CN1980869B - 水泥湿浇铸组合物及其制备方法 - Google Patents

水泥湿浇铸组合物及其制备方法 Download PDF

Info

Publication number
CN1980869B
CN1980869B CN2005800198365A CN200580019836A CN1980869B CN 1980869 B CN1980869 B CN 1980869B CN 2005800198365 A CN2005800198365 A CN 2005800198365A CN 200580019836 A CN200580019836 A CN 200580019836A CN 1980869 B CN1980869 B CN 1980869B
Authority
CN
China
Prior art keywords
cement
polymer microballoon
casting composition
blend
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800198365A
Other languages
English (en)
Other versions
CN1980869A (zh
Inventor
B·J·克里斯坦森
T·M·小维克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Construction Research and Technology GmbH
Original Assignee
Construction Research and Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Construction Research and Technology GmbH filed Critical Construction Research and Technology GmbH
Publication of CN1980869A publication Critical patent/CN1980869A/zh
Application granted granted Critical
Publication of CN1980869B publication Critical patent/CN1980869B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

提供一种改良的抗冻熔耐久性温浇铸水泥组合物,它采用发气添加剂的现场发气以及任选地可直接掺混到混合物中的聚合物微球。该发气添加剂和聚合物微球在材料基质中提供空洞空间,而此种空洞空间起到提高材料的抗冻熔耐久性的作用。

