CS223888B2 - Method of making the acryl acid - Google Patents
Method of making the acryl acid Download PDFInfo
- Publication number
- CS223888B2 CS223888B2 CS807791A CS779180A CS223888B2 CS 223888 B2 CS223888 B2 CS 223888B2 CS 807791 A CS807791 A CS 807791A CS 779180 A CS779180 A CS 779180A CS 223888 B2 CS223888 B2 CS 223888B2
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- reaction
- stage
- propylene
- gas
- gases
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000002253 acid Substances 0.000 title description 2
- -1 acryl Chemical group 0.000 title description 2
- 238000006243 chemical reaction Methods 0.000 claims abstract description 151
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 claims abstract description 88
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims abstract description 52
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 51
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims abstract description 49
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 44
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims abstract description 43
- 230000003647 oxidation Effects 0.000 claims abstract description 39
- 230000003197 catalytic effect Effects 0.000 claims abstract description 26
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 19
- 239000007789 gas Substances 0.000 claims description 100
- 239000003054 catalyst Substances 0.000 claims description 64
- 239000000203 mixture Substances 0.000 claims description 56
- 238000000034 method Methods 0.000 claims description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 40
- 238000001816 cooling Methods 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 11
- 239000007795 chemical reaction product Substances 0.000 abstract 1
- 239000012808 vapor phase Substances 0.000 abstract 1
- 229940095050 propylene Drugs 0.000 description 43
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000004880 explosion Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 230000002269 spontaneous effect Effects 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 5
- 239000008246 gaseous mixture Substances 0.000 description 5
- 229910052863 mullite Inorganic materials 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 239000002912 waste gas Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000002360 explosive Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 241001648319 Toronia toru Species 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 240000008100 Brassica rapa Species 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000008090 Colias interior Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000755093 Gaidropsarus vulgaris Species 0.000 description 1
- 241000772415 Neovison vison Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 241000109329 Rosa xanthina Species 0.000 description 1
- 241001274961 Rubus repens Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/32—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
- C07C45/33—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
- C07C45/34—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
- C07C45/35—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
- B01J8/067—Heating or cooling the reactor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
- C07C51/252—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00212—Plates; Jackets; Cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/02—Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
- B01J2208/023—Details
- B01J2208/024—Particulate material
- B01J2208/025—Two or more types of catalyst
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
Vynález se Obecně týká způsobu výroby kyseliny akrylové, zejména dvoustupňovou katalytickou oxidací propylenu v plynné fázi. Zvláště se vynález týká způsobu výroby kyseliny akrylové oxidací propylenu při vysoké koncentraci.
jako způsob výroby kyseliny akrylové je znám způsob katalytické oxidace propyleňu ve dvou stupních v plynné fázi pomocí vzduchu a tento způsob byl již převeden do průmyslové praxe. V prvním stupni tohoto postupu se propylen míchá a zavádí se vzduchem a vodní parou nebo neaktivním plynem, jako je dusík, čímž se převádí v podstatě na akrolein a na kyselinu akrylovou v množství vedlejšího produktu. Tento výstupní plyn prvního stupně se vede tak, jak je, bez separace vytvořených produktů, do reakční nádoby druhého stupně.
Modifikace tohoto dvoustupňového způsobu je také známa, přičemž v této modifikaci se kyslík, požadovaný pro vyvolání reakce v druhém stupni nebo pára, znovu přidávají do výše uvedeného výstupního plynu.
V druhém stupni se akrolein v podstatě převede na kyselinu akrylovou. Takto vytvořená kyselina akrylová se obvykle ochladí, oddělí se ve formě vodného roztoku a získá se z proudu plynu, přičemž prochá. 2 zí postupy, jako je extraktivní destilace při následujícím stupni čištění,· čímž Se izoluje. Alternativní způsob, který byl také navržen, spočívá v předchlazení proudu výstupního plynu druhého stupně a pak v absorpci kyseliny akrylové ve vhodném rozpouštědle, čímž se oddělí kyselina akrylová.
Při této katalytické oxidaci je vodní pára, která je jednou složkou dávkovaného plynu, nezbytná pro katalýzu v druhém stupni, kde se akrolein oxiduje na kyselinu akrylovou. Navíc pára také slouží jako ředidlo pro snížení nebezpečí exploze vlivem smíchání propylenu nebo akroleiinu s kyslíkem, čímž se vytvoří explozivní směs plynu.
Jestliže se však vodní pára použije jako ředidlo ve větší míře, pak vodný roztok kyseliny akrylové, vzniklý při získávání kyseliny akrylové obyčejnou ochlazovací kondenzační metodou, bude zředěný, což působí vznik nevýhod, jako je růst při nákladech oddělování kyseliny akrylové z roztoku nebo vzrůst ztrát při získávání kyseliny akrylové. Dále, protože pára sama o sobě představuje vysoký náklad, je její použití ve velkém množství v každém případě neekonomické.
Z tohoto důvodu byl navržen způsob, v němž jako ředidlo pro zábranu tvorby ex223888 plozívní směsi v rozmezí hořlavé směsi byla část odpadniho plynu zbývajfcího po získání a separaci kysHiny akrylové a vody a tak dále od výstupmho plynu reaktoru druhého stupně chlazením, zfeltónfa pomocí rozpouštědla nebo- jiným způsobem, přlčemž tento plyn recykluje a je náhradou vodní páry. Odpadní plyn takto recyklovaný obsahuje v podstatě dusík, oxid uhličitý, oxid uhelnatý a tak dále, ale v závislosti, na reakčmch podmínkách obsahuje také nezreagovaný propylen, akrolein, kyslík a jiné plyny.
Napřrálad japonská zveřejni přihláška vynálezu č. 30 688/1978, japonská zveřejněná přihláška vynálezu č. 108 917/1977 a japonská zveřejněná piihláráa vynátázu c. 15 314/1978 uvádějí způsoby, při nichž . re.akčm odpadní plyn recykluje do vstupu prvního stupně. Japonská zveřejněná přihláška vynálezu č. 36 415/1976 uvádí způsob při němž se odpadní plyn rozdělí a recykluje do prvního a -druMho stupně.
Při těchto postupech na jedné straně, protože provedení jejich oxidačních katalyzátorů značně ovlivňuje jejich ekonomii, byl vytvořen velký počet návrhů týkající se katalyzátorů pro každý stupem
Například katalyzátory pro oxidaci propylenu na akrolein v prvním stupni jsou -uvedeny v japonských zveřejněný^ prihláškách vynálezu č. 17 711/Í972, 27 490/1972, 41 329/1972, 42 241/1972, 42 813/1972, 1 645/1973, 4 763/Ш3, 4 764/1973, 4 765/ /!973 a jiných.
Katalyzátory pro oxidaci akroleinu na kyselinu akrylovou v druhém stupni jsou uvedeny v - japonských zveřejněných přiňláškách vynálezu ě 42 129/1969, 19 296/ /1973, 169/1974, 11 371/1974, 10 432/Í977 -a 3i 326/1977 -a japonských zveřejněných -přihláškách vynálezu č. 2 011/1971, - 8 360/ /1972, 43 922/1974, 6 117/1974, 124 016/1974, 133 317/1974, 25 520/1975, 93 918/1975, 23 589/1977, 29 483/1977, 29 484/1977 a jiných.
Většina -z -těchto katalyzátorů je označena za katalyzátory, které umožňují výtěžky požadovaného produktu při jednom průchodu rádově 90 % nebo vyšš^ a to přestavuje pro současnou dobu dostatečně vysoké výtěžky požadovaného produktu pro ekonomické provádění postupů každého stupně.
□všem s ohledem na cíl ekonomické výroby kyseliny akrylové nemůže být řečeno, že známá a současná technologie je zcela uspokojivá. Jedním důležitým faktorem ovlivňujícím tento stav dosavadního stavu techniky je faktor týkající se složení dávkovaných materiálů. Zejména, zaprvé, elkvimolárm množstvu kyslíku by mělo být teoreticky dostatečné pro oxidaci propylenu za vytvoření akroleinu v prvním stupni a kdyby zde nebyla žádná další omezený pak by bylo dostačující použití objemu vzduchu, které je 4,76násobné ve vztahu k objemu propylenu. Koncen trace propylenu této' plynné směsi by tedy byla 17,4 %. V současné praxi se však používá ve většině případů koncentrace propylenu 4 až 7 %. Může tedy být uvedeno, že se přivádí příliš velké množství přebytečného plynu do reaktoru.
Jako materiály, které se mají přivádět do druhého stupni je nutný kyslík požadovaný pro konverzi akroleinu vytvořeného v prvním stupni na kyselinu akrylovou (teoretické množsM kyslíku je 1/2 mol z množství akroleinu] a vodní pára v množství řádově ekvimolárním nebo vícemolárním z hlediska katalýzy. Tudíž v případě, kdy dávkovaný plyn do prvního stupně má složení blízko spodních hranic, je nutné opětné dávkování kyslíku a vodní páry v mezilehlém stupni. Musí však být překonány růzim obtí^ aby se přivedl průmyslový postup blíže k tomuto ideálu a jsou nut:ná o^ovídajM techrnc^ opatření. Jedním takovýmto opatřením je vytvoření selektivity katalyzátoru, aby se výtěžek priblížil ke 100 % požadovaného produktu. Druhým opatřením je bezpečnostní opatření při tomto postupu.
