WO2006034702A1 - Verfahren zur enzymatischen hydroxylierung nicht-aktivierter kohlenwasserstoffe - Google Patents

Verfahren zur enzymatischen hydroxylierung nicht-aktivierter kohlenwasserstoffe Download PDF

Info

Publication number
WO2006034702A1
WO2006034702A1 PCT/DE2005/001734 DE2005001734W WO2006034702A1 WO 2006034702 A1 WO2006034702 A1 WO 2006034702A1 DE 2005001734 W DE2005001734 W DE 2005001734W WO 2006034702 A1 WO2006034702 A1 WO 2006034702A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated
haloperoxidases
enzymes
substances
hydroxylated
Prior art date
Application number
PCT/DE2005/001734
Other languages
English (en)
French (fr)
Inventor
Martin Hofrichter
Katrin Scheibner
Jörg Nüske
Rene Ullrich
Original Assignee
Jenabios Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenabios Gmbh filed Critical Jenabios Gmbh
Priority to DE112005003060T priority Critical patent/DE112005003060A5/de
Publication of WO2006034702A1 publication Critical patent/WO2006034702A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group

Definitions

  • the invention relates to a process for the enzymatic hydroxylation of non-activated hydrocarbons, in particular non-activated hydrocarbon molecules aromati ⁇ shear rings (for example, the selective conversion of naphthalene to 1-naphthol).
  • the method can be used in various fields of synthetic chemistry, u. a. for the manufacture of pharmaceuticals, terpenes, steroids or fatty acids.
  • cytochrome P450-dependent monooxygenases which are found in almost all organisms and are of particular interest in the synthesis of active substances (eg steroids), the metabolisation of foreign substances (eg mono- and polyaromatics) as well as in the activation of petroleum hydrocarbons (eg ra-alkanes) (Rehm and Reed 2000, Biotechnology Vol 8b: biotransformations II, Wiley-VCH).
  • active substances eg steroids
  • foreign substances eg mono- and polyaromatics
  • petroleum hydrocarbons eg ra-alkanes
  • the object of the present invention is to carry out the processes for the enzymatic preparation of hydroxylated products from corresponding non-activated hydrocarbons with the least possible expense in terms of process engineering and apparatus, and using cost-effective cosubstrates.
  • the starting compounds are to be reacted, in particular, with low energy and chemical use, low in pollutants, without increased demands on sterile or semisterile reaction mixtures and with incubation times which are as short as possible.
  • a process for the enzymatic preparation of hydroxylated hydrocarbons from corresponding non-activated starting compounds in a one-stage reaction process is proposed in which the substances or substance mixtures are mixed at least by adding and optionally adding special haloperoxidases having peroxygenase activity and at least one oxidizing agent, such as Hydrogen peroxide, are reacted in an aqueous medium, wherein the oxygenation of non-activated CH bonds occurs.
  • the cell-free, enzymatic method is based on a newly found extracellular fungal enzyme, said haloperoxidase (EC 1.11.1.10) in the presence of the oxidizing agent in preferably buffered aqueous solutions of aromatic hydrocarbons (such as naphthalene or toluene) to corresponding phenols directly, ie in the said one-step Reaction method, implemented.
  • aromatic hydrocarbons such as naphthalene or toluene
  • other compounds for example aliphatic and aliphatic side chains of aromatics and cycloaliphatics
  • aryl alcohol-aryl aldehyde peroxidase which has since been recognized as a particular peroxygenase-functional haloperoxidase, is preferably produced and characterized by basidiomycetes of the family Bolbitiaceae (eg Agrocybe sp.) by special catalytic properties, which none of the previously known peroxidases or P450 enzymes possesses.
  • Agrocybe aegerita peroxidase (AaP) are environmentally friendly (that is they do not require aggressive and environmentally harmful chemicals). Thus, oxidizing agents are required only in catalytic amounts to ensure the peroxidase activity, but not for direct reaction of the starting compounds.
  • the chemical oxidation of alcohols and aldehydes requires equimolar amounts of environmentally hazardous oxidizing agents (peroxides, ozone, permanganate, chromates).
  • the purely chemical hydroxylations proceed only in the presence of suitable solvents (methanol, dimethyl sulfoxide, acetone) and are not carried out in aqueous, merely buffered reaction solutions with a satisfactory yield.
  • Fig. 1 HPLC elution profile of the conversion of naphthalene to 1- and 2-naphthol using Agrocybe aege ⁇ ta peroxidase (AaP).
  • the lower chromatogram refers to a naphthalene sample treated with AaP and H 2 O 2
  • the upper chromatogram shows an enzyme-free control.
  • Fig. 2 Reaction of toluene to benzyl alcohol, benzaldehyde, o-cresol, / j-cresol and methyl-j? -Benzoquinone.
  • Lower HPLC elution profile - AaP treated toluene sample, upper chromatogram - enzyme free control.
  • naphthalene 200 nmol was dissolved in sodium phosphate-citrate buffer (50 mM, pH 7) together with 2 mM hydrogen peroxide and 0.1 U cygrocybe-aegerita peroxidase (0.1 unit with respect to the oxidation of veratryl alcohol) in a total volume of Briefly stir 1 ml at 24 ° C in an open glass jar and allow to stand for eight minutes.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Aufgabe war es, die Ausgangsverbindungen aufwandgering, insbesondere mit geringem Energie- und Chemikalieneinsatz sowie preiswerten Kosubstraten, schadstoffarm, ohne erhöhte Anforderungen an sterile bzw. semisterile Reaktionsführungen und mit möglichst kurzen Inkubationszeiten in wässrigen Medien umzusetzen. Erfindungsgemäß wird ein Einstufen-Reaktionsverfahren vorgeschlagen, bei dem die Substanzen bzw. Substanzgemische zumindest durch Zugabe und ggf. Zudosierung von neu gefundenen Haloperoxidasen mit Peroxygenaseaktivität und zumindest eines geeigneten Oxidationsmittels in einem wässrigen Milieu zur Reaktion gebracht werden, wobei der aromatische Ring oder die aliphatische Kette jeweils hydroxyliert werden. Das Verfahren kann in verschiedensten Bereichen der Synthesechemie eingesetzt werden, u. a. zur Herstellung von Pharmazeutika oder Aromastoffen.

