CN205376538U - 恒流二极管结构 - Google Patents

恒流二极管结构 Download PDF

Info

Publication number
CN205376538U
CN205376538U CN201620117311.0U CN201620117311U CN205376538U CN 205376538 U CN205376538 U CN 205376538U CN 201620117311 U CN201620117311 U CN 201620117311U CN 205376538 U CN205376538 U CN 205376538U
Authority
CN
China
Prior art keywords
type
regulator diode
current regulator
diode structure
launch site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201620117311.0U
Other languages
English (en)
Inventor
王英杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Silan Semiconductor Manufacturing Co., Ltd.
Original Assignee
Hangzhou Silan Integrated Circuit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Silan Integrated Circuit Co Ltd filed Critical Hangzhou Silan Integrated Circuit Co Ltd
Priority to CN201620117311.0U priority Critical patent/CN205376538U/zh
Application granted granted Critical
Publication of CN205376538U publication Critical patent/CN205376538U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

本实用新型提供了一种恒流二极管结构,在P型衬底正面上形成P型外延层,在P型外延层中形成N型基区,在N型基区中形成P型栅极区、N型源区、N型漏区、P型发射区,并形成包围N型基区的P型隔离。本实用新型通过在P型外延层中增设P型发射区,所述P型衬底、P型外延层、N型基区和P型发射区组成PNP三极管,所述N型源区、P型栅极区、N型基区、N型漏区组成恒流二极管,使得其单位面积电流大幅提高,器件的温度稳定性和均匀性较好。并且,所述恒流二极管结构增加了P型外延层,有利于提高其耐压性能。

