Oxidationsmittel und zur Einführung von Schutzgruppen.

Description

  • Die Erfindung betrifft ein Verfahren zur enzymatischen Oxygenierung von aromatischen N-Heterozyklen zu den entsprechenden N-Oxiden.
  • Es ist allgemein bekannt, dass eine direkte regioselektive Einführung von Sauerstoff-Funktionen (Oxygenierung) in organische Moleküle ein Problem in der chemischen Synthese darstellt. Besonders schwierig zu katalysieren, ist die selektive N-Oxygenierung aromatischer Heterocyclen vom Pyridin-Typ. Die Produkte, heterocyclisch N-Oxide, sind wichtige Intermediate in den verschiedensten Synthesen und oftmals biologisch wirksam. Darüber hinaus fungieren sie als Schutzgruppen, Oxidationsmittel, Liganden in Metallkomplexen und spezifische Katalysatoren (Albini, A., Pietra, S. 1991: Heterocyclic N-Oxides, CRC Press, Boca Raton; Youssif, S. 2001: Recent trends in the chemistry of pyridine N-oxides. ARKIVOC 2001 (i): 242–268). Die chemische Oxygenierung von Pyridin, seinen Derivaten und anderen N-Heterocyclen ist relativ aufwendig, erfordert aggressive/toxische Chemikalien/Katalysatoren und führt zu einer Reihe unerwünschter Nebenprodukte (z. B. 2-, 3- und/und 4-Hydroxypyridin-Derivaten) sowie geringen Isomerenausbeuten. Laut Literatur kann die chemische Synthese von Pyridin-N-Oxid aus Pyridin kann u. a. unter Verwendung folgender Ausgangsverbindungen geschehen:
    • – Wasserstoffperoxid (30%), Essigsäure und Pyridin (80°C in Pyridin/Wasser)
    • – Phosphowolframsäure auf Siliziumdioxid und Pyridin (80°C in Pyridin)
    • – Wolframsäuresalze, Wasserstoffperoxid (30%) und Pyridin (80°C in Pyridin)
    • – organische Hydrotrioxide und Pyridin (–80 bis –60°C in Pyridin)
    • – Wasserstoffperoxid, Mangantetra-kis-(2,6-chlorphenyl)porphyrin (25°, C in Dichlorethan)
    • – Dimethyloxiran und Pyridin (0°C, in Dichlorethan)
    • – Perfluor-(cis-2,3-dialkyloxaziridin) und Pyridin (25°C in Pyridin)
    • Literatur: Schick, J. W. et al. (1974) Lumbricant compositions. US Patent 3,826,746 . Wang, R. T. et al. (2004) Synthesis of pyridine-N-oxide catalyzed by phosphotingstic acid supported on silicon dioxide. J. Yantai University 17: 260–264. Lu et al. (1996) A new convinient synthesis of pyridine-N-oxides. Chinese Chem. Lett. 7: 907–908. Shereshovets, V. V. et al. (1982) Synthesis of pyridine N-oxide with aid of organic hydrotrioxides. Russian Chemical Bulletin 31: 1716. Youssif, S. (2001) Recent trends in the chemistry of pyridine N-oxides. ARKIVOC 2001 (i): 242–268.
  • Oxygenierungsreaktionen an heterocyclischen Stickstoff-Atomen beruhen zumeist darauf, dass in Gegenwart von Elektronendonatoren und molekularem Sauerstoff (O2) oder einem Peroxid/Trioxid (R-OOH, R-OOOH) durch einen Katalysator eine reaktive Sauerstoffspezies generiert wird, welche den Stickstoff direkt angreift. Diese hoch reaktiven Sauerstoffspezies sind nur begrenzt regioselektiv. Aus diesem Grund sind die Ausbeuten bei chemischen N-Oxygenierungen gering, führen zu unerwünschten Nebenprodukten und verlangen eine komplizierte Reaktionsführung.
  • Außerdem ist bekannt, dass ein Enzym, die Methan-Monooxygenase (MMO, EC 14.13.25), in einer unspezifischen Nebenreaktion Pyridin zu Pyridin-N-Oxid umsetzt. Das intrazelluläre, aus mehreren Proteinkomponenten bestehende Enzym wird von methylotrophen Bakterien (z. B. Methylococcus capsulatus) gebildet und benötigt komplexe Elektronendonatoren wie NADH oder NADPH, Hilfsproteine (Flavin-Reduktasen, Regulatorprotein) sowie molekularen Sauerstoff (O2). Das natürliche Substrat der MMO ist Methan, das zu Methanol oxidiert wird (Dalton, H. and Wilkins, P. C. 1992: Electron paramagnetic studies of the mechanism of substrate oxidation by methan monooxygenase. Faraday Discuss. 93: 163–171).
  • Als besonders unspezifischer Biokatalysator oxygeniert/hydroxyliert die MMO neben Methan eine Reihe weiterer Substrate wie n-Alkane und ihre Derivate, Cycloalkane, Aromaten, Kohlenmonoxid und Heterocyclen. Letztere und vor allem Pyridin werden allerdings nur mit sehr geringen Raten umgesetzt (spezifische Aktivität gegenüber Pyridin: 0,029 Units mg–1 Protein) (Colby et al. 1977: The soluble methane mono-oxygenase of Methylococcus capsulatus. Biochem. J. 165: 395–402). Eine biotechnologische Nutzung des Enzyms ist derzeit nicht möglich, da es schwierig zu isolieren (intrazellulär), wenig stabil und die benötigten Cosubstrate relativ teuer sind. Aktuelle Versuche mittels molekularbiologischer Methoden das Substratspektrum der MMO zu optimieren oder mittels MMO-produzierender Bakterien (whole cell biocatalysts) spezifische Produkte herzustellen, beziehen sich nicht auf heterocyclische Substrate wie Pyridin (van Beilen, J. B. and Funhoff, E., G., 2005: Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr. Opinion Biotechnol. 16: 308–314).
  • Pyridin abbauende Bakterien wie Rhodococcus spp. oder Arthrobacter spp. verfügen über kein Pyridin-N-Oxid generierendes Enzyms, sondern benutzen Enzyme, die den Pyridinring am Kohlenstoff hydroxylieren (selten) oder bestimmte Bindungen des Rings reduzieren (häufig) und so den Abbau einleiten (Fetzner, S., 1998: Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl. Microbiol. Biotechnol. 49: 237–250).
