Předmětem vynálezu je způsob výroby 4“-epierythromycinu a jeho derivátů tak, že se hydrogenuje 4“-desoxy-4“-oxoerythromycin A nebo jeho, 11,12-karbonát za přítomnosti Raneyova niklu jako katalyzátoru při tlaku 0,35 MPa a pak se popřípadě a) acyluje 2‘-hydroxyskupina, b) vytvoří se 11,12-ikarbonát působením ethylenkarbonátu a c) produkt se převede na z farmaceutického hlediska přijatelnou sůl s kyselinou.
Vynález se týká způsobu výroby nových semisyntetických makrolidů, zejména 4“-eplerythromycinu a jeho 11,12-karbonátu.
Erythromycin je antibiotikum, které se tvoří při pěstování kmene Streptomyces erythreus ve vhodném prostředí, jak bylo popsáno v US patentovém spisu č. 2 653 899. Erythromycin, který je produkován ve dvou formách, A a B, je možno vyjádřit následujícím obecným vzorcem
Erythromycin —OH —H
Byla připravena řada derivátů erythromycinu ve snaze pozměnit jeho biologické nebo farmakodynamické vlastnosti.
V US patentovém spisu č. 3 417 077 je popsán reakční produkt erythromycinu a ethylenkarbonátu jako velmi účinná antibakteriální látka. V US patentu č. 3 884 903 se popisují deriváty 4“-deoxy-4“-oxoerythromycinu А а В jako cenná antibiotika a v US patentovém spisu č. 4 150 220 se popisuje nový způsob výroby 4“-oxoerythromycinu A a jeho použití jako meziproduktu, který vede к dalším antibakteriálním látkám. 9-Dihydroerythromycin A byl popsán v publikaci K. Gerzon, a další, J. Am. Chem. Soc.,
78, 6 396 (1956) a Μ. V. Sigal a další J. Am.
Chem. Soc. 78, 388 (1956).
Semisyntetické makrolidní antibakteriální sloučeniny, které je možno získat způsobem podle vynálezu je možno vyjádřit obecným vzorcem
R znamená atom vodíku, alkanoyl o 2 až atomech uhlíku nebo ethylsukcinyl,
Ri a R2 společně znamenají oxoskupinu,
R3 a Ri znamenají atomy vodíku nebo spo\ lu tvoří skupinu C=O, jakož i z farma/ ceutického hlediska přijatelné adiční soli těchto sloučenin s kyselinami.
Výhodná skupina sloučenin jsou ty látky, v nichž Ri a R2 znamenají oxoskupiny. Z těchto látek jsou zvláště výhodné:
4“-epierythromycin A 2‘-acetyl-4“-epierythromycin A, 4“-eipierythromycin A-ll,12-karbonát a 2‘-acetyl-4“-epierythromycin A-ll,12-karbonát.
je zcela zřejmé, že makrolidy typu erythromycinu se substituentem na hydroxy235036 skupinách 11,12 mohou existovat i ve formě poloketalu, přičemž tato forma je rovnováze s ketoformou, jak je znázorněno na následujícím schématu:
7Г
Všechny struktury, které mohou potenciálně existovat ve dvou formách budou dále uváděny v ketoformě, přestože do oboru vynálezu samozřejmě spadají obě formy.
4“-Eipierythromycin A (R = H, Ri -|- Rz = = 0, a Rs, Rá = H) je možno snadno získat hydrogenací 4“-deoxy-4“-oxoerythromycmu A (US , patentový spis č. 4 150 220) za přítomnosti Raneyova niklu nebo ušlechtilého kovu jako katalyzátoru v rozpouštědle, inertním vzhledem k reakčním složkám. Jde o rozpouštědlo, které reakční složky “rozpouští, avšak nereaguje s nimi ive větší míře a nereaguje také s výsledným produktem. Vhodnými rozpouštědly nebo jejich směsmi pro toto použití jsou nižší alkanoly, například isopropanol a ethanol.
Reakce se obvykle provádí při teplotě místnosti a trvá přibližně 4 až 6 hodin do úplného ukončení. Je výhodné nechat reakci probíhat přes noc.
