CS235049B2 - Method of semi-synthetical macrolides production - Google Patents

Method of semi-synthetical macrolides production Download PDF

Info

Publication number
CS235049B2
CS235049B2 CS837629A CS762983A CS235049B2 CS 235049 B2 CS235049 B2 CS 235049B2 CS 837629 A CS837629 A CS 837629A CS 762983 A CS762983 A CS 762983A CS 235049 B2 CS235049 B2 CS 235049B2
Authority
CS
Czechoslovakia
Prior art keywords
hydrogen
reaction
water
pharmaceutically acceptable
carbonate
Prior art date
Application number
CS837629A
Other languages
English (en)
Inventor
Frank Ch Sciavolino
Mark A Guadliana
Original Assignee
Pfizer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfizer filed Critical Pfizer
Priority to CS837629A priority Critical patent/CS235049B2/cs
Publication of CS235049B2 publication Critical patent/CS235049B2/cs

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/08Hetero rings containing eight or more ring members, e.g. erythromycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Indole Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

Vynález se týká způsobu výroby semisynthetických makrolidů. Zejména 9-dihydro-4“-epierythromycinu A a rovněž jeho 11,12-karbonátů.
Erothromycin je antibiotikum, které se tvoří při pěstování kmene Streptomyces erythreus ve vhodném prostředí, jak bylo popsáno v US patentovém spisu č. 2 653 899. Erythromycin, který je produkován ve dvou formách, A a B, je možno vyjádřit následujícím obecným vzorcem
—OH —H
Byla připravena řada derivátů erythromycinu ve snaze pozměnit jeho biologické nebo farmakodynamické vlastnosti.
V US patentovém spisu č. 3 417 077 je popsán reakční produkt erythromycinu a ethylenkarbonátu jako velmi účinná antibakteriální látka. V US patentu č. 3 884 903 se popisují deriváty 4“-deoxy-4“-oxoerythromycinu А а В jako cenná antibiotika a v US patentovém spisu č. 4 150 220 se popisuje nový způsob výroby 4“-oxoerythromycinu a jeho použití jako meziproduktu, který vede к dalším antibakteriálním látkám.
9-Dihydroerythromycin A byl popsán v publikaci K. Gerzon, a další, J. Am. Chem. Soc., 78, 6396 (1956) a Μ. V. Sigal a další,
J. Am. Chem. Soc. 78, 388 (1956).
Semisynitetické makrolidní antibakteriální sloučeniny, které je možno získat způsobem podle vynálezu je možno vyjádřit obecným vzorcem
R znamená atom vodíku, alkanoyl o 2 až 3 atomech uhlíku nebo ethylsukcinyl,
Ri a R2 mohou znamenat nezávisle na sobě hydroxyskupinu o atom vodíku,
R3 a R4 znamenají atomy vodíku nebo spolu tvoří skupinu \ c=o, /
jaikož i z farmaceutického hlediska přijatelné adiční soli těchto sloučenin s kyselinami.
Skupinou výhodných sloučenin jsou ty látky, v nichž Ri znamená hydroxyskupinu, R2 znamená atom vodíku a R3 a Ri společně tvoří skupinu \
C = O.
/
Zvláště výhodnými látkami této skupiny jsou:
9-dihydro-4“-epierythromycin A 11,12-karbonát a
9-dihydro-2‘-acetyl-4“-epierythromycin A
11,12-karbonát.
Je zcela zřejmé, že makrolidy typu erythromycinu se substituentem na hydroxyskupinách 11,12 mohou existovat i ve formě poloketalu, přičemž tato forma je v rovnováze s ketoforimou, jak je znázorněno na následujícím schématu:
Všechny struktury, které mohou potenciálně existovat ve dvou formách, budou dále uváděny v ketoformě, přestože do oboru vynálezu samozřejmě spadají obě formy.
Možným způsobem pro výrobu 9-dlhydro-4“-epierythromycin A 11,12-karbonátu je redukce 4“-epierythromycin A 11,12-karbonátu působením hydridu. Postupuje se tak, že se imakrolid uvede v reakci s lOnásobným molárním přebytkem borohydridu sodíku v rozpouštědle, které sestává z nižšího alkanolu jako ethanolu a z vody v objemovém· poměru 10 : 1. Reakci je možno provádět při teplotě místnosti, trvá obvykle 1 až 2 hodiny. Po dovršení reakce se reakční směs přidá do směsi vody a rozpouštědla, nemísitelného s vodou, například ke směsi vody a methylenchloridu a produkt se izoluje z organické fáze. '
Acylace 9-dihydro-4“-epierythromycin A
11.12-kárbonátu vede ke vznku odpovídajících 2‘-acylderivátů. Uvádí se v reakci ekvimolární množství anhydridu, popřípadě až 10·% přebytek s příslušným makrolidem v rozpouštědle, které je inertní za reakčních podmínek.
Výhodnými rozpouštědly jsou s vodou nemísitelná, aprotická rozpouštědla jako ethylenchlorid, toluen, ethylacetát a chloroform.
