CN1875488A - 液晶显示设备及其制造方法,以及液晶电视接收机 - Google Patents

液晶显示设备及其制造方法,以及液晶电视接收机 Download PDF

Info

Publication number
CN1875488A
CN1875488A CNA2004800318146A CN200480031814A CN1875488A CN 1875488 A CN1875488 A CN 1875488A CN A2004800318146 A CNA2004800318146 A CN A2004800318146A CN 200480031814 A CN200480031814 A CN 200480031814A CN 1875488 A CN1875488 A CN 1875488A
Authority
CN
China
Prior art keywords
liquid crystal
substrate
semiconductor layer
film transistor
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800318146A
Other languages
English (en)
Other versions
CN100464429C (zh
Inventor
山崎舜平
前川慎志
古野诚
中村理
今井馨太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1875488A publication Critical patent/CN1875488A/zh
Application granted granted Critical
Publication of CN100464429C publication Critical patent/CN100464429C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24421Silicon containing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Abstract

采用能够选择性地形成图案的方法,形成构成引线或电极的导电层、以及诸如用于形成预定图案的掩膜等制造显示面板所需的图案中的至少一个或多个,以制造液晶显示设备。能够通过依照具体的对象选择性地排放合成物的微滴来形成预定图案的微滴排放法在形成导电层、绝缘层等时用作能够选择性地形成图案的方法。

Description

液晶显示设备及其制造方法,以及液晶电视接收机
技术领域
本发明涉及应用诸如形成在玻璃基板上的晶体管之类的有源元件的显示设备以及用于制造该设备的方法。
背景技术
通常,众所周知,所谓的有源矩阵驱动方法的显示面板是由玻璃基板上的薄膜晶体管(下文中也称为“TFT”)所构成的。与半导体集成电路的制造技术一样,该显示面板需要通过使用光掩膜的曝光步骤对诸如导体、半导体或绝缘体之类的薄膜形成图案的步骤。
用于制造显示面板的母玻璃基板的尺寸从90年代早期第一代的300mm×400mm增大到2000年第四代的680mm×880mm或730mm×920mm。此外,该制造技术形成了能够从一个基板获得多个显示面板的发展。
当玻璃基板或显示面板的尺寸较小时,通过使用光刻机能够相当容易地进行图案形成。然而,随着基板尺寸的增大,显示面板的整个表面不能通过进行一次曝光处理来同时处理。从而,必须划分区域,把光刻胶施加到多个方块区域并在每个预定的方块区域上进行曝光处理。关于曝光处理,已经开发了通过依次重复处理来将基板的整个表面曝光的方法(例如,见参考文献1:日本专利申请公开号平11-326951;以及参考文献2:US6,291,136B1)。
发明公开
(本发明要解决的问题)
但是,在第五代中,玻璃基板已进一步扩大到1000mm×1200mm或1100mm×1300mm的尺寸,而在下一代将采取1500mm×1800mm或更大的尺寸。在扩大显示面板的尺寸和增加要获得的显示面板的数量时,大尺寸的玻璃基板是有效的;但是,在传统的图案形成方法中,难以用低成本以高生产率来制造显示面板。换言之,在通过连续的曝光来进行多次曝光时,会增加处理时间,并需要巨大的投资用于开发能够处理大尺寸玻璃基板的光刻机。
此外,在基板的整个表面上形成各种类型的薄膜和通过蚀刻去除薄膜以留出少量区域的方法中,存在着浪费材料成本和强迫处理大量废水的问题。
考虑到上述情形,本发明的目的是提供一种能够提高材料的利用效率并简化制造步骤的液晶显示设备及其制造技术。
(解决问题的手段)
根据本发明的一个方面,采用能够选择性地形成图案的方法,形成构成引线或电极的导电层、以及诸如用于形成预定图案的掩膜等制造显示面板所需的图案中的至少一个或多个,以制造液晶显示设备。能够依照具体的对象选择性地排放合成物来形成预定图案的微滴排放法(取决于要应用的系统也称为喷墨法)用作能够选择性地形成图案的方法。
根据本发明的另一个方面,一种用于制造液晶显示设备的方法包括以下步骤:采用微滴排放法在具有绝缘表面的基板上形成栅极电极;将栅极绝缘层、半导体层和绝缘层层叠在栅极电极上;采用微滴排放法在与栅极电极重叠的位置上形成第一掩膜;使用第一掩膜,通过蚀刻绝缘层形成沟道保护层;形成包含一种导电类型杂质的半导体层;采用微滴排放法在包括栅极电极的区域中形成第二掩膜;蚀刻包含一种导电类型杂质的半导体层和上述的半导体层;采用微滴排放法形成源极和漏极引线;以及通过使用源极和漏极引线作为掩膜,蚀刻沟道保护层上的包含一种导电类型杂质的半导体层。
根据本发明的另一个方面,一种用于制造液晶显示设备的方法包括以下步骤:采用微滴排放法在具有绝缘表面的基板上形成栅极电极和连接引线;将栅极绝缘层、半导体层和绝缘层层叠在栅极电极上层叠;采用微滴排放法在与栅极电极重叠的位置上形成第一掩膜;使用第一掩膜,通过蚀刻绝缘层形成沟道保护层;形成包含一种导电类型杂质的半导体层;采用微滴排放法在包括栅极电极的区域中形成第二掩膜;蚀刻包含一种导电类型杂质的半导体层和上述的半导体层;通过选择性蚀刻栅极绝缘层,局部暴露连接引线;微滴排放形成源极和漏极引线并将至少一条引线与连接引线相连接;以及通过把源极和漏极引线用作掩膜,蚀刻沟道保护层上的包含一种导电类型杂质的半导体层。