Description

Beschreibung der Erfindung
Verfahren zur enzymatischen Hydroxylierung nicht-aktivierter Kohlenwasserstoffe
Die Erfindung betrifft ein Verfahren zur enzymatischen Hydroxylierung nicht-aktivierter Kohlenwasserstoffe, insbesondere nicht-aktivierte Kohlenwasserstoffmoleküle aromati¬ scher Ringe (beispielsweise die selektive Umsetzung von Naphthalin zu 1-Naphthol). Das Verfahren kann in verschiedensten Bereichen der Synthesechemie eingesetzt werden, u. a. zur Herstellung von Pharmazeutika, Terpenen, Steroiden oder Fettsäuren.
Es ist allgemein bekannt, dass die direkte und selektive Einführung von Sauerstoff¬ funktionen (Oxygenierung) in nicht-aktivierte aromatische oder aliphatische Kohlen¬ wasserstoffe ein Problem für die chemische Synthese darstellt. Die meisten chemischen Hydroxylierungsreaktionen beruhen darauf, dass in Gegenwart eines Elektronendonators sowie molekularen Sauerstoffs (O2) durch einen Katalysator eine reaktive Sauerstoff¬ spezies (z. B. das Hydroxylradikal) erzeugt wird, welches die C-H-Bindungen am nicht- aktivierten Kohlenwasserstoff angreift. Auf Grund der hohen Reaktivität und geringen Selektivität der reaktiven Sauerstoffspezies sind die Ausbeuten bei chemischen Hydroxylierungen, vor allem bei der Herstellung chiraler Produkte, gering. Andere Möglichkeiten der chemischen Hydroxylierung erfordern aufwendige, mehrstufige Syntheseschritte, wie z. B. das Cumolhydroperoxidverfahren oder die Diazotierung, die zur Herstellung von Phenolen aus Benzol und Benzolderivaten eingesetzt werden (Vollhardt und Schore 2000, Organische Chemie, Wiley-VCH).
Weiterhin ist bekannt, dass einzelne Hydroxylgruppen enzymatisch mit Hilfe von Monooxygenasen (EC 1.14.13., EC 1.14.14., EC 1.14.99) in nicht-aktivierte Kohlen¬ wasserstoffe eingeführt werden können. Man kennt heute über 100 verschiedene Enzyme, die solche Reaktionen katalysieren. Sie kommen ausschließlich intrazellulär vor und benötigen NAD(P)H oder andere komplexe Elektronendonatoren sowie molekularen Sauerstoff als Kofaktoren. Besonders vielseitig sind die Cytochrom P450-abhängigen Monooxygenasen, die in fast allen Organismen vorkommen und u. a. an der Synthese von Wirkstoffen (z. B. Steroide), der Metabolisierung von Fremdstoffen (z. B. Mono- und Polyaromaten) sowie an der Aktivierung von Mineralölkohlenwasserstoffen (z. B. ra-Alkane) beteiligt sind (Rehm and Reed 2000, Biotechnology Vol. 8b: biotransformations II, Wiley-VCH). Die Nutzbarkeit von P450-Enzymen in der Synthese¬ chemie ist allerdings stark eingeschränkt, da sie schwierig zu isolieren, wenig stabil und ihre Kosubstrate - NADH oder NADPH - extrem teuer sind.
Es gibt Versuche, durch gentechnische Manipulation von herkömmlichen P450-Enzymen neue Biokatalysatoren zu entwickeln, die an Stelle von NAD(P)H preiswerte Peroxide als Kosubstrate nutzen (Roberts 1999, The power of evolution: accessing the synthetic Potential of P450s. Chemistry & Biology 6: R269-R272). Die so erzeugten Enzyme verfügen jedoch noch nicht über die, für chemische Synthesen notwendige Effizienz und Stabilität.
Aufgabe der vorliegenden Erfindung ist es, die Prozesse zur enzymatischen Darstellung von hydroxylierten Produkten aus entsprechenden nicht-aktivierten Kohlenwasserstoffen mit möglichst geringem Aufwand verfahrenstechnischer und apparativer Art sowie unter Verwendung kostengünstiger Kosubstrate durchzuführen.
Die Ausgangsverbindungen sollen insbesondere mit geringem Energie- und Chemikalien¬ einsatz, schadstoffarm, ohne erhöhte Anforderungen an sterile bzw. semisterile Reaktions¬ führungen und mit möglichst kurzen Inkubationszeiten umgesetzt werden.