Reakce se běžně provádí při teplotě místnosti, reakční směs je vsak možno chladit na teplotu 0 °C nebo zahřívat na teplotu varu pod zpětným chladičem. Při teplotě míst8 nosti je reakce v podstatě ukončena v průběhu 5 až 7 hodin.
Po dovršení reakce se přidá voda, produkt se izoluje z organické fáze i čistí.
Acylaci -‘-hydroxyskupiny, je rovněž možno ' provádět acylhalogenidem, například chloridem nebo bromidem. V případě, že se užije acylhalogenidu jako acylačního činidla, je výhodné přidat alespoň ekvivalentní množství sloučeniny, která váže kyselinu, například hydrogenuhličitanu sodného. Mimoto v případě, že acylačním činidlem je halogenld kyseliny, je výhodným rozpouštědlem aceton a po skončení reakce se směs vlije do směsi vody a rozpouštědla, nemísitelného s vodou, produkt se izoluje z organické vrstvy.
Při využití chemoterapeutické účinnosti těch sloučenin, vyrobených způsobem podle vynálezu, které vytvářejí soli, je samozřejmě výhodné použití solí, přijatelných z farmaceutického hlediska. Přestože nerozpustnost některých solí ve vodě, jejich vysoká toxicita nebo neschopnost krystalizovat činí některé soli neschopné pro farmaceutické použití, je tyto soli možno· převádět na odpovídající soli, které již jsou z farmakologického hlediska přijatelné rozkladem s tvorbou nové soli nebo převedením na adiční soli s kyselinou.
Příkladem kyselin, vhodných z farmaceutického hlediska mohou být kyseliny chlorovodíková, bromovodíková, jodovodíková, dusičná, sírová, siřičitá, fosforečná, octová, mléčná, citrónová, vinná, jantarová, maleinová, glukonová a asparagová.
Nové erythromycinové deriváty, vyrobené způsobem podle vynálezu jsou in vitro účinné proti celé řadě grampozitivních · mikroorganismů jako· Staphylococcus aureus a Streptococcus pyogenes a proti některým gramnegativním mikroorganismům, zejména kulovitého nebo oválného tvaru (koky).
Účinnost je možno prokázat pokusy in vitro proti různým mikroorganismům v ' nálevu z mozkové a srdeční tkáně běžnou zřeďovací technikou. Jejich účinnost in vitro umožňuje jejich použití pro místní aplikaci ve formě mazání, krémů a podobně, ke sterilizaci, například může běžet o předměty v· nemocničních místnostech a jako antimikrobiální látky pro průmyslové použití, například jako konzervační prostředky pro vodu, barvy a dřevo nebo k zamezení tvorby slizu.
Při použití in vitro, například při místním podání se sloučenina s antimikrobiální účinností obvykle · mísí s nosičem, přijatelným z farmaceutického hlediska, například s rostlinným nebo minerálním olejem nebo se zvláčňovadlem. Je tedy možno účinné látky také rozpouštět nebo dispergovat v kapalných nosičích · nebo rozpouštědlech, jako jsou voda, alkohol, glykoly nebo směsi těchto látek nebo jiné inertní prostředí, přijatelné z farmaceutického hlediska, to jest prostředí bez škodlivého účinku na účinnou složku. Pro tyto účely se obvykle užívá koncentrace účinné látky 0,01 až 10 hmotnostních °/o, vztaženo na celkovou hmotnost prostředku.
Rada sloučenin, vyrobených způsobem podle vynálezu je účelná také proti grampozitivním a některým gramnegativním mikroorganismům in vivo, například proti Pasteurella multocida a Neiseeria sicca při orální a/nebo parenterální podání u živočichů včetně člověka. Jejich účinnost in vivo· je poněkud omezena, jak je možno prokázat běžnými pokusy na myších přibližně stejné hmotnosti, které jsou infikovány příslušným mikroorganismem a léčeny perorálně nebo podkožně zkoumanou látkou.
Postupuje se tak, že se například 10 myším interperitoneálně podá zředěná kultura, která obsahuje 1 až 10 - dávek LDioo (nejnižší koncentrace, vyvolávající 100'% uhynutí). Současně se provádí kontrolní pokusy, v nichž se myším podává mikroorganismus v malém zředění jako kontrola variace virulence pokusného organismu. Zkoumaná látka se podá % hodiny po nákaze a podání se opakuje po 4, 24 a 48 hodinách. Přežívající myši se chovají ještě 4 dny po posledním ošetření a zaznamenává se množství přežívajících.