Způsob dávkování výchozího plynu o vysoké koncentraci propylenu do prvního stupně a na výstupmm konm z tohoto stupně opětné dávkování kyslíku a vodní páry a přivádění výsledné směsi do druhého stupně, čímž se vytvori kyselrna akrylová, je znám z japonské zveřejněné přihlášky vynálezu č. 25 521/1975. Podle tato publikace byl Radovaný produkt získán s vysokým prostorovým výtěžkem ve stanovené době pomocí určité dávkované směsi a určitého katalyzátoru. Podle našich znalostí však se zde objevuje nevýhodný rys tohoto postupu spočívající v odstraňování tepla a navíc zde není žádné bezpečnostní opatření, čímž není možné - aplikovat tento postup v průmyslovém zařízení.
Opatření, která musí být učiněna vzhledem k bezpečnosti tohoto postupu, spočívají ve vyvarování se vytvoření explozivní směsi - propylenu, akroleinu a tak dále a v prevenci nebo potlačení vzniku nekontrolovatelné spalovací reakce během spontánní oxidace akroleinu na výstupu z prvního stupně.
Jako opatření pro vyvarování se tvorby explozivní směsi se provádí přimíšení neaktivního plynu, jako je vodní pára, dusík a oxid u^:ličitý k explozívmm plynům, čímž se vytvoří plyn mimo explozní oblast (nebo oblast hořlavosti]. Protože tato explozní oblast se mění s faktory, jako je teplota, tlak a ředící pRyii je důte^ý výběr potomek
S ohledem na spalování akroleinu na výstupu z prvního stupně byla navrhována například následující protiopatření:
Japonská zveřejněná přihláška vynálezu č.
132 007/1974 uvádí způsob při němž se zreagované plyny zavádějí z výstupu z reakční zóny přímo do teplOsměnné zóny připojené přímo a ochlazují se na teplotu 200 až 300 stupňů Celsia pomorn vody. Japonská zveřejni - pňhláska vynálezu č. 36 415^976 uvá223888 dí způsob, při němž se odpadní plyn a vzduch přidávají do reakční plynné směsi a míchají se s ní bezprostředně po jejím vypuštění z katalyzátorové zóny v bodě na zadní části prvního stupně za rychlého ochlazení na směšovací teplota 150 až 320 °C. Japonská přihláška zveřejněná vynálezu č. 15 3^/3.978 uvádí způsob omezení koncentrace kyslíku a její nastavení na rozmezí 1,2 až l,6násobek v molárním poměru ke koncentraci propylenu.
Při způsobu uváděném v japonské zveřejněné přihlášce vynátezu č. 132 007/1974 však vyvstává problém spočívající v tom, že akrolein podléhá spalování předtím, než se uskuteční dostatečné ochlazení v trubkách teplosměnné zóny. Při způsobu uváděném v japonské zveřejněné · přihlášce vynálezu číslo 36 415/1976 se do reatorn smesi přidává vzduch a odpadní plyn, ale předtím, než _ se tyto plyny zcela smísí a ochladí, dochází podobně ke spalování akroleinu.
Při způsobu uváděném v japonské zveřejněné přihlášce vynálezu č. 15 314/1978 vždy existuje zbytkový kyslík, poněvadž se používá přebytek kyslíku požadovaného pro oxidaci . propylenu a za tohoto stavu je vlastně nemožné potlačit spalování akroleinu. Způsoby výše uvedených odkazů jsou doprovázeny těmito a jinými problémy.
Tedy, i když tyto navrhované způsoby mají určitou příznivou účinnost, je obtížné říci, že tyto způsoby jsou plně uspokojivé a jejich praktícká aphkace v průmyslovém zařízení je stále nedostačující.
S cílem vyvinout průmyslově bezpečný a ekonomický postup pro výrobu kyseliny akrylové katalytickou oxidací propylenu byla provedena studie základních skutečností, týkajících se těchto oxidačních . postupů včetně vyjasněrn vtastností oxteaižmch katalyzátorů, zpřesnění měření explozní oblasti a měření míry spontánní oxidace akroleinu. Výsledkem byla odměna spočívající v objevu několika nových faktů.
Vynález byl vytvořen na základě těchto nových skutetoostí a ve svém širokém pojetí vytváří způsob, který zahrnuje provádění vysokokoncentrační oxidace propylenu za určitých a vymezených podmínek.
Vynálezem je vytvořen způsob výroby kyseliny akrylové dvoustupňovou katalytickou oxteam v plynné taz^ při němž se plynná směs obsahující propylen, molekulární kyslík a vodní páru, podrobí katalytické oxidační reakci v prvním stupni pro převedení propylenu na akrolein, vytvořené plyny při katalytické oxidační reakci v prvním stupni se upraví přidáním plynné směsi molekulárního kyslíku a vodní páry a upravené plyny se podrobí katalytické oxidační reakci v druhém stupni pro převedení akroleinu na kyselinu akrylovou, jehož podstata spočívá v tom, že alespoň katalytická oxidační reakce v prvním stupni se provádí v reakční zóně, která zahrnuje jednotkové reakční zóny procházepcí ve směru proudu plynů a zapojené paralelně a každá z jednotkových reakčních zón má reatom oblast obsalnijmi vrstvu oxidačního katalyzátoru a chladicí oblast obsahující vrstvu tuhého neaktivního materiálu uspořádanou styčně s reakční oblastí na její straně ve směru proudu a teploty reakční oblasti a chladicí oblasti se řídí nezávisle, přičemž plyny, které se mají podrobit katalytické oxidační reakci v prvním stupni, se udržují při molárním poměru molekulárního kyslíku k propylenu v rozmezí 1,17 až 1,66 a při molárním poměru páry k propylenu až 4 a toncentrace propytenu je 7 až 15 % molárních, manometrický tlak plynu je 39 kPa až 147 kPa, načež se plyny, vytvořené v reakčních oblastech jednotkových reakčních zón při katalytické oxidaci v prvním stupni, ochladí na teplotu v rozmezí . 200 až 280 °C, nejdéle za 3 sekundy, přičemž se upraví uvedeným přidáním plynné směsi molekulárního kyslíku a vodní páry v množství odpovídajícím dosažení molárního poměru molekulárního kyslíku k propylenu v rozmezí i,75 až 2,5 molárního poměru vodní páry k propylenu v rozmezí 1 až 5 a teploty plynu 200 až 280 °C, přičemž molární poměry jsou vztaženy na příslušná celková množství včetně množství plynů podrobených katalytické oxidační reakci prvního stupně.
při prováděm způsobu podle vynálezu může být koncentrace propylenu, která byla řádově 4 až 7 % v postupech dosavaclrnho stavu technik zvýšena na 7 až 15 °/o, čímž se zvýší prostorový výtěžek za stanovenou dobu. Protože je koncentrace propylenu vysoká a množství plynu proudícího reakčním zařízením je malé, je malá tlaková ztráta a současně je možná nízkotlaká reakce.
Dále mohou být použity takové reakční podmínky, při nichž je prostorová rychlost nízká bez snížení prostorového výtěžku.
Zatímco tyto výhodné rysy při^spívají pnmo k ^^líže^uí provozních nákladů, možnost nízkotlaké reakce umožňuje snížení odolnosti vůči difusi v částicích katalyzátoru a zvýšení selektivity. Dále skutečnost, že prostorová rychlost mohla být snížena, má za následek, že výtěžek při jednom průchodu u požadovaného produktu může být zvýšen a navíc, že reakční teplota může být snížena, čímž se usnadňuje chlazení výstupu reaktoru.
Ještě dalším výhodným rysem postupu vynálezu je to, že použité množství páry je malé, přičemž požadavek na páru, zejména v reakci prvního stupně je tak malý, že pára není téměř nutná. V souhlase s tím může být požadovaná pára získána a přiváděna bez odděleného vytváření páry, přiváděním vzduchu do styku s vhodně teplou vodou, čímž se vytvoří množství vodní páry odpovídající tlaku vodní páry v plynu, která doprovází vzduch. Hlavní výhoda vznikající z malého množství použité páry je vysoká koncentrace vodného roztoku vytvořené kyseliny akrylové, následkem čehož se sníží náklady na separaci kyseliny akrylové.
V případě dvoustupňové oxidace propylenu je důležité potlačení spontánní oxidace akrotemu po reakm prvmho stupně ale detaily povahy této spontánní oxidace akroleinu byly . dosud nejasné. Výsledkem průzkumu této reakce bylo, že je velice závislá na teplotě a proto bylo navrženo speciálně konstruované reakční zařízení podle vynálezu.
Při použití tohoto zařízení, jak je zde popsáno, se dosáhne účinně rychlého ochlazení a jako následek toho, spolu s jinými nutnými podmínkami, se úplně vyloučí nebezpečí vzniku spalovací reakce vlivem spontánní oxidace akroleinu.
Povaha využití a další znaky tohoto vynálezu budou jasnější z dalšího detailního popisu začínajícího s uvážením základních a obecných aspektů tohoto vynálezu a pokračujícího počtem specifických příkladů jeho provádění a srovnávacích příkladů.
Na připojeném výkresu obr. 1 je schematický bokorys v podélném řezu znázorňující jeden příklad reakčního zařízení prvního stupně pro provádění způsobu podle vynálezu a obr. 2 je řez v rovině II—II z obr. 1 ve směru šipek.
Reakční zařízení prvního stupně
Plášťová a trubková teplosměnná konstrukce
Způsob podle vynálezu má jedinečný znak spočívájí v reakčrn zóně pro provádění reakce prvního stupně. Tento jedinečný znak spočívá v použitém zařízení, jak je dále popsáno.