Erfindungsgemäß wird ein Verfahren zur enzymatischen Darstellung hydroxylierter Kohlenwasserstoffe aus entsprechenden nicht-aktivierten Ausgangsverbindungen in einem Einstufen-Reaktionsverfahren vorgeschlagen, bei dem die Substanzen bzw. Substanz¬ gemische zumindest durch Zugabe und ggf. Zudosierung von speziellen Haloperoxidasen mit Peroxygenaseaktivität und zumindest eines Oxidationsmittels, wie beispielsweise Wasserstoffperoxid, in einem wässrigen Milieu zur Reaktion gebracht werden, wobei die Oxygenierung nicht-aktivierter C-H-Bindungen erfolgt.
Das zellfreie, enzymatische Verfahren beruht dabei auf einem neu gefundenen extrazellulären Pilzenzym, wobei diese Haloperoxidase (EC 1.11.1.10) in Gegenwart des Oxidationsmittels in vorzugsweise gepufferten wässrigen Lösungen aromatische Kohlenwasserstoffe (wie Naphthalin oder Toluol) zu entsprechenden Phenolen unmittelbar, d. h. in dem besagten Einstufen-Reaktionsverfahren, umsetzt. Prinzipiell werden auf die gleiche Weise auch andere Verbindungen (beispielsweise Aliphaten und aliphatische Seitenketten von Aromaten sowie Cycloaliphaten) hydroxyliert. Das neu gefundene und zunächst als Arylalkohol-Arylaldehyd-Peroxidase (AAP) bezeichnete Enzym, das inzwischen jedoch als eine besondere Haloperoxidase mit Peroxygenasefunktion erkannt wurde, wird vorzugsweise von Basidiomyceten aus der Familie Bolbitiaceae (z. B. Agrocybe sp.) gebildet und zeichnet sich durch besondere katalytische Eigenschaften aus, die keine der bisher bekannten Peroxidasen oder P450- Enzyme besitzt.
Die Reaktionen mit dieser Agrocybe-aegerita-P eroxiάase (AaP) sind umweltfreundlich (d. h. sie erfordern keine aggressiven und umweltbelastenden Chemikalien). So sind Oxidationsmittel nur in katalytischen Mengen zur Gewährleistung der Peroxidaseaktivität, nicht aber zur direkten Umsetzung der Ausgangsverbindungen erforderlich. Die chemische Oxidation von Alkoholen und Aldehyden erfordert hingegen äquimolare Mengen an umweltgefährdenden Oxidationsmitteln (Peroxide, Ozon, Permanganate, Chromate). Des weiteren laufen die rein chemischen Hydroxylierungen Oxidationen nur in Gegenwart geeigneter Lösungsmittel (Methanol, Dimethylsulfoxid, Aceton) ab und erfolgen in wässrigen, lediglich gepufferten Reaktionslösungen nicht mit befriedigender Ausbeute. Während chemische Umsetzungen in der Regel eine Prozessführung bei höheren Temperaturen (Heizquelle) und/oder höheren Drücken benötigen, zeigt sich, dass die erfϊndungsgemäße AaP-katalysierte Umsetzung jeweils bei Raumtemperatur realisiert werden kann und keine speziellen Apparaturen (wie Druckreaktoren o. ä.) oder apparative Aufwände erfordert.
Die Vorteile der zellfreien, enzymatischen AaP-Umsetzungen gegenüber einer ebenfalls möglichen Hydroxylierung von nicht-aktivierten Kohlenwasserstoffen durch ganze Zellen (Bakterien, Hefen, Schimmelpilze, tierische oder pflanzliche Zellkulturen) bestehen in den relativ kurzen Reaktionszeiten, die keine sterile oder semisterile Reaktionsführung erforderlich machen. Im Vergleich zu P450-abhängigen Enzymen bestehen Vorteile bezüglich der Kosubstrate (preiswerte und stabile Peroxide anstelle von NAD(P)H) sowie bezüglich der Enzymgewinnung und -Stabilität (extrazelluläre Enzyme anstelle von intrazellulären, z. T. membrangebundenen Enzymen).