Description

水泥湿浇铸组合物及其制备方法
相关申请的交互参考
本申请要求于2004-06-15提交的专利序列号60/579,975的美国临时申请和于2004-06-15提交的专利序列号60/579,691的美国临时申请的申请日的权益。
背景技术
众所周知,冻-融循环对水饱和硬化水泥组合物,如混凝土,会具有极大伤害。为防止或减轻造成伤害的最著名技术是在组合物中结合进微细孔隙或空洞。这些孔隙或空洞起内部膨胀腔的作用,因此能通过释放由于冻结前沿在混凝土中不断推进所造成的水力压力来保护混凝土免遭霜冻损伤。在混凝土中人为地造成此种空洞的现有技术采取的方法是利用加气剂,它能稳定在混合期间被夹杂在混凝土中的微小(空)气泡。
这些空气空洞通常是通过在湿浇铸混凝土的混合加工期间使用表面活性剂而变得稳定的。遗憾的是,此种在混凝土中夹带空气空洞的做法被许多生产和浇注问题所困扰,这些问题中的一些是:
空气含量--水泥混合物中空气含量的变化可导致混凝土抗冻-融龟裂性能的恶化,如果空气含量随时间下降;或者会降低混凝土的压缩强度,如果空气含量随时间推移而增加。例子是用泵压送混凝土(由于压缩,空气含量减少)、高效塑化剂的现场加入(常常提高空气含量或使空气空洞体系失稳)、特定掺混物与空气夹带表面活性剂的相互作用(会增加或减少空气含量)。
空气空洞稳定--不能稳定气泡,可能是由于吸附稳定作用表面活性剂的材料,即具有高表面面积碳的飞灰的存在,或者水分不足以使表面活性剂恰当地发挥作用,即,低坍落度混凝土。
空气空洞特征--过大气泡的生成以致不能提供抗冻-融特性,可导致质量不良或骨料粒度分布不良、其它稳定气泡的掺混物的使用等。此种空洞通常不稳定并且趋于浮到新混凝土的表面上。
过分抹光--通过过分抹光去除空气虽能从混凝土表面赶走空气,但通常造成,由于邻近被过分抹光表面的水泥浆的卸载区的结垢而龟裂。
在混合时空气的产生和稳定化以及保证它保留恰当数量和空气空洞尺寸直至混凝土硬化为止,依然是目前北美现成混合的混凝土生产商每天面临的最大挑战。
夹带足够空气量的混凝土依然是最难配制的混凝土类型之-。夹带到混凝土中的空气空洞体系的空气含量和特征不能通过直接定量手段加以控制,而只能间接地通过加入到混合物中的加气剂的数量/类型来控制。诸如混合物中骨料的组成和颗粒形状、水泥的类型和数量、混凝土的稠度、所用混合机的类型、混合时间和温度之类的因素都影响夹带剂的表现。在普通加气混凝土中空洞尺寸的分布可表现出非常宽的波动范围,介于10~3,000μm之间或更宽。在此种混凝土中,除了对抗循环冻-融性能必不可少的小空洞之外,较大空洞--虽对混凝土的耐久性没有什么贡献并且会降低混凝土强度--却不得不作为一种不可避免的特征予以接受。
硬化混凝土中的空气空洞体系的特性按照硬化混凝土中空气空洞体系的参数的显微测定的ASTM C457标准试验方法确定。这些特征被表示为一系列参数,它们是平均空洞尺寸(比表面面积)、体积丰度(空气含量)和空洞之间的平均距离(间距系数)的指标。这些数值在混凝土工业中被用于确定混凝土在水饱和循环冻结环境中的预期性能和耐久性。ACI准则建议,比表面积应大于600英寸-1,间距系数等于或小于0.008英寸以保证抗冻-融循环性能。
本领域技术人员已懂得通过遵照制造加气混凝土的适当规则来控制这些影响。然而,它们在制造此类混凝土的过程中却要特别小心并不断检查空气含量,因为如果空气含量过低,混凝土的耐霜冻能力将不足,而另一方面,如果空气含量过高,它将对压缩强度具有负面影响。
在现有技术中控制空气空洞的方法常常导致不一致的表现。如果没有通过混合加入可接受尺寸和间距的气泡,则任何数量的气泡稳定化学体系都无法在硬化混凝土中产生可接受的空气空洞结构。
因此,可心的是提供一种掺混物,它能在湿浇铸水泥混合物中直接产生耐持久冻-融的空洞结构,而不要求在混合期间施加剪切条件来生成尺寸恰当的气泡。该空洞结构可包含在湿浇铸混合物中最佳尺寸的空洞,从而提供水泥组合物改进的抗冻-融耐久性。此种掺混物也可减少或消除用包含传统加气化学掺混物的湿浇铸混合物制造的产品的压缩强度降低。
发明概述
提供一种水泥抗冻-融损伤的湿浇铸组合物,它包含水凝水泥、发气添加剂以及任选地聚合物微球。
提供一种制备抗冻-融损伤湿浇铸水泥组合物的方法,它包括形成一种水和水凝水泥、发气添加剂以及任选地聚合物微球的混合物。
发明详述
提供一种抗冻-融耐久性改进的湿浇铸水泥组合物。该组合物采用一种当分散到水泥混合物中时产生气体的添加的化学品或化学品的共混物,以及任选地直接掺混到混合物中的发泡或未发泡聚合物微球。该聚合物微球以各种各样商品名生产和销售并采用各种各样聚合物材料成形其颗粒的壁。
发气剂和任选地聚合物微球的使用能基本上消除现有技术中存在的大多数问题。它还提供采用某些此材料,即,低档、高碳飞灰的可能性,这些飞灰,由于不经进一步加工本不能用于加气混凝土,故迄今一直送去填埋了之。这将导致水泥的节省,因此也是经济上的节省。由此种方法“造成”的空洞比由传统加气剂(AEA)获得的那些空洞小得多,达到要求耐久性所需要的空洞体积比传统加气混凝土低得多(不足4%(体积),而通常则要5~6%)。因此,采用新方法,在同样抗冻-融保护水平能达到较高压缩强度。结果,为达到强度所使用的最昂贵组分,即,水泥,可以节省。
该湿浇铸水泥组合物及其生产方法采用现场发气配合聚合物微球的任选加入从而在最终凝固前在水泥材料基质中提供空洞空间,而此种空洞空间起到提高水泥材料抗冻-融耐久性的作用。聚合物微球和现场发气将空洞引入到湿浇铸水泥组合物中从而在混凝土中产生一种充分成形的空洞结构,它能耐受冻-融循环所产生的降解却不依靠湿浇铸水泥组合物混合期间的气泡稳定化措施。由现场发气和聚合物微球产生的抗冻-融耐久性的提高基于释放水泥材料中水结冰时产生的应力的物理机理。在传统做法中,恰当尺寸和间距的空洞在硬化材料中的形成依靠采用化学掺混物来稳定混合期间被夹带到混凝土混合物中的空气空洞。在传统混凝土混合物中,这些化学掺混物,作为一类,统称为加气剂。在本发明水泥组合物和方法中,最终凝固前一定时间在湿浇铸水泥混合物中产生的气体以及任选加入的聚合物微球在硬化材料中产生空洞。该方法采取现场发气和聚合物微球的任选加入来形成空洞结构,而不要求混合过程中夹带空气的产生和/或稳定化。
在一种实施方案中,聚合物微球与一种酰肼的组合使用加强了质量控制。现有技术依赖采用一种压力法的夹带空气的体积测定。由于该酰肼最初不释放气体,因此要确定它是否实际上加入到了混凝土中是困难的。相比之下,聚合物微球则可借助rollameter在塑性混凝土中辨认出来。由于酰肼可以与聚合物微球共掺混,故可以推测出酰肼的存在。
一般所提供的水泥湿浇铸组合物包含水凝水泥、发气添加剂以及任选地聚合物微球。加水以便使水泥混合物成形为糊料(=淤浆或泥浆)。该水泥湿浇铸组合物包括倾倒的水泥组合物和由水泥组合物成形的制品。
水凝水泥可以是普通水泥、铝酸钙水泥、磷酸镁水泥、磷酸镁钾水泥、硫代铝酸钙水泥或任何其它合适的水凝水泥。骨料可包括在水泥湿浇铸混合物中。骨料可以是二氧化硅、石英、沙子、碎大理石、玻璃球、花岗岩、石灰石、方解石、长石、砂矿沙、任何其它耐久骨料及其混合物。
铝粉的使用在历史上是一种在水泥体系中产生气体的手段。使用酰肼具有许多优于铝粉的长处。第一,是生成氮气而不是氢气(铝粉与水在碱性pH下起反应生成的),要安全得多。第二,铝粉的颗粒一般比酰肼粉末大,并且产生的气泡较大并趋于在结构中形成沟槽。结果,铝粉不总是能在硬化混凝土体系中产生对抗冻-融来说好的气泡结构。第三个优点是,铝粉的反应强烈地依赖温度,不像酰肼的水解反应。
发气添加剂可以干水泥的约0.005%~约2wt%固体的数量加入到水泥组合物中。发气添加剂可以是任何产生氮气、氧气、氢气、二氧化碳、一氧化碳、氨气或甲烷气的化合物,并选自一系列化学品,例如,产生氮气的化合物如肼、酰肼、叠氮化物、偶氮化合物、偶氮二酰胺、甲苯磺酰肼、苯磺酰的酰肼、甲苯磺酰丙酮腙、甲苯磺酰半卡巴肼、苯基四唑、二亚硝基-五亚甲基四胺;氢气发生化合物,例如,硼氢化钠;氧气发生化合物,例如,有机过氧化物;二氧化碳发生化合物,例如,碳酸氢钠或其它碱金属或碱土金属碳酸盐;以及发生空气的化合物,例如,活性炭。酰肼的例子是4,4”-氧联二苯磺酰基酰肼。4,4”-氧联二苯磺酰基酰肼的某些属性是,它在水泥组合物浇注后分解并且它相对地不溶于水;结果,它在运输期间不显著地受机械作用的影响。该材料历来被用于提供一定膨胀以抵消砂浆和水泥浆中的化学收缩,但从未用于减轻因水泥组合物因受冻-融循环而造成的损伤的方法中。发气剂和任选地聚合物微球的组合提供抗冻-融循环的本体耐受力和抗表面结垢的能力。
该聚合物微球的平均直径等于或小于约100μm,而在某些实施方案中,平均直径小于约25μm,具有中空芯和可压缩壁。发泡的聚合物微球(利用自含的液体变为气相的膨胀形成)或未发泡聚合物微球(含未发泡液相)都可使用。聚合物微球的内部包含空腔或空洞,可含有气体(充注气体),正如在发泡聚合物微球中那样,或者液体(充注液体)例如,在未发泡的聚合物微球中那样。
聚合物微球可包含选自以下聚合物的至少一种:聚乙烯、聚丙烯、聚甲基丙烯酸甲酯、聚邻氯苯乙烯、聚氯乙烯、聚偏二氯乙烯、聚丙烯腈、聚甲基丙烯腈、聚苯乙烯及其共聚物,例如,偏二氯乙烯-丙烯腈、聚丙烯腈-共聚-甲基丙烯腈、聚偏二氯乙烯-聚丙烯腈或氯乙烯-偏二氯乙烯等共聚物。由于聚合物微球由聚合物构成,故其壁是柔性的,因此,它受到压力而动。这与玻璃、陶瓷或其它非挠性材料不同,后者所生产的微球具有刚性结构,受压时破裂。构成聚合物微球的材料因此既柔软却又耐受水泥组合物的碱性环境。
在某些实施方案中,微球的尺寸将是小于约10μm平均直径的那些。聚合物微球的直径越小,达到要求的间距系数(一种抗冻-融的指标)所要求的(用量)越少。这从性能的角度是有利的,因为由于它们的加入压缩强度下降得较少,正如从经济的角度一样,因为要求较少质量的微球。类似地,聚合物微球的壁厚应尽可能薄,以便使材料成本保持最低,但仍应厚到足以抵抗在水泥组合物混合、浇注、捣实和抹光等过程期间的损伤/破裂。
要加入到水泥组合物中的聚合物微球的数量介于总体积的约0.05%~4%,或干水泥重量的约0.01wt%~约4wt%。
发气剂和聚合物微球可以多种形式加入到水泥组合物中。第一种是作为干粉末,其中可采用专门用于堆密度非常低的干粉末操作设备。聚合物微球以打湿的粉末供应,其中包含85wt%水。在某些实施方案中,采用液态掺混物,例如,糊料或淤浆能大大减少混合机装料期间材料的损失。第三种形式是作为压紧的块状物,例如,类似于DegussaAdmixtures公司(克利夫兰,俄亥俄)销售的掺混物的块或puck。聚合物微球和发气添加剂粉末借助胶粘剂预成形为在水中将解体的分立的单元。
这里所描述的水泥组合物可包含其它添加剂或成分,且不应局限于所述配方。可加入的水泥添加剂包括但不限于:加气剂、骨料、火山灰、分散剂、凝固和强度加速剂和/或强化剂、缓凝剂、减水剂、缓蚀剂、润湿剂、水溶性聚合物、流变改进剂、拒水剂、纤维、防潮掺混物、减渗剂、泵送助剂、真菌杀伤掺混物、杀菌掺混物、杀虫掺混物、细分割矿物掺混物、着色掺混物、碱-活性降低剂、粘合掺混物、减缩掺混物以及任何其它掺混物或添加剂,只要对水泥组合物的性能不产生负面影响。
骨料可包括在水泥制剂中以提供包括细骨料的砂浆,以及也包括粗骨料的混凝土。细骨料是几乎可全部通过4号筛(ASTM C 125和ASTM C 33)的材料,例如,二氧化硅沙。粗骨料是大多数被截留在4号筛(ASTM C 125和ASTM C 33)上面的材料,例如,二氧化硅、石英、碎大理石、玻璃球、花岗岩、石灰石、方解石、长石、砂矿沙、任何其它耐久骨料及其混合物。