Poměr reakčních složek k Raneyovu niklu nebo ušlechtilému kovu jako katalyzátoru není kritický, s výhodou se užije stejné hmotnostní množství Raneyova niklu nebo ušlechtilého kovu jako katalyzátoru a makrolidu. Pokud jde o vodík, je vhodný počáteční tlak 0,35 MPa, při tomto tlaku dojde k požadované redukci bez vytvoření většího množství vedlejších produktů.
Výsledný produkt je možno izolovat běžným způsobem. Výhodným způsobem je filtrace použitého, katalyzátoru, zahuštění filtrátu a vysrážení produktu vodou.
Sloučeniny, vyrobené způsobem podle vynálezu, v nichž R — H, Ri + R2 — O a Rs + \
-b R4 = Cu-0 je možno získat reakcí od/ z
povídajícího 4“-epierythromycinu· s ethylenkarbonátem v rozpouštědle, inertním za reakčních podmínek.
Reakci je možno provádět v nižších alkylalkanoátech, například v ethylacetátu, obvykle při teplotě varu rozpouštědla pod zpětným chladičem, reakce trvá 3 až 6 hodin.
Aby bylo možno zajistit dovršení reakce, je výhodné užít tří až pětinásobný hmotnostní přebytek ethylenkarbonátu vzhledem k makrolidu. Tento přebytek může být přítomen od počátku reakce nebo je možno tuto látku přidávat postupně v průběhu reakce.
Po ukončení reakce se přidá voda a produkt se extrahuje do rozpouštědla, použitého pro reakci. Rozpouštědlo se pak odstraní a produkt se čistí běžným způsobem.
Další možný způsob pro výrobu 4“-epierythromycin-A-ll,12-karbonátu (US patentový spis· č. 4 150 220) spočívá v redukci odpovídajícího 4“-deoxy-4“-oxoerythromycin A 11,12-karbonátu při použití Raneyova niklu nebo katalyzátoru ze skupiny ušlechtilých kovů a vodíku svrchu popsaným způsobem pro redukci 4“-deoxy-4“-oxoerythromycinu A.
Acylace 4“-epierythromycinu A nebo 4“-epierythromycin A 11,12-karbonátu vede ke vzniku odpovídajících 2‘-acylderivátů. Uvádí se v reakci ekvimolární množství anhydridu, popřípadě až 10% přebytek s příslušným makrolidem v rozpouštědle, které je inertní za reakčních podmínek.
Výhodnými rozpouštědly jsou s vodou nemísitelná, aprotická rozpouštědla jako methylenchlorid, toluen, ethylacetát a chloroform.
Reakce se běžně provádí při teplotě místnosti, reakční směs je však možno chladit na teplotu 0 °C nebo zahřívat na teplotu varu pod zpětným chladičem. Při teplotě místnosti je reakce v podstatě ukončena v· průběhu 5 až· 7 hodin.
Po dovršení reakce se přidá voda, produkt se izoluje z organické fáze a čistí.
Acylaci 2‘-hydroxyskupiny, je rovněž možno · provádět acylhalogenidem, například chloridem nebo bromidem. V případě, , že se užije acylhalogenidu jako acyiačního činidla, je výhodné přidat alespoň ekvivalentní množství sloučeniny, která váže kyselinu, například hydrogmuhličitanu sodného. Mimoto v případě, že acylačním činidlem je halogenid kyseliny, je výhodným rozpouštědlem ' aceton a po skončení reakce se směs vlije do směsi vody a rozpouštědla, nemísitelného s vodou, produkt se izoluje z organické vrstvy.
9-Dihydro-4“-epierythromycin A 11,12-karbonát je možno získat tak, že se působí na 9-dihydro-4“-epierythromycin A ethylenkarbonátem v rozpouštědle, které je inertní za reakčních . podmínek, například v toluenu nebo v benzenu. Stejně jako při výrobě 11,12-lkarbonátů 4“-epieryth.romycinu A je výhodné použít tří až pětinásobný přebytek ethylenkarbonátu k makrolidu, aby bylo možno zajistit dovršení reakce. Tento přebytek je možno přidat na počátku reakce nebo rozděleně v průběhu reakce.