  • Die Aufgabe der vorliegenden Erfindung ist es, einen Prozess zur Darstellung von Pyridin-N-Oxid und anderen N-Heterocyclen aus den entsprechenden Vorstufen mit möglichst geringem verfahrenstechnischen und apparativen Aufwand und bei gleichzeitigem Einsatz kostengünstiger Cosubstrate durchzuführen. Die Umsetzung der Ausgangsverbindungen soll in möglichst kurzen Inkubationszeiten, bei Raumtemperatur und Druck, im wässrigen Milieu und ohne erhöhte Anforderungen an sterile bzw. semisterile Reaktionsbedingungen erfolgen. Die Reaktionsprodukte sind dabei mit möglichst geringem Aufwand zu isolieren und eine aufwändige Trennung verschiedener Strukturisomere soll entfallen.
  • Das vorliegende Verfahren löst diese Aufgabe und betrifft ein Verfahren zur enzymatischen, regioselektiven Oxygenierung von aromatischen N-Heterocyclen der Formel (I) zu entsprechenden N-Oxiden der Formel (II) durch Umsetzung eines N-Heterocyclus der Formel (I) mit einer pilzlichen aromatischen Haloperoxidase-Peroxygenase (in Gegenwart mindestens eines Oxidationsmittels in einem Einstufen-Reaktionsverfahren.
  • Die Ausgangsverbindungen der Formel (I) werden dabei vorzugsweise mit der aromatischen Haloperoxidase-Peroxygenase des Pilzes Agrocybe aegerita (Agrocybe-aegerita-Peroxygenase = Agrocybe-aegerita-Peroxidase = AaP), die eine besonders hohe Peroxygenase-Aktivität besitzt, und zumindest eines Oxidationsmittels, zur Reaktion gebracht, wobei die regioselektive Oxygenierung des heterocyclischen Stickstoffs erfolgt.
  • Als Oxidationsmittel werden erfindungsgemäß vorzugsweise H2O2, organische Peroxide oder Hydroperoxide, wie z. B. tert-Butylhydroperoxid, Luft oder Sauerstoff (O2) verwendet. Auf teure Elektronendonatoren, wie z. B. NADH oder NADPH kann bei dem vorliegenden Verfahren verzichtet werden (Konzentration des Oxidationsmittels: 0,01 bis 10 mmol/L, bevorzugt 0,1 bis 2 mmol/L H2O2)
  • Dem Reaktionsgemisch können zur weiteren Beschleunigung der Umsetzung der Verbindung der Formel (I) mit dem Enzym AaP zusätzlich H2O2-generierende Enzyme, insbesondere Oxidasen, wie z. B. Glucose-Oxidase oder Arylalkohol-Oxidase sowie deren Substrate (Glucose bzw. Benzylalkohol) zugesetzt werden.
  • Die Grundlage des erfindungsgemäßen enzymatischen, zellfreien Verfahrens ist eine neuartige extrazelluläre Haloperoxidase-Peroxygenase (= aromatische Peroxygenase), die über P450-ähnliche Katalyseeigenschaften verfügt und in Gegenwart eines geeigneten Oxidationsmittels (z. B. Peroxiden), insbesondere in gepufferten wässrigen Lösungen aromatische N-Heterocyclen (z. B. Pyridin) zu den entsprechenden N-Oxiden oxidiert und dabei eine hohe Selektivität erreicht (> 95% N-Oxid).
  • Bei dem eingesetzten Enzym handelt es sich um ein spezielles extrazelluläres Häm-Thiolat-Protein mit Peroxidase- und Peroxygenasefunktion. Es wird von Basidiomyceten der Familien Bolbitiaceae (z. B. Agrocybe spp.) und Coprinaceae (z. B. Coprinus spp.) gebildet und zeichnet sich durch besondere katalytische Eigenschaften aus, die es von bisher beschriebenen Peroxidasen und Cytochrom-P450-Enzymen deutlich unterscheidet. Die Enzymherstellung erfolgt vorzugsweise in Flüssigkultur, in Bioreaktoren und stickstoffreichen Medien (Ullrich, R., 2005, Dissertation, IHI Zittau; Kluge, M., 2006, Diplomarbeit, IHI Zittau).
  • Die von dem AaP bezeichneten Enzym katalysierten Reaktionen benötigen im Unterschied zu chemischen Synthesen keine hochkonzentrierten aggressiven und umweltgefährdenden Reagenzien und bei der Produktgewinnung kann auf chemikalien- und zeitintensive Reinigungsschritte zur Trennung der Isomerengemische verzichtet werden. Üblicherweise wird das Enzym in einer Konzentration von 0,02 U/mL bis 10 U/mL AaP, insbesondere von 0,09 bis 8 U/mL AaP, eingesetzt. Dies macht das dargestellte Reaktionsverfahren besonders umweltfreundlich.
  • Ein weiterer Vorteil gegenüber rein chemischen Synthesen besteht in der Prozessführung auf Grund der erfindungsgemäßen AaP-katalysierten Umsetzung bei Raumtemperatur und normalem Luftdruck. In einer bevorzugten Ausführungsform wird das Verfahren in wässrigen, gepufferten Lösungen durchgeführt. Dem Reaktionsgemisch können hierbei zur Stabilisierung der Reaktion im wässrigen Medium Puffer auf Basis organischer Säuren, vorzugsweise Zitronensäure, sowie Phosphate, vorzugsweise Kaliumhydrogenphosphate, zugesetzt werden (Pufferkonzentration: 5 mmol/L bis 500 mmol/L, vorzugsweise 20 bis 100 mmol/L). Weiterhin ist es möglich, die Reaktion im pH-Staten ohne Puffer unter kontinuierlicher Zusdosierung von Säuren oder Basen durchzuführen.
  • Zur Verbesserung der Löslichkeit können dem Reaktionsgemisch organische Lösungsmittel zugesetzt werden und dabei auch in einem 2-Phasensystem gearbeitet werden.
  • Erfindungsgemäß einsetzbare Lösungsmittel sind erotische Lösungsmittel, wie Methanol oder Ethanol oder aprotische polare Lösungsmittel wie Ether (z. B. Diisopropylether), Aceton, Acetonitril, DMSO (Dimethylsulfoxid) sowie DMF (N,N-Dimethylformamid).