Description

恒流二极管结构
技术领域
本实用新型属于半导体技术领域,尤其涉及一种恒流二极管结构。
背景技术
恒流二极管是一种硅材料制造的两端恒流器件。恒流二极管按极性接入电路回路中,正向恒电流导通,反向截止,输出恒定电流,应用简单。目前,恒流二极管广泛使用于交直流放大器、直流稳压电源、波形发生器以及保护电路等电子线路中。
传统的恒流二极管通常采用平面沟道结型场效应晶体管(JunctionField-EffectTransistor,JFET)结构,JFET是在同一块N形半导体上制作两个高掺杂的P区,所引出的电极称为栅极G,并形成高掺杂的N区,所引出的电极称为漏极D、源极S,恒流二极管通过将JFET的栅极G和源极S短接形成恒流特性。具体的,如图1所示,恒流二极管包括:P型衬底10、N型外延层11、P型栅极区12a、N型源区12b、N型漏区12c、P型隔离12d以及正面电极13,所述P型栅极区12a、N型源区12b通过正面电极13相连,P型隔离12d穿透P型外延层11与P型衬底10相连。然而,实用新型发现,传统的恒流二极管存在如下问题:
一、传统的恒流二极管的恒定电流大小对P型外延层110厚度、P型外延层110电阻率及P型栅极区121的结深很敏感,导致最终恒定电流值均匀性很差,成品率较低;
二、平面沟道JFET结构的电流能力主要取决于沟道宽度,而沟道宽度受正面电极图形限制,单位面积的沟道宽度较小,进而导致单位面积电流较小,成本较高;
三、常规的恒流二极管具有很大的负温度系数,高温恒流性能不佳。
实用新型内容
本实用新型的目的在于解决现有的恒流二极管的恒定电流值均匀性差的问题。
本实用新型的另一目的在于解决现有的恒流二极管的单位面积电流较小的问题。
本实用新型的又一目的在于解决现有的恒流二极管的高温恒流性能不佳的问题。
为解决上述技术问题,本实用新型提供一种恒流二极管结构,包括:
P型衬底;
形成于所述P型衬底正面上的P型外延层;
形成于所述P型外延层中的N型基区;
形成于所述N型基区中的P型栅极区、N型源区、N型漏区、P型发射区以及包围所述N型基区的P型隔离;
形成于所述P型栅极区、N型源区以及P型发射区上的正面电极;
其中,所述P型衬底、P型外延层、N型基区和P型发射区组成PNP三极管,所述N型源区、P型栅极区、N型基区、N型漏区组成恒流二极管。
可选的,在所述的恒流二极管结构中,还包括形成于所述N型基区中的P环,所述P环包围所述N型漏区。所述P环的数量为一个或多个。
可选的,在所述的恒流二极管结构中,所述P型栅极区、N型源区、N型漏区、P型发射区以及P型隔离的掺杂浓度大于所述P型外延层的掺杂浓度。
可选的,在所述的恒流二极管结构中,所述P型栅极区、P型发射区、P型隔离和P型衬底均为P型重掺杂,所述N型源区和N型漏区均为N型重掺杂。
可选的,在所述的恒流二极管结构中,所述N型源区和N型漏区的深度小于所述P型栅极区和P型发射区的深度。
可选的,在所述的恒流二极管结构中,还包括形成于所述P型衬底背面上的背面电极。
可选的,在所述的恒流二极管结构中,所述P型发射区和P型栅极区同时扩散形成。
可选的,在所述的恒流二极管结构中,所述P型发射区为条形或工字型结构,所述N型漏区为环形结构,且所述N型漏区包围所述P型发射区。
可选的,在所述的恒流二极管结构中,所述恒流二极管结构包括两个P型栅极区和两个N型源区,所述两个P型栅极区和所述两个N型源区均为条形结构,且所述两个P型栅极区位于所述N型漏区的两侧,所述两个N型源区位于所述两个P型栅极区的两侧。
可选的,在所述的恒流二极管结构中,所述P型隔离为环形结构,且所述P型隔离包围所述N型基区。
可选的,在所述的恒流二极管结构中,所述P型衬底作为所述PNP三极管的集电极,所述N型基区作为所述PNP三极管的基极,所述P型发射区作为所述PNP三极管的发射极。
可选的,在所述的恒流二极管结构中,所述PNP三极管的基极电流经过所述P型发射区后,依次流经所述N型漏区、N型基区、N型源区,最后经由所述P型隔离、P型外延层从所述P型衬底的背面流出;所述PNP三极管的集电极电流经过所述P型发射区后,流经所述N型基区、P型外延层从所述P型衬底的背面流出。
在本实用新型提供的恒流二极管结构中,在P型衬底正面上形成P型外延层,在P型外延层中形成N型基区,在N型基区中形成P型栅极区、N型源区、N型漏区、P型发射区,并形成包围所述N型基区的P型隔离,由所述P型衬底、P型外延层、N型基区和P型发射区组成PNP三极管,由所述N型源区、P型栅极区、N型基区、N型漏区组成恒流二极管。因此,恒流二极管的恒定电流经过PNP三极管电流放大后输出,单位面积电流大幅提高;并且,PNP三极管放大倍数β具有正温度系数,而恒流二极管恒定电流是负温度系数,器件的温度稳定性较好。另外,PNP三极管与恒流二极管的结深同向波动变化时,PNP三极管放大倍数β与恒流二极管的恒定电流Id相反变化方向,整个器件总输出电流比较稳定,均匀性较好。此外,由于增加了P型外延层,耐压性能较好。
附图说明
图1是传统的恒流二极管结构的剖面结构示意图;
图2是本实用新型一实施例的恒流二极管结构的剖面结构示意图;
图3是本实用新型一实施例的恒流二极管结构的等效电路示意图;
图4a~4d是本实用新型一实施例的恒流二极管结构形成过程中的剖面结构示意图;
图5是本实用新型一实施例的恒流二极管结构的俯视结构示意图;
图6是本实用新型另一实施例的恒流二极管结构的俯视结构示意图。
具体实施方式