Toto použité zařízení při reakci prvního stupně je především takzvaného plášťového a trubkového teplosměnného typu. Plášťový a trubkový teplosměnný reaktor sám o sobě je známý. Podle vynálezu se vrstva oxidačního katalyzátoru uspořádá uvnitř každé z trubek odpovídají cMadicím trubkám výměníku plášťového a trubkového typu a tím se utvoří podélná jednotková reakční zóna. Každou z těchto jednotkových reakčních zón se nechá proudit plyn, který se má oxidovat, jako takzvaná trubková tekutina. Na druhě straně se nechá proudit ohřívací médium, např. kapalné ohřívací médium, jako takzvaná plášťová tekutina v prostorech na vnější straně těchto trubek paralelně uspořádaných ve svazku, čímž se udržuje reakční teplota. Ohřívací médium obyčejně recirkuluje na vnější straně tepelného výměníku.
Větší množství těchto katalyzátorem naplněných trubek v paralelním uspořádání tvoří reakčm zónu katalytické oxidační reakce prvního stupně.
Reakční oblast
Výše popsaná vrstva katalyzátoru uvnitř katalyzátorem naplněných trubek tvoří reakčrn oblast.
Vynález není vyznačen zvláštním použitým katalyzátorem v této oblasti, protože jakýkoli katalyzátor, který je schopný oxidovat propylen v plynné fázi na akrolein při vysokém výtěžku, může být použit. Specifické příklady takovéhoto katalyzátoru jsou uvedeny ve zde zmíněných publikacích.
Katalyzátor, který je zvlášť vhodný pro použití při vynálezu je katalyzátor, který umožňuje vytvoření výtěžku při jednom průchodu příténě 88 % nebo více, výhodně přibližné 90 % nebo více pro souhrn množství akroleinu a kyseliny akrylové při reakční teplotě 280 až 350 °C.
Katalyzátor tohoto typu může být vybrán z vícesložkových katalyzátorů obsahujících molybden a vizmut.
Jedním příkladem takovéhoto katalyzátoru je [odkazuje se na popis japonské zveřejněné přihlášky vynálezu č. 8766/1979) katalyzátor o složení
MoaBibNicCodFeeNařMngBhKiSijOx.
Ve vzorci indexy a až x představují atomové podíly příslušných prvků a když a je 12, hodnoty zbývající rndexů jsou následující:
b = 4 až 7 c = 0,05 až 5 d = 0,05 až 5 e = 0,05 až 2 f = 0 až 1 g = 0 až 1 f+g = 0,°1 až 1 h = 0,02 až 2 i = 0 až 1 j = 6 až 48 x = číslo vyhovující mocenství prvku jiného než kyslík.
Podle potřeby může být vrstva katalyzátoru zředěna plnivem obsahujícím tuhý neaktivní materiál, jako je materiál použitý pro chladicí oblast, jak bylo výše popsáno. Navíc může být vrstva podobného tuhého neaktivního materiálu vytvořena na přední straně ve směru proudu vrstvy katalyzátoru, čímž se vytvoří předehřívací oblast plynu, jak bude dále popsáno podrobněji. Navíc může být vrstva . katalyzátoru uspořádána tak, že její katalytická účinnost se mění ve směru proudění plynu touto vrstvou.
Ve skutečnosti rozdělení katalytické účinnosti, pn němž je účinnost mztá na jednotku objemu od vstupu do vrstvy katalyzátoru, tam, kde se intenzívně tvoří teplo, aby se získal vysoký prostorový výtěžek, ke střední části, je účinné pro zvýšení selektivity reakce a pro prodloužem provozm životnost katatyzátoru. Takové rozložení tatatytmtó úrnnnostt se získá vytvořemm vrstey katalyzátoru s mnoha katalyzátory, u nichž se jejich aktivity postupně zvýší od vstupní obMsti. k výstupm oblasti nebo smíctóním ře223888 didla, jak bylo výše uvedeno s rozdílnými množstvími katalyzátoru.
Rozměr telstte leatatyzátoru by měl být určen ve vztahu k vmtrnímu průměru použitých reakčních trubek, aby se vytvořila vhodná odolnost plynu a vhodná katalytická kontaktní plocha. Obvykle je velikost částic řádově 2 až, 8 mm.
Chladicí oblast
Nejjedinečnějším rysem vynálezu, který se týká reakční zóny, je vytvoření, jako chladicí zóny, vrstvy tuhého neaktivního materiálu styčně se spodní stranou reakční zóny ve směru proudy jak je výše popsáno, v jed* notkových reakčních zónách nebo vnitřních reakčních trubek. Tato chladicí oblast vytvořená vrstvou tuhého neaktivního materiáw lu je opatřena prostředkem pro nzern top' tety nezávisle na reakční oMasti ta^ že mů- že bezprostředně a rychle oclhla^it plyn vytvořený reakcí prvního stupně a proužci 1 ven z reakční oblasti, jak je popsáno dále detailně.
Za tuhý neaktivrn matená1, který se má použít při vytvářern chtadite oMasti se může použít toměř jakýkoh materrni který nemá v podstatě žádnou reakční aktivitu vůči plynnému propylenu, akroleinu a kyselině akrylové při te^ota^ v M^ostí reakčrn teploty katalytické oxidace. Speeifickými příklady takovýchto materiálů jsou alfa-oxid atan^m^ шиШр kaгborundum, korozivzdorná ocel, měď, hliník, keramické materiáty. Tento materiál by měl být ve ' formě - v níž má rozsáhlý vnější měrný povrch, jako jsou například malé kul:čky, kroužky, malé kousky, vlákna, síta a pásy.
. Vrstva tohoto tuhého neaktivního materiálu o uvedených vlastnostech je uspořádána styčně s vrstvou oxidačního katalyzátoru. Výraz „styčně“ jak se zde iiou^vá znamená že tyto dvě vrstvy jsou v podstatě vůči sobě v kontaktu a je třeba ho vykládat, že ' jsou „ve vzájemném, kontaktu“, jak je zřejmé z hlediska rychlého ochlazení plynu vytvořeného v reakci prvního stupně.
Nejtyptetejsrn způsobem, při němž jsou tyto dvě vrstvy vůči sobě styčně uspořádány, je způsob, při němž vrstva katalyzátoru a vrstva tuhého neaktivního materiálu jsou ve vzájemném přímém styku bez čehokoli vloženého mezi ně. V takovémto případě částice katalyzátoru a částice tuhého neaktivního materiálu jsou obyčejně promíchány v mezívrstvě nebo hranici mezi těmito dvěma vrstvami a je také možné záměrně vytvořit dva druhy částic které spolu toexistup v určité oblasti na každé straně hranice mezi těmito dvěma vrstvami.
Místo přímého kontaktu tohoto druhu mezi těmito dvěma vrstvami mohou být tyto vrstvy uloženy ve vzájemném kontaktu s porézní nebo perforovanou přepážkovou stěnou, jako je kovové drátěné síto, nebo mřížka, které jsou mezi ně vloženy. V tomto pnpadě částice katalyzátoru a částice tuhého neakfvirho mater * álu budou také pravděpodobně promíseny v perforovaných částech přepážkové stěny.
Řízem teploty
Podle vynálezu je chlaďcí oblast, jak bylo výše popsáno, vytvořena styčně s reakční oblastí a protože teploty těchto dvou oblastí jsou řízeny nezávisle, tak vytvořený plyn při reakci prvního stupně se rychle ochladí na teplotu pod 280 °C.
Jako výsledek zkoušek bylo zjištěno, že rychlost sjpontanm oxidace akroleinu vzréstá ve zvýšené míře se vzrůstem prostorového objemu pro uložení akroleinu, (ačkoli existují určité rozdíly způsobené faktory, jako je tvar prostoru], že zjevná aktivační energie je 146 až 251 kJ/mol a je záviste prvořadě až drutaitedte · na parciálmm ťlaku akroleinu a z , toho vyplývá, že rychlé ochlazení je účinné pro potlačení spontanrn oxidace akroleinu a je důležité vytvořit volný prostor plynu malý.
Tato nová zjtetem byla využita v praktické formě ve znacích vynálezu, kdé vrstva tuhého neaktivního materiálu je vytvořena jako chladicí oblast styčně s reakční oblastí a teploty těchto dvou oblastí jsou řízeny odděleně.
Stupeň rychlého ochlazení závisí především na teplotě tak, že teplota plynu při výstupu z chladíte oblasti je 280 °C nebo nižš^ výhodně 260 °C nebo nižší. Doba zdržení v ctoadite oblastí by měte být tak jak je to jen možné a délka trubky a teplota vnějšího ohřívacího prostředí by měly -být vybrány tak, že tato doba zdržení bude 3 sekundy nebo méně, výhodně 2 sekundy nebo méně,
Spodní omezení teploty plynu po ochlazení je teplota nad rosným bodem, ale protože ochlazení větší než je nutné, je neekonomické, je výhodně přibližné 200 °C nebo vyšší. Při průchodu je teplota vytvořeného plynu při reakci, prvního stupně na výstupu z reakční oblasti obvykle řádově 290 až 360 °C.
Pro nezávislé řízení teplot reakční oblasti a chladicí oblasti může být použita jakákoli vhodná metoda. Jedním specifickým příkladem takovéhoto způsobu je způsob, při němž je uspořádána na vnější straně reakčrnch trubek ' přepážková deska Mmo k těmto trubkám v poloze v blízkosti hranice mezi reakční oblastí a chladicí oblastí a ohřívací nebo chladící prostředí se přivádí odděleně a nezávisle ke každé z těchto oblastí.
Jiným příkadem způsobu je způsob pn němž reakční a chladicí oblasti jsou uspořádány v oddělených konstrukcích zanzem, které mají příslušné skupiny rovnoběžných trubek s konci trubek a tyto konstrukce jsou spojeny přírubami ve stavu, v němž trubky v jedné konstrukci jsou příslušně vyrovnány a 1ícuJí s odpovídajterni trubkami v druhé konstrukci.