Mit den AaP -katalysierten Reaktionen ist erstmals möglich, nicht-aktivierte Kohlenwasser¬ stoffe mit Hilfe eines einzelnen, extrazellulären Biokatalysators, der lediglich ein Peroxid als Kofaktor benötigt, in einem einstufigen Prozess zu den entsprechenden Phenolen oder Alkoholen zu oxidieren. Die Erfindung soll nachstehend anhand von in der Zeichnung dargestellten Ausfuhrungs¬ beispielen näher erläutert werden, wobei die Erfindung nicht auf die behandelten Aromaten an sich beschränkt sein soll. Es zeigen:
Abb. 1: HPLC-Elutionsprofil der Umsetzung von Naphthalin zu 1- und 2-Naphthol mittels Agrocybe-aegeήta-P eroxidase (AaP). Das untere Chromatogramm bezieht sich auf eine Naphthalinprobe, die mit AaP und H2O2 behandelt wurde, das obere Chromatogramm zeigt eine enzymfreie Kontrolle. (1) - Naphthalin, (2) - 1-Naphthol, (3) - 2-Naphthol.
Abb. 2: Umsetzung von Toluol zu Benzylalkohol, Benzaldehyd, o-Kresol, /j-Kresol und Methyl-j?-benzochinon. Unteres HPLC-Elutionsprofil - AaP-behandelte Toluolprobe, oberes Chromatogramm - enzymfreie Kontrolle. (1) - Toluol, (2) - Benzylalkohol, (3) - Benzaldehyd, (4) - p-Kresol, (5) - o-Kresol, (6) - Methyl-p-benzochinon.
Abb. 3: Formelschema zu den in Abb. 1-2 sowie Ausführungsbeispiel 3 dargestellten AaP-katalysierten Hydroxylierungsreaktionen (AaP = Agrocybe-aegerita- Peroxidase). Naphthalinhydroxylierung (a), Toluoloxidation (b) und Cyclo- hexanhydroxylierung (c).
Ausführungsbeispiel 1:
200 nmol Naphtalin wurden in Natriumphosphat-Citrat-Puffer (50 mM, pH 7) zusammen mit 2 mM Wasserstoffperoxid und 0,1 U Λgrocybe-aegerita-P eroxidase (0,1 Unit bezüg¬ lich der Oxidation von Veratrylalkohol) in einem Gesamtvolumen von 1 ml bei 24 °C in einem offenem Glasgefäß kurz gerührt und acht Minuten stehen gelassen. Dann wurden 20 μl des Versuchsansatzes entnommen und mittels High Performance Liquid Chromatography (HPLC) vermessen [Säule: LiChrospher® RP 18 5 μm 125/4 (Firma Merck Darmstadt), Trennbedingungen: Gradient 20-80 % Acetonitril (0 bis 5 min, 20 %; 20 min 80 %, 20-25 min 80 %) in 0.05 % Phosphorsäure, konstante Flußrate 1 ml/min] (vgl. Abb. 1)]. Im Verlauf der enzymatischen Reaktion nahm die Naphthalinkonzentration um 162,8 nmol ab und 1-Naphthol (76,6 nmol) und 2-Naphthol (1,9 nmol) wurden als Produkte nachgewiesen. Ausführungsbeispiel 2:
200 nmol Toluol wurden in Natriumphosphat-Citrat-Puffer (50 mM, pH 7) zusammen mit 2 mM H2O2 und 0,1 Unit Agrocybe-aegerita-P eroxidase in einem Gesamtvolumen von 1 ml bei 24 °C in einem offenem Glasgefäß kurz gerührt und acht min stehen gelassen. Dann wurden 20 μl des Versuchsansatzes entnommen und mittels High Performance Liquid Chromatography (HPLC) vermessen [Säule: LiChrospher® RP 18 5 μm 125/4 (Firma Merck Darmstadt), Trennbedingungen: Gradient 20-80 % Acetonitril (0 bis 5 min, 20 %; 20 min 80 %, 20-25 min 80 %) in 0.05 % Phosphorsäure, konstante Flußrate 1 ml/min] (vgl. Abb. 2)]. Im Verlauf der enzymatischen Reaktion nahm die Toluolkonzentration um 111,5 nmol ab und Benzylalkohol (20,7 nmol), Benzaldehyd (7,4 nmol), 0-Kresol (1,9 nmol), p-Rresol (1,5 nmol) und Methyl-/>-benzochinon (5,7 nmol) wurden als Produkte nachgewiesen.
Ausführungsbeispiel 3:
200 nmol Cyclohexan wurden in Natriumphosphat-Citrat-Puffer (5O mM, pH 7) und 10 vol. % Ethanol zusammen mit 10 mM Glukose, 0,1 Unit Glukose-Oxidase (Sigma) und 0,1 Unit Agrocybe-aegerita-Peroxid&se in einem Gesamtvolumen von 1 ml bei 24 0C in einem offenem Glasgefäß 30 min gerührt. Dann wurde der gesamte Versuchsansatz mit 3 ml Schwefelkohlenstoff (CS2) extrahiert und der Extrakt mittels Gaschromatographie (GC/FID) vermessen [Säule: 60 m x 0.32 mm DB-I capillary column, 1 m dfj. Im Verlauf der enzymatischen Reaktion nahm die Cyclohexankonzentration um 96 nmol ab und Cyclohexanol (47,2 nmol) konnte als Produkt identifiziert werden.