火山灰是一种具有很小或没有水泥价值的硅质或铝硅质材料,但在水的存在下并处于精细分散形式时,能与普通水泥水化期间产生的氢氧化钙起化学反应生成具有水泥性质的材料。硅藻土、蛋白石(opalinecherts)、粘土、页岩、飞灰、炉渣、硅灰、火山凝灰岩和浮石是某些公知的火山灰。某些磨碎的粒状高炉炉渣和高钙飞灰具有火山灰和水泥二者的性能。天然火山灰是一个技术用语,用于定义天然存在的火山灰,例如,火山凝灰岩、浮石、火山土、硅藻土、蛋白石、燧石和某些页岩。一般地,惰性材料也可包括精细分散的原石英、白云石、石灰石、大理石、花岗岩等。飞灰被定义在ASTM C618中。
使用的话,硅灰可以是未压实的或者可部分地压实或以淤浆形式加入。另外,硅灰还与水泥粘结剂的水化副产物起反应,从而提供最终制品提高的强度并降低最终制品的渗透性。硅灰或其它火山灰如飞灰或煅烧粘土,例如,偏高岭土,可加入到水泥湿浇铸混合物中,加入量介于约5%~约70%,以水泥材料的重量为基准计。
分散剂,若被用于水泥组合物中,可以是任何合适的分散剂,例如,木素磺酸盐、β-萘磺酸盐、磺化蜜胺甲醛缩合物、聚天门冬氨酸盐、带有或不带聚醚单元的聚羧酸盐分散剂、萘磺酸盐甲醛缩合物树脂,例如,分散剂(Cognis公司,辛辛那提,俄亥俄),或低聚物分散剂。
可使用聚羧酸盐分散剂,这种分散剂指的是,一种具有带侧链的碳主链的分散体,其中侧链的至少一部分通过羧基或醚基基团连接在主链上。术语分散剂还涵盖也起水泥组合物用的塑化剂、高端减少剂、流化剂、防絮凝剂或超塑化剂的那些化学品。聚羧酸盐分散剂的例子可见诸于U.S.公开No.2002/0019459 A1,美国专利No.6,267,814,美国专利No.6,290,770,美国专利No.6,310,143,美国专利No.6,187,841,美国专利No.5,158,996,美国专利No.6,008,275,美国专利No.6,136,950,美国专利No.6,284,867,美国专利No.5,609,681,美国专利No.5,494,516;美国专利No.5,674,929,美国专利No.5,660,626,美国专利No.5,668,195,美国专利No.5,661,206,美国专利No.5,358,566,美国专利No.5,162,402,美国专利No.5,798,425,美国专利No.5,612,396,美国专利No.6,063,184,和美国专利No.5,912,284,美国专利No.5,840,114,美国专利No.5,753,744,美国专利No.5,728,207,美国专利No.5,725,657,美国专利No.5,703,174,美国专利No.5,665,158,美国专利No.5,643,978,美国专利No.5,633,298,美国专利No.5,583,183,和美国专利No.5,393,343,在此全部收作参考。
该体系中使用的聚羧酸盐分散剂可以是通式a)~j)分散剂中的至少一种:
a)通式(I)的分散剂
Figure B2005800198365D00081
其中在通式(I)中,
X是氢、碱金属离子、碱土金属离子、铵离子或胺中的至少一种;
R是C1~C6(亚)烷基醚或其混合物或者C1~C6(亚)烷基亚胺或其混合物中的至少一种;
Q是氧、NH或硫中的至少一种;
p是1~约300的数值,从而形成线型侧链或支化侧链至少之一;
R1是氢、C1~C20烃或官能化烃,后者含有-OH、-COOH、-COOH的酯或酰胺衍生物、磺酸、磺酸的酯或酰胺衍生物、胺或环氧中的至少一种;
Y是氢、碱金属离子、碱土金属离子、铵离子、胺、起消泡剂作用的疏水烃或聚氧化烯部分中的至少一种;
m、m’、m”、n、n’和n”各自独立地是0或1~约20之间的整数;
Z是含有下列至少之一的部分:i)至少1个胺和1个酸基团,ii)2个能结合到主链中的官能团,选自二酐、二醛和二酰氯,或者iii)酰亚胺残基;并且
其中a、b、c和d反映每种单元的摩尔分数,其中a、b、c和d之和等于1,其中a、b、c和d每一个是大于或等于0并小于1的数值,并且a、b、c和d中至少2个大于0;
b)通式(II)的分散剂:
Figure B2005800198365D00091
其中在通式(II)中:
A是COOM或者任选地在该“y”结构中形成一种酸酐基团(-CO-O-CO-)以替代A基团所键合的碳原子之间的A基团,从而形成酸酐;
B是COOM
M是氢、过渡金属阳离子、疏水链烷二醇或聚硅氧烷的残基、碱金属离子、碱土金属离子、亚铁离子、铝离子、(醇)铵离子或(烷基)铵离子;
R是C2~6亚烷基基团;
R1是C1~20烷基、C6~9环烷基或苯基基团;
x、y和z是0.01~100的数值;
m是1~100的数值;以及
n是10~100的数值;
c)包含至少一种聚合物或其盐的分散剂,具有由以下组分构成的共聚物形式,
i)马来酐与通式RO(AO)mH的化合物的半酯,其中R是C1~C20烷基基团,A是C2~4亚烷基基团,并且m是2~16的整数;并且
ii)通式CH2=CHCH2-(OA)nOR的单体,
其中n是介于1~90的整数,R是C1~20烷基基团;
d)由以下单体共聚制取的分散体:5~98wt%以下通式(1)代表的(烷氧基)聚亚烷基二醇的单(甲基)丙烯酸酯单体(a),
其中R1代表氢原子或甲基基团,R2O代表1种或2或更多种2~4个碳原子氧亚烷基基团的混合物,只要该混合物的2或更多种可以嵌段形式或者以无规形式加成,R3代表氢原子或1~5个碳原子的烷基基团,并且m指出氧亚烷基基团的平均加成摩尔数的数值,是介于1~100的整数,95~2wt%以上通式(2)代表的(甲基)丙烯酸单体(b),其中R4和R5各自独立地是氢原子或甲基基团,并且M1代表氢原子或甲基基团、一价金属原子、二价金属原子、铵基团,或有机胺基团,以及0~50wt%可与这些单体共聚的其它单体(c),条件是(a)、(b)和(c)的总和是100wt%;
e)接枝聚合物,它是聚羧酸或其盐,具有由选自低聚亚烷基二醇、聚醇、聚氧亚烷基胺和聚亚烷基二醇的至少一种衍生的侧链;
f)通式(III)的分散剂:
Figure B2005800198365D00111
其中在通式(III)中:
D=选自结构d1、结构d2及其混合物的成分;
X=H、CH3、C2~C6烷基、苯基、对甲基苯基,或磺化苯基;
Y=H或-COOM;
R=H或CH3
Z=H、-SO3M、-PO3M、-COOM、-O(CH2)nOR3,其中n=2~6,-COOR3或-(CH2)nOR3,其中n=0~6,-CONHR3、-CONHC(CH3)2CH2SO3M、-COO(CHR4)nOH,其中n=2~6,或-O(CH2)nOR4,其中n=2~6;
R1、R2、R3、R5各自独立地是-(CHRCH2O)mR4无规共聚物,由氧亚乙基单元和氧亚丙基单元组成,其中m=10~500且其中,氧亚乙基在无规共聚物中的含量介于约60%~100%,且氧亚丙基在无规共聚物中的含量介于约0%~约40%;
R4=H、甲基,C2~约C6烷基,或者约C6~约C10芳基;
M=H、碱金属、碱土金属、铵、胺、三乙醇胺、甲基,或C2~约C6烷基;
a=0~约0.8;
b=约0.2~约1.0;
c=0~约0.5;
d=0~约0.5;
其中a、b、c和d代表每种单元的摩尔分数并且a、b、c和d之和是1.0;
其中a可代表2更多在同一分散剂结构中的不同成分数;
其中b可代表2更多在同一分散剂结构中的不同成分数;
其中c可代表2更多在同一分散剂结构中的不同成分数;
其中d可代表2更多在同一分散剂结构中的不同成分数;
g)通式(IV)的分散剂:
其中在通式(IV)中:
“b”结构是以下之一:羧酸单体、烯属不饱和单体,或马来酐,其中形成酸酐基团(-CO-O-CO-)以替代基团Y和Z分别键合在的碳原子之间的基团Y和Z,并且“b”结构必须包括至少一个具有侧链酯键的部分和至少一个具有侧链胺键的部分;
X=H、CH3、C2~C6烷基、苯基、对甲基苯基、对乙基苯基、羧基化苯基,或磺化苯基;
Y=H、-COOM、-COOH或W;
W=疏水消泡剂,由通式R5O-(CH2CH2O)s-(CH2C(CH3)HO)t-(CH2CH2O)u代表,其中s、t和u是0~200的整数,条件是,t>(s+u)且其中疏水消泡剂的总量小于聚羧酸盐分散剂重量的约10wt%;
Z=H、-COOM、-OC(CH2)nOR3,其中n=2~6,-COOR3,-(CH2)nOR3,其中n=0~6或-CONHR3
R1=H或CH3
R2、R3各自独立地是通式-(CH(R1)CH2O)mR4的氧亚乙基单元和氧亚丙基单元的无规共聚物,其中m=10~500且其中,氧亚乙基在无规共聚物中的含量介于约60%~100%,且氧亚丙基在无规共聚物中的含量介于约0%~约40%;
R4=H、甲基,C2~C8烷基;
R5=C1~C18烷基或C6~C18烷基芳基;
M=碱金属、碱土金属、氨、胺、一乙醇胺、二乙醇胺、三乙醇胺、吗啉、咪唑;
a=0.01~0.8;
b=0.2~约0.99;
c=0~约0.5;
其中a、b、c代表每种单元的摩尔分数并且a、b和c之和是1;
其中a可代表2更多在同一分散剂结构中的不同成分数;
其中c可代表2更多在同一分散剂结构中的不同成分数;
h)对应于下式(V)的无规共聚物,呈酸或其盐的形式,具有以下单体单元和单体单元数:
Figure B2005800198365D00131
其中A选自部分(i)或(ii)
Figure B2005800198365D00132
其中R1和R3选自取代的苯、C1~8烷基、C2~8链烯基、C2~8烷羰基、C1~8烷氧基、羧基、氢和一个环,R2和R4选自氢和C1~4烷基,其中R1和R3可与R2和/或R4合在一起,当R2和/或R4是C1~4烷基时,构成该环;
R7、R8、R9和R10各自选自氢、C1~6烷基和C2~8烃链,其中R1和R3与R7和/或R8、R9和R10合在一起构成连接它们所连接的碳原子的C2~8烃链,该烃链任选地具有至少一个阴离子基团,其中至少一个阴离子基团任选地是磺酸的;
M选自氢和疏水聚亚烷基二醇或聚硅氧烷的残基,条件是当A是(ii)且M是疏水聚亚烷基二醇的残基时,M必须不同于基团-(R5O)mR6
R5是C2~8亚烷基基团;
R6选自C1~20烷基、C6~9环烷基和苯基;
n、x和z是1~100的数值;
y是0~100;
m是2~1000;
x比(y+z)的比值介于1∶10~10∶1,并且y∶z的比值介于5∶1~1∶100;
i)氧亚烷基二醇-链烯基醚与不饱和单和/或二羧酸的共聚物,包含:
i)0~90mol%至少一种通式3a或3b的组分:
Figure B2005800198365D00142
其中M是氢原子、一-或二价金属阳离子、铵离子或有机胺残基,a是1,或者当M是二价金属阳离子时,a是1/2;
其中X是-OMa
-O-(CmH2mO)n-R1,其中R1是氢原子、含1~20个碳原子的脂族烃基、含5~8个碳原子的环脂族烃基或者任选地羟基、羧基、C1~14烷基,或者磺酸取代的含6~14个碳原子的芳基,m是2~4并且n是0~100,
-NHR2、-N(R2)2或其混合物,其中R2=R1或-CO-NH2;并且
其中Y是氧原子或-NR2
ii)1~89mol%通式4的成分:
其中R3是氢原子或含1~5个碳原子的脂族烃基,p是0~3,而R1是氢、含1~20个碳原子的脂族烃基、含5~8个碳原子的环脂族烃基,或者任选地羟基、羧基、C1~14烷基,或者磺酸取代的含6~14个碳原子的芳基,m独立地是2~4且n是0~100,以及
iii)0~10mol%至少一种通式5a或5b的组分:
Figure B2005800198365D00151
Figure B2005800198365D00152
其中S是氢原子或-COOMa或-COOR5,T是COOR5、-W-R7、-CO-[-NH-(CH2)3]s-W-R7、-CO-O-(CH2)z-W-R7、以下通式的基:
Figure B2005800198365D00153
或-(CH2)z-V-(CH2)z-CH=CH-R1,或当S是-COOR5或-COOMa,U1是-CO-NHM-,-O-或-CH2O,U2是-NH-CO-,-O-或-OCH2,V是-O-CO-C6H4-CO-O-或-W-,以及W是
Figure B2005800198365D00154
R4是氢原子或甲基,R5是含3~20个碳原子的脂族烃基、含5~8个碳原子的环脂族烃基或者含6~14个碳原子的芳基,R6=R1或者
Figure B2005800198365D00161
Figure B2005800198365D00162
R7=R1
Figure B2005800198365D00163
r是2~100,s是1或2,x是1~150,y是0~15且z是0~4;
iv)0~90mol%至少一种通式6a、6b或6c的组分:
Figure B2005800198365D00165
其中M是氢原子、一-或二价金属阳离子、铵离子或有机胺残基,a是1,或当M是二价金属阳离子时a是1/2;
其中X是-OMa
-O-(CmH2mO)n-R1,其中R1是氢原子、含1~20个碳原子的脂族烃基、含5~8个碳原子的环脂族烃基或者任选地羟基、羧基、C1~14烷基,或者磺酸取代的含6~14个碳原子的芳基,m是2~4并且n是0~100,
-NH-(CmH2mO)n-R1
-NHR2、-N(R2)2或其混合物,其中R2=R1或-CO-NH2;以及
其中Y是氧原子或-NR2
j)二羧酸衍生物与氧亚烷基二醇-链烯基醚的共聚物,包含:
i)1~90mol%选自通式7a和通式7b的结构单元中的至少一种:
Figure B2005800198365D00171
其中M是H、一价金属阳离子、二价金属阳离子、铵离子或有机胺;
a是1/2当M是二价金属阳离子时;或者是1当M是一价金属阳离子时;
其中R1是-OMa,或
-O-(CmH2mO)n-R2,其中R2是H、C1~20脂族烃、C5~8环脂族烃,或C6~14芳基,其上任选地取代上选自COOMa、-(SO3)Ma和-(PO3)Ma2中的至少一种;
m是2~4;
n是1~200;
ii)0.5~80mol%通式8的结构单元:
Figure B2005800198365D00181
其中R3是H或C1~5脂族烃;
p是0~3;
R2是H、C1~20脂族烃、C5~8环脂族烃,或者C6~14芳基,其上任选地取代上选自COOMa、-(SO3)Ma和-(PO3)Ma2中的至少一种;
m是2~4;
n是1~200;
iii)0.5~80m0l%选自通式9a和通式9b中的结构单元:
Figure B2005800198365D00182
其中R4是H或C1~20脂族烃,其上任选地取代上至少一个羟基基团、-(CmH2mO)n-R2、-CO-NH-R2、C5~8环脂族烃;或者C6~14芳基,其上任选地取代上选自COOMa、-(SO3)Ma和-(PO3)Ma2中的至少一种;
M是H、一价金属阳离子、二价金属阳离子、铵离子或有机胺;
a是1/2当M是二价金属阳离子时;或者是1当M是一价金属阳离子时;
R2是H、C1~20脂族烃、C5~8环脂族烃,或者C6~14芳基,其上任选地取代上选自COOMa、-(SO3)Ma和-(PO3)Ma2中的至少一种;
m是2~4;
n是1~200;
iv)1~90mol%通式10的结构单元
其中R5是甲基,或亚甲基基团,其中R5与R7构成1或多个5~8元环;
R6是H、甲基或乙基;
R7是H、C1~20脂族烃、C6~14芳基,其上任选地取代上选自COOMa、-(SO3)Ma和-(PO3)Ma2中的至少一种、C5~8环脂族烃、-OCOR4、-OR4和-COOR4,其中R4是H、C1~20脂族烃,其上任选地取代上至少一个-OH、-(CmH2mO)n-R2、-CO-NH-R2,C5~8环脂族烃,或者C6~14芳基残基,其上任选地取代上选自COOMa、-(SO3)Ma和-(PO3)Ma2中的至少一种;
在通式(e)中,“衍生的”一词并非一般地指衍生物,而是指低聚亚烷基二醇、聚醇和聚亚烷基二醇的任何聚羧酸/盐侧链衍生物,只要与分散剂的性质相容并且不破坏接枝聚合物。
在通式(i)的含6~14个碳原子的任选取代的芳基中的取代基,可以是羟基、羧基、C1~14烷基,或磺酸盐基团。
在取代的苯中的取代基可以是羟基、羧基、C1~14烷基或磺酸盐基团。
术语低聚分散体指的是以下组分的反应产物的低聚物:
(k)成分A,任选地成分B和成分C;其中每个成分A独立地是吸附在水泥颗粒表面的非聚合物官能部分并包含至少一个由选自以下的部分衍生的第一成分的残基:磷酸盐、膦酸盐、次膦酸盐、次磷酸盐、硫酸盐、磺酸盐、亚磺酸盐、烷基三烷氧基硅烷、烷基三酰氧基硅烷、烷基、三芳氧基硅烷、硼酸盐(borate)、硼酸盐(boronate)、环硼氧烷、磷酰胺、胺、酰胺、季铵盐基团、羧酸、羧酸酯、醇、碳水化合物、糖的磷酸酯、糖的硼酸酯、糖的硫酸酯、任何以上部分的盐,及其混合物;其中组分B是任选的部分,若存在的话,每个成分B独立地是配置在成分A部分与成分C部分之间的非聚合物部分,并且由选自以下的部分的第二成分衍生:线型饱和烃、线型不饱和烃、饱和支化烃、不饱和支化烃、脂环族烃、杂环烃、芳基、磷酯、含氮化合物及其混合物;且其中组分C是至少一个线型或支化水溶性非离子聚合物,基本上不吸附在水泥颗粒上的部分,并且选自聚(氧亚烷基二醇)、聚(氧亚烷基胺)、聚(氧亚烷基二胺)、一烷氧基聚(氧亚烷基胺)、一芳氧基聚(氧亚烷基胺)、一烷氧基聚(氧亚烷基二醇)、一芳氧基聚(氧亚烷基二醇)、聚(乙烯基吡咯烷酮)、聚(甲基乙烯基醚)、聚(乙烯亚胺)、聚(丙烯酰胺)、聚
Figure B2005800198365D00201
唑,或其混合物,它们公开中美国专利6,133,347、美国专利6,492,461和美国专利6,451,881,在此收作参考。
可使用的凝固和强度加速剂包括但不限于,碱金属、碱土金属或铝的硝酸盐;碱金属、碱土金属或铝的亚硝酸盐;碱金属、碱土金属或铝的硫氰酸盐;碱金属、碱土金属或铝的硫代硫酸盐;碱金属、碱土金属或铝的氢氧化物;碱金属、碱土金属或铝的羧酸盐(优选甲酸钙);多羟烷基胺;碱金属、碱土金属或铝的卤化物盐(优选溴化物)。可使用的加速剂的例子包括但不限于,
Figure B2005800198365D00202
无氯型加速剂和/或
Figure B2005800198365D00203
亚硝酸钙基缓蚀剂,二者都以Degussa Admixtres公司(克利夫兰,俄亥俄)的商品名销售。
硝酸盐具有通式M(NO3)a,其中M是碱金属、碱土金属或铝,且其中a,对碱金属盐而言是1,对碱土金属盐而言是2,对铝盐而言是3。优选的是Na、K、Mg、Ca和Al的硝酸盐。
亚硝酸盐具有通式M(NO2)a,其中M是碱金属、碱土金属或铝,且其中a,对碱金属盐而言是1,对碱土金属盐而言是2,对铝盐而言是3。优选的是Na、K、Mg、Ca和Al的亚硝酸盐。
硫氰酸盐具有通式M(SCN)b,其中M是碱金属、碱土金属或铝,且其中b,对碱金属盐而言是1,对碱土金属盐而言是2,对铝盐而言是3。这些盐已知有各种各样名称,包括磺基氰酸盐、rhodanates(硫氰酸盐)或rhodanide(硫氰酸盐)盐。优选的是Na、K、Mg、Ca和Al的硫氰酸盐。
醇胺是一类化合物的属名,其中三价氮直接连接在烷基醇的碳原子上。通式为N[H]c[(CH2)dCHRCH2R]e,其中R独立地是氢或OH,c是3-e,d是0~约4并且e是1~约3。例子包括但不限于,一乙醇胺、二乙醇胺、三乙醇胺和三异丙醇胺。
硫代硫酸盐具有通式Mf(S2O3)g,其中M是碱金属、碱土金属或铝,且其中f是1或2,而g是1、2或3,取决于M金属元素的化合价。优选的是Na、K、Mg、Ca和Al的硫代硫酸盐。
羧酸盐具有通式RCOOM,其中R是H或C1~约C10烷基,且M是碱金属、碱土金属或铝。优选的是Na、K、Mg、Ca和Al的羧酸盐。
羧酸盐的例子是甲酸钙。
多羟烷基胺可具有通式
Figure B2005800198365D00211
其中h是1~3,i是1~3,j是1~3,并且k是0~3。优选的多羟烷基胺是四羟乙基亚乙基二胺。
缓凝剂或者所谓延迟-凝固,或水化控制掺混物被用于阻滞、延迟或减慢水泥组合物的凝固速度。它们可在首批浇铸以后,或者在水化过程开始以后的一段时间加入。缓凝剂被用于抵消炎热天气对水泥组合物凝固的加速作用,或者当出现浇注困难的情况,或者由于递送到现场有问题,或者留出一定时间以便进行特殊表面修整时延迟原来的凝固速度。大多数缓凝剂还起一种低水平减水剂的作用并且也可用于将一些空气夹带到水泥组合物中。木素磺酸盐、羟基化羧酸、硼砂、葡糖酸、酒石酸和其它有机酸及其对应盐,膦酸盐、某些碳水化合物,例如,糖、多糖和糖酸及其混合物可用作缓凝掺混物。
缓蚀剂在水泥组合物中起到保护埋置的钢免遭腐蚀的作用。水泥组合物的高碱本性导致钝化和在钢表面生成非腐蚀性保护氧化膜。然而,碳酸化和来自除冰剂或海水的氯离子的存在,连同氧气的作用能破坏或渗透该膜并导致腐蚀。缓蚀掺混物化学地减慢此种腐蚀反应。用于缓蚀的最普通的材料是亚硝酸钙、亚硝酸钠、苯甲酸钠、某些磷酸盐或氟硅酸盐、氟铝酸盐、胺、有机基拒水剂和相关化学品。
在建筑领域,近年来开发出许多保护水泥组合物免遭拉伸应力以及随后龟裂的方法。一种现代方法涉及将纤维沿着新鲜水泥混合物整个体积分布。硬化后,此种水泥组合物被称作纤维-增强水泥。纤维可由锆材料、碳、钢、玻璃纤维或合成材料,例如,聚丙烯、尼龙、聚乙烯、聚苯乙烯、人造丝、高强度芳族聚酰胺或其混合物制成。
防潮掺混物能降低具有低水泥含量、高水-水泥比,或者在骨料部分中缺乏细颗粒的混凝土的渗透性。这些掺混物阻滞水分向湿混凝土内部的渗透,包括某些皂、硬脂酸盐和石油产品。
减渗剂被用于降低水在压力下透过水泥组合物传播的速度。硅灰、飞灰、研磨炉渣、偏高岭土、天然火山灰、减水剂和胶乳可用于降低水泥组合物的渗透性。
泵送助剂加入到水泥混合物中用以改善泵送特性。这些掺混物能增稠流态水泥组合物,即,增加其粘度,以减少泥浆在泵的压力下的脱水。在可用作水泥组合物中的泵送助剂的材料当中,有有机和合成聚合物、羟乙基纤维素(HEC)或者HEC与分散剂的共混物、多糖、有机絮凝剂、石蜡、煤焦油、沥青、丙烯酸、膨润土和煅烧二氧化硅的有机乳液、纳米二氧化硅、天然火山灰、飞灰和熟石灰。
细菌和真菌在硬化水泥组合物表面或内部的生长可通过真菌杀伤剂、杀菌剂和杀虫剂掺混物部分地加以控制。为此目的最有效的材料是多卤化酚、dialdrin乳液和铜化合物。
着色掺混物通常由颜料,或者有机的,例如,酞菁,或者无机颜料,例如,含金属颜料,后者包括但不限于,金属氧化物,等组成,并包括但不限于,含氧化铁颜料如(Degussa Admixtures公司(克利夫兰,俄亥俄))、氧化铬、氧化铝、铬酸铅、氧化钛、锌白、氧化锌、硫化锌、铅白、铁锰黑、钴绿、锰蓝、锰紫、硫硒化镉、镉橙、镍钛黄、铬钛黄、硫化镉、锌黄、群青蓝和钴蓝。