Konkrétní zařízení
Příklad zařízení reakce prvního stupně podle obr. 1 a 2, na nichž je schématicky znázorněno, zahrnuje v podstatě větší množství reakčních trubek 1, z nichž každá vytváří jednotkovou reakční zónu, trubkovnice neboli desky 2 a 3 pro nesení konců trubek 1 a vytváření spolu s n;mi svazku trubek a válec neboli plášť 4, ve kterém je svazek trubek uložen.
V každé z reakčních trubek 1 je uspořádána vrstva 1A katalyzátoru a vrstva IB tuhého neaktivního materiálu, které jsou popořadě uspořádány ve směru proudu v částech trubek a příslušně tvoří reakční oblast a chladicí oblast.
Prostor uvnitř pláště 4 a vně trubek 1 je přepažen přepážkovou deskou 5 uspořádanou kolmo к trubkám 1 v poloze odpovídající hranici mezi vrstvami 1A a IB.
Vnitřní prostor v plášti 4 vně trubek 1 a mezi koncovými deskami 2 a 3 je takto rozdělen na komoru 6 obklopující reakční oblast a komoru 7 obklopující chladicí oblast. Tyto komory 6 a 7 jsou příslušně opatřeny vstupy 8 a 1(1 a výstupy 9 a 11 pro příslušné ohřívací (nebo chlaďcí) prostředí. Vstup 8 a výstup 9 z komory 6 jsou uspořádány tak, že ohřívací prostředí pro reakční oblast bude proudit ve stejném směru jako proud plynu trubkami 1. Toto uspořádání je účinné při potlačování místní tvorby tepla a vyhlazuje rozložení teploty ve vrstvách katalyzátoru.
Dva konce (vstupní a výstupní konec ve směru proudu plynu) pláště 4 procházející axiálně proti proudu a ve směru proudu za desky 2 a 3 a jsou příslušně uzavřeny čelními deskami 12 a 13, které jsou příslušně opatřeny vstupem 14 plynu a výstupem 15 plynu, spojenými příslušně se sběrnými komorami nebo rozdělovacími potrubími vytvořenými mezi koncovou deskou 12 a deskou 2 a mezi koncovou deskou 13 a deskou 3.
Dávkované plyny pro reakci prvního stupně vstupují do zařízení vstupem 14 a jak procházejí trubkami 1, podléhají katalytické oxidaci a rychlému ochlazení, přičemž jsou vypouštěny ven výstupem 15. Plyny, vytvořené tímto způsobem při reakci prvního stupně jsou znovu smíseny s molekulárním kyslíkem a vodní parou a pak jsou vpouštěny do reakčního zařízení druhého stupně.
V zařízení tohoto typu jsou obvykle vhodné reakční trubky 1, z nichž každá má vnitřní průměr 15 až 40 mm, výhodně 15 až 25 milimetrů. Vhodná délka trubek je například řádově 2000 až 8000 mm.
Reakce prvního stupně
Dávkované plyny
Dalším jedinečným rysem tohoto vynálezu je to, že plyny, které se mají použít v reakci prvního stupně, se přivádějí za speciálních podmínek, jak bude dále popsáno.
Zaprvé, koncentrace propylenu v dávkovaných plynech je mnohem vyšší, než se obyčejně používá a je v rozmezí od 7 do 15 procent.
Vhodné rozmezí manometrického tlaku plynu na vstupu do reaktoru je 39 až 147 kPa, výhodně 59 až 118 кРа. V tomto rozmezí může být průmyslově dosaženo značně vysoké produktivity. Bylo zjištěno, že při vstupním tlaku vyšším, než je toto rozmezí, je obtížné odstraňovat teplo a nemůže být dosaženo vysoké konverze. Když je vstupní tlak nižší, než je uvedené rozmezí, je zařízení neekonomické vzhledem к tlakovým ztrátám.
Molární poměr molekulárního kyslíku к propylenu by měl být v rozmezí 1,17 až 1,66, výhodně 1,20 až 1,50. Bylo zjištěno, že při tomto molárním poměru, když je pod hodnotou 1,17, je obtížné zvýšit konverzi propylenu dokonce při použití vysoce selektivního . katalyzátoru. Na druhé straně, když tento molární poměr přesáhne 1,66, používá * se přílišné množství kyslíku, což je proti cíli vynálezu a navíc, nepůsobí to к zábraně exploze.
Když je molární poměr molekulárního kyslíku к propylenu uvnitř výše uvedeného rozmezí, je možná reakce, v níž je množství vodní páry, která je použita, čtyřnásobné vůči množství propylenu nebo menší, přičemž jde o molární množství. Pro dosažení cílů vynálezu je výhodné, aby molární množství použité páry bylo dvojnásobné, než je molární množství propylenu, nebo menší. Dále je také možná reakce, při které není použita pára. Do rozsahu vynálezu tedy patří molární poměr páry к propylenu rovný nebo menší než 4, včetně případu, kdy je tento molární poměr nulový.
Protože dostačují takováto malá množství použité páry, je také možné přivádět páru uváděním dávkovaného vzduchu do styku s teplou vodou a přibráním takového množství páry, které odpovídá tlaku páry do vzduchu. Například se toho může dosáhnout nastavením vhodné teploty odpadní vody zbývající po oddělení kyseliny akrylové pomocí destilace nebo extrakce z vodného roztoku kyseliny akrylové získaného ochlazením plynu vytvořeného reakcí a vyvoláním protiproudého kontaktu této odpadní vody s dávkovaným vzduchem, čímž se vyvolá připojení vodní páry ke vzduchu.
Další způsob, který může být použit, zahrnuje to, že plyn získaný po separaci větší části kondenzovatelných materiálů v plynu se uvede do protiproudého styku s vodou, čímž se způsobí, že voda absorbuje kyselinu akrylovou a/nebo akrolein zbývající v plynu a podobně se uvede voda do styku se vzduchem.
Je také možné, aby se zajistily podmínky vně explozního intervalu, použít jiné neaktivní plyny, jako je například dusík, oxid uh223888 ličitý nebo odpadní plyn zbývající po oddělení materiálů, jako je vytvořený produkt od výstupmch plynů druhého stupně úhradou za vodní páru nebo při přídavku páry.
Při směšovacím stupni dávkovaných plynů směs prochází explozním intervalem. Z tohoto důvodu je výhodné použít mixér takové konstrukce, v níž se z.íská směs plynů homogenního složení v krátké době. Doporučuje se, aby teplota v této době byla 200 stupňů Celsia nebo nmp pro větší bezpečnost 170 °C nebo nižší. Když se při vysoké teplotě přibližně 300 °C nebo vyšší tato plynná směs zdrží v nenaplněném prostoru, je nebezpečí, že propylen vytvoří vazbu za studená a začne se spalovat, ačkoli se toto liší v závislosti na složení a tlaku. V souhlase s tím je výhodné, v případě, kde se má směs plynů předehřát, zavést ji při teplotě přibližně 260 °C nebo nižší do reaktoru.
Tudíž v případě, kde je nutné předehřátí dávkovaných plynů až na reakční teplotu z důvodů katalyzátoru, doporučuje se zajistit předehřívací prostředek sestávající z vrstvy částic neaktivní látky, jako je alfa-oxid hlinitý, alundum, mullit, karborundum, na vstupu reakčních trubek.
Plyny pro reakci prvního stupně jsou v podstatě stejné jako plyny v tom . přípacté, kdy se propylen oxiduje v plynné fázi na akroleln při konvenčním postupu, s výjimkou výše popsaných uspořádání. V souhlase s tím se pro molekulární kyslík, čistý kyslík, vzduch nebo směs čistého vzduchu nebo kyslíku s neaktivním plynem, jako je dusík nebo oxid uhličitý, může použít.
Reakce
Reakce prvního stupně se obyčejně provádí za reakční teploty 280 až 350 °C, doby kontaktu 2 až 10 sekund, ačkoli tyto podmínky se mohou lišit podle použitého katalyzátoru. Například v případě, když se použije vícesložkový katalyzátor na bázi molybdenu a vizmutu, provádí se reakce při reakční teplotě 290 až 340 °C a době kontaktu řádově 3 až 8 sekund.
Reakce druhého stupně
Zařízení pro reakci druhého stupně
Zařízení pro reakci druhého stupně může být jakékoli konstrukce vhodné a schopné pro příjem plynů vytvořených v reakčním zařízení prvního stupně potom, kdy vodní pára a vzduch byly přidány k těmto plynům. protože se neuvažuje potlařern spontánní oxidace akroleinu, při reakci druhého stupně, protože to není nutné, není potřebné rychlé ochlazení vytvořených plynů.
V souhlase s tm pokud jde o vrsteu katalyzátoru, může být použito zařízení s nepohyblivou vrstvou, pohyblivou vrstvou, fluidní vrstvou nebo s jiným uspořádáním. Speciálním příkladem vhodného zařízení je zařízení používající nepohyblivou vrstvu katalyzátoru. Z hlediska snadnosti nzení realtoní teploty je zvlášť vhodné zařízení typu pláště a trubek v teplosměnném vztahu, jaké je použito při reakci prvního stupně.
Jak je uvedeno výše, není nutné vytvářet chladicí oblast.
Dávkovaný plyn pro reakm druhého stupně
Dávkované plyny pro reakci druhého stupně obsahují plyny vytvořené při reakci prvního stupně a doplněné molekulárním kyslíkem a paro^ toeré jsou nuhm pro reakci druhého stupně.