Claims

Patentansprüche
1. Verfahren zur enzymatischen Hydroxylierung nicht-aktivierter Kohlenwasserstoffe in einem Einstufen-Reaktionsverfahren, bei dem die Substanzen bzw. Substanzgemische zumindest durch Zugabe und ggf. Zudosierung von neu gefundenen speziellen Haloperoxidasen mit Peroxygenaseaktivität und zumindest eines Oxidationsmittels, wie beispielsweise Wasserstoffperoxid, in einem wenigstens Wasser enthaltenden Milieu zur Reaktion gebracht werden, wobei nicht-aktivierte Kohlenwasserstoffe hydroxyliert werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nicht-aktivierte aromatische Kohlenwasserstoffe, die aus einem oder mehreren Ringen bestehen, hydroxyliert werden.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nicht-aktivierte nicht¬ aromatische Kohlenwasserstoffe hydroxyliert werden, wie Aliphaten und aliphatische Seitenketten sowie Cycloaliphaten.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Haloperoxidasen mit Peroxygenaseaktivität die Enzyme von Agrocybe aegerita (Syn. Pholiota cylindracea, Südlicher Ackerling) verwendet werden.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Haloperoxidasen mit Peroxygenaseaktivität die Enzyme von anderen Vertretern der Familie Bolbitiaceae, beispielsweise Agrocybe chaxingu, verwendet werden.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Haloperoxidasen die Enzyme aus Pilzen der Familie Bolbitiaceae verwendet werden.
7. Verfahren nach einem oder mehreren der vorgenannten Ansprüche, dadurch gekennzeichnet, dass dem Reaktionsgemisch zur weiteren Beschleunigung und Regulation der Umsetzung H2θ2-generierende Enzyme, vorzugsweise Oxidasen (z. B. Glucose- Oxidase) zugesetzt werden.
8. Verfahren nach einem oder mehreren der vorgenannten Ansprüche, dadurch gekennzeichnet, dass zur Stabilisierung der Reaktion Puffer auf Basis organischer Säuren, vorzugsweise Zitronensäure, und Phosphaten, vorzugsweise Natriumhydrogenphosphate, zugesetzt werden.
9. Verfahren nach einem oder mehreren der vorgenannten Ansprüche, dadurch gekennzeichnet, dass zur Verbesserung der Produktbildung organische Lösungsmittel (z. B. Ethanol) zugesetzt werden.
10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Oxidationsmittel organische Peroxide eingesetzt werden.
PCT/DE2005/001734 2004-09-28 2005-09-27 Verfahren zur enzymatischen hydroxylierung nicht-aktivierter kohlenwasserstoffe WO2006034702A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005003060T DE112005003060A5 (de) 2004-09-28 2005-09-27 Verfahren zur enzymatischen Hydroxylierung nicht-aktivierter Kohlenwasserstoffe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004047774.4 2004-09-28
DE200410047774 DE102004047774A1 (de) 2004-09-28 2004-09-28 Verfahren zur enzymatischen Hydroxylierung nicht-aktivierter Kohlenwasserstoffe