Reakce se provádí při teplotě 40 až 60 °C výhodná reakční teplota je 55 °C. Při této reakční teplotě je . reakce dovršena v průběhu ' 4 až 5 hodin. Produkt je možno izolovat tak, že se na reakční směs působí vodou, směs se okyselí к rozpuštění makrolidu ve vodné fázi, načež se alkalizuje po předchozím odstranění .nežádoucích vedlejších produktů nebo případného přebytku ethylenkarbonátu.
Dalším možným způsobem pro výrobu 9-dihydro-4“-epierythromycin A 11,12-karbo nátu je redukce 4“-epierythromycin A 11,12-karbonátu působením hydridu. Postupuje se tak, že se makrolid uvede v reakci s 10násobným molárním přebytkem borohydridu sodíku v rozpouštědle, které sestává z ř nižšího alkanolu jako ethanolu a z vody v * objemovém poměru 10 : 1. Reakci je možno provádět při teplotě místnosti, trvá obvykle 1 až 2 hodiny. Po dovršení reakce se reakční směs přidá do. směsi vody a rozpouštědla, nemísitelného s vodou, například ke směsi vody a methylenchloridu a produkt se izoluje z organické fáze.
Acyla-ce 2‘-hydroxyskupiny 9-dihydro-4“-epierythromycinu A a 9-dihydro-4“-epierythromycinu A 11,12-karbonátu se provádí stejným způsobem, který byl popsán svrchu pro acylaci 4“-epierythromycinu A jeho 11,12-karbonátu.
Reakční činidla pro způsob podle vynálezu jsou známá, běžně se dodávají nebo jsou v průběhu přihlášky popsána. Příprava 4“-deoxy-4“-oxoerythromycinu A a jeho makrolidních derivátů je uvedena v US patentovém spisu č. 4 150 220.
Při využití chemoterapeutické účinnosti těch sloučenin, vyrobených způsobem podle vynálezu, které vytvářejí soli, je samozřejmě výhodné použití solí, přijatelných z farmaceutického hlediska. Přestože nerozpustnost některých solí ve vodě, jejich vysoká . toxicita nebo neschopnost krystalizovat, činí některé soli neschopné pro farmaceutické použití, je tyto soli možno převádět na odpovídající soli, které již jsou z farmakologického hlediska přijatelné rozkladem a tvorbou nové soli nebo převedením na adiční soli s kyselinou.
Příkladem kyselin, vhodných z farmaceutického hlediska mohou být kyseliny chlorovodíková, bromovodíková, jodovodíková, dusičná, sírová, siřičitá, fosforečná, octová, mléčná, citrónová, vinná, jantarová, maleinová, glukonová a asparagová.
Nové erythromycinové deriváty, vyrobené způsobem podle vynálezu jsou in vitro. účinné proti celé řadě grampozitivních mikroorganismů jako Staphyloccoccus aureus a Streptoccoccus pyogenes a proti některým gramnegativním mikroorganismům, zejména kulovitého nebo oválného tvaru (koky). Účinnost je možno prokázat pokusy in vitro proti různým mikroorganismům v nálevu z mozkové a srdeční tkáně běžnou zřeďovací technikou. Jejich účinnost in vitro umožňuje jejich použití pro místní aplikaci ve formě mazání, krémů a podobně, ke sterilizaci, například může běžet o předměty v nemocničních místnostech a Jako antimikrobiální látky pro průmyslové použití, například jako konzervační prostředky pro vodu, barvy a dřevo· nebo k zamezení tvorby slizu.
Při použití in vitro, například při místním podání se sloučenina s antimikrobiální účinností obvykle mísí s nosičem, přijatelným z farmaceutického hlediska, například s rostlinným nebo minerálním .olejem nebo se zvláčňovadlem. Je tedy možno účinné látky také rozpouštět . nebo dispergovat v kapalných nosičích nebo rozpouštědlech, jako jsou voda, alkohol, glykoly nebo směsi těchto látek nebo jiná inertní prostředí, přijatelná z farmaceutického hlediska, to jest prostředí bez škodlivého účinku na účinnou složku. Pro tyto účely se obvykle užívá koncentrace účinné látky 0,01 až 10 . hmotnostních %, vztaženo na celkovou hmotnost prostředku.