Molekulární kyslík a pára, které jsou takto ^^n^ by měly být spolu homogenně smíchány před smícháním s vytvořenými plyny v reakci prvního stupně. Důvod pro toto opaření je tep že ačkoli teplota plynů vytvořených v reakci prvního stupně je upravena na 280 °C nebo méně, aby se potlačna spontánm oxidace (vznik spalovací reakce), kdyby se samotný ' vzduch přidal k těmto plynům, vytvořila by se explozivní směs ve směšovacím stupni, což by bylo nebezpečné. To je také důvod, proč je směs dávkovaných plynů pro reakci druhého stupně omezena v určitém rozmezí. Zajištěním těchto dvou opatření může být úplně eliminováno nebezpečí exploze . při reakci druhého stupně.
Ve složení dávkovaných plynů pro reakci druhého stupně po přidání molekulárního kyslíku a vodní páry, je molární množství molekulárního kyslíku 1,75 až 2,5násobné než je množství propylenu, zatímco molární množství páry je 1 až 5násobné, přičemž tato množství jsou příslušná celková množství s množstvími přiváděnými při reakci pivního stupně. Výhodná rozmezí těchto množství jsou 1,8 až 2,lnásobek a 1,5 až 4násobek.
Bylo zjištěno, že když jsou tato množství molekulérmho kyslíku a páry obě pod svými příslušnými spodními hranicemi, které jsou výše uvedeny, pak reakční rychlost přeměny akroleinu klesá a vysoký výtěžek kyseliny akrylové při jednom průchodu nelze získat. Na druhé straně, když jsou překročeny horní hranice, pak množství plynů, přiváděných do reakce druhého stupně jsou velká, což je v rozporu s cílem tohoto vynálezu.
Jako zdroj molekulárního kyslíku pro opětovný přídavek je jednoduše a vhodně vzduch. Jako zdroj páry, podobně jako v případě dávkování páry pro reakci prvního stupně, může být použita odpadní voda získaná po separaci kyseliny akrylové z vodného roztoku kyseliny akrylové, která byla vytvořena nebo voda použitá pomocným způsobem pro získání vytvořeného produktu, jako je kysell.na akrylová z plynů přičemž tyto vody se uvedou do kontaktu se znovu přidaným vzduchem při vhodné teplotě, čímž se získá pára.
Dále za předpokladu, že jsou dodrženy vý223888 še uvedené intervaly složení mohou být použity jiné neaktivní plyny, například část odpadních plynů z druhého stupně, která může být recyklována.
Koncentrace páry ve znovu přidávaných plynech o^ahujte^ směs vodm páry, vzduchu a jiných neaktivních plynů v závislosti na tom kterém případě, je závislá na takových faktorech, jako je teplota a tlak v době, kdy se tyto plyny smíchávají do proudu plynu vytvořeného při reakci prvního stupně, ale obvykle se používá množství přibližně 20 až 80 °/o. Specifičtěji postup zahrnuje nastavení skutečných směšovacích podmínek určujících explozní rozmezí za těchto podmmek a uroující směs s koncentrací páry, které je větší, než je koncentrace páry požadovaná vně tohoto rozmezí a současně zaručuje směsné podmínky pro přívod do druhého stupně.
Reakce
Pokud jde o reakci druhého stupně, vynález nemá také žádné speciální znaky v použitém oxidačním katalyzátoru. Může se tedy použít jakýkoli katalyzátor, který umožňuje oxidaci akroleinu v plynné fázi na kyselrnu akrylovou s vysokým výtokem. Speciální příklady takovýchto katalyzátorů jsou uvedeny v různých publikacích, které byly výše citovány.
Katalyzátory, které jsou zvlášť vhodné pro použiti pri způsobu podle vynálezu, jsou ty katalyzátory, které vykazují takové výkony, že výtěžek při jednom průchodu u kyseliny akrylové z akroleinu při reakční teplotě 220 až 320 °C je približně 90 % nebo vys^p výhodně pridižně 93 % nebo vyšší.
Katalyzátor takovéhoto typu může být vybrán z vícesložkových katalyzátorů, z ' nichž každý obsahuje molybden a vanad, z nichž například jeden má složení (odkazuje se na japonskou zveřejněnou přihlášku vynálezu č. 23 589/1977],
SbaNibMocVdWeNbiCugOh.
V tomto vzorci indexy a až h představují atomové podíly. Když a je 100, b je 15 až 150, c je 10 až 500, d je 5 až 150, e je 0 až 100, f je 0 až 100, g je 0 až 50, ^ěemž g není 0 když i je 0 a h je číslo vyhovující mocenství prvku jiného než kyslík.
Pokud jde o druh, strukturální uspořádání a jiné vlastnosti vrstvy katalyzátoru, pro reakce druhého stiipně mohou být použity úvahy týkající se vrstvy katalyzátoru pro výše popsanou reakci prvního stupně za předpokladu, že neexistuje žádný nepříznivý účinek.
Reakční zanzem p^ťového a tiut^ov^o teplosměnného typu s reakčními trubkami o vnitřním průměru 15 až 40 . mm, výhodně 15 až 25 mm, se považuje za vhodný podobně jako v případě reakčního zařízení prvního stupně.
Reakce druhého stupně se obvykle provádí například při teplotě 220 až 320 °C a době kontaktu 1 až l0 sekund ačkoti tyto podmínky se liší podle použitého katalyzátoru. Například v případě, když se použije vícesložkový katalyzátor na bázi molybdenu a vanadu, se reakce ve většině případech provádí v podmínkách řádově při reakční teplotě 230 až 290 °C a době kontaktu 1 až 4 sekundy.
Získání kyseliny akrylové
Oddělování kyseliny akrylové od plynů vytvořených v reakci druhého stupně se provádí obyčejným způsobem. Například potom, kdy vytvořené plyny byly ochlazeny na 100 až 180 °C, pomocí výměníku tepla, uvedou se do protiproudého styku s chladnou vodou obsahující inhibitor polymerace nebo v závislosti na tom kterém případu ochlazenou reakční tekutinou vytvořenou ve formě rosných kapek, čímž se vyvolá kondenzace plynů a získá se vodný roztok kyseliny akrylové. Pak se kyselina akrylová může izolovat z tohoto roztoku kyseliny akrylové způsobem jako je extrakce, destilace nebo azeotropní destilace za použití vhodného azeotropického prostředí nebo ' vody.
Příklady provedení
Nomenklatura a použité symboly v příkladech provedem jsou vymezeny te^o:
Katalytická směs: směs směsného oxidického katalyzátoru je určena atomovými podíly jednotlivých prvků s výjimkou kyslíku;
C3 označuje propylen
ACR označuje akrolein
AA označuje kyselinu akrylovou
Reakční teplota: průměrná teplota ohřívacího prostředí v reaktoru
Doba kontaktu: (sekundy) odpovídá sypnému objemu (litry) naplněného katalyzátoru, který je násoben 3300 a dělen objemovou rychlostí proudu (litry za hodinu) dávkovaného plynu za reakční teploty a tlaku.
Uvedenýim %, pokud nern uvedeno jina^ se rozuměj % moterrn.
Příklady 1, 2 a 3 a srovnávací příklady 1 a 2
Tato provedení se týkají jen studie složení dávkovaného plynu reakce prvního stupně.
Jako katalyzátor pro oxidaci propylenu byl připraven obyčejným způsobem směsný oxidický katalyzátor složení
1S
Mo 12BÍ5NÍ3C02Feo,4N a’o,2 BojKojsS Í24» velikost částic byla 5 mm průměr X 3 mm.
Reaktor byl vyroben z korozivzdorné oceli a byl konstruován z dvojitých trubek, kde vnitřní trubka měla vnitřní průměr 20 mm a délku 2200 mm a vnější trubka měla vnitřní průměr 100 mm a délku 1900 mm. Vnitřrn trubka byla naplněna katalyzátorem. Prostor mezi vnitřní a vnější trubkou byl naplněn dusičnanovou lázní jako ohřívacím prostředím, která byla udržována na konstantní teplotě pomocí míchání. Na vstupním konci reakčrn trubky byly utoženy kuličky mullhu o průměru 4 mm, jako předehřívací prostředek ve vrstvě delší než 200 mm; 250 ml výše zmíněného zrnitého katalyzátoru bylo smícháno se stejným množstvím mullitových kuliček, které působily jako rOdtata a směs byla naplněna do vnitřní trubky a reakční trubka byla na své výstupní části naphtana mullitovými. Vičkami.
Dekovaný plyn byl předehřát přibližně na 180 °C a byla s ním smíchána vodní pára a _ vzduch. Pak byl přimíchán propylen a výstadna směs plynů ponechána proudit reakční trubkou. Na výstupu z reakční trubky byla plynná směs ochlazena asi na 10 °C trubkovým chladičem, který tam byl uspořádán a pak procházela separátorem plynu a kapaliny a směs plynu byla upravena, pokud jde o její tlak a vypouštěna. Výsledky reakce v případě, že bylo měněno složení dávkovaného plynu jsou uvedeny v tabulce 1. Dokonce, když koncentrace propylenu v dávkovaném plynu byla vysoká, byl získán požadovaný produkt ve vysokém výtěžku za předpokladu, že složení bylo v hranicích vymezených vynálezem.