Publications (1)

Publication Number Publication Date
WO2006034702A1 true WO2006034702A1 (de) 2006-04-06

Family

ID=35569499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/001734 WO2006034702A1 (de) 2004-09-28 2005-09-27 Verfahren zur enzymatischen hydroxylierung nicht-aktivierter kohlenwasserstoffe

Country Status (2)

Country Link
DE (2) DE102004047774A1 (de)
WO (1) WO2006034702A1 (de)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028526A1 (de) * 2006-09-05 2008-03-13 Clariant Specialty Fine Chemicals (Deutschland) Gmbh Verfahren zur herstellung von optisch aktiven 1-arylalkoholen unter verwendung der haloperoxidase von agrocybe aegerita
WO2011120938A2 (en) 2010-03-28 2011-10-06 Novozymes A/S Enzymatic hydroxylation of aliphatic hydrocarbon
EP2468852A1 (de) 2007-03-30 2012-06-27 Novozymes A/S Pilz-Peroxygenasen und Anwendungsverfahren
WO2013004639A2 (en) 2011-07-07 2013-01-10 Novozymes A/S Enzymatic preparation of diols
WO2013021060A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021062A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021063A2 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021065A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021059A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021061A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021064A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013079531A2 (en) 2011-12-02 2013-06-06 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013079533A1 (en) 2011-12-02 2013-06-06 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013144105A1 (en) 2012-03-31 2013-10-03 Novozymes A/S Epoxidation using peroxygenase
WO2014056919A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056917A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056916A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056920A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056922A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056927A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056921A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
WO2015079064A2 (en) 2013-11-29 2015-06-04 Novozymes A/S Peroxygenase variants
US9499802B2 (en) 2012-10-12 2016-11-22 Novozymes A/S Polypeptides having peroxygenase activity
CN113999879A (zh) * 2022-01-04 2022-02-01 中国科学院天津工业生物技术研究所 一种过氧化酶催化氧化芳香烃及其衍生物的方法
WO2022066007A1 (en) 2020-09-23 2022-03-31 Gecco Biotech B.V. Bacterial unspecific peroxygenases (bupo's) and methods and uses thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006010910B3 (de) * 2006-03-09 2007-10-18 Dechema Gesellschaft Für Chemische Technik Und Biotechnologie E.V. Verfahren zur Umwandlung von Terpenen
JP2024506899A (ja) 2021-02-09 2024-02-15 エフ. ホフマン-ラ ロシュ アーゲー 核酸中のメチル化の塩基レベル検出のための方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BURTON S G: "Oxidizing enzymes as biocatalysts", TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 21, no. 12, December 2003 (2003-12-01), pages 543 - 549, XP004473519, ISSN: 0167-7799 *
DEMBITSKY V M: "Oxidation, epoxidation and sulfoxidation reactions catalysed by haloperoxidases", TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 59, no. 26, 23 June 2003 (2003-06-23), pages 4701 - 4720, XP004431644, ISSN: 0040-4020 *
ULLRICH RENÉ ET AL: "Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes.", APPLIED AND ENVIRONMENTAL MICROBIOLOGY. AUG 2004, vol. 70, no. 8, August 2004 (2004-08-01), pages 4575 - 4581, XP002364075, ISSN: 0099-2240 *
ULLRICH RENÉ ET AL: "The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene.", FEBS LETTERS. 7 NOV 2005, vol. 579, no. 27, 7 November 2005 (2005-11-07), pages 6247 - 6250, XP002364076, ISSN: 0014-5793 *
VELDE F V D ET AL: "Improving the catalytic performance of peroxidases in organic synthesis", TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 19, no. 2, 1 February 2001 (2001-02-01), pages 73 - 80, XP004314907, ISSN: 0167-7799 *