Řada . sloučenin, vyrobených způsobem podle vynálezu je účinná také proti grampozitivním a některým gramnegativním mikroorganismům in vivo, například proti Pasteurella multocida a Neisseria sicca při orálním a/nebo parenterálním . podání u živočichů včetně člověka. Jejich účinnost in vivo je poněkud omezena, jak je možno prokázat běžnými pokusy na myších přibližně stejné hmotnosti, které jsou infikovány příslušným mikroorganismem a léčeny perorálně . nebo podkožně zkoumanou látkou. Postupuje 'se tak, že se například 10 myším intraperitoneálně podá zředěná kultura, která obsahuje 1 až 10 dávek LDioo (nejnižší koncentrace, vyvolávající 100·% uhynutí).
Současně se provádí kontrolní pokusy, v nichž se myším podává mikroorganismus v malém zředění jako kontrola variace virulence . pokusného organismu. Zkoumaná látka se podá Ϋ2 hodiny po. nákaze a podání se opakuje po 4, 24 a 48 hodinách. Přežívající myši se chovají ještě . 4 dny po posledním ošetření a zaznamenává se množství přežívajících.
Při použití in vivo je možno nové slouče235036 niny, vyrobené způsobem podle vynálezu podávat perorálně nebo parenterálně, například podkožně nebo nltrosvalově v dávce, která se pohybuje v rozmezí 25 až 200 miligraimů/kg a den. Výhodná dávka je 150 až 200 mg/lkg a den. Vhodným nosičem pro iparenterální podání je buď vodný roztok jako voda, isotonický roztok chloridu sodného nebo dextrózy, Ringerův roztok nebo roztoky nevodné povahy, například roztoky v olejích rostlinného původu, jako v oleji z bavlníkových semen, v arašídovém oleji, kukuřičném oleji nebo sezamovém oleji, roztoky v dimethylsulfoxidu a dalších rozpouštědlech nevodné povahy, která nereagují s účinnou látkou, neovlivňují tuto látku a nejsou toxická v použitém množství. Jde například o glycerol, propylenglykol nebo sorbitol. Je také možno účinnou látku zpracovat na prostředky, vhodné pro příležitostné rozpuštění těsně před použitím.
Uvedené prostředky mohou obsahovat kapalná ředidla jako propylenglykol, diethylkarbonát, glycerol, sorbitol a podobně, pufry, hyaluronidázu, .místní anestetika a anorganické soli к zajištění požadovaného farmakologického účinku. Uvedené sloučeniny je také možno mísit s různými inertními nosiči, přijatelnými z farmaceutického hlediska, například pevnými ředidly, rozpouštědly vodné povahy, netoxickými organickými rozpouštědly, a je možno je zpracovat na kapsle, tablety, sublinguální prostředky, práškované směsi, suspenze, roztoky, elixíry a roztoky nebo suspenze pro parenterální podání. Obecně je možno uvést, že se účinné látky užívají v různých dávkách v koncentracích 0,5 až 90 hmotnostních % celkové hmotnosti prostředku.
Vynález bude osvětlen následujícími příklady.
Příklad 1
4“-epierythromycin A 11,12-karbonát
Směs 109 g Raneyova niklu ve formě suspenze a 109 g 4“-deoxy-4“-oxoerythromycin A 11,12-karbonátu (US patentový spis číslo 4 150 220) v 1 litru absolutního ethanolu se protřepává přes noc ve vodíkové atmosféře při teplotě místnosti při tlaku 0,35 MPa. Pevný podíl se odfiltruje vrstvou prostředku Super-cel a filtrát se zahustí ve vakuu na 550 až 600 ml. Koncentrovaný filtrát se zahřeje na parní lázni a přidá se 600 ml teplé vody. Roztok se míchá 1,5 hodiny při teplotě místnosti. Krystalický produkt se oddělí filtrací a suší se přes noc při teplotě 50 °C. Získá se 59,8 g výsledného produktu, který se čistí překrystalováním ze směsi ethanolu a vody. Tímto způsobem se získá 49,1 g produktu o teplotě tání 141 až 143 °C. NMR-spektrum (CDCh) má absorpci při 3,69 (2H, q), 3,29 (3H, s], 2,27 (6H, s) a 1,58 (3H, s) ppm.