Tabulka 1
Dávkovaná směs | příkl. 1 | příkl. 2 | příkl. 3 | srovnávací příklad 1 | srovnávací příklad 2 | |
Cs | % | 9 | 12 | 14 | 9 | 12 |
vodm pára | % | 30 | 10 | 3 | 44 | 25 |
vzduch | % | 61 | 78 | 83 | 47 | 63 |
vodní pára/Сз | mol/mol | 3,3 | 0,83 | 0,21 | 4,9 | 2,1 |
O2/C3 | mol/mol | 1,43 | 1,37 | 1,25 | 1,09 | 1,11 |
reakční teplota | °C | 310 | 310 | 320 | 320 | 320 |
reakční tlak | kPa | 98 | 98 | . 98 | 98 | 98 |
(manometrický) doba kontaktu | s | 5,7 | 5,7 | 5,7 | 5,7 | 5,7 |
Cs konverze | % | 98,8 | 98,5 | 97,3 | 87,0 | 89,6 |
ACR výtěžek | % | 79,5 | 80,2 | 81,1 | 70,0 | 72,3 |
AA výtěžek | % | 12,1 | 11,7 | 9,3 | 10,6 | 10,9 |
ACR + AA výtěžek | % | 91,6 | 91,9 | 90,4 | 80,6 | 83,2 |
ACR + AA selektivita | % | 92,7 | 93,3 | 92,9 | 92,6 | 92,9 |
Příklady 4 a 5 a srovnávací příklady 3 a 4
Tyto příklady se týkají pouze studie složení dávkovaného plynu při reakci druhého stupně.
Byla prováděna dvoustupňová kontinuální reakce za použití dvou reaktorů, přičemž každý byl téhož typu, jako reaktor použitý v příkladu 1. Pro první stupeň byl · použit stejný reaktor, jako byl použit v příkladu 2 a v druhém stupni byl použit katalyzátor o složení pro oxidaci akrolelnu:
Sbl00NÍ45MO35V7Nb3CU3SÍ80.
Částice katalyzátoru m^ly průměr 5 mm X X 3 mm; 167 ml tohoto katalyzátoru bylo zředěno stejným množstvím m.ullitových kuliček a výsledná směs byla naplněna do re akční trubky druhého stupně stejným způsobem, jako v reakční trubce prvního stupně.
V mezilehlé části každého stupně byla upravena tryska, aby bylo umožněno vstřikování mezilehlého vzduchu. Potrubí v těchto částech bylo udržováno na teplotě přibližně 250 °C. Dávkovaný plyn byl přiváděn do reakční trubky prvního stupně za stejných podmínek jako v příkladu 2 a oxidační reakce druhého stupně byla vyvolána vstřikováním a přimíšením plynné směsi vzduchu a vodní páry mezilehlými tryskami. Výstupní plyny takto získané byly ochlazeny, aby se oddělila plynná a kapalná fáze a plynná směs byla nastavena pokud jde o tlak a vypuštěna. Získané výsledky reakce, když se měnilo složení plynů přiváděných do reakce prvního stupně změnou rychlosti vstřikování mezilehlou tryskou, jsou uvedeny dále v tabulce 2.
И
Tabulka 2
reakce 1. stupně | příklad 4 | příklad 5 | příklad srovnávací 3 | příkl. srov. 4 | |
Cs konverze | % | 98,5 | jako v | jako v | jako v |
příkl. 4 | příkl. 4 | příkl. 4 | |||
ACR výtěžek | % | 80,2 | jako v | jako v | jako v |
příkl. 4 | příkl. 4 | příkl. 4 | |||
AA výtěžek | % | 11,7 | jako v | jako v | jako v |
příkl. 4 | příkl. 4 | příkl. 4 | |||
dávkování** | |||||
2. stupně | |||||
celková rychlost | |||||
proudění | 1/h | 257 | 240 | 200 | 240 |
složení směsi | |||||
Сз | % | 7 | 7,5 | 9 | 7,5 |
vodní pára | % | 26,5 | 15 | 7,5 | 35 |
vzduch | % | 66,5 | 77,5 | 83,5 | 57,5 |
vodní pára/Сз | mol/mol | 3,8 | 2,0 | 0,83 | 4,7 |
O2/C3 | mol/mol | 2,00 | 2,17 | 1,95 | 1,61 |
reakční teplota | °C | 260 | 265 | 270 | 270 |
reakční tlak | |||||
(manometrickýj | kPa | 98 | 98 | 98 | 98 |
doba kontaktu | s | 2,4 | 2,5 | 3,0 | 2,4 |
celkové výsledky | |||||
reakce | |||||
Сз. konverze | % | 98,7 | 98,6 | 98,8 | 98,6 |
ACR výtěžek | % | 0,3 | 0,4 | 6,8 | 8,0 |
AA výtěžek | % | 87,8 | 87,6 | 81,4 | 79,9 |
*) celkové množství | přivedené v 1. stupni | a v mezilehlé části |
P
Příklady 6 až 9 a srovnávací příklady 5, 6 a 7
Tyto příklady se týkají pouze studie potlačení spontánní ' oxidace akroleinu. S cílem určit velikost spontánní oxidace akroleinu na výstupu z reaktoru prvního stupně bylo měřeno „reakční množství“ v korozivzdorné ocelové trubce připojené přímo na reakční trubku .při různé teplotě a různém plněném materiálu v korozivzdorné oceli. Reakční podmínky prvního stupně byly udržovány konstantní a složení vytvořených plynů bylo v podstatě toto: _
akrolein | 5,95 % |
kyselina akrylová | 0,95 % |
propylen | 0,14 % |
kyslík | 4,80 % |
vodní . pára | 35,3 % |
dusík a jiné | 52,9 % |
poV každém z jednotlivých pokusů bylo každé měřeno složení plynů, když byly rychle . ochlazeny na výstupu z reakční trubky a z odpovídajícího měření složení plynů na výstupu z korozivzdorné ocelové trubky bylo vypočteno „reakční množství“.
Výstupní manoímetrický tlak byl 98 kPa.
Vztah mezi podmínkami týkajícími se trubek a reakčního množství je uveden v tabulce 3.
V tabulce 3 výraz „reakční množství“ představuje celkový pokles výtěžku (%) akroleinu a kyseliny akrylové.
Tabulka 3
Příkl. č. | vnitrm průměr (mm) | délka (mm) | teplota (°C) | doba zdržení (s4 | náplň (mm) | reakční množství (%) |
6 | 27 | 1900 | 280 | 6,5 | — | <0,2 |
7 | 27 | 1900 | 320 | 6,5 | mullnové kuličky (5 mm průměr 4 | <0,2 |
8 | 27 | 1900 | 320 | 6,5 | Rashigovy kroužky z korezlvzdorné oceli (5 mm průměr X 2 mm průměr X 5 mm) | <0,2 |
9 srovnávací příkl. | 21 | 830 | 320 | 1,8 | oka 1,68 mm*1 | <0,2 |
5 | 27 | 1900 | 300 | 6,5 | — | 1,1 |
6 | 27 | 1900 | 320 | 6,5 | — | 4,6 |
7 | 21 | 830 | 320 | 1,8 | — | 1,1 |
*) průměr drátu 0,2 mm, korozivzdorná ocel, 55 g
Z výsledků příkladu 6 a srovnávacího příkladu 5 je patrné, že jestliže teplota v prostoru je 280 °C nebo nižší, pak spontánní oxidační množství může být snféeno na 0,2 % nebo ménё, dokonce když doba zdrfern je dlouhá. Z výsledků příkladů 7 a 8 a. srovnávacího příkladu 6 je -zřejmý že ,dokonce, když je teplota 320 °C, jestli^^e se použije výplňový materiál, jako jsou mullítové kuličky nebo Rashigovy kroužky z korozivzdorné ocelL může být spontiinm oxMace znatSně potřena a může být zanedbána.
Z výsledků příkladu 9 a. srovnávacího . příkladu 7 je vidět, že ' drátěné síto má podobnou účinnost. Dále z výsledků srovnávacího příkladu 7 je zjevné,.že protože tam dochází - k reakčn . ztrátě . 1,1.%, při 320 °C, dokonce při době zdržení 1,8 sekundy v . trubce o vnitřním průměru 21. mm, je prázdná trubka nevhodná pro použití . jako chladicí trubky na výstupu prvního stupně.
Příklad 10
Tento příklad se týká dvoustupňové kontinuální reakce.
Tato reakce byla prováděna v reataorech prvního a druhého stupně, z nichž každý byl typem plášťového a trubkového teplosměnného reaktořu, který měl 4 reatóní trubky z korozivzdorné oceli, přičemž každá měla vnitřní průměr 20 mm a byla dlouhá 3 m a byla použita cirkulující dusičnanová lázeň jako ohřívací prostředí na plášťové straně. Chladicí oblast zahrnující 4 trubky téhož průměru, jako měly reakční trubky a o délce 800 mm, které byly srovnány a koaxiálně vyrovnány s odpovídajícími reakčními trubkami, byla připojena pomocí příruby přímo k výstupu z reaktoru prvního stupně.
Trubky této chladicí oblasti byly chlazeny na straně pláště roztaveným dusičnanem mí chaným probubláváním vzduchu. . Bezprostředně ve směru proudu od této chladicí oblasti byly uspořádány trysky pro přívod mezilehlého vzduchu. Plyn z výstupu z reaktoru druhého stupně byl ochlazen pomocí trubkového tepelného výměníku a vodný roztok kyseliny akrylové byl získáván pomocí separátoru plynu a kapaliny.
V reaktoru prvního stupně byl katalyzátor dále uvedeného . složení připraven podobně jako v příkladu 1 a byl naplněn v množství 700 ml do každé reakční trubky, přičemž 200 ml tohoto katalyzátoru na vstupní straně bylo zředěno 100 ml Rashigových kroužků a výstupní strana z každé reakčrn . trubky byla naplněna Raschigovými kroužky.
Složení katalyzátoru:
Mcin^Bis^Nia^C(jFeeoN^a.jBBoKKtisSii24.
Každá chladil trubka byla rovnoměr^ naplněna přibiižrm 55 g dútétóhio síta' z korezivzderné oceli o velikosti oka 1,68 mm.