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028526A1 (de) * 2006-09-05 2008-03-13 Clariant Specialty Fine Chemicals (Deutschland) Gmbh Verfahren zur herstellung von optisch aktiven 1-arylalkoholen unter verwendung der haloperoxidase von agrocybe aegerita
US20130115662A1 (en) * 2007-03-30 2013-05-09 Novozymes A/S Fungal peroxygenases and methods of application
EP2468852A1 (de) 2007-03-30 2012-06-27 Novozymes A/S Pilz-Peroxygenasen und Anwendungsverfahren
EP2471911A2 (de) 2007-03-30 2012-07-04 Novozymes A/S Pilz-Peroxygenasen und Anwendungsverfahren
US8367387B2 (en) 2007-03-30 2013-02-05 Novozymes A/S Fungal peroxygenases and methods of application
WO2011120938A2 (en) 2010-03-28 2011-10-06 Novozymes A/S Enzymatic hydroxylation of aliphatic hydrocarbon
WO2011120938A3 (en) * 2010-03-28 2011-11-24 Novozymes A/S Regioselective hydroxylation of aliphatic hydrocarbons employing a fungal peroxygenase
US10174342B2 (en) 2010-03-28 2019-01-08 Novozymes A/S Enzymatic hydroxylation of aliphatic hydrocarbon
US9909147B2 (en) 2010-03-28 2018-03-06 Novozymes A/S Enzymatic hydroxylation of aliphatic hydrocarbon
US9534238B2 (en) 2010-03-28 2017-01-03 Novozymes A/S Enzymatic hydroxylation of aliphatic hydrocarbon
US9222109B2 (en) 2010-03-28 2015-12-29 Novozymes A/S Enzymatic hydroxylation of aliphatic hydrocarbon
WO2013004639A2 (en) 2011-07-07 2013-01-10 Novozymes A/S Enzymatic preparation of diols
US9382559B2 (en) 2011-08-10 2016-07-05 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
US9951319B2 (en) 2011-08-10 2018-04-24 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021061A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
US9487761B2 (en) 2011-08-10 2016-11-08 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021063A2 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021062A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
US10465173B2 (en) 2011-08-10 2019-11-05 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021065A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021060A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021059A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021064A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
US9506044B2 (en) 2011-08-10 2016-11-29 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
US9169469B2 (en) 2011-12-02 2015-10-27 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
US9404133B2 (en) 2011-12-02 2016-08-02 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013079533A1 (en) 2011-12-02 2013-06-06 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013079531A2 (en) 2011-12-02 2013-06-06 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
US10017483B2 (en) 2012-03-31 2018-07-10 Novozymes A/S Epoxidation using peroxygenase
US9908860B2 (en) 2012-03-31 2018-03-06 Novozymes A/S Epoxidation using peroxygenase
US10155734B2 (en) 2012-03-31 2018-12-18 Novozymes A/S Epoxidation using peroxygenase
US10358429B2 (en) 2012-03-31 2019-07-23 Novozymes A/S Epoxidation using peroxygenase
WO2013144105A1 (en) 2012-03-31 2013-10-03 Novozymes A/S Epoxidation using peroxygenase
US9663806B2 (en) 2012-03-31 2017-05-30 Novozymes A/S Expoxidation using peroxygenases
US9458478B2 (en) 2012-03-31 2016-10-04 Novozymes A/S Epoxidation using peroxygenase
WO2014056921A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056916A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
US9499802B2 (en) 2012-10-12 2016-11-22 Novozymes A/S Polypeptides having peroxygenase activity
US9534208B2 (en) 2012-10-12 2017-01-03 Novozymes A/S Polypeptides having peroxygenase activity
US9458435B2 (en) 2012-10-12 2016-10-04 Novozymes A/S Polypeptides having peroxygenase activity
US9587260B2 (en) 2012-10-12 2017-03-07 Novozymes A/S Polypeptides having peroxygenase activity
US9611459B2 (en) 2012-10-12 2017-04-04 Novozymes A/S Polypeptides having peroxygenase activity
US9453207B2 (en) 2012-10-12 2016-09-27 Novozymes A/S Polypeptides having peroxygenase activity
US9670468B2 (en) 2012-10-12 2017-06-06 Novozymes A/S Polypeptides having peroxygenase activity
US9719072B2 (en) 2012-10-12 2017-08-01 Novozymes A/S Polypeptides having peroxygenase activity
US9404094B2 (en) 2012-10-12 2016-08-02 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056919A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
US9920341B2 (en) 2012-10-12 2018-03-20 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056927A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056922A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056920A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
US9499801B2 (en) 2012-10-12 2016-11-22 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056917A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
WO2015079064A2 (en) 2013-11-29 2015-06-04 Novozymes A/S Peroxygenase variants
US10465172B2 (en) 2013-11-29 2019-11-05 Novozymes A/S Peroxygenase variants
WO2022066007A1 (en) 2020-09-23 2022-03-31 Gecco Biotech B.V. Bacterial unspecific peroxygenases (bupo's) and methods and uses thereof
CN113999879A (zh) * 2022-01-04 2022-02-01 中国科学院天津工业生物技术研究所 一种过氧化酶催化氧化芳香烃及其衍生物的方法
CN113999879B (zh) * 2022-01-04 2022-04-08 中国科学院天津工业生物技术研究所 一种过氧化酶催化氧化芳香烃及其衍生物的方法