在将栅极绝缘层、半导体层和绝缘层层叠在栅极电极上的上述步骤中,较佳的是通过使用等离子体的气相生长法(称为等离子体CVD)或溅射法,在不暴露到空气的情况下依次形成栅极绝缘层、半导体层和绝缘层中的每一层。
通过依次层叠第一氮化硅膜、氧化硅膜和第二氮化硅膜以形成栅极绝缘层,能够防止栅极电极被氧化,并且能够在栅极绝缘层的上层侧上形成的半导体层之间形成令人满意的分界面。
如上所述,根据本发明的另一个方面,采用微滴排放法,形成图案形成过程中所使用的栅极电极、引线和掩膜。但是,制造液晶显示设备所需的至少一个或多个图案可采用能够选择性地形成制造液晶显示设备的图案的方法来形成,从而实现该目的。在本发明中,也可应用能够选择性地形成图案的丝网印刷法或其它印刷法来代替微滴排放法。
根据本发明的另一个方面,在把液晶夹入中间的基板之一上的一种液晶显示设备包括:薄膜晶体管,所述薄膜晶体管从基板侧开始包括以下各层的层叠结构:通过对导电纳米颗粒进行熔融和/或焊接(通过熔化)所形成的栅极电极、做成与栅极电极接触的氮化硅层或氧氮化硅层、至少包含氧化硅层的栅极绝缘层以及半导体层;以及与薄膜晶体管相连接的像素电极。
根据本发明的另一个方面,在把液晶夹入中间的基板之一上的一种液晶显示设备包括:薄膜晶体管,所述薄膜晶体管从基板侧开始包括以下各层的层叠结构:通过对导电纳米颗粒进行熔融和/或焊接(通过熔化)所形成的栅极电极、做成与栅极电极接触的氮化硅层或氧氮化硅层、至少包含氧化硅层的栅极绝缘层、半导体层、以及做成与引线相接触的氮化硅层或氧氮化硅层,所述引线与源极和漏极连接,并且是通过对导电纳米颗粒进行熔融和/或焊接(通过熔化)而形成的;以及与薄膜晶体管相连接的像素电极。
根据本发明的另一个方面,在把液晶夹入中间的基板之一上的一种液晶显示设备包括:薄膜晶体管,所述薄膜晶体管从基板侧开始具有以下各层的层叠结构:通过对导电纳米颗粒进行熔融和/或焊接(通过熔化)所形成的栅极电极、通过与栅极电极接触所形成的氮化硅层或氧氮化硅层、至少包含氧化硅层的栅极绝缘层以及半导体层;与第一薄膜晶体管相连接的像素电极;驱动电路,所述驱动电路包括通过具有与第一薄膜晶体管相同的层结构而形成的第二薄膜晶体管;以及引线,所述引线从驱动电路延伸并与第一薄膜晶体管的栅极电极相连接。
根据本发明的另一个方面,在把液晶夹入中间的基板之一上的一种液晶显示设备包括:包括第一薄膜晶体管的驱动电路,第一薄膜晶体管从基板侧开始包括以下各层的层叠结构:通过对导电纳米颗粒进行熔融和/或焊接(通过熔化)所形成的栅极电极、做成与栅极电极接触的氮化硅层或氧氮化硅层、至少包含氧化硅层或氧氮化硅层和氧化硅层的栅极绝缘层、半导体层、以及做成与引线相接触的氮化硅层或氧氮化硅层,所述引线与源极和漏极连接,并且是通过对导电纳米颗粒进行熔融和/或焊接(通过熔化)而形成的;与第一薄膜晶体管相连接的像素电极;驱动电路,所述驱动电路包括通过具有与第一薄膜晶体管相同的层结构而形成的第二薄膜晶体管;以及引线,所述引线从驱动电路延伸并与第一薄膜晶体管的栅极电极相连接。
根据本发明,用微滴排放法形成栅极电极或引线,且能够用银或包含银的合金来形成导电物质。此外,在要接触的栅极电极或引线的上层上设有氮化硅膜或氧氮化硅膜;因此,能够防止栅极电极由于氧化而劣化。
在本发明中,作为薄膜晶体管的主要部分的半导体层有可能包含氢和卤素,并且是由包含晶体结构的半非晶半导体形成的。因此,能够提供只包括n沟道型薄膜晶体管的驱动电路。换言之,半导体层包含氢和卤素,并且是具有晶体结构的半导体,从而用能够以从1cm2/V.sec到15cm2/V.sec的电场效应迁移率来工作的薄膜晶体管在一个基板上实现驱动电路。
(有益效果)
根据本发明,能够直接用微滴排放法对引线或掩膜形成图案;因此,能够获得提高了材料利用率且简化了制造步骤的薄膜晶体管,以及使用该薄膜晶体管的液晶显示设备。
附图简述
图1示出了说明根据本发明的液晶显示面板的结构的俯视图;
图2示出了说明根据本发明的液晶显示面板的结构的俯视图;
图3示出了说明根据本发明的液晶显示面板的结构的俯视图;
图4A到4C的每一个示出了说明用于制造根据本发明的液晶显示面板的方法的横截面图;
图5A到5C的每一个示出了说明用于制造根据本发明的液晶显示面板的方法的横截面图;
图6A到6C的每一个示出了说明用于制造根据本发明的液晶显示面板的方法的横截面图;
图7示出了说明用于制造根据本发明的液晶显示面板的方法的横截面图;
图8A和8B示出了说明用于制造根据本发明的液晶显示面板的方法的横截面图;
图9示出了说明用于制造根据本发明的液晶显示面板的方法的横截面图;
图10A到10C的每一个示出了说明用于制造根据本发明的液晶显示面板的方法的横截面图;
图11示出了说明用于制造根据本发明的液晶显示面板的方法的横截面图;
图12示出了说明用于制造根据本发明的液晶显示面板的方法的横截面图;
图13示出了说明用于制造根据本发明的液晶显示面板的方法的俯视图;
图14示出了说明用于制造根据本发明的液晶显示面板的方法的俯视图;
图15示出了说明用于制造根据本发明的液晶显示面板的方法的俯视图;
图16示出了说明用于制造根据本发明的液晶显示面板的方法的俯视图;
图17A和17B的每一个示出了根据本发明的液晶显示面板的驱动电路的安装方法(COG方法);
图18A和18B的每一个示出了根据本发明的液晶显示面板的驱动电路的安装方法(TAB方法);
图19示出了说明根据本发明的液晶显示面板的横截面图;
图20示出了说明在根据本发明的液晶显示面板中采用TFT形成扫描线驱动电路的情况下的电路结构的示意图;
图21示出了说明在根据本发明的液晶显示面板中采用TFT形成扫描线驱动电路的情况下的电路结构的示意图(移位寄存器电路);
图22示出了说明在根据本发明的液晶显示面板中采用TFT形成扫描线驱动电路的情况下的电路结构的示意图(缓冲电路);