  • Als Ausgangsverbindungen der Formel (I) werden insbesondere Verbindungen aus der folgenden Gruppe eingesetzt: Pyridin, substituierte Pyridine (R = -X, -NO2, -Alkyl, -Phenyl, -NH2, -OH), Chinolin, Isochinolin und ihre Derivate, Aromaten mit mehreren Heteroatomen sowie mehrkernige N-Heterocyclen. Die Reaktion wird in einem Bereich von 5°C bis 40°C, vorzugsweise bei 20–30°C durchgeführt. Die Reaktionszeiten liegen üblicherweise im Bereich von 0,5 bis 120 Minuten, insbesondere im Bereich von 5 bis 30 Minuten. Die erzielten Ausbeuten an N-Oxiden liegen im Bereich von 100% bis 99%, vorzugsweise zwischen 20 und 90%.
  • Die Vorteile der AaP-katalysierten Umsetzung von N-Heterocyclen gegenüber der Katalyse mit dem einzigen weiteren Enzym, das Pyridin zu Pyridin-N-Oxid zu oxidieren vermag (Methan-Monooxygenase, MMO), bestehen:
    • • i) in der höheren spezifischen Aktivität
    • • ii) im Einsatz preiswerter Peroxide anstelle teurer Elektronendonatoren [NAD(P)H],
    • • iii) in der Unabhängigkeit des hydroxylierenden Enzyms von Flavin-Reduktasen und
    • regulatorischen Proteinen,
    • • iv) in der einfachen Enzymgewinnung ohne Zellaufschluss und
    • • v) in der hohen Stabilität der extrazellulären AaP und ähnlicher Peroxygenasen im Vergleich zu der instabilen intrazellulärer und z. T. membrangebundenen MMO
  • Mit den AaP-katalysierten Reaktionen ist es erstmals möglich, nicht-aktivierte N-Heterozyklen wie Pyridin mit Hilfe eines einzelnen extrazellulären Biokatalysators, der lediglich ein Peroxid als Cosubstrat benötigt, in einem einstufigen Prozess regioselektiv zu den entsprechenden N-Oxiden (z. B. Pyridin-N-Oxid) umzusetzen. Das Verfahren kann in verschiedensten Bereichen der Synthesechemie eingesetzt werden, u. a. zur Herstellung von Wirkstoffen, Pharmaka-Intermediaten, speziellen Katalysatoren und Oxidationsmitteln sowie zur Einführung von Schutzgruppen in instabile Moleküle. Die Erfindung soll nachstehend anhand von dem in der Zeichnung dargestellten Ausführungsbeispiel näher erläutert werden, wobei die Erfindung nicht auf die Beispiele beschränkt ist.
  • Beispiele:
  • Es zeigen:
  • 1: Allgemeines Formelschema der AaP-katalysierten Umsetzung von N-Heterocyclen
  • 2: Formelschema gemäß Ausführungsbeispiel
  • 3: HPLC-Elutionsprofil (256 nm) der Umsetzung von Pyridin durch AaP mit dem Massenspektrum des einzigen Produktes Pyridin-N-Oxid
  • Ausführungsbeispiel:
  • 2 mM Pyridin wurden in wässriger Kaliumphosphat-Pufferlösung (20 mM, pH = 7.0) gelöst und zusammen mit 2 mM H2O2 (20 × 100 μM) und 2 U Agrocybe-aegerita-Peroxidase (Units bezogen auf die Oxidation von Veratrylalkohol zu Veratrylaldehyd; Ullrich et al. 2004, Appl. Environ. Microbiol.: 70, 4575–81) in einem Gesamtvolumen von 1 ml bei 24°C in einem verschlossenen Glasgefäß gerührt. Die Reaktionszeit betrug insgesamt 120 min (Abstoppen der Reaktion mit 25 mM NaOH).
  • Als Produkt dieser Reaktion (Ausbeute 25%) wurde ausschließlich Pyridin-N-Oxid anhand eines authentischen Standards (Fluka) über die Retentionszeit sowie UV- und Massenspektrum detektiert. Die chromatographische Trennung und Produkt-Identifizierung erfolgte unter Verwendung einer speziellen Säule (Phenomex synergi 4 μm Fusion-RP 80A, 150 × 2 mm) und eines Agilent LC-MS-DAD Systems.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - US 3826746 [0002]
  • Zitierte Nicht-Patentliteratur
    • - Albini, A., Pietra, S. 1991: Heterocyclic N-Oxides [0002]
    • - CRC Press, Boca Raton; Youssif, S. 2001: Recent trends in the chemistry of pyridine N-oxides. ARKIVOC 2001 (i): 242–268 [0002]
    • - Schick, J. W. et al. (1974) Lumbricant compositions [0002]
    • - Wang, R. T. et al. (2004) Synthesis of pyridine-N-oxide catalyzed by phosphotingstic acid supported on silicon dioxide. J. Yantai University 17: 260–264 [0002]
    • - Lu et al. (1996) A new convinient synthesis of pyridine-N-oxides. Chinese Chem. Lett. 7: 907–908 [0002]
    • - Shereshovets, V. V. et al. (1982) Synthesis of pyridine N-oxide with aid of organic hydrotrioxides. Russian Chemical Bulletin 31: 1716 [0002]
    • - Youssif, S. (2001) Recent trends in the chemistry of pyridine N-oxides. ARKIVOC 2001 (i): 242–268 [0002]
    • - Dalton, H. and Wilkins, P. C. 1992: Electron paramagnetic studies of the mechanism of substrate oxidation by methan monooxygenase. Faraday Discuss. 93: 163–171 [0004]
    • - Colby et al. 1977: The soluble methane mono-oxygenase of Methylococcus capsulatus. Biochem. J. 165: 395–402 [0005]
    • - van Beilen, J. B. and Funhoff, E., G., 2005: Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr. Opinion Biotechnol. 16: 308–314 [0005]
    • - Fetzner, S., 1998: Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl. Microbiol. Biotechnol. 49: 237–250 [0006]
    • - Ullrich, R., 2005, Dissertation, IHI Zittau [0013]
    • - Kluge, M., 2006, Diplomarbeit, IHI Zittau [0013]
    • - Ullrich et al. 2004, Appl. Environ. Microbiol.: 70, 4575–81 [0025]