碱-反应性降低剂能减少碱-聚集反应和限制此种反应可能在硬化水泥组合物中产生的破坏性膨胀力。火山灰(飞灰、硅灰)、高炉炉渣、锂和钡的盐尤其有效。
可使用的减缩剂包括但不限于RO(AO)1~10H,其中R是C1~5烷基或C5~6环烷基,并且A是C2~3亚烷基、碱金属硫酸盐、碱土金属硫酸盐、碱土金属氧化物,优选硫酸钠和氧化钙。掺混物是可使用的减缩剂的一个例子(由Degussa Admixtures公司(克利夫兰,俄亥俄)供应)。
试验了前面描述的实施方案的例子的抗冻-融(F/T)耐久性作用。混凝土样品按如下所述制备:在转鼓混合机中加入水,随后加入粗骨料和水泥。随后,在这些材料上面加入发气添加剂,然后加入沙子,并开动转鼓。如果混合物包含传统加气剂(AEA),则将它加在沙子上面。随后,在混合期间加入进一步的水以达到所要求的坍落度水平。让混合机以20rpm转动5min。5min后,停下混合机,并测定坍落度和空气,并浇铸样品。任选地,混合机可再倒转(20rpm或3~4rpm)并混合一段附加时间以模拟水泥罐车的拖运时间。混合机在规定的时间间隔停下并再次测定坍落度和空气。随后,浇铸附加的样品,若需要的话。
相关ASTM试验程序是:岩相学检验(ASTM C457);冻-融试验(ASTM C 666-程序A)-[大于60被认为可接受];盐结垢试验(ASTM C672)-[0=最佳,5=最差];压缩强度测定(ASTM C 39);空气含量,压力法(ASTM C 231);单位重量(ASTM C 138)。
制备表1中的样品以确定不同温度对来自酰肼发气剂的氮生成的影响并研究在低转速下延长混合时间的效应。
表1
  样品   1   2   3   4   5
  水泥(磅/码<sup>3</sup>)   521   535   527   524   522
  水(磅/码<sup>3</sup>)   300   307   313   316   323
  沙(磅/码<sup>3</sup>)   1229   1263   1312   1305   1300
  石(磅/码<sup>3</sup>)   1806   1857   1928   1917   1910
  W/C比   0.58   0.57   0.59   0.60   0.62
  沙/骨料   0.42   0.42   0.42   0.42   0.42
  AEA(oz/cwt)   0.90   0.65   -   -   -
  发气剂(占水泥的wt%)   -   -   0.2   0.2   0.2
  坍落度(in)
  5min(A)   6.75   7   8   7.5   7.25
  25min(B)   -   6.75   7.75   7   6.5
  45min(C)   -   6   6   6   5.5
  65min(D)   -   3   4   4.75   3.5
  %气压法
  5min   7.3   5.4   2.5   2.6   2.7
  25min   -   5.0   2.1   2.1   2.2
  45min   -   4.6   2.0   2.2   2.3
  65min   -   4.3   2.1   1.9   2.1
  单位重量(lb/ft<sup>3</sup>)
  样品   1   2   3   4   5
  5min   142.8   146.8   151.1   150.4   150.2
  25min   -   148.8   151.5   152.8   151.5
  45min   -   149.2   152.9   152.8   151.4
  65min   -   151.5   153.6   153.8   153.7
  混凝土温度(F°)
  5min   90   91   54   74   92
  25min   -   86   56   74   92
  45min   -   86   58   74   95
  65min   -   86   56   72   87
AEA=加气剂
W/C比=水与水泥之比
样品显示,温度或延长混合时间对气体的产生没有明显影响,正如塑性空气含量或单位重量没有某些改变所证明的。
制备表2中的样品以研究硬化状态中的空洞体系特性。样品显示有关比表面和间距系数等参数一般可以接受,能赋予在严酷环境中良好抗冻-融循环的能力。
表2
  样品   6
  水泥(磅/码<sup>3</sup>)   529
  水(磅/码<sup>3</sup>)   310
  沙(磅/码<sup>3</sup>)   1344
  石(磅/码<sup>3</sup>)   1933
  W/C比   0.59
  沙/骨料   0.43
  样品   6
  发气剂(占水泥的wt%)   0.4
  坍落度(in)5min   5
  10min   4.5
  15min   4.25
  塑性空气(%)5min   2.0
  10min   2.0
  15min   2.3
  硬化空洞体系(15min)
  空气含量(%)   4.3
  比表面面积(ln<sup>-1</sup>)   585
  间距系数(ln)   0.008
W/C比=水与水泥之比
制备表3中的样品以确定氮气发生剂提供混凝土抗冻-融保护的能力。样品是与采用传统表面活性剂加气的加气混凝土对照着试验的。
表3
Figure B2005800198365D00261
AEA=加气剂
W/C比=水与水泥之比
表3显示,少到0.2%酰肼(以水泥重量为基准计)(样品8和9)的加入提供了充分的对水泥组合物抗冻-融损伤保护并具有类似或比含传统加气剂的混合物略好的抗表面结垢能力。
表4中的样品按照如同表1~3中的样品一样制备,只是另外在水、粗骨料和水泥上面加入了聚合物微球和发气添加剂,然后加入沙。
对表4中的样品进行试验,以考察20~40μm平均直径发泡聚合物微球通同聚合物微球与发气剂的过协使用提供混凝土抗冻-融保护和改善在该领域中的经济性和性能的能力。
表4
  样品   11   12   13   14   15   16*   17   18   19
  水泥(磅/码<sup>3</sup>)   565   569   565   560   555   560   565   565   570
  水(磅/码<sup>3</sup>)   294   279   293   291   288   291   293   293   296
  沙(磅/码<sup>3</sup>)   1287   1187   1330   1319   1308   1319   1330   1330   1341
  石(磅/码<sup>3</sup>)   1850   1865   1850   1835   1819   1835   1850   1850   1865
  W/C比   0.52   0.49   0.52   0.52   0.52   0.52   0.52   0.52   0.52
  沙/骨料   0.42   0.40   0.43   0.43   0.43   0.43   0.43   0.43   0.43
  AEA(oz/cwt)   0.40   1.00   -   -   -   -   -   -   -
  发泡微球   -   -   0.5   1   1.5   1.5   0.5   0.5   0.5
  酰肼(占水泥的wt%)   -   -   -   -   -   -   0.05%   0.10%   0.20%
  坍落度(in)5min   5.00   5.00   3.50   5.00   4.50   4.00   4.00   4.00   4.5
  空气(%)(体积)5min   3.8   6.2   2.0   2.5   2.8   2.3   2.0   2.0   1.9
  压缩强度(psi)
  样品   11   12   13   14   15   16*   17   18   19
  7天   4340   3660   4430   4300   4210   4160   4070   3790   3580
  28天   5640   4860   6090   5660   5390   5530   5590   5200   4840
  冻融试验
  耐久系数(300次循环)   93   93   失败   74   87   84   77   93   92
  结垢等级(FT梁)   3   3   3   3   3   3   2.5   2.5
AEA=加气剂
W/C比=水与水泥之比
*Mix6包含40μm聚合物微球;或者20μm聚合物微球
样品显示,经300次冻-融循环试验以后,为提供目标抗冻-融损伤程度在混凝土混合物中需要的单独20μm发泡微球的最低数量是1.0%(体积)(样品13~15)。然而,少量(水泥的0.05%--样品7)发气剂配合0.5%(体积)20μm发泡微球联用则给出比单独用0.5%(体积)聚合物微球好的保护。改进的耐久性在0.5%(体积)聚合物微球和0.1%发气剂的情况中观察到。
在一种实施方案中,该水泥抗冻-融湿浇铸组合物包含水凝水泥、水、发气添加剂和任选地聚合物微球。在某些实施方案,发气添加剂可以是酰肼,在一种实施方案中,发气添加剂可以是4,4′-氧联二苯磺酰基酰肼。聚合物微球可以是充气(发泡)或充液(未发泡)的。另外,聚合物微球可包含至少一种下列物质:聚乙烯、聚丙烯、聚甲基丙烯酸甲酯、聚邻氯苯乙烯、聚氯乙烯、聚偏二氯乙烯、聚丙烯腈、聚甲基丙烯腈、聚苯乙烯,或者其共聚物或混合物,例如但不限于,例如,偏二氯乙烯-丙烯腈、聚丙烯腈-共聚甲基丙烯腈、聚偏二氯乙烯-共聚丙烯腈或氯乙烯-偏二氯乙烯的共聚物。
在另一种实施方案中,水泥湿浇铸组合物包含至少一种以下特征:发气添加剂以干水泥的约0.005%~约5wt%的数量存在;聚合物微球以干水泥的约0.01%~约4wt%的数量存在;聚合物微球的平均直径小于约100μm;聚合物微球的平均直径小于约25μm;或聚合物微球的平均直径小于约20μm。
在另一种实施方案中,上面描述的湿浇铸组合物还包含至少一种:分散剂、加气剂、凝固和强度加速剂/强化剂、缓凝剂、减水剂、骨料、缓蚀剂、润湿剂、水溶性聚合物、流变改进剂、拒水剂、纤维、防潮掺混物、减渗剂、泵送助剂、真菌杀伤掺混物、杀菌掺混物、杀虫掺混物、精细分散矿物掺混物、着色掺混物、碱-反应性降低剂、粘合掺混物、减缩掺混物或其混合物。
在另一种实施方案中,提供一种制备抗冻-融湿浇铸水泥组合物的方法,它包括提供水凝水泥、水、发气添加剂以及任选地聚合物微球的混合物。在某些实施方案,发气添加剂和聚合物微球各自独立地作为压实块状、粉末或液态掺混物如糊料或淤浆的至少之一的形式加入。
要知道,这里所描述的实施方案不过是例子而已,本领域技术人员在不偏离本发明精神和范围的条件下制定出各自变换和修改方案。所有这些变换和修改方案都应被包括在此前所描述的本发明范围之内。另外,这里所描述的所有实施方案不一定存在于替代方案中,因为本发明的各种实施方案可组合起来提供所要求的结果。