以下结合附图和具体实施例对本实用新型提出的恒流二极管结构作进一步详细说明。根据下面说明和权利要求书,本实用新型的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本实用新型实施例的目的。
如图2所示,本申请提供一种恒流二极管结构,包括:P型衬底100;形成于所述P型衬底100正面上的P型外延层110;形成于所述P型外延层110中的N型基区111;形成于所述N型基区111中的P型栅极区121、N型源区122、N型漏区123、P型发射区124;包围所述N型基区111的P型隔离125;以及形成于所述P型栅极区121、N型源区122以及P型发射区124上的正面电极130。
其中,所述P型栅极区121、N型源区122、N型漏区123、P型发射区124以及P型隔离125的掺杂浓度大于所述P型外延层110的掺杂浓度,所述P型栅极区121、N型源区122通过所述正面电极130相连,所述P型隔离125包围所述N型基区111。
优选的,所述恒流二极管结构还包括形成于所述N型基区111中且包围所述N型漏区123的P环126。本实施例中仅形成一个P环126,但应理解,在其它实施例中,也可设置多个P环126以提高耐压效果。
所述恒流二极管结构的等效电路结构如图3所示,并结合图2所示,所述P型衬底100、P型外延层110、N型基区111和P型发射区124组成PNP三极管,其中,P型衬底100作为纵向PNP三极管的集电极,N型基区111作为PNP三极管的基极,P型发射区124作为PNP三极管的发射极。同时,所述N型源区122、P型栅极区121、P环126、N型基区111、N型漏区123组成恒流二极管。PNP三极管的基极电流经过P型发射区124后,依次流经N型漏区123、N型基区111、N型源区122,最后经由P型隔离125、P型外延层110从P型衬底100的背面流出,PNP三极管的基极电流大小由恒流二极管的恒定电流Id决定;PNP三极管的集电极电流经过P型发射区124后,流经N型基区111、P型外延层110从P型衬底100的背面流出,该集电极电流大小等于基极电流的β倍,即恒流二极管的恒定电流Id的β倍。
本实用新型的恒流二极管采用平面沟道结型场效应晶体管(JunctionField-EffectTransistor,JFET)结构,通过增设P型发射区124,由此形成了PNP三极管,恒流二极管的恒定电流Id经过PNP三极管电流放大β倍后输出,整个器件结构最终输出的总电流I等于恒流二极管的恒定电流Id的(1+β)倍,单位面积电流大幅提高,成本较低。另外,PNP三极管放大倍数β具有正温度系数,而恒流二极管恒定电流Id是负温度系数,如此,本实用新型的器件结构的温度稳定性比较好。此外,PNP三极管与恒流二极管的结深同向波动变化时,PNP三极管放大倍数β与恒流二极管的恒定电流Id相反变化方向,整个器件总电流I比较稳定(N型基区111的宽度越小、电阻率越高,恒流二极管的电流越小,而PNP三极管放大倍数β则越大,如此可以抵消一部分波动),其电流均匀性较好。尤其是PNP三极管的P型发射区124与JFET结构的P型栅极区121采用相同工艺、同时扩散形成,更有利于提高整个器件最终输出的总电流I的稳定性。此外,所述恒流二极管结构增加P型外延层110,以提高耐压性能。优选的,所述恒流二极管机构还增加了P环126,以进一步提高耐压性能。
本实施例中,所述P型栅极区121、P型发射区124、P型隔离125均为P型重掺杂(P+),所述N型源区122、N型漏区123均为N型重掺杂(N+),所述P型衬底亦为P型重掺杂(P+)。
如图2所示,所述恒流二极管结构还包括形成于P型衬底100背面上的背面电极150,所述背面电极150例如是由金、银、铝等材质形成。
图5是本实用新型一实施例的恒流二极管结构的俯视结构示意图。为了更清楚的PNP三极管和恒流二极管的结构,图5中并未表示出正面电极130。本实施例中,如图5所示,所述P型发射区124为条形结构,N型漏区123和P环126为环形结构,并且,N型漏区123包围P型发射区124,P环126包围N型漏区123;所述P型栅极区121和N型源区122均为条形结构,且两个P型栅极区121分列于N型漏区123的两侧,两个N型源区122分列于两个P型栅极区121的两侧;所述P型隔离125为环形结构,且其包围所述N型基区111。应当理解是,以上排布方式仅是举例并不用以限定本实用新型的恒流二极管结构,例如,如图6所示,在本实用新型另一实施例中,所述P型发射区124也可以是“工”字形结构,以增加PNP三极管的发射区周长,提高PNP三极管电流能力,相应的,所述N型漏区123为内凹的环形结构。同时,所述P型发射区124的数量可以是一个也可以是多个,若一个芯片包含多个P型发射区可相应的增加电流能力。总之,本实用新型并不限定P型发射区124的数量和形状。
下面结合图2以及图4a至图4d详细介绍本实用新型的恒流二极管结构的形成过程。
如图4a所示,首先,提供一P型衬底100。所述P型衬底100的材质可以是硅、锗或者锗硅化合物、有机化合物半导体材料中的一种。所述P型衬底100可以选用5英寸、6英寸、8英寸及更大尺寸硅片。所述P型衬底100的电阻率优选是小于0.02Ω·cm。
继续参考图4a所示,接着,在所述P型衬底100正面上形成P型外延层110。可通过外延生长工艺在所述P型衬底100上形成P型外延层110。所述P型外延层110的厚度和电阻率可根据耐压要求确定,例如P型外延层110的厚度是8μm~30μm。