Claims (11)

  1. Verfahren zur enzymatischen, regioselektiven Oxygenierung von N-Heterocyclen der Formel (I) zu entsprechenden N-Oxiden der Formel (II), durch Umsetzung von N-Heterozyklen der Formel (I) mit einer pilzlichen aromatischen Haloperoxidase-Peroxygenase [Agrocybe-aegerita-Peroxidase = AaP] in Gegenwart mindestens eines Oxidationsmittels in einem Einstufen-Reaktionsverfahren.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als N-Heterozyklus Pyridin eingesetzt wird.
  3. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass als Heterocyclen substituierte Pyridine oder polycyclische Heterocyclen (z. B. Chinolin) verwendet werden.
  4. Verfahren nach Anspruch 1, 2 und/oder 3, dadurch gekennzeichnet, dass als Haloperoxidase-Peroxygenase die Enzyme aus Agrocybe aegerita, Agrocybe chaxingu, Coprinus radians oder Coprinus verticulatus verwendet werden.
  5. Verfahren nach Anspruch 1, 2 und/oder 3, dadurch gekennzeichnet, dass als Haloperoxidase-Peroxygenase die Enzyme aus Vertretern der Familien Bolbitiaceae, Coprinaceae und Tricholomataceae verwendet werden.
  6. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Oxidationsmittel Wasserstoffperoxid, organische Peroxide oder Hydroperoxide, Luft oder Sauerstoffeingesetzt werden.
  7. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Oxidationsmittel in katalytischen Mengen, vorzugsweise in Mengen von < 0,01% bezogen auf die Konzentration der Verbindung der Formel (I) eingesetzt wird.
  8. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Reaktionsgemisch zur weiteren Beschleunigung der Umsetzung der Verbindung der Formel (I) mit dem Enzym AaP weitere H2O2-generierende Enzyme zugesetzt werden.
  9. Verfahren nach mindestens einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass dem Reaktionsmedium zur Stabilisierung der Reaktion im wässrigen Medium Puffer auf Basis organischer Säuren und/oder Phosphate zugesetzt werden.
  10. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reaktion in einem Temperaturbereich zwischen 10°C bis 40°C durchgeführt wird.
  11. Verfahren nach mindestens einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass zur Verbesserung der Substrat-Löslichkeit organische Lösungsmittel zugesetzt werden können.
DE102007016139A 2007-03-30 2007-03-30 Verfahren zur regioselektiven Oxygenierung von N-Heterozyklen Withdrawn DE102007016139A1 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
DE102007016139A DE102007016139A1 (de) 2007-03-30 2007-03-30 Verfahren zur regioselektiven Oxygenierung von N-Heterozyklen
CA2682451A CA2682451C (en) 2007-03-30 2008-03-31 Fungal peroxygenases and methods of application
EP12158017.9A EP2468852B1 (de) 2007-03-30 2008-03-31 Pilz-Peroxygenasen und Anwendungsverfahren
DK08718350.5T DK2158313T3 (da) 2007-03-30 2008-03-31 Fungale peroxygenaser og fremgangsmåder til anvendelse heraf
EP12161074A EP2471911A3 (de) 2007-03-30 2008-03-31 Pilz-Peroxygenasen und Anwendungsverfahren
EP08718350A EP2158313B1 (de) 2007-03-30 2008-03-31 Pilz-peroxygenasen und anwendungsverfahren
AT08718350T ATE548449T1 (de) 2007-03-30 2008-03-31 Pilz-peroxygenasen und anwendungsverfahren
JP2010500298A JP5411121B2 (ja) 2007-03-30 2008-03-31 真菌ペルオキシゲナーゼ及び適用方法
US12/532,870 US8367387B2 (en) 2007-03-30 2008-03-31 Fungal peroxygenases and methods of application
PCT/EP2008/053798 WO2008119780A2 (en) 2007-03-30 2008-03-31 Fungal peroxygenases and methods of application
CN200880017970.5A CN101802180B (zh) 2007-03-30 2008-03-31 真菌过氧合酶和应用方法
US13/722,019 US20130115662A1 (en) 2007-03-30 2012-12-20 Fungal peroxygenases and methods of application
JP2013171739A JP2014000086A (ja) 2007-03-30 2013-08-21 真菌ペルオキシゲナーゼ及び適用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007016139A DE102007016139A1 (de) 2007-03-30 2007-03-30 Verfahren zur regioselektiven Oxygenierung von N-Heterozyklen