V reaktoru druhého stupně byl do každé reakční trubky naplněn katatyzátor dále uvedeného složení pro oxidaci ak^lemu v mno^M 500 ml, přičemž 150 ml katalyzátoru na vstupní části bylo zředěno 75 ml Rashigových kroužků podobně jako v reakčních trubkách prvního stupně.
Složení katalyzátoru:
Sb woNLaMO^NbaCUjS iM.
Výše popsané zaNzení bylo použito pro provádění způsobu podle vynálezu zahříváním reaktoru . prvního stupně na 320 °C, nastavením teploty výstupního chladiče na 260 stupM Celsia a zahříváním reaktoru druhého stupně na 265 °C.
Pro dávkovaný plyn byla přiváděna plynná směs 12 · % propylenu, 10 % vodní páry a 78 % vzduchu, rychlostí 1960 litrů za hodinu (přepočteno na 0°C a tlak 101 kPa jako standardní podmínky, které budou dále aplikovány] do reaktoru prvního stupně a plynná směs 40 % vodní páry a 60 % vzduchu byla přiváděna mezilehlou tryskou při rychlosti proudění 1120 litrů za hodinu, přičemž plyny byly ponechány proudit reakcními systémy, kde byl tlak nastaven na 98 kPa · (manometrický tlak].
Výsledky těchto reakcí jsou shrnuty dále v tabulce 4. Žádné změny související s délkou doby nebyly zjištěny od třetího dne do 60. dne a bylo možné provádět postup při stabilním stavu, pokud jde o podmínky, jako jsou teploty v různých částech. Dále po skončení pokusu byly prohlédnuty části chladicí oblasti, mezilehlé trysky a jiné části po rozebrání, přičemž nebyly · zjištěny žádné abnormality.
Tabulka 4
uplynulá doba | C3 konverze % hmot. | ACR výtěžek % hmot. | AA výtěžek % hmot. | koncentrace kyseliny akrylové ve vytvořeném roztoku (% hmotnostní] |
1 den | 98,8 | 0,1 | 86,5 | 46,1 |
3 dny | 98,3 | 0,2 | 87,6 | 46,7 |
60 dnů | 98,1 | 0,2 | 87,8 | 46,9 |
PŘEDMĚT
Claims (1)
- Způsob výroby kyseliny akrylové dvoustupňovou katalytickou oxidací v plynné fázi, při němž se plynná směs obsahující propylen, molekulární kyslík a vodní páru, podrobí katalytické oxidační reakci v prvním stupni pro převedení propylenu na akrolein, vytvořené plyny · při katalytické oxidační reakci v prvním . stupni se upraví přidáním plynné · směsi · molekulárního kyslíku a · vodní · páry a upravené plyny se podrobí katalytické oxidační reakci v druhém stupni pro převedení akroleinu na · kyselinu akrylovou, vyznačený tím, že se alespoň katalytická oxidačrií reakce · v prvním stupni provádí v reakční zóně, která zahrnuje · podélné jednotkové reakční zóny procházející · ve směru proudu plynů · a zapojené paralelně a každá z jednotkových reakčních zón má reakční oblast obsahující vrstvu oxidačního katalyzátoru a chladicí oblast obsahující vrstvu tuhého neaktivního · materiálu uspořádanou styčně s reakční oblastí na její straně ve směru proudu a teploty reakční oblasti a chladicí · oblasti se řídí nezávisle, přičemž vynalezu plyny, · které sé mají podrobit katalytické oxidační reakci v prvním stupni, se udržují při molárním poměru molekulárního kyslíku k propylenu v rozmezí 1,17 až 1,66 a při molárním poměru vodní páry k propylenu až 4 a · koncentrace propylenu je 7 až 15 % molárních, manometrický tlak plynu je 39 kPa až 147 kPa, načež se plyny, vytvořené v reakčních oblastech jednotkových reakčních zón při katalytické oxidaci· v prvním stupni,· ochladí na teplotu v rozmezí 200 až 280 °C, · nejdéle za 3 sekundy, přičemž se upraví uvedeným přidáním plynné směsi molekulárního kyslíku · a vodní páry v množství odpovídajícím dosažení molárního poměru molekulárního kyslíku k propylenu v rozmezí 1,75 až 2,5, molárního poměru vodní páry k · propylenu v rozmezí 1 až 5 a teploty plynu 200 až 280 °C, přičemž molární poměry jsou vztaženy na příslušná celková množství včetně množství plynů podrobených katalytické oxidační reakci prvního stupně.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14987179A JPS5673041A (en) | 1979-11-19 | 1979-11-19 | Preparation of acrylic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
CS223888B2 true CS223888B2 (en) | 1983-11-25 |
Family
ID=15484466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS807791A CS223888B2 (en) | 1979-11-19 | 1980-11-17 | Method of making the acryl acid |
Country Status (7)
Country | Link |
---|---|
US (1) | US4873368A (cs) |
JP (1) | JPS5673041A (cs) |
CS (1) | CS223888B2 (cs) |
DE (1) | DE3042468A1 (cs) |
FR (1) | FR2470107B1 (cs) |
GB (1) | GB2063861B (cs) |
YU (1) | YU42990B (cs) |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0117146B1 (en) * | 1983-02-22 | 1986-12-30 | The Halcon Sd Group, Inc. | Conversion of propane to acrylic acid |
JPS59190983A (ja) * | 1983-04-12 | 1984-10-29 | Mitsubishi Petrochem Co Ltd | エチレンオキシド製造用反応器に使用する充填材 |
JPH0813777B2 (ja) * | 1986-12-11 | 1996-02-14 | 三菱化学株式会社 | アクリル酸の製造法 |
JPH0813778B2 (ja) * | 1988-07-11 | 1996-02-14 | 住友化学工業株式会社 | メタクリル酸の製造方法 |
DE69028843T2 (de) * | 1989-12-06 | 1997-02-27 | Nippon Catalytic Chem Ind | Verfahren zur herstellung von methacrolein und methacrylsäure |
JPH0784400B2 (ja) * | 1990-04-03 | 1995-09-13 | 株式会社日本触媒 | 不飽和アルデヒドおよび不飽和酸の製造方法 |
US5081314A (en) * | 1990-12-07 | 1992-01-14 | Kissel Charles L | Process for producing acrolein |
DE4132684A1 (de) * | 1991-10-01 | 1993-04-08 | Basf Ag | Verfahren zur katalytischen gasphasenoxidation von methacrolein zu methacrylsaeure |
DE4431949A1 (de) * | 1994-09-08 | 1995-03-16 | Basf Ag | Verfahren zur katalytischen Gasphasenoxidation von Acrolein zu Acrylsäure |
DE4431957A1 (de) * | 1994-09-08 | 1995-03-16 | Basf Ag | Verfahren zur katalytischen Gasphasenoxidation von Propen zu Acrolein |
JP3775872B2 (ja) * | 1996-12-03 | 2006-05-17 | 日本化薬株式会社 | アクロレイン及びアクリル酸の製造方法 |
JP3948798B2 (ja) * | 1997-10-27 | 2007-07-25 | 株式会社日本触媒 | アクリル酸の製造方法 |
DE19833644C2 (de) * | 1998-07-25 | 2002-06-13 | Xcellsis Gmbh | Reaktoreinheit in einem System zur Erzeugung eines wasserstoffreichen Gases aus einem flüssigen Rohkraftstoff |
JP3948837B2 (ja) * | 1998-08-10 | 2007-07-25 | 株式会社日本触媒 | アクリル酸の製造方法 |
US6384274B1 (en) * | 1998-09-27 | 2002-05-07 | Rohm And Haas Company | Single reactor process for preparing acrylic acid from propylene having improved capacity |
DE19926608B4 (de) | 1999-06-11 | 2004-10-14 | Ballard Power Systems Ag | Chemischer Reaktor für ein Brennstoffzellensystem |
US6500982B1 (en) | 1999-06-28 | 2002-12-31 | Rohm And Haas Company | Process for preparing (meth) acrylic acid |
US6639106B1 (en) * | 1999-07-23 | 2003-10-28 | Rohm And Haas Company | Process for preparing and purifying acrylic acid from propylene having improved capacity |
US6620968B1 (en) | 1999-11-23 | 2003-09-16 | Rohm And Haas Company | High hydrocarbon space velocity process for preparing unsaturated aldehydes and acids |
JP4553440B2 (ja) * | 2000-03-10 | 2010-09-29 | 三菱レイヨン株式会社 | メタクリル酸の製造方法 |
KR20010104053A (ko) * | 2000-05-12 | 2001-11-24 | 성재갑 | 프로필렌의 기상 산화 반응에 의한 아크롤레인의 제조 방법 |
JP4426069B2 (ja) * | 2000-06-12 | 2010-03-03 | 株式会社日本触媒 | アクリル酸の製造方法 |
DE10127374A1 (de) * | 2001-06-06 | 2002-12-12 | Basf Ag | Reaktor zum Testen von Katalysatorsystemen |
DE60133473T2 (de) | 2001-12-14 | 2009-05-20 | Evonik Stockhausen Gmbh | Verfahren zur Herstellung von Acrylsäure |
JP4325146B2 (ja) * | 2002-03-11 | 2009-09-02 | 三菱化学株式会社 | (メタ)アクリル酸類の製造方法 |