Při použití in vivo je možno nové sloučeniny, vyrobené způsobem podle vynálezu podávat perorálně nebo parenterálně, například podkožně nebo nitrosvalově v dávce, která se pohybuje v rozmezí 25 až 200 miligramů/kg a den. Výhodná dávka je 150 až 200 mg/kg a den. - Vhodným nosičem pro parenterální podání je buď vodný roztok jako voda, isotonický roztok chloridu sodného' nebo dextrózy, Ringerův roztok nebo roztoky nevodné povahy, například roztoky v olejích rostlinného původu, jako v oleji z bavlníkových semen, v arašídovém oleji, kukuřičném oleji nebo sezamovém oleji, roztoky v dimethylsulf oxidu a - dalších rozpouštědlech nevodné povahy, která nereagují s účinnou látkou, neovlivňují tuto látku a nejsou toxické v použitém množství. Jde například o glycerol, propylenglykol nebo sorbitol. Je také možno účinnou látku zpracovat na prostředky, vhodné pro příležitostné rozpuštění těsně před použitím.
Uvedené prostředky -mohou Obsahovat kapalná ředidla jako propylenglykol, diethylkarbonát, glycerol, sorbitol a podobně, pufry, hyaluronidázu, místní anestetika a anorganické soli k zajištění požadovaného farmakologického účinku.
Uvedené sloučeniny je také možno mísit s různými inertními nosiči, přijatelnými z farmaceutického hlediska, například pevnými ředidly, rozpouštědly vodné povahy, netoxickými organickými rozpouštědly, a je možno je zpracovat na kapsle, tablety, sublinguální prostředky, práškované směsi, suspenze, roztoky, elixíry a roztoky nebo suspenze pro parenterální podání. Obecně je možno uvést, že se účinné látky užívají v různých dávkách v koncentracích 0,5 až 90 · hmotnostních % celkové - hmotnosti prostředku.
Vynález bude osvětlen následujícími příklady.
Příklad 1
9-dihydro-4“-epierythromycin A 11,12-karbonát
K roztoku 500 mg 4“-epierythromycin A
11.12- karbonátu v 10 ml ethanolu a 1 ml vody se za stálého míchání při teplotě místnosti v dusíkové atmosféře přidá 249 mg borohydridu sodíku. Reakční směs se míchá
1,5 hodiny a pak se vlije za stálého míchání do směsi vody a - methylenchloridu a pH se upraví na 2,5. Po 10 minutách se pH - upraví na 11, organická fáze se oddělí, promyje se vodou a nasyceným vodným roztokem chloridu sodného, načež se vysuší síranem sodným. Odpařením rozpouštědla ve vakuu se získá 415 mg surového produktu jako bílá pěna.
Produkt se čistí chromatografií na 36 g silikagelu 60 o průměru zrn 0,07 až 0,038 nm při použití směsi -chloroformu, methanolu, a hydroxidu amonného v objemovém poměru 97 : 3 : 0,03, odebírají se frakce po 7 ml. Při frakci 55 se poměr elučních činidel změní na 90 : 10 : 0,03 a odeberou se frakce 72 až 100 a tyto frakce se slijí. Odpařením rozpouštědla se získá 209 mg čistého produktu. · NMR-spektrum · (CDClsJ má absorpci při 3,26 (3H, s), 2,30 (6H, s) a 1,46 (3H, s) ppm.
P ř í k 1 a d 2 '
9-dihydro-2‘-acety.1-4“-epierythromycin A
11.12- karbonát
K roztoku 1,5 g 9-dihydro-4“-epierythromycin A 11,12-karbonátu v 15 ml methylenchloridu se přidá 0,214 ml anhydridu -kyseliny octové a reakční směs se míchá 6 hodin při teplotě místnosti. Pak se směs - vlije do 25 ml vody a pH se upraví na 9,5. Organická fáze se -oddělí, promyje se vodou a nasyceným vodným roztokem chloridu sodného, načež se vysuší síranem sodným. Rozpouštědlo se odpaří ve vakuu, čímž se získá 1,4 gramů výsledného produktu. NMR--pektrum (CDCls) má absorpci při 3,29 (3H, sj, 2,25 (6H, s), 2,0 (3H, sj, 1,43 (3H, s] ppm.
Příklad 3
9-dihydro-2lspropioIlyl-4“epierythгomycln A
11.12- karbonát
Obdobným způsobem jako v příkladu 2 se získá z 1,5 g 9-dihydro-4<‘-epierythromys cin A 11,12-karbonátu a 0,306 ml anhydridu kyseliny propionové v 15 ml methylenchlo235049 ridu po 5 hodinách v průběhu reakce celkem 1,41 g výsledného produktu. NMR-spektrum (CDCls) má absorpci při 3,32 (3H, s), 2,27 (6H, s) a 1,46 (3H, s) ppm.
Příklad 4
9-dihydro-2‘-(2-ethoxykarbonylpropionyl)-4“-epierythromycin A 11,12-karbonát
К roztoku 1,5 g 9-dihydro-4“-epierythromycin A 11,12-karbonátu v 15 ml acetonu se za stálého míchání přidá 1 g hydrogenuhli čitan-u sodného a pak ještě 0,421 ml ethylsulkcinylcihloridu a směs se míchá 6,5 hodiny při teplotě místnosti. Pak se směs vlije do směsi vody a methylenchloridu a pH se upraví na 9,5. Organická fáze se oddělí promyje se vodou a nasyceným vodným roztokem chloridu sodného, načež se vysuší síranem sodným. Odpařením rozpouštědla ve vakuu se získá 1,6 g výsledného produktu. NMR-spektrum (CDCls) má absorpci při 3,31 (3H, (s), 2,62 (4H, s), 2,27 (6H, s) a 1,47 ( 3H, s) ppm.