Příklad 2
4“-epierythromycin A 11,12-karbonát
A. 4“-epierythromycin A
Suspenze 100 g Raneyova niklu v 1 litru absolutního ethanolu s obsahem 100 g 4“-deoxy-4“-oxoerythromycinu A (US patentový spis č. 4 150 220) se protřepává přes noc ve vodíkové atmosféře při teplotě místnosti a při tlaku 0,35 MPa. Katalyzátor se oddělí filtrací přes vrstvu prostředku super-cel a filtrát se zahustí ve vakuu na objem 300 ml. Ke koncentrovanému filtrátu se přidá 700 mililitrů vody a výsledný mléčný roztok se zahřeje na parní lázni. Přidá se malé množství ethanolu к zábraně spékání produktu při jeho srážení z roztoku. Směs se míchá 2 hodiny při teplotě místnosti, načež se produkt oddělí filtrací a usuší, čímž se získá 57,6 g surového produktu, filtrát se odpaří ve vakuu. Směs se ještě hodinu míchá a znovu se zfiltruje a odpaří, čímž se získá ještě 21,4 g produktu. Oba produkty se spojí, výsledný produkt má teplotu tání 141 až 144 °C. NMR-spektrum (CDCh) má absorpci při 3,2 (3H, s), 2,3 (6H, s) a 1,4 (3H, s) ppm.
Obdobným způsobem se z 200 mg 4“-deoxy-4“-oxoerythromycinu A a 600 mg 10% paládia na aktivním uhlí ve 30 ml methanolu po čtyřhodinovém protřepávání ve vodíkové atmosféře a po obdobném zpracování získá 118 mg 4“-epierythromycinu A.
B. 4“-epierythr-omycin A 11,12-karbonát
Směs 10 g 4“-epierythromycinu A, 20 g ethylenkarbonátu a 5 g uhličitanu draselného ve 100 ml ethylacetátu se zahřívá 3,5 hodin na teplotu varu pod zpětným chladičem. Pak se přidá ještě 10 g ethylenkarbonátu a směs se zahřívá ještě 2 hodiny. Pak se reakční směs zchladí na teplotu místnosti a vlije se za stálého míchání do 100 ml vody. Ethylacetátcvá vrstva se oddělí a postupně se promyje dvakrát 100 ml vody a jedenkrát 100 ml nasyceného vodného roztoku chloridu sodného, načež se vysuší síranem sodným. Odstraněním rozpouštědla se získá výsledný produkt ve formě viskózní kapaliny. Odparek se nechá překrystalovat (2,54 g) z isopropyletheru a diethyletheru, pak z isopropanolu a nakonec ze směsi ethanolu a vody. Získá se 896 mg produktu, identického s produktem z příkladu 1.
P ř í к 1 a d 3
2‘-acetyl-4“-epierythromycin A 11,12-karbonát
К míchanému roztoku 1,3 g 4“-epierythromycin A 11,12-karbonátu ve 20 ml methylenchloridu se přidá 0,167 ml anhydridu ky seliny octové a výsledná reakční směs se míchá 5 hodin při teplotě místnosti. Pak se reakční směs vlije do nasyceného roztoku hydrogenuhličitanu sodného. Organická fáze se promyje vodou a nasyceným vodným roztokem chloridu sodného a vysuší se síranem sodným. Rozpouštědlo se odpaří ve vakuu, čímž se získá 1,28 g bílého pánovitého výsledného produktu. Po* překrystalování z isopropyletheru se získá 904 mg čistého produktu o teplotě tání 212 až 214 °C. NMR-spektrum (CDCk) má absorpci při 3,29 (3H, s), 2,25 (6H, s), 2,03 (3H, s) a 1,59 (3H, s) ppm.
Příklad 4
2‘-propionyl-4“-epierythromycin A 11,12-karbonát
Roztok 1,3 g 4“-epierythromyci.n A 11,12-karbonátu a 0,227 ml anhydridu kyseliny propionové ve 20 ml methylenchloridu se míchá 6 hodin při teplotě místnosti. Pak se reakční směs vlije do nasyceného vodného rozteku hydrogenuhličitanu sodného, organická fáze se oddělí a promyje se vodou a nasyceným roztokem chloridu sodného. Organická fáze se vysuší síranem sodným a odpaří ve vakuu, čímž se získá 1,3 g bílého pěnovitého produktu. Tento produkt se nechá překrystalovat ze směsi acetonu a vody, čímž se získá 888 mg produktu o teplotě tání 209 až 213 °C. NMR-spektrum (CDCh) má absorpci při 3,32 (3H, s), 2,24 (6H, s) a 1,59 (3H, s) ppm.