图23示出了根据本发明的液晶电视接收机的主要结构的方框图;
图24示出了说明根据本发明的液晶显示模块的结构的视图;
图25示出了说明根据本发明待完成的电视接收机的结构的视图;
图26示出了说明根据本发明的液晶显示面板的俯视图;
图27示出了在图26中示出的液晶显示面板的等效电路图;以及
图28示出了说明适用于本发明的微滴排放设备的结构的视图。
实现本发明的最佳模式
参照附图将详细说明本发明的实施模式。注意,在各附图之间,相同的标号指示相同的部件,其说明在后面的说明中将不做重复。此外,要理解的是,对本领域技术人员而言,各种变化和修改是明显的,除非这种修改和变化背离了本发明的内容和范围。因此,不可将本发明解释为限于该实施模式的描述。
图1示出了根据本发明的液晶显示面板的结构的俯视图。其中像素102以矩阵排列的像素部分101、扫描线输入端103、及信号线输入端104形成在具有绝缘表面的基板100上。可以根据不同的标准来设置像素的数量。XGA的像素数量可以是1024×768×3(RGB),UXGA的像素数量可以是1600×1200×3(RGB),与其相对应的全亮点高清晰度电视的像素数量可以是1920×1080×3(RGB)。
像素102通过将从扫描线输入端103延伸的扫描线与从信号线输入端104延伸的信号线交叉而以矩阵排列。每个像素102设有开关元件和连接到其上的像素电极。开关元件的一个典型例子是TFT。TFT的栅极电极侧与扫描线连接,而其源极或漏极侧与信号线相连接;因此,通过从外部输入的信号能够独立地控制每个像素。
TFT包括作为主要成分的半导体层、栅极绝缘层以及栅极电极。半导体中所形成的与源极区域和漏极区域中的一个相连接的引线是其伴随物。其中自基板侧开始依次排列半导体层、栅极绝缘层和栅极电极的上栅极类型,以及其中自基板侧开始依次排列栅极电极、栅极绝缘层和半导体层的下栅极类型等称为TFT的结构。但是,任何一种结构都可以应用于本发明。
通过使用以硅烷或锗烷为代表的半导体材料气体的气相生长法或溅射法所制造的非晶半导体(下文中也称为“AS”);通过采用光能或热能使非晶半导体结晶所形成的多晶半导体;半非晶(也称为微晶粒或微晶体的,下文中也称为“SAS”)半导体等可用于形成半导体层的材料。
SAS是具有介于非晶结构和晶体结构(包括单晶体和多晶体)之间的中间结构的半导体。这是一种具有对于自由能量稳定的第三种状态的半导体,并且其中包括短程有序且具有晶格畸变的结晶区。在膜的至少部分区域中能观察到从0.5nm到20nm的结晶区。在硅作为主要成分而被包含时,拉曼光谱转移到小于520cm-1的较低频率侧。在X光衍射中可观察到由硅的晶格所引起的(111)或(220)的衍射峰。至少包含1原子%或更多的氢或卤素以终止悬空键。SAS通过在硅化物气体上进行生长放电分解(等离子体CVD)来形成。除SiH4之外,Si2H6、SiH2Cl2、SiHCl3、SiCl4、SiF4等也可用于硅化物气体。此外,也可混和GeF4。该硅化物气体可以采用H2或H2和稀有气体元素He、Ar、Kr和Ne的一种或多种来稀释。稀释比范围从2倍到1000倍。压力范围大约从0.1Pa到133Pa,工频范围从1MHz到120MHz,较佳的是从13MHz到60MHz。基板加热温度可以为300℃或更低。理想的是,诸如氧、氮或碳之类的大气成分杂质为1×1020cm-1或更低,作为膜中的杂质元素,尤其是氧浓度为5×1019/cm3或更小,最好是1×1019/cm3或更小。
图1示出了通过外部驱动电路控制输入到扫描线和信号线的信号的液晶显示面板的结构。此外,如图2所示,可以采用COG(玻璃上芯片)将驱动IC安装在基板100上。图2示出了将扫描线驱动IC 105和信号线驱动IC 106安装在基板100上的模式。在扫描线输入端103和像素部分101之间设有扫描线驱动IC 105。
此外,为像素所准备的TFT可由SAS构成。由于使用SAS的TFT具有从1cm2/V.sec到15cm2/V.sec的电场效应迁移率,因此可以形成驱动电路。图3示出了形成扫描线驱动电路107的例子。此外,也可在扫描线驱动电路107和像素部分101之间设置保护电路108。通过用基板100上的TFT形成扫描线驱动电路107,能够减少输入端的数量。
图28示出了用于形成图案的微滴排放设备的一种模式。微滴排放装置1401的每个头1403单独地连接到控制装置1404。控制装置1404控制来自头1403的微滴排放。排放微滴的定时是基于输入到计算机1407的程序来控制的。例如,排放微滴的位置可基于基板100上形成的标记1408来决定。此外,可用基板100的边沿作为基准来固定基准点。通过诸如CCD等成像装置1402来检测基准点,计算机1407识别由图像处理装置1406从基准点转换的数字信号以产生控制信号。当然,要在基板100上形成的图案的信息可被放置在记录介质1405中。根据该信息,可将控制信号发送到控制装置1404,并且能够单独地控制微滴排放装置1401的每个头1403。
接下来,下文中将说明使用这种微滴排放装置制造液晶显示面板的步骤。
(实施模式1)
在实施模式1中将说明用于制造沟道保护型薄膜晶体管以及使用该薄膜晶体管的液晶显示设备的方法。
图4A示出了采用微滴排放法在基板100上形成栅极电极和与栅极电极相连接的栅极引线的步骤。注意,图4A示出了纵向剖面结构,而图13示出了对应于图4A的A-B和C-D的平面结构。
除了诸如硼硅酸钡玻璃、硼硅酸铝玻璃和硅酸铝玻璃等用熔融法或浮法制造的无碱玻璃基板之外,具有能够承受处理温度等的耐热性的陶瓷基板、塑料基板可用于基板100。此外,也可采用诸如单晶硅的半导体基板、以及诸如不锈钢之类的金属基板表面设有绝缘层的基板。
较佳地通过诸如溅射法或气相淀积法之类的方法,在基板100上形成包含从由Ti(钛)、W(钨)、Cr(铬)、Al(铝)、Ta(钽)、Ni(镍)、Zr(锆)、Hf(铪)、V(钒)、Ir(铱)、Nb(铌)、Pd(钯)、Pt(铂)、Mo(钼)、Co(钴)和Rh(铑)构成的组中选择的金属的导电层201。导电层201可以做成具有从0.01nm到10nm的膜厚;但是,由于它可以形成得非常薄,未必需要膜结构。注意,提供该导电层201是为了形成具有良好粘合性的栅极电极。在获得足够的粘合性时,可以在基板100上直接形成栅极电极,而不用形成导电层201。