Publications (1)

Publication Number Publication Date
DE102007016139A1 true DE102007016139A1 (de) 2008-10-02

Family

ID=39591196

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102007016139A Withdrawn DE102007016139A1 (de) 2007-03-30 2007-03-30 Verfahren zur regioselektiven Oxygenierung von N-Heterozyklen

Country Status (9)

Country Link
US (2) US8367387B2 (de)
EP (3) EP2158313B1 (de)
JP (2) JP5411121B2 (de)
CN (1) CN101802180B (de)
AT (1) ATE548449T1 (de)
CA (1) CA2682451C (de)
DE (1) DE102007016139A1 (de)
DK (1) DK2158313T3 (de)
WO (1) WO2008119780A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2021113B1 (en) * 2018-06-13 2019-12-19 Univ Delft Tech Synthesis of aromatic epoxide derived compounds
WO2020007576A1 (en) * 2018-07-03 2020-01-09 RUHR-UNIVERSITäT BOCHUM Plasma-driven biocatalysis

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3028904A1 (en) 2010-03-28 2011-10-06 Novozymes A/S Enzymatic hydroxylation of aliphatic hydrocarbon
EP2729576A2 (de) 2011-07-07 2014-05-14 Novozymes A/S Enzymatische zubereitung von diolen
EP2742060B1 (de) 2011-08-10 2017-03-01 Novozymes A/S Polypeptide mit peroxygenaseaktivität und für diese kodierende polynukleotide
WO2013021062A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021064A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
US9506044B2 (en) 2011-08-10 2016-11-29 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021059A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021061A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021065A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
US9169469B2 (en) * 2011-12-02 2015-10-27 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
US9404093B2 (en) 2011-12-02 2016-08-02 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013144105A1 (en) 2012-03-31 2013-10-03 Novozymes A/S Epoxidation using peroxygenase
WO2014012506A1 (en) 2012-07-18 2014-01-23 Novozymes A/S Method of treating polyester textile
CN104781412A (zh) 2012-07-20 2015-07-15 诺维信公司 5-羟甲基糠醛及其衍生物的酶氧化
US9719072B2 (en) 2012-10-12 2017-08-01 Novozymes A/S Polypeptides having peroxygenase activity
CN104718288B (zh) * 2012-10-12 2018-11-16 诺维信公司 具有过氧合酶活性的多肽
EP2906690B1 (de) * 2012-10-12 2018-12-12 Novozymes A/S Polypeptide mit peroxygenaseaktivität
US9404094B2 (en) 2012-10-12 2016-08-02 Novozymes A/S Polypeptides having peroxygenase activity
US9453207B2 (en) 2012-10-12 2016-09-27 Novozymes A/S Polypeptides having peroxygenase activity
CN104718286B (zh) 2012-10-12 2018-10-30 诺维信公司 具有过氧合酶活性的多肽
CN104704115B (zh) * 2012-10-12 2018-11-02 诺维信公司 具有过氧合酶活性的多肽
US9458435B2 (en) 2012-10-12 2016-10-04 Novozymes A/S Polypeptides having peroxygenase activity
WO2014090940A1 (en) * 2012-12-14 2014-06-19 Novozymes A/S Removal of skin-derived body soils
EP2871233A1 (de) 2013-11-12 2015-05-13 Brandenburgische Technische Universität Cottbus-Senftenberg Verfahren zur Herstellung von biogenen Stoffen
JP6291051B2 (ja) * 2013-11-18 2018-03-14 エンザイマティック デインキング テクノロジーズ, エルエルシー 製紙用バージン繊維及び再生紙の残存鉱油濃度低減のための酵素処理
EP3074509B1 (de) 2013-11-29 2019-03-06 Novozymes A/S Peroxygenasevarianten
WO2016207373A1 (en) 2015-06-26 2016-12-29 Novozymes A/S Polypeptides having peroxygenase activity
DK3392341T3 (da) 2017-04-20 2021-04-06 Consejo Superior Investigacion Fremgangsmåde til afkortning af carbonhydridkæden i en carboxylsyre ved hjælp af en peroxygenase
EP3594332A1 (de) * 2018-07-10 2020-01-15 Consejo Superior de Investigaciones Cientificas Verfahren zur heterologen expression von aktiver pilzlicher unspezifischer peroxygenase in bakteriellen wirtszellen für fettsäureepoxidation und andere sauerstoffreaktionen
EP3660147A1 (de) 2018-11-30 2020-06-03 Consejo Superior de Investigaciones Cientificas (CSIC) Verfahren zur selektiven synthese von 4-hydroxyisophoron und 4-ketoisophoron durch fungale peroxygenasen
US20220064516A1 (en) * 2019-01-03 2022-03-03 Locus Oil Ip Company, Llc Materials and Methods for Extended Reduction of Heavy Crude Oil Viscosity
WO2021005013A1 (en) 2019-07-05 2021-01-14 Bisy Gmbh Recombinant heme thiolate oxygenases
JP2023542204A (ja) 2020-09-23 2023-10-05 ゲッコー バイオテック ビー.ブイ. 細菌非特異的ペルオキシゲナーゼ(bupo)並びにその方法及び使用
DE102021204094A1 (de) 2021-04-25 2022-10-27 Brandenburgische Technische Universität Cottbus-Senftenberg In-vitro Arzneimittel aus Prodrugs und deren Verwendung
DE102021209758A1 (de) 2021-09-03 2023-03-09 Brandenburgische Technische Universität Cottbus-Senftenberg Verfahren zur zellfreien Herstellung von unspezifischen Peroxygenasen und deren Verwendung
WO2023031462A1 (de) 2021-09-03 2023-03-09 Brandenburgische Technische Universitaet Cottbus-Senftenberg Verfahren zur zellfreien herstellung von unspezifischen peroxygenasen
DE102021214582A1 (de) 2021-12-17 2023-06-22 Brandenburgische Technische Universität Cottbus-Senftenberg Verfahren zur zellfreien Herstellung von unspezifischen Peroxygenasen und deren Verwendung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826746A (en) 1972-07-18 1974-07-30 Mobil Oil Corp Lubricant compositions