Claims (1)

  1. Způsob výroby semisynthetických makrolidů obecného vzorce kde
    R znamená atom vodíku, alkanoyl o 2 až 3 atomech uhlíku nebo ethylsukcinyl,
    Ri a R2 znamenají nezávisle na sobě hydroxyskupinu a atom vodíku,
    R3 a R4 spolu tvoří skupinu C = O, jakož i adičních solí těchto látek s kyselinami, přijatelných z farmaceutického hlediska, vyznačující se tím, že se redukuje sloučenina obecného vzorce borohydrideím sodíku, načež se popřípadě
    a) převede výsledný produkt na sloučeninu, v níž R znamená alkanoyl o 2 až 3 atomech uhlíku nebo ethylsukcinyl reakcí s příslušným halogenidem kyseliny nebo anhydridem obecného vzorce RC1, RBr nebo R2O, kde R má výše uvedený význam s výjimkou atomu vodíku nebo se
    b) výsledný produkt převede na sůl, přijatelnou z farmaceutického hlediska reakcí s vhodnou kyselinou.
CS837629A 1982-03-01 1983-10-18 Method of semi-synthetical macrolides production CS235049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS837629A CS235049B2 (en) 1982-03-01 1983-10-18 Method of semi-synthetical macrolides production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US06/353,547 US4382085A (en) 1982-03-01 1982-03-01 4"-Epi erythromycin A and derivatives thereof as useful antibacterial agents
CS831371A CS235036B2 (en) 1982-03-01 1983-02-28 Method of 4"-epierythromycine a production
CS837629A CS235049B2 (en) 1982-03-01 1983-10-18 Method of semi-synthetical macrolides production

Publications (1)

Publication Number Publication Date
CS235049B2 true CS235049B2 (en) 1985-04-16

Family

ID=23389603

Family Applications (3)

Application Number Title Priority Date Filing Date
CS831371A CS235036B2 (en) 1982-03-01 1983-02-28 Method of 4"-epierythromycine a production
CS837629A CS235049B2 (en) 1982-03-01 1983-10-18 Method of semi-synthetical macrolides production
CS837628A CS235048B2 (en) 1982-03-01 1983-10-18 Method of semi-synthetical macrolides production