通过采用微滴排放方法排放包含导电物质的合成物,可在导电层201上形成引线202、栅极电极203和电容器引线204。包含诸如银、金、铜、钨或铝之类的金属作为主要成分的合成物能够用作形成这些层的导电物质。此外,可以结合具有透光性质的氧化铟锡(ITO)和含有氧化硅的氧化铟锡(ITSO)。具体地说,栅极引线优选地为低电阻。因此,优选使用其中在溶剂中溶解或分散金、银、或铜中的任何一种的材料,且考虑到具体的阻值,更优选的是使用具有低阻值的银或铜。但是,在使用铜或银的情况下,可以另外提供阻挡膜以保护使之免于杂质。溶剂对应于诸如乙酸丁酯之类的酯、诸如异丙醇之类的醇、或丙酮等有机溶剂。通过调整溶液的浓度和添加表面活性剂等,可以适当地调整表面张力和粘性。
由于栅极电极必须被精密地形成,因此优选使用包含平均颗粒尺寸从5nm到10nm的颗粒的纳米浆料。此外,也可通过排放包含用其它导电材料覆盖导电材料周围的颗粒的合成物,来形成栅极电极。例如,对于用银来覆盖铜的周围的颗粒,可以使用在铜和银之间设有由Ni或NiB(硼化镍)制成的缓冲层的导电颗粒。溶剂对应于诸如乙酸丁酯之类的酯、诸如异丙醇之类的醇和丙酮等有机溶剂。通过调整溶液的浓度和添加表面活性剂等,可以适当地调整表面张力和粘性。
将微滴排放法中使用的管嘴的直径设置为从0.02μm到100μm(优选30μm或更小),并将从管嘴排放的合成物的排放量优选地设为从0.001pl到100pl(优选10pl或更小)。微滴排放法有两种类型,按需类型和连续类型,二者都可被使用。此外,对微滴排放法中使用的管嘴,还有利用压电材料可施加电压来变形的性质的压电系统,和通过管嘴中设置的加热器来汽化合成物并排放合成物的加热系统,这两种系统都可以使用。在物体和管嘴的排放口之间的距离最好是尽可能靠近,以便于在所需的位置排放微滴,该距离优选设置为从0.1mm到3mm(优选1mm或更小)。在保持相对距离的同时,可移动管嘴和物体中的一个并画出所需的图案。此外,在排放合成物之前,可以在物体的表面上执行等离子体处理。这是为了利用在进行等离子体处理时变成亲水和疏液的物体表面。例如,它变为对去离子水是亲水的,并变为对用乙醇溶解的浆料是疏液的。
可在低压下执行排放合成物的步骤,以使在排放合成物并落在物体上的同时合成物的溶剂能够被挥发,并且可跳过或缩短随后的干燥和烘焙步骤。在包含导电材料的合成物的烘焙步骤中,能够降低构成栅极电极的导电膜的电阻率,并可通过积极地使用标度比从10%到30%的与氧气混和的气体来使导电膜变薄和平滑。
在排放合成物之后,可在大气压力或降低的压力之下通过激光辐照、快速热退火、加热炉等来执行干燥和烘焙步骤的任一步骤或二者。干燥和烘培的步骤都是热处理步骤。例如,在100℃进行3分钟的干燥,且在从200℃到350℃的温度进行持续从15分钟到120分钟的烘焙。为了能较好地执行干燥和烘焙步骤,可以加热基板,其温度被设为从100℃到800℃(优选的是温度从200℃到350℃),但这取决于基板的材料等。通过这个步骤,在合成物中的溶剂被挥发,或分散剂被化学地去除,并且周围的树脂固化和收缩,从而加速熔融和焊接。这可在氧气氛围、氮气氛围或空气中进行。然而,该步骤优选在氧气氛围中进行,在氧气氛围中,容易除去分解或分散金属元素的溶剂。
连续波或脉冲气体激光器或固态激光器可用于激光照射。有准分子激光器、Ar激光器等作为气体激光器,并有使用诸如用Cr、Nd等掺杂的YAG或YVO4之类的晶体的激光器作为固态激光器。在快速热退火的情况下,在惰性气体的氛围下,通过使用卤素灯等使温度迅速上升以执行热处理,这可在从几微秒到几分钟的很短时间内完成。通过在短时间内进行热处理,只有薄膜的最上层表面实质上被加热;从而,具有基底侧不受影响的优点。
用于形成导电层201的纳米浆料是一种在有机溶剂中分散或溶解颗粒尺寸从5nm到10nm的导电颗粒的物质,它也包含称为粘合剂的分散剂或热固树脂。粘合剂具有在烘焙期间防止产生裂纹或不均匀的烘焙状态的功能。根据干燥或烘焙步骤,同时进行有机溶剂的蒸发、分散剂的分解和去除、粘合剂的固化和收缩;因此,纳米颗粒彼此进行熔融和/或焊接以便变硬。在这种情况下,纳米颗粒从几十纳米生长到几百纳米。彼此靠近的已生长颗粒进行熔融和/或焊接,以彼此成链状连接来形成金属链体。另一方面,几乎所有剩余的有机成分(大约从80%到90%)被推向金属链体的外部。结果,形成了包含金属链体的导电膜和从覆盖在导电膜外部的有机成分制成的膜。然后,当纳米浆料在包含氮和氧的环境中烘焙时,包含在气体中的氧气与包含在由有机成分制成的膜中的碳、氢等发生反应;因此,能够去除由有机成分制成的膜。
此外,当在烘焙氛围中不包含氧时,通过另外执行氧等离子体处理等,能够去除由有机成分制成的膜。用这种方式,通过在包含氮和氧的环境下烘焙纳米浆料,或通过在干燥之后执行氧等离子处理,可去除由有机成分制成的膜。因此,能够使包含剩余金属链体的导电膜平滑、变薄、或降低电阻。通过在低压下排放合成物,在包含导电材料的合成物中的溶剂挥发;因此,就能够缩短随后的热处理(干燥和烘焙)的时间。
在形成栅极引线202、栅极电极203以及电容器引线204之后,期望执行以下两个步骤之一,作为对表面被暴露的导电层201的处理。
第一种方法是通过使不与栅极引线202、栅极电极203和电容器引线204重叠的导电层201绝缘来形成绝缘层205的步骤(见图4B)。换言之,不与栅极引线202、栅极电极203和电容器引线204重叠的导电层201被氧化从而使之绝缘。在以这种方式使导电层201绝缘的情况下,导电层201优选做成具有从0.01nm到10nm的膜厚,以使它通过被氧化而变成绝缘层。注意,可使用对氧气环境的暴露方法或执行热处理的方法中的任一种方法作为氧化方法。
第二种方法是使用引线202、栅极电极203和电容器引线204作为掩膜来蚀刻和去除导电层201的步骤。在使用该步骤的情况下,对导电层201的膜厚度没有限制。