如图4b所示,接着,在P型外延层110中形成N型基区111。
作为一个非限制性的例子,形成所述N型基区111的具体步骤包括:首先,在P型外延层110上形成氧化硅层,在氧化硅层上旋涂光刻胶层;对该光刻胶层进行曝光显影,在光刻胶层上形成N型基区窗口图案;再以光刻胶层为掩膜,将N型基区窗口图案转移到氧化硅层上,使P型外延层110暴露在该N型基区窗口下;然后对该暴露的P型外延层110部分进行N型离子注入,注入能量例如是500~2000Kev,优选是1500Kev,注入剂量例如是2E12~5E13㎝-2,深度为1.5~3μm,注入的N型离子例如为磷离子;注入完成后,去除光刻胶层和氧化硅层;最后,在氮气(N2)氛围下进行退火工艺,退火温度例如是900℃~1050℃,退火时间例如是30~240分钟,形成所述N型基区111。上述的光刻胶层、氧化硅层的成膜工艺以及热退火处理都是业界普遍采用的工艺,此处就不做赘述。
如图4c所示,接着,在所述N型基区111中形成P型栅极区121、P环126和P型发射区124,在所述N型基区111外侧形成P型隔离125。所述P型栅极区121、P环126和P型发射区124的深度小于N型基区111的厚度,所述P型隔离125包围所述N型基区111。
作为一个非限制性的例子,形成所述P型栅极区121、P环126、P型发射区124和P型隔离125的具体步骤包括:
首先,在N型基区111上形成氧化硅层和光刻胶层;对该光刻胶层进行曝光显影,在光刻胶层上形成P型栅极区窗口图案;再以光刻胶层为掩膜,将P型栅极区窗口图案转移到氧化硅层上,使N型基区111暴露在该P型栅极区窗口图案下;然后对该暴露的N型基区111部分进行P型离子注入,注入能量例如是40~80Kev,优选是60Kev,注入剂量例如是1E13~5E14cm-2,注入的P型离子例如为硼离子;注入完成后,去除光刻胶层和氧化硅层;
接着,在N型基区111上形成氧化硅层,在氧化硅层上旋涂光刻胶层;对该光刻胶层进行曝光显影,在光刻胶层上形成P环窗口图案;再以光刻胶层为掩膜,将P环窗口图案转移到氧化硅层上,使N型基区111暴露在该P环窗口图案下;然后对该暴露的N型基区111部分进行P型离子注入,注入能量例如是50~70Kev,优选是60Kev,注入剂量例如是5E12~5E13cm-2,注入的P型离子例如为硼离子;注入完成后,去除光刻胶层和氧化硅层;
接着,再次在N型基区111和P型外延层110上形成氧化硅层,并在氧化硅层上旋涂光刻胶层;然后对该光刻胶层进行曝光显影,在光刻胶层上同时形成P型发射区窗口图案和P型隔离窗口图案;再以光刻胶层为掩膜,将P型发射区窗口图案和P型隔离窗口图案转移到氧化硅层上,使N型基区111暴露在该P型发射区窗口下,P型外延层110暴露在该P型隔离窗口下;对该暴露的N型基区111和P型外延层110部分进行P型离子注入,注入能量例如是50~70Kev,优选是60Kev,注入剂量例如是1E14~2E16cm-2,注入的P型离子例如为硼离子;注入完成后,去除光刻胶层和氧化硅层;
最后,在氮气(N2)氛围下进行退火工艺,退火温度例如是900℃~1000℃,退火时间例如是30~180分钟,同时形成所述P型栅极区121、P环126、P型发射区124和P型隔离125。
需要说明的是,上述P型栅极区121、P环126、P型发射区124和P型隔离125可以同时退火形成,亦可是分别退火形成。应认识到,PNP三极管的P型发射区124与JFET结构的P型栅极区121采用相同工艺、同时扩散形成,更有利于提高整个器件最终输出的总输出电流的稳定性。
如图4d所示,在所述N型基区111中形成N型源区122、N型漏区123,所述N型源区122、N型漏区123的深度小于P型栅极区121、P型发射区124的深度。
作为一个非限制性的例子,形成所述N型源区122、N型漏区123的具体步骤包括:首先,在N型基区111上形成氧化硅层,在氧化硅层上旋涂光刻胶层;对该光刻胶层进行曝光显影,在光刻胶层上形成N型源区窗口图案和N型漏区窗口图案;再以光刻胶层为掩膜,将N型源区、N型漏区窗口图案转移到氧化硅层上,使N型基区111暴露在该N型源区、N型漏区窗口下;然后对该暴露的N型基区111部分进行N型离子注入,注入能量例如是100~160Kev,优选是150Kev,注入剂量例如是5E14~2E16cm-2,注入的N型离子例如为砷离子;注入完成后,去除光刻胶层和氧化硅层;最后,在氮气(N2)氛围下进行退火工艺,退火温度例如是850℃~1000℃,退火时间例如是30~60分钟,同时形成所述N型源区122、N型漏区123。
接下来,参考图2所示,在所述P型外延层110上形成绝缘层140,并通过光刻和刻蚀工艺在所述绝缘层140中形成引线孔,然后通过溅射工艺形成正面金属层,再通过光刻和刻蚀工艺图形化所述正面金属层形成正面电极130,所述P型栅极区121、N型源区122通过所述正面电极130相连,最后,在P型衬底100的背面上形成背面电极150。所述绝缘层140的材质例如是二氧化硅,所述正面电极130和背面电极150的材质例如是金、银、铝等,在此并不做限制。
上述描述仅是对本实用新型较佳实施例的描述,并非对本实用新型范围的任何限定,本实用新型领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (8)