Claims (18)

1.一种抗冻融损伤水泥湿浇铸组合物,它包含水凝水泥、发气添加剂和柔性聚合物微球,其中所述柔性聚合物微球的平均直径为100微米或更小,并且所述聚合物微球以总体积的0.05%~4%的数量存在。
2.权利要求1的水泥湿浇铸组合物,其中发气添加剂包含在凝固前在所述水泥湿浇铸组合物中产生氮气、氧气、氢气、二氧化碳、一氧化碳、氨或甲烷气的化合物。
3.权利要求1或2的水泥湿浇铸组合物,其中发气添加剂是酰肼、肼、叠氮化物或偶氮化合物中的至少一种。
4.权利要求1的水泥湿浇铸组合物,其中发气添加剂是偶氮二酰胺、碳酸氢钠、有机过氧化物、无机过氧化物、甲苯磺酰酰肼、苯磺酰酰肼、甲苯磺酰丙酮腙、甲苯磺酰半卡巴肼、苯基四唑、硼氢化钠、活性炭或二亚硝基-五亚甲基四胺的至少一种。
5.权利要求1的水泥湿浇铸组合物,其中发气添加剂是4,4’-氧联二苯磺酰基酰肼。
6.权利要求1的水泥湿浇铸组合物,其中发气添加剂以水泥的0.005%~2wt%的数量存在。
7.权利要求1的水泥湿浇铸组合物,其中空洞的体积等于或小于4%体积。
8.权利要求1的水泥湿浇铸组合物,其中聚合物微球包含至少一种以下聚合物:聚乙烯、聚丙烯、聚甲基丙烯酸甲酯、聚邻氯苯乙烯、聚氯乙烯、聚偏二氯乙烯、聚丙烯腈、聚甲基丙烯腈、聚苯乙烯,或者其共聚物或混合物。
9.权利要求1的水泥湿浇铸组合物,其中聚合物微球包含至少一种以下共聚物:偏二氯乙烯-丙烯腈、聚偏二氯乙烯-共聚丙烯腈、聚丙烯腈-共聚甲基丙烯腈、氯乙烯-偏二氯乙烯的共聚物或其混合物。
10.权利要求1的水泥湿浇铸组合物,其中聚合物微球的平均直径等于或小于10μm。
11.权利要求1的水泥湿浇铸组合物,其中聚合物微球是充气的或充液的当中至少一种。
12.权利要求1的水泥湿浇铸组合物,还包含下列至少一种:加气剂、骨料、火山灰、分散剂、凝固和强度加速剂和/或强化剂、缓凝剂、减水剂、缓蚀剂、润湿剂、水溶性聚合物、流变改进剂、拒水剂、纤维、防潮掺混物、减渗剂、泵送助剂、真菌杀伤掺混物、杀菌掺混物、杀虫掺混物、细分割矿物掺混物、着色掺混物、碱-活性降低剂、粘合掺混物、减缩掺混物或其混合物。
13.权利要求12的水泥湿浇铸组合物,其中分散剂是至少一种下列物质:木素磺酸盐、β-萘磺酸盐、磺化蜜胺甲醛缩合物、聚天冬氨酸盐、萘磺酸盐甲醛缩合物树脂、低聚物、聚羧酸盐或其混合物。
14.一种制备抗冻融损伤水泥湿浇铸组合物的方法,包括形成水、水凝水泥、发气添加剂以及柔性聚合物微球的混合物,其中所述柔性聚合物微球的平均直径为100微米或更小,并且所述柔性聚合物微球以总体积的0.05%~4%的数量存在。
15.权利要求14的方法,其中发气添加剂或聚合物微球以下列形式中至少一种加入到混合物中:
a.压实的团块;
b.粉末;或
c.液态掺混物。
16.权利要求14的方法,其中发气添加剂包含,在凝固前在水泥湿浇铸组合物中产生氮气、氧气、氢气、二氧化碳、一氧化碳、氨或甲烷气的化合物。
17.权利要求14的方法,其中发气添加剂是酰肼、肼、叠氮化物或偶氮化合物中的至少一种。
18.权利要求17的方法,其中所述发气添加剂包含4,4’-氧联二苯磺酰基酰肼。
CN2005800198365A 2004-06-15 2005-06-14 水泥湿浇铸组合物及其制备方法 Expired - Fee Related CN1980869B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US57969104P 2004-06-15 2004-06-15
US57997504P 2004-06-15 2004-06-15
US60/579,691 2004-06-15
US60/579,975 2004-06-15
PCT/EP2005/006329 WO2005123624A2 (en) 2004-06-15 2005-06-14 Providing freezing and thawing resistance to cementitious compositions