接下来,通过使用等离子体CVD方法或溅射方法,以单层或层叠结构形成栅极绝缘层207(见图4C)。作为一个特别优选的模式,以下3层的层叠体对应于栅极绝缘层:由氮化硅制成的第一绝缘层208、由氧化硅制成的第二绝缘层209以及由氮化硅制成的第三绝缘层210。注意,诸如氩气之类的稀有气体可包含在反应气体中并混和到待形成的绝缘膜中,以便在较低的沉积温度下形成具有微小栅极漏电流的致密绝缘膜。通过由氮化硅或氧化氮化硅形成与引线202、栅极电极203和电容器引线204接触的第一绝缘层208,能够防止由氧化引起的劣化。
接着,形成半导体层211。半导体层211可用使用以硅烷或锗烷为代表的半导体材料气体的气相生长法或溅射法所制造的AS或SAS构成。
在使用等离子体CVD法的情况下,AS由作为半导体材料气体的SiH4或SiH4和H2的混和气体形成。当用H2按照3倍到1000倍来稀释SiH4以产生混和气体时,或当用GeF4来稀释Si2H6以使Si2H6对GeF4的气体流率是从20∶0.9到40∶0.9时,能够获得硅合成物比是80%或更大的SAS。具体地说,由于半导体层211能够具有与第三绝缘层的分界面的结晶度,后一情况是优选的。
通过等离子体CVD法或溅射法可在半导体层211上形成绝缘层212。如下面的步骤所示,该绝缘层212留在与栅极电极相对应的半导体层211上,并用作沟道保护层。因此,较佳的是,绝缘层212由致密膜形成,以便获得阻止半导体层211被诸如有机物质、金属物质或水汽之类的杂质污染的有利效果,以确保分界面的清洁。同样,在辉光放电分解法中,由于即使在100℃或更低的沉积温度下也能形成致密膜,因此通过用诸如氩气等稀有气体按从100倍到500倍稀释硅化物气体而形成的氮化硅膜是优选的。此外,如有必要,可层叠绝缘膜以便形成。
有可能对绝缘层212连续地形成栅极绝缘层207而不用暴露在空气中。换言之,可形成的层叠的各层之间的每一分界面,而不会被空气成份和空气传播污染的杂质元素所污染,从而,能够减少TFT性质的变化。
接着,通过选择性地在绝缘层212上对应于栅极电极203的位置处排放合成物来形成掩膜213(见图4C)。诸如环氧树脂、丙烯酸树脂、酚醛树脂、酚醛清漆树脂、三聚氰胺树脂或聚氨酯树脂之类的树脂材料可用于掩膜213。此外,通过使用诸如苯并环丁烯(benzocyclobutene)、聚对苯二甲撑(parylene)、火舌(flare)或透光聚酰亚胺之类的有机材料;从诸如基于硅氧烷的聚合物之类的聚合制成的复合材料;包含水溶性均聚物和水溶性共聚物的组合材料,用微滴排放法可形成掩膜213。或者,可以使用包含光敏剂的商业光刻胶材料。例如,可以使用由酚醛清漆树脂和作为光敏剂的萘醌二叠氮化物成的典型正型光刻胶,以及由基础树脂、二苯荃硅烷二醇和产酸剂构成的负型光刻胶。在使用任何一种材料时,通过稀释溶液或添加表面活性剂等,可适当调整表面张力和粘度。
如图4C中所示,可使用掩膜213来蚀刻绝缘层212,并形成起到沟道保护层作用的绝缘层214(见图5A)。去除掩膜213,并在半导体层211和绝缘体层214上形成n型半导体层215。n型半导体层215可通过使用硅烷气体和磷化氢气体来形成并能够由AS或SAS来构成。
之后,可采用微滴排放法在n型半导体215上形成掩膜216。通过使用该掩膜216,可蚀刻n型半导体层215和半导体层211。由此,形成半导体层217和n型半导体层218(见图5B)。注意,图5A示出了纵向剖面结构,而图14示出了对应于图5B的A-B和C-D的平面结构。
随后,在去除掩膜216之后,通过选择性地排放包含导电物质的合成物,用微滴排放方法可形成与源极和漏级相连的引线219和220(见图5B)。图15示出了对应于图5B的纵向结构中示出的A-B和C-D的平面结构。如图15中所示,也形成了从基板100的一端延伸的引线221。引线221被设置成电连接到与源极和漏极相连接的引线219。包含诸如银、金、铜、钨或铝之类的金属颗粒作为主要成分的合成物能够用作形成此引线的导电物质。此外,可以结合透光的氧化铟锡(下文也称作“ITO”)、包含氧化硅的氧化铟锡(下文也称作“ITSO”)、有机铟、有机锡、氧化锌、氮化钛等。
接着,使用与源极和漏极中的至少一个相连接的引线219和220作为掩膜,通过蚀刻绝缘层214上的n型半导体层218可形成起到源极和漏极区域作用的n型半导体层222和223(见图5C)。
随后,通过选择性地排放包含导电物质的合成物可形成对应于像素电极的第一电极224,以使其电连接到与源极和漏极中的至少一个相连接的引线220。在制造透射型液晶显示面板的情况下,用包含氧化铟锡(ITO)、含有氧化硅的氧化铟锡(ITSO)、氧化锌、氧化锡(SnOx)等的合成物,第一电极224可形成预定的图案,并被烘焙以形成像素电极。此外,在制造反射型液晶显示面板的情况下,可使用包含诸如银、金、铜、钨或铝之类的金属颗粒作为主要成分的合成物。作为另一种方法,可通过溅射法,以微滴排放法形成掩膜图案,并结合蚀刻工艺,用透明导电膜或光反射导电膜来形成像素电极层(见图6A)。由此,就完成了开关TFT 233和电容器元件234。注意,图6A示出了纵向剖视结构,而图16示出了对应于图6A的A-B和C-D的平面结构。
通过上述步骤,就完成了用于其中下栅极型(也称之为逆向叠加型)TFT与像素电极在基板100上连接的液晶显示面板的TFT基板200。
接着,通过印刷法或旋涂法形成称为对准膜的绝缘层225以覆盖第一电极224。注意,通过使用丝网印刷法或胶印法,如图所示,能够选择性地形成绝缘层225。在绝缘层225的表面上进行摩擦处理,以使能控制液晶的方向。随后,采用微滴排放法在形成像素的外围区域形成密封剂226(见图6B)。
其后,通过在其之间提供衬垫,可将其中设置了起到对准膜作用的绝缘层227和起到对置电极作用的第二电极228的对置基板229连接到TFT基板200,并且可通过提供与液晶显示层230的间距制造液晶显示面板(见图6C)。密封剂226可与填充剂混和,此外,色彩填充剂、屏蔽膜(黑底)等可形成在对置基板229上。注意,可使用在连接对置基板229之后通过使用毛细现象注入液晶的方法的剂量分配型(滴下型)或浸泡型(泵型),作为形成液晶层230的方法。