Also Published As

Publication number Publication date
DE112005003060A5 (de) 2007-09-13
DE102004047774A1 (de) 2006-03-30

Similar Documents

Publication Publication Date Title
WO2006034702A1 (de) Verfahren zur enzymatischen hydroxylierung nicht-aktivierter kohlenwasserstoffe
DE102007016139A1 (de) Verfahren zur regioselektiven Oxygenierung von N-Heterozyklen
DE10332065A1 (de) Verfahren zur enzymatischen Darstellung von Säuren aus Alkoholen über die intermediäre Bildung von Aldehyden
Abril et al. Enzymatic Baeyer-Villiger type oxidations of ketones catalyzed by cyclohexanone oxygenase
Hage et al. Asymmetric reduction of ketones via whole cell bioconversions and transfer hydrogenation: complementary approaches
Musa et al. Xerogel-encapsulated W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus performs asymmetric reduction of hydrophobic ketones in organic solvents
EP1974045B1 (de) Verfahren zur enzymatischen herstellung von citronellal
EP1285082B1 (de) Verfahren, umfassend die indirekte elektrochemische regeneration von nad(p)h
EP2145009A1 (de) Verfahren zur enzymatischen reduktion von alkenderivaten
Nasario et al. Deracemization of 1-phenylethanol via tandem biocatalytic oxidation and reduction
EP1326984B1 (de) Cytochrom p450 monooxygenasen aus thermophilen bakterien
DE102008034829A1 (de) Verfahren zur Herstellung von 2-(4-Hydroxyphenoxy)propionsäure
Adam et al. Biocatalytic synthesis of optically active oxyfunctionalized building blocks with enzymes, chemoenzymes and microorganisms
Adlercreutz Novel biocatalyst for the asymmetric reduction of ketones: Permeabilized cells of Gluconobacter oxydans
Couto et al. Strategies for improving ligninolytic enzyme activities in semi-solid-state bioreactors
WO2008028526A1 (de) Verfahren zur herstellung von optisch aktiven 1-arylalkoholen unter verwendung der haloperoxidase von agrocybe aegerita
Pinto et al. Substrate selectivity and kinetic studies of (S)-specific alcohol dehydrogenase purified from Candida parapsilosis ATCC 7330
DE10313971A1 (de) Gekoppeltes cofaktorabhängiges enzymatisches Reaktionssystem
EP1625215B1 (de) Verfahren zur herstellung eines hydroxylierungskatalysators und seine verwendung
EP1829974A1 (de) Verfahren zur Herstellung von (S)-2-Butanol und 2-Butanon aus racemischem 2-Butanol unter Verwendung einer Alkoholdehydrogenase
Ngo et al. Section 3.8 The fusion protein FDHC23S+ AzoRo as an in situ fuel for H2O2-dependent reactions
Jeromin et al. Selective reductions of ketones in the presence of aldehydes with Chiralidon a superabsorbed alcohol dehydrogenase-a" green" metal free alternative to the Luche-reduction
DE102009045969B4 (de) Verfahren und Mittel zur Spaltung von Estern, Amiden und Thioestern der Ameisensäure
Burton et al. Oxidizing Enzymes in Multi‐Step Biotransformation Processes
Joshi et al. Optimization of culture conditions for enhanced asymmetric bioreduction of acetophenone and its derivatives by growing cells of Pseudomonas sp. AP1

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050030601

Country of ref document: DE

REF Corresponds to

Ref document number: 112005003060

Country of ref document: DE

Date of ref document: 20070913

Kind code of ref document: P

122 Ep: pct application non-entry in european phase