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CS831371A CS235036B2 (en) 1982-03-01 1983-02-28 Method of 4"-epierythromycine a production

Family Applications After (1)

Application Number Title Priority Date Filing Date
CS837628A CS235048B2 (en) 1982-03-01 1983-10-18 Method of semi-synthetical macrolides production

Country Status (26)

Country Link
US (1) US4382085A (cs)
EP (1) EP0087905B1 (cs)
JP (1) JPS58159499A (cs)
KR (1) KR850000965B1 (cs)
AT (1) ATE15048T1 (cs)
AU (1) AU555208B2 (cs)
CA (1) CA1178596A (cs)
CS (3) CS235036B2 (cs)
DD (1) DD211565A5 (cs)
DE (1) DE3360589D1 (cs)
DK (1) DK157495C (cs)
EG (1) EG16630A (cs)
ES (2) ES8403928A1 (cs)
FI (1) FI74287C (cs)
GR (1) GR78094B (cs)
GT (1) GT198301599A (cs)
HU (1) HU193157B (cs)
IE (1) IE56056B1 (cs)
IL (1) IL68004A (cs)
NO (1) NO155932C (cs)
NZ (1) NZ203417A (cs)
PH (1) PH17908A (cs)
PL (1) PL138758B1 (cs)
PT (1) PT76298B (cs)
RO (1) RO86647B (cs)
ZA (1) ZA831356B (cs)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526889A (en) * 1982-11-15 1985-07-02 Pfizer Inc. Epimeric azahomoerythromycin A derivative, intermediates and method of use
PH19293A (en) * 1982-11-15 1986-03-04 Pfizer Epimeric azahomoerythromycin,pharmaceutical composition containing the same and method of use thereof
GR80277B (en) * 1983-09-06 1985-01-04 Pfizer Azahomoerythromycin b derivatives and intermediates therefor
JPS60120895A (ja) * 1983-12-02 1985-06-28 Taisho Pharmaceut Co Ltd 6−0−メチル−2′−0,ν−ビス(ベンジルオキシカルボニル)−ν−デメチルエリスロマイシンaの製法
JPS60214796A (ja) * 1984-04-06 1985-10-28 Taisho Pharmaceut Co Ltd 6−0−メチルエリスロマイシン類の製法
EP0184921A3 (en) * 1984-12-08 1986-10-29 Beecham Group Plc Erythromycin derivatives
US4783811A (en) * 1984-12-27 1988-11-08 Texas Instruments Incorporated Method and apparatus for determining syllable boundaries
US4681872A (en) * 1985-11-12 1987-07-21 Abbott Laboratories Erythromycin A 11,12-carbonate and method of use
US4640910A (en) * 1985-11-12 1987-02-03 Abbott Laboratories Erythromycin A silylated compounds and method of use
US4833236A (en) * 1986-05-02 1989-05-23 Taisho Pharmaceutical Co., Ltd. Erythromycin derivatives
DK0699207T3 (da) * 1993-05-19 1997-12-08 Pfizer Mellemprodukt til azithromycin
US5441939A (en) * 1994-03-04 1995-08-15 Pfizer Inc. 3"-desmethoxy derivatives of erythromycin and azithromycin
US5605889A (en) * 1994-04-29 1997-02-25 Pfizer Inc. Method of administering azithromycin
CA2492846C (en) * 2002-08-29 2012-09-25 Kosan Biosciences, Inc. Motilide compounds
WO2004101592A1 (ja) * 2003-05-19 2004-11-25 Taisho Pharmaceutical Co., Ltd. エリスロマイシンa誘導体の製造方法
US7211568B2 (en) * 2003-12-18 2007-05-01 Kosan Biosciences Incorporated 9-Desoxoerythromycin compounds as prokinetic agents

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3417077A (en) * 1966-05-16 1968-12-17 Lilly Co Eli Erythromycin derivative and process for the preparation thereof
US3884904A (en) * 1973-06-21 1975-05-20 Abbott Lab 11-Substituted erythromycin B derivatives
US3884903A (en) * 1973-06-21 1975-05-20 Abbott Lab 4{41 -Deoxy-4{41 -oxoerythromycin B derivatives
SE445223B (sv) * 1977-02-04 1986-06-09 Pfizer Sett att framstella 4"-amino-erytomylin-a-derivat
US4150220A (en) * 1977-02-04 1979-04-17 Pfizer Inc. Semi-synthetic 4"-erythromycin A derivatives