在施加剂量分配型的液晶点滴注入法中,采用密封剂226形成闭环,且其中一次或几次滴下液晶。随后,在真空中连接基板,然后用UV照射固化以制造在进行紫外线固化处理之后以液晶填充的状态。
接着,在大气压力或接近大气压力的气压下,通过使用氧气进行灰化处理,可将在与引线202上的栅极绝缘层207同一层中形成的绝缘层去除(见图7)。该处理可通过使用氧气以及氢气、CF4、NF3、H2O和CHF3中的一种或多种气体来进行。在该步骤中,通过使用对置基板在密封之后进行灰化处理,以防由静电引起的损坏和击穿;但是,当几乎没有静电效应时,则可在任何时间执行灰化处理。
随后,可将用于连接到外部电路的接线板232与引线202电连接。通过上面的步骤,就完成了包括沟道保护型开关TFT 233和电容器元件234的液晶显示面板。电容器元件234由电容器引线204、栅极绝缘层和第一电极224构成。
如上所述,在该实施模式中,通过制造TFT可制造液晶显示设备,而无需使用光掩膜的曝光步骤。能够跳过部分或所有根据曝光步骤的处理,诸如施加光刻胶、曝光或显影之类。此外,即使使用一侧超过1000mm的第五代之后的玻璃基板,通过采用微滴排放法直接在基板上形成各种图案,也能够容易地制造液晶显示设备。
(实施模式2)
实施模式1示出了其中第一电极224和连接到源极或漏极中的至少一个的引线220直接相连接的结构;但是,作为另一种模式,可将绝缘层设置在其之间。
在这种情况下,当直到图5C的步骤完成时,形成作为保护膜的绝缘层240(见图8A)。采用溅射法或等离子体CVD法所形成的由氮化硅或氧化硅构成的膜可应用于该保护膜。在绝缘层240中必须形成开口241,且连接到源极和漏极中的至少一个的引线220通过开口241与第一电极224电连接(见图8B)。在形成开口241的时候,可同时形成随后连接到连接端所需的开口242。如此就完成了TFT基板200。
用于形成开口241和242的方法不受具体地限制;然而,开口可例如通过在大气压力下的等离子体蚀刻来选择性地打开。在采用微滴排放法形成掩膜之后,可进行湿蚀刻处理。此外,通过采用微滴排放法选择性地形成待形成的无机硅氧烷或基于有机硅氧烷的膜,也可直接形成具有开口241和242的绝缘膜240。
如图8B所示形成对准膜244。然后,如在实施模式1中一样,通过使用密封剂,将对置基板固定在TFT基板200上,并注入液晶。由此,就完成了图9所示的液晶显示面板。
(实施模式3)
在实施模式3中将说明用于制造沟道蚀刻型薄膜晶体管以及使用该薄膜晶体管的液晶显示设备的方法。
在基板100上形成引线202、栅极电极203以及电容器引线204。这可通过用微滴排放法直接在基板100上绘制包含导电物质的合成物来形成。接着,用等离子体CVD法或溅射方法将栅极绝缘层207做成具有单层结构或层叠结构。一个尤其优选的模式是由三层的层叠体:包括氮化硅的第一绝缘层208、包括氧化硅的第二绝缘层209、以及包括氮化硅的第三绝缘层210。此外,形成起到有源层功能的半导体层211。上述步骤与实施模式1中的步骤相同。
n型半导体层301形成在半导体层211上(见图10A)。接着,通过在n型半导体层301上选择性地排放合成物来形成掩膜302。随后,通过使用掩膜302同时蚀刻半导体层211和n型半导体层301,并形成半导体层303和n型半导体层304。其后,采用微滴排放法在n型半导体层304上形成与源极和漏极中的至少一个相连接的引线305和306(见图10B)。
接着,使用与源极和漏极中的至少一个相连接的引线305和306作为掩膜,可蚀刻n型半导体层304,并形成n型半导体层307和308。半导体层303也被少量地蚀刻,并在开口中形成被局部蚀刻的半导体层309。随后,形成第一电极310,以电连接到与源极和漏极中的至少一个相连接的引线306(见图10C)。
接着,形成起到对准膜作用的绝缘层311。随后,形成密封剂312,并通过使用密封剂312,连接基板100和其中形成对置电极314和对准膜313的基板315。其后,在基板100和基板315之间形成液晶316。接着,通过在大气压力或接近大气压力的压力下蚀刻,暴露连接到连接端317的区域,并附连连接端317。因此,可制造液晶显示设备(见图11)。
在该实施模式中,通过制造TFT可制造液晶显示设备,而无需使用光掩膜的曝光步骤。能够省略部分或所有根据曝光步骤的处理,诸如施加光刻胶、曝光或显影之类。此外,即使使用一侧超过1000mm的第五代之后的玻璃基板,通过采用微滴排放法直接在基板上形成各种图案,也能够容易地制造液晶显示设备。
(实施模式4)
参照图19,在实施模式4中说明用微滴排放法制造的上栅极型TFT以及使用该上栅极TFT型的液晶显示设备。
在TFT基板200上形成开关TFT 291和电容器部分293。开关TFT 291和电容器部分293能够以下面的步骤来制造。
首先,采用微滴排放法形成电容引线270、连接到源极和漏极中的至少一个的引线271和272、以及引线273。包含诸如银、金、铜、钨或铝之类的金属颗粒作为主要成分的合成物用作形成这些层的导电物质。具体地说,与源极和漏极中的至少一个相连接的引线优选为低电阻。因此,优选使用其中在溶剂中溶解或分散金、银、或铜中的任何一种的材料,且考虑到具体的阻值,较佳的是使用具有低阻值的银或铜。优选使用颗粒尺寸从5nm到10nm的纳米颗粒来形成该引线。溶剂对应于诸如乙酸丁酯之类的酯、诸如异丙醇之类的醇、或丙酮等有机溶剂。通过调整溶液的浓度和添加表面活性剂,可以适当地调整表面张力和粘性。
n型半导体层276和277做成与连接到源极和漏极中的至少一个的引线272和273相接触。然后,用AS或SAS形成半导体层278。AS或SAS是使用气相生长法或溅射法来形成的。在使用等离子体CVD方法,即一种气相生长法时,通过使用作为半导体材料气体的SiH4或SiH4和H2的混和气体来形成AS。此外,通过用H2按照3倍到1000倍来稀释SiH4,可由该混和气体形成SAS。在用H2来稀释SiH4形成的SAS中,更多地在SAS膜的显影表面上而非在基板分界面上显影晶体。因此,与其中在半导体层278上形成栅极绝缘层207的上栅极型TFT结合是合适的。