1.一种恒流二极管结构,其特征在于,包括:
P型衬底;
形成于所述P型衬底正面上的P型外延层;
形成于所述P型外延层中的N型基区;
形成于所述N型基区中的P型栅极区、N型源区、N型漏区、P型发射区以及包围所述N型基区的P型隔离;
形成于所述P型栅极区、N型源区以及P型发射区上的正面电极;
其中,所述P型衬底、P型外延层、N型基区和P型发射区组成PNP三极管,所述N型源区、P型栅极区、N型基区、N型漏区组成恒流二极管。
2.如权利要求1所述的恒流二极管结构,其特征在于,还包括形成于所述N型基区中的P环,所述P环包围所述N型漏区。
3.如权利要求2所述的恒流二极管结构,其特征在于,所述P环的数量为一个或多个。
4.如权利要求1所述的恒流二极管结构,其特征在于,所述N型源区和N型漏区的深度小于所述P型栅极区和P型发射区的深度。
5.如权利要求1所述的恒流二极管结构,其特征在于,还包括形成于所述P型衬底背面上的背面电极。
6.如权利要求1至5中任一项所述的恒流二极管结构,其特征在于,所述P型发射区为条形或工字型结构,所述N型漏区为环形结构,且所述N型漏区包围所述P型发射区。
7.如权利要求1至5中任一项所述的恒流二极管结构,其特征在于,所述恒流二极管结构包括两个P型栅极区和两个N型源区,所述两个P型栅极区和所述两个N型源区均为条形结构,且所述两个P型栅极区位于所述N型漏区的两侧,所述两个N型源区位于所述两个P型栅极区的两侧。
8.如权利要求1至5中任一项所述的恒流二极管结构,其特征在于,所述P型隔离为环形结构,且所述P型隔离包围所述N型基区。
CN201620117311.0U 2016-02-05 2016-02-05 恒流二极管结构 Withdrawn - After Issue CN205376538U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620117311.0U CN205376538U (zh) 2016-02-05 2016-02-05 恒流二极管结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620117311.0U CN205376538U (zh) 2016-02-05 2016-02-05 恒流二极管结构