Publications (2)

Publication Number Publication Date
CN1980869A CN1980869A (zh) 2007-06-13
CN1980869B true CN1980869B (zh) 2010-10-06

Family

ID=34972087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800198365A Expired - Fee Related CN1980869B (zh) 2004-06-15 2005-06-14 水泥湿浇铸组合物及其制备方法

Country Status (11)

Country Link
US (1) US7288147B2 (zh)
EP (1) EP1758836B1 (zh)
JP (1) JP5237633B2 (zh)
KR (1) KR20070026594A (zh)
CN (1) CN1980869B (zh)
AU (1) AU2005254194B2 (zh)
BR (1) BRPI0512064A (zh)
CA (1) CA2570175C (zh)
MX (1) MXPA06014834A (zh)
NZ (1) NZ551566A (zh)
WO (1) WO2005123624A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244998A (zh) * 2012-04-19 2014-12-24 建筑研究和技术有限公司 用于水泥组合物的抗冻融损伤和抗剥落损伤的掺加剂和方法
CN107001139A (zh) * 2014-12-11 2017-08-01 建筑研究和技术有限公司 水泥的制造方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556684B2 (en) * 2004-02-26 2009-07-07 Construction Research & Technology Gmbh Amine containing strength improvement admixture
CN1968908B (zh) * 2004-06-15 2010-11-10 建筑研究及技术有限责任公司 抗冻-融损伤水泥湿浇铸组合物及其制备方法
MXPA06014843A (es) * 2004-06-15 2007-03-26 Constr Res & Tech Gmbh Mejora de la durabilidad de congelacion-deshielo de mezclas cementosas de colada en seco.
JP5279490B2 (ja) 2005-06-14 2013-09-04 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー セメント質組成物に耐凍結融解性をもたらす作用剤の供給方法
ES2535136T3 (es) * 2005-06-14 2015-05-05 Construction Research & Technology Gmbh Provisión de resistencia a la congelación y descongelación a composiciones cementosas
JP5100983B2 (ja) * 2005-06-24 2012-12-19 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー セメント組成物用発泡剤、それを含有するセメント組成物、セメント組成物の収縮防止法、および発泡剤のセメント組成物への使用
JP2008189526A (ja) * 2007-02-06 2008-08-21 Basf Pozzolith Ltd グラウト用混和材及びグラウト用のセメント組成物
KR100933224B1 (ko) * 2009-07-31 2009-12-18 강상수 폴리머 모르타르 조성물 및 이를 이용한 콘크리트 구조물의 보수공법
FR2955104B1 (fr) 2010-01-13 2014-08-08 Kerneos Materiau pour isolation thermique et son procede de fabrication
US8334346B2 (en) 2011-01-16 2012-12-18 Quentin Lewis Hibben Low temperature curable adhesive compositions
US9416300B2 (en) 2011-01-16 2016-08-16 Simpson Strong-Tie Company, Inc. Low temperature curable adhesive compositions
US9410072B2 (en) 2011-06-29 2016-08-09 Baker Hughes Incorporated Cement retarder and method of using the same
PL2794129T3 (pl) 2011-12-22 2021-12-27 Sika Technology Ag Zwiększenie efektywności urządzeń do separacji wielkości cząstek substancji stałych
AU2012372512B2 (en) 2012-03-09 2016-12-15 Parexgroup Sa Dry composition based on a mineral binder, used for preparing a moist formulation for the building industry
EP2822912B1 (fr) 2012-03-09 2018-08-15 Parexgroup Sa Utilisation d'au moins un polymere superabsorbant -psa- (b), dans une composition seche a base de liant mineral et destinee a la preparation d'une formulation humide durcissable pour le batiment
US9333685B2 (en) 2012-04-19 2016-05-10 AkzoNobel Chemicals International B.V. Apparatus and system for expanding expandable polymeric microspheres
US9809494B2 (en) 2012-10-09 2017-11-07 Premier Magnesia, Llc Magnesium phosphate cement
US9815738B2 (en) * 2012-10-09 2017-11-14 Premier Magnesia, Llc Magnesium phosphate cement
US8915997B2 (en) 2013-05-16 2014-12-23 Navs, Llc Durable concrete and method for producing the same
RU2537742C1 (ru) * 2013-08-13 2015-01-10 Юлия Алексеевна Щепочкина Сырьевая смесь для изготовления бетона
DE102013112267A1 (de) * 2013-11-07 2015-05-07 Heraeus Deutschland GmbH & Co. KG Halbleitermodul mit einer einen Halbleiterbaustein bedeckenden Umhüllungsmasse
JP6207992B2 (ja) * 2013-12-05 2017-10-04 デンカ株式会社 セメント混和材およびセメント組成物それを用いたセメント硬化体
US10640422B2 (en) 2013-12-06 2020-05-05 Construction Research & Technology Gmbh Method of manufacturing cementitious compositions
US10011764B2 (en) * 2015-02-12 2018-07-03 Halliburton Energy Services, Inc. Porous cement composition for propping fractures open
FR3039577B1 (fr) 2015-07-30 2022-09-02 Parexgroup Sa Systeme composite et procede de consolidation notamment d'ouvrages en beton arme ou de maconnerie matrice durcissable ou durcie et grille de renfort textile constituant ce systeme
CN105483669A (zh) * 2015-12-04 2016-04-13 三达奥克化学股份有限公司 电解板喷涂涂装前常温脱脂皮膜化成处理剂及制备方法
US10150905B1 (en) 2018-01-24 2018-12-11 Saudi Arabian Oil Company Settable, form-filling loss circulation control compositions comprising in situ foamed non-hydraulic sorel cement systems and method of use
US10259985B1 (en) 2018-01-24 2019-04-16 Saudi Arabian Oil Company Settable, form-filling loss circulation control compositions comprising in situ foamed calcium aluminate cement systems and methods of using them
FI129330B (fi) * 2019-05-27 2021-12-15 Invest Saarelainen Oy Menetelmä betonin valmistamiseksi
CN110436815A (zh) * 2019-08-07 2019-11-12 叶贵永 一种低温稳定型混凝土泵送剂
CN111072883B (zh) * 2019-11-27 2023-03-14 江苏苏博特新材料股份有限公司 一种含酯基保坍型减水剂及其制备方法
WO2021112781A1 (en) * 2019-12-05 2021-06-10 Cukurova Universitesi Rektorlugu A cement mi̇xture containing polycarboxylate based fluidizer and calcium nitrite
BR112022015178A2 (pt) 2020-03-13 2022-10-11 Sika Tech Ag Aglutinante hidráulico à base de escória, composição de argamassa seca compreendendo o mesmo e sistema para ativar um aglutinante à base de escória
US11661489B2 (en) 2020-08-19 2023-05-30 Saudi Arabian Oil Company Foamable resin composition for controlling loss circulation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591394A (en) * 1967-03-03 1971-07-06 Kaspar Winkler & Co Method of production of injection mortar or porous concrete
US4367093A (en) * 1981-07-10 1983-01-04 Halliburton Company Well cementing process and gasified cements useful therein
US4450010A (en) * 1983-04-29 1984-05-22 Halliburton Company Well cementing process and gasified cements useful therein