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (de) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
GB1483591A (en) 1973-07-23 1977-08-24 Novo Industri As Process for coating water soluble or water dispersible particles by means of the fluid bed technique
GB1590432A (en) 1976-07-07 1981-06-03 Novo Industri As Process for the production of an enzyme granulate and the enzyme granuate thus produced
DK187280A (da) 1980-04-30 1981-10-31 Novo Industri As Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode
US4353985A (en) 1980-07-14 1982-10-12 Schering Aktiengesellschaft Process for the preparation of 11 β-hydroxy steroids
DK263584D0 (da) 1984-05-29 1984-05-29 Novo Industri As Enzymholdige granulater anvendt som detergentadditiver
WO1987000859A1 (en) 1985-08-09 1987-02-12 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EG18543A (en) 1986-02-20 1993-07-30 Albright & Wilson Protected enzyme systems
DK122686D0 (da) 1986-03-17 1986-03-17 Novo Industri As Fremstilling af proteiner
US4810414A (en) 1986-08-29 1989-03-07 Novo Industri A/S Enzymatic detergent additive
NZ221627A (en) 1986-09-09 1993-04-28 Genencor Inc Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios
EP0305216B1 (de) 1987-08-28 1995-08-02 Novo Nordisk A/S Rekombinante Humicola-Lipase und Verfahren zur Herstellung von rekombinanten Humicola-Lipasen
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
ATE129523T1 (de) 1988-01-07 1995-11-15 Novo Nordisk As Spezifische protease.
DK6488D0 (da) 1988-01-07 1988-01-07 Novo Industri As Enzymer
JP3079276B2 (ja) 1988-02-28 2000-08-21 天野製薬株式会社 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法
JP2728531B2 (ja) 1988-03-24 1998-03-18 ノボ ノルディスク アクティーゼルスカブ セルラーゼ調製品
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
GB8915658D0 (en) 1989-07-07 1989-08-23 Unilever Plc Enzymes,their production and use
PT97110B (pt) 1990-03-23 1998-11-30 Gist Brocades Nv Processo para catalisar reaccoes acelaraveis por enzimas, mediante adicao ao meio reaccional de sementes de plantas transgenicas e para obtencao das referidas sementes
KR100236540B1 (ko) 1990-04-14 2000-01-15 레클로우크스 라우에르 알카리성 바실러스-리파제, 이를 코-딩하는 dna 서열 및 리파제를 생산하는 바실러스 균주
DK115890D0 (da) 1990-05-09 1990-05-09 Novo Nordisk As Enzym
WO1991017243A1 (en) 1990-05-09 1991-11-14 Novo Nordisk A/S A cellulase preparation comprising an endoglucanase enzyme
AU657278B2 (en) 1990-09-13 1995-03-09 Novo Nordisk A/S Lipase variants
IL99552A0 (en) 1990-09-28 1992-08-18 Ixsys Inc Compositions containing procaryotic cells,a kit for the preparation of vectors useful for the coexpression of two or more dna sequences and methods for the use thereof
SG52693A1 (en) 1991-01-16 1998-09-28 Procter & Gamble Detergent compositions with high activity cellulase and softening clays
EP0511456A1 (de) 1991-04-30 1992-11-04 The Procter & Gamble Company Flüssiges Reinigungsmittel mit einem aromatischen Boratester zur Inhibierung des proteolytischen Enzyms
EP0583420B1 (de) 1991-04-30 1996-03-27 The Procter & Gamble Company Gerüstsubstanzhaltige flüssigwaschmittel mit borsäure-polyolkomplex zur ptoteolytischen enzyminhibierung
DK0583339T3 (da) 1991-05-01 1999-04-19 Novo Nordisk As Stabiliserede enzymer og detergentsammensætninger
DK72992D0 (da) 1992-06-01 1992-06-01 Novo Nordisk As Enzym
DK88892D0 (da) 1992-07-06 1992-07-06 Novo Nordisk As Forbindelse
ATE444356T1 (de) 1992-07-23 2009-10-15 Novozymes As Mutierte -g(a)-amylase, waschmittel und geschirrspülmittel
US5792641A (en) 1992-10-06 1998-08-11 Novo Nordisk A/S Cellulase variants and detergent compositions containing cellulase variants
CZ293163B6 (cs) 1993-02-11 2004-02-18 Genencor International, Inc. Mutanta alfa-amylázy, její použití, kódová DNA pro tuto mutantu, vektor pro expresi, hostitelské buňky, čisticí prostředek a prostředek pro zkapalnění škrobu
EP0652946B1 (de) 1993-04-27 2005-01-26 Genencor International, Inc. Neuartige Lipasevarianten zur Verwendung in Reinigungsmitteln