Also Published As

Publication number Publication date
KR840003647A (ko) 1984-09-15
AU555208B2 (en) 1986-09-18
US4382085A (en) 1983-05-03
RO86647A (ro) 1985-04-17
ES520177A0 (es) 1984-04-01
DK96783D0 (da) 1983-02-28
CS235036B2 (en) 1985-04-16
DD211565A5 (de) 1984-07-18
CS235048B2 (en) 1985-04-16
IE56056B1 (en) 1991-04-10
DK96783A (da) 1983-09-02
GT198301599A (es) 1984-09-13
PL240764A1 (en) 1985-01-02
ATE15048T1 (de) 1985-09-15
RO86647B (ro) 1985-05-01
PL138758B1 (en) 1986-10-31
IL68004A0 (en) 1983-06-15
ZA831356B (en) 1983-11-30
PH17908A (en) 1985-01-25
GR78094B (cs) 1984-09-26
DK157495C (da) 1990-06-11
FI74287C (fi) 1988-01-11
PT76298A (en) 1983-03-01
EP0087905B1 (en) 1985-08-21
EG16630A (en) 1991-03-30
ES526323A0 (es) 1985-11-16
IE830411L (en) 1983-09-01
CA1178596A (en) 1984-11-27
ES8602837A1 (es) 1985-11-16
ES8403928A1 (es) 1984-04-01
EP0087905A1 (en) 1983-09-07
NO830686L (no) 1983-09-02
AU1189883A (en) 1983-09-08
IL68004A (en) 1986-11-30
FI830654A0 (fi) 1983-02-28
FI74287B (fi) 1987-09-30
PT76298B (en) 1986-01-27
JPS58159499A (ja) 1983-09-21
NZ203417A (en) 1985-10-11
FI830654L (fi) 1983-09-02
NO155932C (no) 1987-06-24
DE3360589D1 (en) 1985-09-26
DK157495B (da) 1990-01-15
KR850000965B1 (ko) 1985-07-02
HU193157B (en) 1987-08-28
NO155932B (no) 1987-03-16
JPH0140039B2 (cs) 1989-08-24

Similar Documents

Publication Publication Date Title
CS235049B2 (en) Method of semi-synthetical macrolides production
US4382086A (en) 9-Dihydro-11,12-ketal derivatives of erythromycin A and epi-erythromycin A
JPS5827800B2 (ja) 新規抗菌剤
IL93936A (en) History of 9-dioxo-21,9-epoxy - erythromycin, method of preparation History of 11-oxo and 11-hydroxy, and pharmaceutical preparations containing them
KR900008676B1 (ko) 항균성 9-데옥소-9a-알릴 및 프로파길-9a-아자-9a-호모에리트로마이신 A유도체
KR850000967B1 (ko) Omt의 c-23-변형 유도체의 제조방법
GB1593644A (en) Oleandomycin derivatives
JPS63277682A (ja) 新規化合物、その製法及びそれを含む医薬組成物
US4585759A (en) Antibacterial derivatives of a neutral macrolide
CS200536B2 (en) Method of producing epimeric 4-amino oleandomycin derivatives
US4429116A (en) Alkylated oleandomycin containing compounds
JPH0216758B2 (cs)
WO2005030786A1 (en) 3&#39;-n-substituted-3-o-substituted erythronolide a derivatives
US4363803A (en) 3&#34;,4&#34;-Oxyallylene erythromycin and oleandomycin, composition and method of use
US4029881A (en) Antibiotic 9-acyl-3&#34;-thiomethoxymethyl-SF-837 composition and process for preparing the same
US4413119A (en) Semi-synthetic macrolides
JPS63246392A (ja) タイロシン誘導体
DK158473B (da) Cycliske ethere af 9-deoxo-9a-aza-9a-homoerythromycin a og dettes 4ae-epimer, forbindelser til anvendelse som udgangsmateriale ved deres fremstilling, farmaceutiske praeparater indeholdende de cycliske ethere og anvendelse af de cycliske ethere til fremstilling af laegemidler
HU211493A9 (en) Derivatives 10, 11, 12, 13-tetrahydrodesmycosin, processes for preparation and use thereof in pharmaceuticals