用AS或SAS膜在基板100的整个表面上形成半导体层278,并使用由微滴排放法形成的掩膜将其处理成预定的形状。使半导体层278的位置对应于连接到源极和漏极中的至少一个的引线272和273。换言之,半导体层278做成与连接到源极和漏极中的至少一个的引线272和273重叠。此时,n型半导体层276和277被分别夹在半导体层278与连接到源极和漏极中的至少一个的引线272和273之间。
然后,通过使用等离子体CVD法或溅射法,栅极绝缘层207做成具有单层结构或层叠结构。作为一种尤其优选的方式,栅极绝缘层具有以下三层的层叠体:由氮化硅制成的第一绝缘层208、由氧化硅制成的第二绝缘层209、以及由氮化硅制成的第三绝缘层210。此外,栅极绝缘层207也被用作通过覆盖电容器引线270形成存储电容器的绝缘层。
在栅极绝缘层207上采用微滴排放法形成栅极电极279。包含诸如银、金、铜、钨或铝之类的金属颗粒作为主要成分的合成物能够用作形成栅极电极279的导电物质。在绘制了栅极电极279和连接到其上的引线的图案之后,通过烘焙制成栅极电极279。
蚀刻栅极绝缘层207,以至少局部暴露引线271和273。然后,通过选择性地排放包含导电物质的合成物可形成第一电极274,以与引线273电连接。第一电极274能够用作液晶显示设备中的像素电极。在制造透射型液晶显示设备的情况下,第一电极274包括包含氧化铟锡(ITO)、含有氧化硅的氧化铟锡(ITSO)、氧化锌(ZnO)、氧化锡(SnOx)等的合成物。此外,第一电极274包括采用溅射法的氧化铟锡(ITO)、含有氧化硅的氧化铟锡(ITSO)、氧化锌(ZnO)等。较佳的是,可使用通过使用其中在ITO中含有2wt.%到10wt.%的氧化硅的靶,以溅射法形成的含有氧化硅的氧化铟锡。此外,在制造反射型液晶显示设备的情况下,第一电极274可包括预定图案的、包含诸如银、铜、或铝之类的金属颗粒作为主要成分的合成物。
如上所述,能够获得其上设置了上栅极型(也称为顺向叠加型)开关TFT291和电容器部分293的TFT基板200。被称作对准膜的绝缘层225形成在第一电极274上。。绝缘层225能够通过使用丝网印刷法或胶印法,依照第一电极274的形状来形成。其后,可将其上设置了起到对准膜作用的绝缘层227和起到对置电极作用的第二电极228的对置基板229连接到TFT基板200,在两者之间具有衬垫,并且液晶层230可设置在该空间中。可将填充剂包含于密封剂226中,此外,可在对置基板229上形成色彩填充剂、保护膜(黑底)等。注意,在连接对置基板229之后通过使用毛细现象注入液晶的方法的剂量分配型(滴下型)或浸泡型(泵型)可用作形成液晶层230的方法。
在施加剂量分配型的液晶点滴注入法中,采用密封剂226形成闭环,且其中一次或几次滴下液晶。随后,在真空中连接基板,然后用UV照射固化以制造在进行紫外线固化之后可以液晶填充的状态。提供了用于连接的接线板232,以电连接引线271。接线板232提供来自外部的信号或能量。
根据该实施模式,可通过制造TFT来制造液晶显示设备,而无需使用光掩膜的曝光步骤。在该实施模式中,能够省略部分或所有根据曝光步骤的处理,诸如施加光刻胶、曝光或显影之类。此外,即使使用一侧超过1000mm的第五代之后的玻璃基板,通过采用微滴排放法直接在基板上形成各种图案,也能够容易地制造液晶显示设备。
(实施模式5)
如图3所说明的那样,在用实施模式1、实施模式2和实施模式3制造的液晶显示面板中,通过从SAS形成半导体层,能够在基板100上形成扫描线驱动电路。
图20示出了由使用SAS的n沟道TFT组成的扫描线驱动电路的框图,其中SAS可获得从1Gm2/V.sec到15cm2/V.sec的电场效应迁移率。
在图20中用标号500示出的方框对应于输出一阶采样脉冲的脉冲输出电路,且移位寄存器由n个脉冲输出电路组成。标号501指示缓冲电路,像素502与其端部相连接。
图21示出了脉冲输出电路500的具体结构,该电路由n沟道型TFT 601到613组成。这里,可考虑使用SAS的n沟道型TFT的工作特性来决定TFT的尺寸。例如,当沟道长度设为8μm时,沟道宽度可设为从10μm到80μm的范围。
此外,图22示出了缓冲电路501的具体结构。缓冲电路以相同方式由n沟道型TFT 620到635组成。这里,可考虑使用SAS的n沟道型TFT的工作特性来决定TFT的尺寸。例如,当沟道长度设为10μm时,沟道宽度可设为从10μm到1800μm的范围。
必须用引线来将TFT彼此连接以实现这种电路,图12示出了在此情况下的引线的结构例子。图12示出了其中形成了栅极电极203、栅极绝缘层207、由SAS构成的半导体层217、形成沟道保护层的绝缘层214、构成源极和漏极的n型半导体层222和223、以及连接到源极和漏极中的至少一个的引线219和220的状态。在这种情况下,用相同的步骤,在基板100上形成连接引线235、236和237和栅极电极203。在栅极绝缘层207中设置开口,以使连接引线235、236和237被暴露。因此,可通过适当地使用连接到源极和漏极中的引线219和210、以及在同一步骤中所形成的连接引线238连接TFT,来实现各种类型的电路。
(实施模式6)
参照图26说明其中扫描线输入端部分和信号线输入端部分设有保护二极管的一种模式。对图26中的像素102设有TFT 260和电容器元件265。TFT 260和电容器元件265分别与实施模式1中的开关TFT 233和电容器元件265具有相同的结构。
对信号线输入端部分设有保护二极管261和262。这些保护二极管是以与TFT 260相同的步骤制造的,并且通过各自与栅极及漏极和源极中的一个相连接来作为二极管工作。图27示出了图26中示出的俯视图的等效电路图。
保护二极管261包括栅极电极250,半导体层251、用于沟道保护的绝缘层252以及引线253。保护二极管262具有相同的结构。在与栅极电极相同的层中形成与该保护二极管相连接的公共电势线254和255。因此,必须在栅极绝缘层中形成接触孔以与引线253电连接。