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US390A (en) * 1837-09-21 Machine foe
US2797201A (en) * 1953-05-11 1957-06-25 Standard Oil Co Process of producing hollow particles and resulting product
DE1253131C2 (de) * 1963-08-17 1973-05-03 Basf Ag Verfahren zum Verbinden von organischen Kunststoffen mit mineralischen Stoffen oder anorganischen hydraulischen Bindemitteln
BE659803A (zh) * 1964-05-18
DE1961390C3 (de) 1969-12-06 1978-10-12 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Leichtbetonbauteilen
AT311863B (de) 1971-06-15 1973-12-10 Theodor Chvatal Frostbeständiger Beton
US3902911A (en) 1972-05-01 1975-09-02 Mobil Oil Corp Lightweight cement
US3804058A (en) * 1972-05-01 1974-04-16 Mobil Oil Corp Process of treating a well using a lightweight cement
US3979217A (en) * 1973-06-01 1976-09-07 Halliburton Company Lightweight cellular cement compositions and methods of casting the same
NL7505525A (nl) * 1975-05-12 1976-11-16 Akzo Nv Werkwijze voor de bereiding van een vorstbesten- dig beton.
US4142909A (en) * 1975-09-11 1979-03-06 Construction Products Research, Inc. Method and composition for controlling contraction in setting cementitious systems through the addition of gas generating agents
CA1053712A (en) * 1975-12-04 1979-05-01 Gerhard G. Litvan Porous particles in frost-resistant cementitious materials
AT359907B (de) * 1977-12-30 1980-12-10 Perlmooser Zementwerke Ag Moertel- oder betonmischung
US4252193A (en) * 1979-06-11 1981-02-24 Standard Oil Company (Indiana) Low density cement slurry and its use
US4234344A (en) * 1979-05-18 1980-11-18 Halliburton Company Lightweight cement and method of cementing therewith
CA1180474A (en) 1979-06-26 1985-01-02 Alexander Kowalski Sequential heteropolymer dispersion and a particulate material obtainable therefrom useful in coating compositions as a thickening and/or opacifying agent
DE3026719A1 (de) 1979-07-17 1981-05-21 Gerhard Dipl.-Ing. Dr.techn. Wien Schwarz Hydraulisches bindemittel sowie verfahren zur herstellung von hohlteilchen fuer dieses bindemittel
US4303736A (en) * 1979-07-20 1981-12-01 Leonard Torobin Hollow plastic microspheres
US4427836A (en) * 1980-06-12 1984-01-24 Rohm And Haas Company Sequential heteropolymer dispersion and a particulate material obtainable therefrom, useful in coating compositions as a thickening and/or opacifying agent
US4468498A (en) * 1980-06-12 1984-08-28 Rohm And Haas Company Sequential heteropolymer dispersion and a particulate materal obtainable therefrom, useful in coating compositions as a thickening and/or opacifying agent
FR2540128B1 (fr) 1983-01-27 1986-02-21 Rhone Poulenc Spec Chim Compositions organopolysiloxaniques contenant des polyacyloxysilanes et durcissant tres rapidement en elastomeres en presence d'accelerateur du type hydroxyde metallique
US4654084A (en) * 1983-10-12 1987-03-31 Construction Products Research Inc. Method for controlling contraction in setting cementitious systems
US4594363A (en) * 1985-01-11 1986-06-10 Rohm And Haas Company Production of core-sheath polymer particles containing voids, resulting product and use
DE3800091A1 (de) 1987-08-28 1989-07-13 Sandoz Ag Copolymere verbindungen, deren herstellung und verwendung
JP2811336B2 (ja) 1989-11-06 1998-10-15 株式会社エヌエムビー 新規なセメント分散剤
JP2992591B2 (ja) * 1989-12-18 1999-12-20 ジーイー東芝シリコーン株式会社 シリカコア―シリコーンシェル体、これを分散含有するエマルジョンおよびエマルジョンの製造方法
JPH0688823B2 (ja) 1990-01-23 1994-11-09 ニチハ株式会社 無機質成形板およびその製造方法
JPH05501700A (ja) * 1990-05-18 1993-04-02 スペクレイト―アイピー インコーポレイテッド コンクリート用シリカヒューム水和および可塑化混和材
DE4135956C2 (de) 1990-11-06 2001-10-18 Mbt Holding Ag Zuerich Zusatzmittel für Zementmischungen und deren Verwendung
US5612396A (en) 1990-12-29 1997-03-18 Sandoz Ltd. Copolymers
JPH05167333A (ja) * 1991-12-13 1993-07-02 Matsushita Electric Works Ltd 移動体通信用アンテナの製造方法
CH686780A5 (de) 1992-07-22 1996-06-28 Sandoz Ag Fliessfaehige Zementmischungen.
TW338043B (en) 1992-12-11 1998-08-11 Minnesota Mining & Mfg Tacky microspheres having pendant hydrophilic polymeric or oligomeric moieties
CH689118A5 (de) 1993-06-11 1998-10-15 Nippon Catalytic Chem Ind Zusatzmittel zur Kontrolle des Fliessverhaltens von zementartigen Zusammensetzungen.
SG52787A1 (en) 1993-09-08 1999-05-25 Mbt Holding Ag Cementitious compositions for layered applications
JPH0788833A (ja) * 1993-09-21 1995-04-04 Tokyu Constr Co Ltd モルタル又はコンクリートの混練方法
PL183101B1 (pl) 1993-09-29 2002-05-31 Grace W R & Co Mieszanka hydraulicznego cementu, imidyzowany polimer akrylowy i sposób wytwarzania imidyzowanego polimeru akrylowego
US5393343A (en) 1993-09-29 1995-02-28 W. R. Grace & Co.-Conn. Cement and cement composition having improved rheological properties
JP2741742B2 (ja) * 1993-12-03 1998-04-22 北海道開発局開発土木研究所長 水中不分離性コンクリート組成物
IT1279390B1 (it) 1993-12-21 1997-12-10 Sandoz Ag Copolimeri di addizione utili come additivi fluidificanti per miscele cementizie
JPH07277794A (ja) * 1994-04-08 1995-10-24 Kanegafuchi Chem Ind Co Ltd 軽量コンクリート骨材
JP2925942B2 (ja) * 1994-08-26 1999-07-28 北海道開発局開発土木研究所長 気中打設用コンクリート組成物
JPH08133799A (ja) 1994-11-14 1996-05-28 Asahi Chem Ind Co Ltd 応力緩和セメント系硬化物
JPH08188458A (ja) * 1995-01-09 1996-07-23 Shin Etsu Chem Co Ltd 水中不分離性コンクリート組成物
DE69610650T2 (de) 1995-01-31 2001-05-03 Mbt Holding Ag, Zuerich Zementdispergiermittel
US5753744A (en) 1995-02-27 1998-05-19 W.R. Grace & Co.-Conn. Cement and cement composition having improved rheological properties
DE19513126A1 (de) 1995-04-07 1996-10-10 Sueddeutsche Kalkstickstoff Copolymere auf Basis von Oxyalkylenglykol-Alkenylethern und ungesättigten Dicarbonsäure-Derivaten
US5703174A (en) 1995-06-21 1997-12-30 W. R. Grace & Co.-Conn. Air controlling superplasticizers
US5840114A (en) 1995-06-21 1998-11-24 W. R. Grace & Co.-Conn. High early-strength-enhancing admixture for precast hydraulic cement and compositions containing same
US5665158A (en) 1995-07-24 1997-09-09 W. R. Grace & Co.-Conn. Cement admixture product
MY114306A (en) 1995-07-13 2002-09-30 Mbt Holding Ag Cement dispersant method for production thereof and cement composition using dispersant
US5571318A (en) * 1995-08-31 1996-11-05 Halliburton Company Well cementing methods and compositions for use in cold environments
US5728209A (en) * 1995-11-13 1998-03-17 Mbt Holding Ag Unitized cement admixture
GB9607570D0 (en) 1996-04-12 1996-06-12 Sandoz Ltd Improvements in or relating to organic compounds
FR2749844B1 (fr) * 1996-06-18 1998-10-30 Schlumberger Cie Dowell Compositions de cimentation et application de ces compositions pour la cimentation des puits petroliers ou analogues
US5912284A (en) 1996-12-26 1999-06-15 Nippon Shokubai Co., Ltd. Cement additive, its production process and use
EP0925262B1 (en) 1997-05-15 2008-02-27 Construction Research &amp; Technology GmbH A cementitious mixture containing high pozzolan cement replacement and compatibilizing admixtures therefor
US6136950A (en) 1997-09-23 2000-10-24 Mbt Holding Ag Highly efficient cement dispersants
JPH11147777A (ja) * 1997-11-14 1999-06-02 Kanegafuchi Chem Ind Co Ltd 軽量硬化物及びその製造方法
JPH11246253A (ja) * 1998-03-05 1999-09-14 Taisei Corp 軽量コンクリート
JP4015272B2 (ja) * 1998-05-11 2007-11-28 セルテック株式会社 コンクリート製品の製造方法
ATE228105T1 (de) 1998-08-14 2002-12-15 Mbt Holding Ag Zementmischungen mit hohem pozzolangehalt
EP1104394B1 (en) 1998-08-14 2003-11-12 Construction Research & Technology GmbH Cementitious dry cast mixture
US20010044477A1 (en) * 1998-12-10 2001-11-22 Soane David S. Expandable polymeric microspheres, their method of production, and uses and products thereof
US6310143B1 (en) 1998-12-16 2001-10-30 Mbt Holding Ag Derivatized polycarboxylate dispersants
US6485560B1 (en) * 1999-04-28 2002-11-26 The Trustees Of Princeton University Methods of protecting concrete from freeze damage
US6133347A (en) 1999-07-09 2000-10-17 Mbt Holding Ag Oligomeric dispersant
FR2796935B1 (fr) * 1999-07-29 2001-09-21 Dowell Schlumberger Services Coulis de cimentation des puits petroliers ou analogues a basse densite et basse porosite
CA2318703A1 (en) * 1999-09-16 2001-03-16 Bj Services Company Compositions and methods for cementing using elastic particles
JP4370443B2 (ja) * 1999-12-02 2009-11-25 住友大阪セメント株式会社 低熱ポルトランドセメント用凝結促進剤及び凝結促進方法
DE60129538T2 (de) * 2000-03-14 2008-04-10 James Hardie International Finance B.V. Faserzementbaumaterialien mit zusatzstoffen niedriger dichte
DE10017667A1 (de) 2000-04-08 2001-10-18 Goldschmidt Ag Th Dispergiermittel zur Herstellung wässriger Pigmentpasten
GB2377932B (en) 2000-05-15 2004-04-28 Schlumberger Holdings Permeable cements
US20020117086A1 (en) * 2000-12-19 2002-08-29 Caijun Shi Low shrinkage, high strength cellular lightweight concrete
JP2002294656A (ja) 2001-03-28 2002-10-09 Life Stage Kigyo Kumiai 生態系育成用コンクリート固化物
US6746654B2 (en) * 2001-12-06 2004-06-08 Brown University Research Foundation Dry and semi-dry methods for removal of ammonia from fly ash
US6722434B2 (en) * 2002-05-31 2004-04-20 Halliburton Energy Services, Inc. Methods of generating gas in well treating fluids
US7494544B2 (en) * 2003-01-23 2009-02-24 Bj Services Company Polymer shell encapsulated gas as a cement expansion additive
US20040221990A1 (en) * 2003-05-05 2004-11-11 Heathman James F. Methods and compositions for compensating for cement hydration volume reduction
US7073584B2 (en) * 2003-11-12 2006-07-11 Halliburton Energy Services, Inc. Processes for incorporating inert gas in a cement composition containing spherical beads
MXPA06014843A (es) * 2004-06-15 2007-03-26 Constr Res & Tech Gmbh Mejora de la durabilidad de congelacion-deshielo de mezclas cementosas de colada en seco.
CN1968908B (zh) 2004-06-15 2010-11-10 建筑研究及技术有限责任公司 抗冻-融损伤水泥湿浇铸组合物及其制备方法
JP5279490B2 (ja) 2005-06-14 2013-09-04 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー セメント質組成物に耐凍結融解性をもたらす作用剤の供給方法
ES2535136T3 (es) 2005-06-14 2015-05-05 Construction Research & Technology Gmbh Provisión de resistencia a la congelación y descongelación a composiciones cementosas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591394A (en) * 1967-03-03 1971-07-06 Kaspar Winkler & Co Method of production of injection mortar or porous concrete
US4367093A (en) * 1981-07-10 1983-01-04 Halliburton Company Well cementing process and gasified cements useful therein
US4450010A (en) * 1983-04-29 1984-05-22 Halliburton Company Well cementing process and gasified cements useful therein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 4367093 A,权利要求书,实施例,摘要.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244998A (zh) * 2012-04-19 2014-12-24 建筑研究和技术有限公司 用于水泥组合物的抗冻融损伤和抗剥落损伤的掺加剂和方法
CN107001139A (zh) * 2014-12-11 2017-08-01 建筑研究和技术有限公司 水泥的制造方法

Also Published As

Publication number Publication date
AU2005254194B2 (en) 2008-08-21
JP2008502564A (ja) 2008-01-31
US20050274285A1 (en) 2005-12-15
WO2005123624A3 (en) 2006-08-10
US7288147B2 (en) 2007-10-30
EP1758836B1 (en) 2013-08-14
CA2570175C (en) 2012-09-11
KR20070026594A (ko) 2007-03-08
EP1758836A2 (en) 2007-03-07
BRPI0512064A (pt) 2008-02-06
CA2570175A1 (en) 2005-12-29
NZ551566A (en) 2010-01-29
MXPA06014834A (es) 2007-03-26
CN1980869A (zh) 2007-06-13
AU2005254194A1 (en) 2005-12-29
JP5237633B2 (ja) 2013-07-17
WO2005123624A2 (en) 2005-12-29

Similar Documents

Publication Publication Date Title
CN1980869B (zh) 水泥湿浇铸组合物及其制备方法
CN1968908B (zh) 抗冻-融损伤水泥湿浇铸组合物及其制备方法
AU2005254195B2 (en) Improving the freeze-thaw durability of dry cast cementitious mixtures
AU2006257360B2 (en) Providing freezing and thawing resistance to cementitious compositions
CN113149530B (zh) 一种赤泥改性泡沫轻质土及其制备方法和应用
CN101198567A (zh) 将提供冻结和解冻抗性的物质传递到粘结性组合物的方法
KR101343803B1 (ko) 고로슬래그를 이용한 콘크리트 조성물 및 이의 제조방법
WO2012122433A2 (en) Concrete mixtures including carbon encapsulating admixture
CN101497508B (zh) 一种复合改性剂及由其制得的低强度混凝土
CN116553886B (zh) 一种抗裂防水混凝土及其制备方法
CN114368928B (zh) 一种用于疏浚土高强度固化的激发剂及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101006

Termination date: 20150614

EXPY Termination of patent right or utility model