Příklad 5
2‘- (2-ethoxykarbonylpropionyl) -4“-epierythromycin A 11,12-karbonát
Směs 1,3 g 4“-epierythromycin A 11,12-karbonát, 0,344 ml ethylsukcinylchloridu a 1 g uhličitanu sodného v 15 ml acetonu se míchá 3 hodiny při teplotě místnosti. Směs se vlije do směsi vody a methylenchloridu. Organická fáze se oddělí, promyje se vodou a nasyceným vodným roztokem chloridu sodného. Organická fáze se vysuší síranem sodným a odpaří ve vakuu, čímž se získá 1,4 g bílého pěnovitého produktu. Tento produkt se nechá překrystalovat z isopropýletheru, čímž se získá 915 mg produktu o teplotě tání 179 až 182 °C. NMR-spektrum (CDCls) má absorpci při 2,3 (3H, s), 2,61 (4H, s), 2,22 (6H, s) a 1,57 (3H, s) ppm.
Příklad 6
2<-acetyT4C£-epierythromycin A
К roztoiku 14 g 4“-epierythromycinu A ve
100 ml methylenchloridu se přidá 1,75 m’ anhydridu kyseliny octové' a reakční směs se míchá 2 hodiny při teplotě místnosti. Pak se reakční směs vlije do vody a pH se upra ví na hodnotu 9 pevným hydrogenuhličitanem sodným.
Organická fáze se oddělí, promyje se vodou a nasyceným vodným roztokem chloridu sodného, načež se vysuší síranem sodným. Paík se rozpouštědlo odstraní ve vakuu, čímž se získá 14,6 g surového produktu, který se nechá překrystalovat ze směsi hexanu a ethylacetátu, získá se 11,5 g čistého produktu. NMR-spektrum (CDCh) má absorpci při 3,3 (3H, s), 2,3 (6H, s), 2,0 (3H, s) a 1,4 (3H, s) ppm.
Příklad 7
2'-propionyl-4u-epierythromycin A
К roztoku 1,5 g 4“-epierythromycinu A v 15 ml acetonu se přidá 0,32 ml anhydridu kyseliny propionové a reakční směs se míchá přes noc při teplotcí místnosti. Pak se reakční směs vlije do methylenchloridu a zředí se hydrogenuhličitanem sodným. Organická fáze se oddělí a promyje se vodou a nasyceným vodným roztoikem chloridu sodného. Po vysušení organické fáze síranem sodným se rozpouštědlo odpaří ve vakuu, čímž se získá 1,52 g výsledného produktu. Produkt byl čištěn prekrystalováním ze směsi acetonu a vody, čímž bylo získáno 650 mg produktu o teplotě tání 192 až 195 stupňů C. NMR-spektrum má absorpci při 3,3 (3H, s), 2,3 (6H, s) a 1,4 (3H, s) ppm.
Příklad8
2‘- (2-ethoxykarbonylpropionyl) -4“-epierythromycin A
К suspenzi 1,5 g 4'‘-epierythromycinu A a 1,0 g hydrogenuhličitanu sodného v 15 ml acetonu se přidá 0,32 ml ethylsukcinylchloridu a reakční směs se míchá 4 hodiny při teplotě místnosti. Pak se přidá ještě 0,106 mililitrů svrchu uvedeného chloridu a směs se ještě hodinu míchá. Reakční směs se pak přidá к methylenchloridu a zředí se hydrogenuhličitanem sodným, organická fáze se oddělí, promyje se vodou a nasyceným vodným roztokem chloridu sodného, načež se vysuší síranem sodným. Rozpouštědlo se odpaří ve vakuu, čímž se získá 1,7 g surového produktu. Po překrystalování tohoto produktu z isopropyletheru se získá 639 mg čistého produktu o teplotě tání 123 až 127,5 stupňů C. NMR-spektrum (CDCls) má absorpci při 3,3 (3H, s), 2,6 (4И, s), 2,2 (6H, s) a 1,4 (3H, s) ppm.