DK52393D0 (de) 1993-05-05 1993-05-05 Novo Nordisk As
JP2859520B2 (ja) 1993-08-30 1999-02-17 ノボ ノルディスク アクティーゼルスカブ リパーゼ及びそれを生産する微生物及びリパーゼ製造方法及びリパーゼ含有洗剤組成物
JPH09503664A (ja) 1993-10-13 1997-04-15 ノボ ノルディスク アクティーゼルスカブ H▲下2▼o▲下2▼安定ペルオキシダーゼ変異体
JPH07143883A (ja) 1993-11-24 1995-06-06 Showa Denko Kk リパーゼ遺伝子及び変異体リパーゼ
DE4343591A1 (de) 1993-12-21 1995-06-22 Evotec Biosystems Gmbh Verfahren zum evolutiven Design und Synthese funktionaler Polymere auf der Basis von Formenelementen und Formencodes
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
DE69527835T2 (de) 1994-02-22 2003-04-10 Novozymes As Methode zur herstellung einer variante eines lipolytischen enzymes
EP0749473B1 (de) 1994-03-08 2005-10-12 Novozymes A/S Neuartige alkalische zellulasen
EP0755442B1 (de) 1994-05-04 2002-10-09 Genencor International, Inc. Lipasen mit verbesserten tensiostabilitaet
DK0765394T3 (da) 1994-06-03 2001-12-10 Novozymes As Oprensede Myceliopthora-laccaser og nukleinsyrer der koder for disse
AU2884595A (en) 1994-06-20 1996-01-15 Unilever Plc Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
AU2705895A (en) 1994-06-30 1996-01-25 Novo Nordisk Biotech, Inc. Non-toxic, non-toxigenic, non-pathogenic fusarium expression system and promoters and terminators for use therein
EP0788541B1 (de) 1994-10-06 2008-03-12 Novozymes A/S Ein enzympräparat mit endoglucanase aktivität
BE1008998A3 (fr) 1994-10-14 1996-10-01 Solvay Lipase, microorganisme la produisant, procede de preparation de cette lipase et utilisations de celle-ci.
EP0785994A1 (de) 1994-10-26 1997-07-30 Novo Nordisk A/S Enzym mit lipolytischer aktivität
AR000862A1 (es) 1995-02-03 1997-08-06 Novozymes As Variantes de una ó-amilasa madre, un metodo para producir la misma, una estructura de adn y un vector de expresion, una celula transformada por dichaestructura de adn y vector, un aditivo para detergente, composicion detergente, una composicion para lavado de ropa y una composicion para la eliminacion del
JPH08228778A (ja) 1995-02-27 1996-09-10 Showa Denko Kk 新規なリパーゼ遺伝子及びそれを用いたリパーゼの製造方法
NZ303162A (en) 1995-03-17 2000-01-28 Novo Nordisk As Enzyme preparations comprising an enzyme exhibiting endoglucanase activity appropriate for laundry compositions for textiles
JP4307549B2 (ja) 1995-07-14 2009-08-05 ノボザイムス アクティーゼルスカブ 脂肪分解活性を有する修飾された酵素
JP4068142B2 (ja) 1995-08-11 2008-03-26 ノボザイムス アクティーゼルスカブ 新規の脂肪分解酵素
US5763385A (en) 1996-05-14 1998-06-09 Genencor International, Inc. Modified α-amylases having altered calcium binding properties
WO1998008940A1 (en) 1996-08-26 1998-03-05 Novo Nordisk A/S A novel endoglucanase
EP1726644A1 (de) 1996-09-17 2006-11-29 Novozymes A/S Zellulase Varianten
WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
EP2278001B1 (de) 1996-11-04 2013-10-23 Novozymes A/S Proteasevarianten und Verbindungen
CN1136311C (zh) 1996-11-04 2004-01-28 诺沃奇梅兹有限公司 枯草杆菌酶变异体和组合物
US6159731A (en) 1997-02-12 2000-12-12 Massachusetts Institute Of Technology Daxx, a Fas-binding protein that activates JNK and apoptosis
WO1999001544A1 (en) 1997-07-04 1999-01-14 Novo Nordisk A/S FAMILY 6 ENDO-1,4-β-GLUCANASE VARIANTS AND CLEANING COMPOSIT IONS CONTAINING THEM
AU6188599A (en) 1998-10-26 2000-05-15 Novozymes A/S Constructing and screening a dna library of interest in filamentous fungal cells
CN100532561C (zh) 1999-03-22 2009-08-26 诺沃奇梅兹有限公司 新的葡糖淀粉酶及编码它的核酸序列
DE10332065A1 (de) 2003-07-11 2005-01-27 Friedrich-Schiller-Universität Jena Verfahren zur enzymatischen Darstellung von Säuren aus Alkoholen über die intermediäre Bildung von Aldehyden
CN1875098A (zh) 2003-10-30 2006-12-06 诺和酶股份有限公司 新家族的碳水化合物结合组件
DE102004047774A1 (de) 2004-09-28 2006-03-30 Jenabios Gmbh Verfahren zur enzymatischen Hydroxylierung nicht-aktivierter Kohlenwasserstoffe
US8026085B2 (en) * 2006-08-04 2011-09-27 California Institute Of Technology Methods and systems for selective fluorination of organic molecules