US7115776B2 (en) | 2002-07-18 | 2006-10-03 | Basf Aktiengesellschaft | Heterogeneously catalyzed gas-phase partial oxidation of at least one organic compound |
JP3908118B2 (ja) | 2002-08-08 | 2007-04-25 | 株式会社日本触媒 | アクリル酸の製造方法 |
JP4465144B2 (ja) * | 2002-08-08 | 2010-05-19 | 株式会社日本触媒 | アクリル酸の製造方法 |
KR101013249B1 (ko) | 2003-03-25 | 2011-02-09 | 바스프 에스이 | 아크릴산을 형성하기 위한 프로펜의 불균질 촉매화 부분기체상 산화 방법 |
DE10313213A1 (de) * | 2003-03-25 | 2004-10-07 | Basf Ag | Verfahren der heterogen katalysierten partiellen Gasphasenoxidation von Propen zu Acrylsäure |
JP3999160B2 (ja) * | 2003-05-14 | 2007-10-31 | 株式会社日本触媒 | 易重合性物質の製造方法 |
EP1667953B1 (en) * | 2003-09-24 | 2008-12-10 | Dow Global Technologies Inc. | Metal surfaces to inhibit ethylenically unsaturated monomer polymerization |
US7161044B2 (en) * | 2003-10-22 | 2007-01-09 | Nippon Shokubai Co., Ltd. | Catalytic gas phase oxidation reaction |
DE102004005863A1 (de) * | 2004-02-05 | 2005-09-08 | Stockhausen Gmbh | Reaktor mit einem einen Einsatz aufweisenden Wärmetauscherbereich |
DE102004008573A1 (de) * | 2004-02-19 | 2005-09-08 | Stockhausen Gmbh | Ein Verfahren zur Entfernung kohlenstoffhaltiger Rückstände in einem Reaktor |
JP4572573B2 (ja) * | 2004-05-13 | 2010-11-04 | 三菱化学株式会社 | (メタ)アクロレイン又は(メタ)アクリル酸の製造方法 |
MY140309A (en) * | 2005-03-01 | 2009-12-31 | Basf Ag | Process for preparing at least one organic target compound by heterogeneously catalyzed gas phase partial oxidation |
DE102005030414A1 (de) * | 2005-06-30 | 2007-01-18 | Stockhausen Gmbh | Reaktor und Verfahren zur katalytischen Gasphasenreaktion sowie Verfahren zur Applikation eines Katalysators in einem Reaktor |
JP5311751B2 (ja) * | 2007-03-09 | 2013-10-09 | 株式会社日本触媒 | 固定床反応装置およびその使用方法 |
US7884235B2 (en) * | 2006-07-20 | 2011-02-08 | Nippon Shokubai Co., Ltd. | Method for gas-phase catalytic oxidation using a fixed bed reactor |
JP2008024644A (ja) * | 2006-07-20 | 2008-02-07 | Nippon Shokubai Co Ltd | 固定床反応装置およびその使用方法 |
WO2009017074A1 (ja) * | 2007-07-27 | 2009-02-05 | Nippon Shokubai Co., Ltd. | 二段接触気相酸化によるアクリル酸の製造方法 |
DE102011011895A1 (de) | 2011-02-21 | 2012-08-23 | Lurgi Gmbh | Rohrreaktor |
CA2781246A1 (en) | 2011-07-14 | 2013-01-14 | Rohm And Haas Company | Method for removal of organic compounds from waste water streams in a process for production of (meth)acrylic acid |
US9440903B2 (en) | 2012-09-24 | 2016-09-13 | Arkema Inc. | Shell and tube oxidation reactor with improved resistance to fouling |
DE102013217386A1 (de) | 2013-09-02 | 2015-03-05 | Evonik Industries Ag | Verfahren zur Herstellung von Acrylsäure |
KR102263596B1 (ko) * | 2014-08-01 | 2021-06-09 | 가부시기가이샤 닛뽕쇼꾸바이 | 불활성 물질의 회수방법 및 당해 방법에 의해 회수된 불활성 물질을 사용한 아크릴산의 제조방법 |
CN107075215A (zh) | 2014-11-03 | 2017-08-18 | 阿科玛股份有限公司 | 用于增加聚合物薄片和粉末的密度的方法 |
EP3892367A1 (en) | 2020-04-09 | 2021-10-13 | Röhm GmbH | A tube bundle reactor and method for the production of methacrylic acid through the partial oxidation of methacrolein |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB939713A (en) * | 1960-07-18 | 1963-10-16 | Shell Int Research | A process for preparing unsaturated monocarboxylic acids from olefins |
US3147084A (en) * | 1962-03-08 | 1964-09-01 | Shell Oil Co | Tubular catalytic reactor with cooler |
NL293571A (cs) * | 1962-06-04 | |||
USB651213I5 (cs) * | 1965-12-13 | |||
DE1568925C3 (de) * | 1966-08-09 | 1975-10-09 | Hoechst Ag, 6000 Frankfurt | Verfahren zur Abtrennung von Acrylsäure aus den Reaktionsgasen der Propylen- oder Acrolein-Oxydation |
DE2056614C3 (de) * | 1970-11-18 | 1981-04-16 | Basf Ag, 6700 Ludwigshafen | Verfahren zur Herstellung von Acrylsäure aus Propylen |
DE2238851B2 (de) * | 1972-08-07 | 1979-08-30 | Hoechst Ag, 6000 Frankfurt | Verfahren zur Herstellung von Acrolein und/oder Acrylsäure unter Vermeidung von Nachreaktionen bei der katalytischen Oxidation von Propylen und/oder Acrolein |
IT971370B (it) * | 1972-11-30 | 1974-04-30 | Sir Soc Italiana Resine Spa | Procedimento perfezionato per la produzione di acroleina ed acido acrilico |
JPS5025521A (cs) * | 1973-07-07 | 1975-03-18 | ||
DE2436818C3 (de) * | 1974-07-31 | 1985-05-09 | Basf Ag, 6700 Ludwigshafen | Verfahren zur Herstellung von Acrylsäure durch Oxidation von Propylen mit Sauerstoff enthaltenden Gasen in zwei getrennten Oxidationsstufen |
DE2513405C2 (de) * | 1975-03-26 | 1982-10-21 | Basf Ag, 6700 Ludwigshafen | Verfahren zur Herstellung von Acrylsäure durch Oxidation von Propylen mit Sauerstoff enthaltenden Gasen in zwei getrennten Katalysatorstufen, die in einem Röhrenreaktor hintereinander angeordnet sind |
JPS52108917A (en) * | 1976-03-11 | 1977-09-12 | Nippon Shokubai Kagaku Kogyo Co Ltd | Preparation of acrylic acid by vapor-phase catalytic oxidation of prop ylene |
JPS6032615B2 (ja) * | 1976-07-29 | 1985-07-29 | 株式会社日本触媒 | プロピレンの接触気相酸化によるアクリル酸の製造方法 |
JPS5330688A (en) * | 1976-09-03 | 1978-03-23 | Agency Of Ind Science & Technol | Polymers having metal collecting ability |
-
1979
- 1979-11-19 JP JP14987179A patent/JPS5673041A/ja active Granted
-
1980
- 1980-11-04 YU YU2814/80A patent/YU42990B/xx unknown
- 1980-11-11 DE DE19803042468 patent/DE3042468A1/de active Granted
- 1980-11-17 CS CS807791A patent/CS223888B2/cs unknown
- 1980-11-17 GB GB8036853A patent/GB2063861B/en not_active Expired
- 1980-11-19 FR FR8024536A patent/FR2470107B1/fr not_active Expired
-
1982
- 1982-09-29 US US06/426,273 patent/US4873368A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6217579B2 (cs) | 1987-04-18 |
GB2063861B (en) | 1983-10-05 |
JPS5673041A (en) | 1981-06-17 |
DE3042468A1 (de) | 1981-06-11 |
GB2063861A (en) | 1981-06-10 |
DE3042468C2 (cs) | 1990-06-07 |
YU281480A (en) | 1983-10-31 |
FR2470107A1 (fr) | 1981-05-29 |
US4873368A (en) | 1989-10-10 |
FR2470107B1 (fr) | 1985-07-19 |
YU42990B (en) | 1989-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CS223888B2 (en) | Method of making the acryl acid | |
JP4323950B2 (ja) | 不均質触媒を有する化学変換用フローリアクター | |
US7019168B2 (en) | Heterogeneously catalyzed partial gas phase oxidation of propene to acrylic acid | |
CN88100904A (zh) | 制备苯羧酸或苯二羧酸酯的方法和设备 | |
AU2002322502A1 (en) | Flow reactors for chemical conversions with heterogeneous catalysts | |
EP4003951B1 (en) | A process for the continuous production of either acrolein or acrylic acid as the target product from propene | |
KR100457894B1 (ko) | 접촉기상산화방법 | |
CN109476564A (zh) | 乙烷的氧化脱氢(odh) | |
US6500979B1 (en) | Process for carrying out catalytic multiphase reactions, in particular vinylations of carboxylic acids | |
JP3895527B2 (ja) | 接触気相酸化方法 | |
JP5108536B2 (ja) | 不均一系触媒作用気相−部分酸化によって少なくとも1種の有機目標化合物を製造する方法 | |
JP2008546531A (ja) | 重合可能な材料を処理するための組立品 | |
US20060161019A1 (en) | Multiple catalyst system and its use in a high hydrocarbon space velocity process for preparing unsaturated aldehydes and acids | |
RU2349573C2 (ru) | Способ получения (мет)акриловой кислоты или (мет)акролеина | |
US20080021238A1 (en) | Apparatus For (Meth) Acrylic Acid Production And Process For Producing (Meth) Acrylic Acid | |
US20040024268A1 (en) | Process for catalytically producing organic substances by partial oxidation | |
KR101257411B1 (ko) | (메트)아크릴산의 제조방법 | |
KR850001401B1 (ko) | 아크릴산의 제조법 | |
WO2005110959A1 (ja) | (メタ)アクリル酸または(メタ)アクロレインの製造方法 |