Publications (1)

Publication Number Publication Date
CN205376538U true CN205376538U (zh) 2016-07-06

Family

ID=56263242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620117311.0U Withdrawn - After Issue CN205376538U (zh) 2016-02-05 2016-02-05 恒流二极管结构

Country Status (1)

Country Link
CN (1) CN205376538U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609569A (zh) * 2016-02-05 2016-05-25 杭州士兰集成电路有限公司 恒流二极管结构及其形成方法
CN106711234A (zh) * 2017-01-16 2017-05-24 重庆平伟实业股份有限公司 一种高频吸收二极管芯片及其生产方法
CN108878510A (zh) * 2017-05-10 2018-11-23 旺宏电子股份有限公司 半导体元件

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609569A (zh) * 2016-02-05 2016-05-25 杭州士兰集成电路有限公司 恒流二极管结构及其形成方法
CN105609569B (zh) * 2016-02-05 2018-12-11 成都士兰半导体制造有限公司 恒流二极管结构及其形成方法
CN106711234A (zh) * 2017-01-16 2017-05-24 重庆平伟实业股份有限公司 一种高频吸收二极管芯片及其生产方法
WO2018129759A1 (zh) * 2017-01-16 2018-07-19 重庆平伟实业股份有限公司 一种高频吸收二极管芯片及其生产方法
CN106711234B (zh) * 2017-01-16 2019-09-06 重庆平伟实业股份有限公司 一种高频吸收二极管芯片及其生产方法
CN108878510A (zh) * 2017-05-10 2018-11-23 旺宏电子股份有限公司 半导体元件
CN108878510B (zh) * 2017-05-10 2021-08-31 旺宏电子股份有限公司 半导体元件

Similar Documents

Publication Publication Date Title
CN101371359B (zh) 在硅和硅合金中使用互补结型场效应晶体管和mos晶体管的集成电路
WO2014146417A1 (zh) 垂直非均匀掺杂沟道的短栅隧穿场效应晶体管及制备方法
CN205376538U (zh) 恒流二极管结构
CN105609569B (zh) 恒流二极管结构及其形成方法
CN103646965B (zh) 一种jfet器件及其制造方法
CN205542795U (zh) 一种恒流二极管结构
CN103531592B (zh) 高迁移率低源漏电阻的三栅控制型无结晶体管
CN103035674B (zh) 射频横向双扩散场效应晶体管及其制造方法
CN105551969B (zh) 一种恒流二极管结构及其形成方法
TWI601293B (zh) Tunneling field effect transistor
CN106409675A (zh) 耗尽型功率晶体管的制造方法
CN103943671A (zh) 一种功率半导体器件及其形成方法
CN103681507B (zh) 一种半导体器件及其制备方法
CN103180934A (zh) 用于提高bjt电流增益的低温注入
CN104269443B (zh) 一种恒流二极管
CN103779416B (zh) 一种低vf的功率mosfet器件及其制造方法
CN106571397A (zh) 平面型金属氧化物半导体场效应管及其制造方法
CN108054215B (zh) 结型场效应晶体管及其制作方法
CN107275393A (zh) 碳化硅mosfet器件及其制备方法
JP2001298187A (ja) 高電圧トランジスタの製造方法
CN105322023B (zh) 结场效晶体管
CN109192659A (zh) 一种耗尽型场效应管的制作方法
CN104167364B (zh) 一种缩小版场效应管的制造方法
CN106298681B (zh) 一种mosfet器件及其制作方法
CN116404031B (zh) 半导体结构及其制备方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180316

Address after: 610404 Chengdu ABA Industrial Central Development Zone in Chengdu, Sichuan

Patentee after: Chengdu Silan Semiconductor Manufacturing Co., Ltd.

Address before: 310018 Hangzhou economic and Technological Development Zone, Hangzhou, No. 10 Main Street (East), No. 308, No.

Patentee before: Hangzhou Silan Integrated Circuit Co., Ltd.

AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20160706

Effective date of abandoning: 20181211