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826746A (en) 1972-07-18 1974-07-30 Mobil Oil Corp Lubricant compositions

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
Albini, A., Pietra, S. 1991: Heterocyclic N-Oxides
Colby et al. 1977: The soluble methane mono-oxygenase of Methylococcus capsulatus. Biochem. J. 165: 395-402
CRC Press, Boca Raton; Youssif, S. 2001: Recent trends in the chemistry of pyridine N-oxides. ARKIVOC 2001 (i): 242-268
Dalton, H. and Wilkins, P. C. 1992: Electron paramagnetic studies of the mechanism of substrate oxidation by methan monooxygenase. Faraday Discuss. 93: 163-171
Fetzner, S., 1998: Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl. Microbiol. Biotechnol. 49: 237-250
Kluge, M., 2006, Diplomarbeit, IHI Zittau
Lu et al. (1996) A new convinient synthesis of pyridine-N-oxides. Chinese Chem. Lett. 7: 907-908
Schick, J. W. et al. (1974) Lumbricant compositions
Shereshovets, V. V. et al. (1982) Synthesis of pyridine N-oxide with aid of organic hydrotrioxides. Russian Chemical Bulletin 31: 1716
Ullrich et al. 2004, Appl. Environ. Microbiol.: 70, 4575-81
Ullrich, R., 2005, Dissertation, IHI Zittau
van Beilen, J. B. and Funhoff, E., G., 2005: Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr. Opinion Biotechnol. 16: 308-314
Wang, R. T. et al. (2004) Synthesis of pyridine-N-oxide catalyzed by phosphotingstic acid supported on silicon dioxide. J. Yantai University 17: 260-264
Youssif, S. (2001) Recent trends in the chemistry of pyridine N-oxides. ARKIVOC 2001 (i): 242-268

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2021113B1 (en) * 2018-06-13 2019-12-19 Univ Delft Tech Synthesis of aromatic epoxide derived compounds
WO2019240579A1 (en) 2018-06-13 2019-12-19 Technische Universiteit Delft Synthesis of aromatic epoxide derived compounds
WO2020007576A1 (en) * 2018-07-03 2020-01-09 RUHR-UNIVERSITäT BOCHUM Plasma-driven biocatalysis
US11866757B2 (en) 2018-07-03 2024-01-09 Ruhr-Universitaet Bochum Plasma-driven biocatalysis

Also Published As

Publication number Publication date
WO2008119780A3 (en) 2009-03-12
EP2158313A2 (de) 2010-03-03
WO2008119780A2 (en) 2008-10-09
US20100279366A1 (en) 2010-11-04
CA2682451A1 (en) 2008-10-09
CN101802180A (zh) 2010-08-11
EP2158313B1 (de) 2012-03-07
EP2471911A3 (de) 2012-12-12
JP5411121B2 (ja) 2014-02-12
DK2158313T3 (da) 2012-05-14
ATE548449T1 (de) 2012-03-15
EP2468852A1 (de) 2012-06-27
EP2471911A2 (de) 2012-07-04
US20130115662A1 (en) 2013-05-09
EP2468852B1 (de) 2014-07-16
CA2682451C (en) 2015-11-24
CN101802180B (zh) 2017-04-05
JP2010523079A (ja) 2010-07-15
JP2014000086A (ja) 2014-01-09
US8367387B2 (en) 2013-02-05

Similar Documents

Publication Publication Date Title
DE102007016139A1 (de) Verfahren zur regioselektiven Oxygenierung von N-Heterozyklen
Kaluzna et al. Enabling selective and sustainable P450 oxygenation technology. Production of 4-hydroxy-α-isophorone on kilogram scale
Tran et al. An efficient light-driven P450 BM3 biocatalyst
US4318784A (en) Enzymatic processes
WO2006034702A1 (de) Verfahren zur enzymatischen hydroxylierung nicht-aktivierter kohlenwasserstoffe
Grogan Hemoprotein catalyzed oxygenations: P450s, UPOs, and progress toward scalable reactions
DE10332065A1 (de) Verfahren zur enzymatischen Darstellung von Säuren aus Alkoholen über die intermediäre Bildung von Aldehyden
EP1196545B1 (de) Elektronendonorsystem für enzyme und dessen anwendung bei der biochemischen umsetzung von substraten
EP1285082B1 (de) Verfahren, umfassend die indirekte elektrochemische regeneration von nad(p)h
DE102008034829A1 (de) Verfahren zur Herstellung von 2-(4-Hydroxyphenoxy)propionsäure
DE60115849T2 (de) Methode und katalytisches system zur stereoselektiven invertierung eines chiralen zentrums in einer chemischen verbindung
DE102006041493A1 (de) Verfahren zur stereoselektiven Hydroxylierung von Alkylaromaten
US20160168597A1 (en) Process for the Bioconversion of Butane to 1-Butanol
EP2403953B1 (de) Verfahren zur stereoselektiven enzymatischen reduktion von ketoverbindungen
Wedde et al. The recent developments of enzymatic oxidation
DE102007058741A1 (de) Verfahren zur O-Dealkylierung von Alkylarylethern
WO2008022627A2 (de) Verfahren zur herstellung von optisch aktiven hydroxyalkylacetaten durch racematspaltung von 4-hydr0xy-2-ket0nen unter verwendung von baeyer-vi lliger monooxygenasen
EP3818164B1 (de) Plasmagesteuerte biokatalyse
Hollmann Coupling homogeneous and enzyme catalysis for highly specific hydroxylations, epoxidations and hydrogenations
NL2021113B1 (en) Synthesis of aromatic epoxide derived compounds
DE102009045969B4 (de) Verfahren und Mittel zur Spaltung von Estern, Amiden und Thioestern der Ameisensäure
DE102010045662A1 (de) Verfahren zur Oxidation von organischen Verbindungen
EP4001424A1 (de) Synthese von 25-hydroxyvitamin d3, 25-hydroxy-7-dehydrocholestein und analogen alkoholen unter verwendung des beta-proteobakteriums thauera aromatica
DE102020202357B3 (de) Verfahren zur enzymatischen Herstellung von zytostatischen 4-Hydroxy-Oxazaphosphorinen
DE102007044379A1 (de) Kombinierter elektrochemischer und katalytischer Prozeß

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: NOVOZYMES A/S, BAGSVAERD, DK

8128 New person/name/address of the agent

Representative=s name: WUESTHOFF & WUESTHOFF PATENT- UND RECHTSANWAELTE,

8130 Withdrawal