通过微滴排放法可形成掩膜,且可进行蚀刻处理以在栅极绝缘层中形成接触孔。在这种情况下,在应用通过大气压放电的蚀刻处理时,局部放电处理也是可能的,而不需要在基板的整个表面上形成掩膜。
保护二极管261或262在与连接到TFT 260的源极和漏极的引线219相同的层中形成,并具有其中连接到其上的引线256和源极侧或漏极侧相连接的结构。
扫描信号线侧的输入端部分也具有相同的结构。对扫描线输入端部分设有保护二极管263和264。这些保护二极管是以与TFT 260相同的步骤制造的,并且通过各自与栅极及漏极和源极中的一个相连接来作为二极管工作。根据本发明,能够同时形成在输入级中设置的保护二极管。注意,保护二极管的沉积位置不限于本实施模式,并且也能够如图3中所示的设置在驱动电路和像素之间。
(实施模式7)
首先,参照图17A和图17B说明应用COG法的液晶显示设备。图17A和图17B各自示出了其中在基板1001上设置显示诸如字符或图像之类的信息的像素部分1002及扫描线驱动电路1003和1004的液晶显示设备。
在图17A中,通过分离其上形成多个驱动电路的母基板1005,可取出各个驱动电路(下文中称为驱动IC)。用于液晶显示设备的同一玻璃基板可用于母基板1005。例如,通过在其一侧为从300mm到1000mm或更大的矩形玻璃基板上形成多个驱动IC并分离它,能够获得驱动IC 1007。考虑到像素部分或像素间距一侧的长度,可以通过在长轴从15mm到80mm和短轴从1mm到6mm的矩形形状中形成驱动IC 1007来分离它。可通过以使用晶体半导体膜的TFT在母基板1005上形成驱动IC来降低一部分成本。
图17A示出了其中多个驱动IC安装在基板1001上并具有通过在驱动IC1007的端部连接柔性引线1006从外部电路输入信号的结构的模式。图17B示出了其中从大尺寸基板1008截下的长驱动IC 1010安装在基板1001上的结构。也示出了其中柔性引线1009安装在驱动IC 1010端部的方式。通过使用这一长驱动IC,能够减少部件的数量和步骤的数量。
接着,参照图18A和18B说明采用TAB方法的液晶显示设备。在基板1001上设有像素部分1002以及扫描线驱动电路1003和1004。在图18A中,多个柔性引线1006与基板1001相连接。驱动IC 1007安装在柔性引线1006上。图18B示出了将柔性引线1009连接到基板1001且将驱动IC 1010安装在柔性引线1009上的模式。在应用后者的情况下,考虑到强度,可将固定驱动IC 1010的金属片等连接在一起。通过使用这一长驱动IC,能够减少部件的数量和步骤的数量。
如图17A和17B以及图18A和18B中所示,通过在玻璃基板上形成驱动IC能够减轻特别是在长轴长度上的限制,并且只需用于安装对应于像素部分1002所需的更少数量。换言之,由于机械强度或基板的限制,不能实现做成包括单晶硅的长驱动IC。当驱动IC在玻璃基板上形成时,由于它不限于用作母体的基板的形状,因此驱动IC不会损失生产率。与从圆形硅晶片中取IC芯片的情况相比,这是一个巨大的优势。
图17A和17B以及图18A和18B所示的驱动IC 1007和1010是信号线驱动电路。为了形成对应于RGB全色的像素区域,XGA类中的3072条信号线和UXGA类中4800条信号线是必须的。这样数量的信号线通过在像素区域1002的边缘分成几个方块来形成引出线,并依照驱动IC 1007的输出端的间距来聚集。
驱动IC优选做成在基板上包括晶体半导体。通过用连续波激光照射来形成晶体半导体是较佳的。因此,连续波固态激光器或气体激光器可用作产生激光的振荡器。可使用具有较少晶体缺陷的大晶粒尺寸多晶半导体层来形成晶体管。此外,由于具有良好的迁移率或响应速度,有可能实现高速驱动,并且与传统的元件相比有可能进一步提高元件的工作频率。此外,能够获得高可靠性,因为几乎没有性质变化。注意,晶体管的沟道长度方向和激光的扫描方向可以相互一致,以进一步提高工作频率。这是因为在用连续波激光器的激光结晶步骤中,当晶体管的沟道长度方向和激光相对于基板的扫描方向几乎平行(优选,从-30°到30°)时,能够获得最高的迁移率。沟道长度方向与沟道形成区域中的电流漂浮方向一致,换言之,即与电荷移动的方向一致。如此制造的晶体管具有由多晶半导体层构成的有源层,在多晶半导体层中晶粒在沟道方向延伸,这意味着几乎沿着沟道方向形成晶界。
在执行激光结晶的过程中,优选使激光大大变窄,且其束斑点优选具有大约从1mm到3mm的宽度,这与驱动IC的短轴相同。此外,为了确保对要照射的物体有足够和有效的能量密度,激光的照射区域优选为线性形状。但是,这里的线性形状不是指严格意义上的直线,而是指具有大的纵横比的矩形或椭圆形。例如,线性形状涉及纵横比为2或更大(优选从10到10000)的矩形或椭圆形。因此,通过使激光束斑点的宽度符合驱动IC短轴的宽度,能够提高生产率。
在图17A和17B以及图18A和18B中,扫描线驱动电路与像素部分整体形成,并将驱动IC作为信号线驱动电路来安装。但是,该实施模式不限于此,且驱动IC可以作为扫描线驱动电路和信号线驱动电路二者来安装。在这种情况下,较佳的是区分要在扫描线侧和信号线侧之间使用的驱动IC的规范。例如,对于组成扫描线驱动IC的晶体管,需要大约30V的承受电压;然而,驱动频率是100kHz或更低,且比较而言不需要高速操作。因此,较佳的是,设置组成扫描线驱动器的晶体管的沟道长度(L)足够长。另一方面,大约12V的承受电压对于用于信号线驱动IC的晶体管已足够;然而,驱动频率在3V时大约为65MHz,且需要高速操作。因此,优选用微米规则设置组成驱动器的晶体管的沟道长度等。
在像素区域1002中,信号线和扫描线交叉以形成矩阵,且依照每一交叉排列晶体管。在这个实施模式中,可将具有其中沟道做成包括非晶半导体或半非晶半导体的结构的TFT用作排列在像素部分1002中的晶体管。通过诸如等离子体CVD法或溅射法之类的方法可形成非晶半导体。采用等离子体CVD,有可能在300℃或更低的温度下形成半非晶半导体。因此,即使在外部尺寸为例如550mm×650mm的无碱玻璃基板的情况下,在较短的时间内也可形成构成晶体管所需的膜厚。在制造大尺寸屏幕的液晶显示设备时,这种制造技术的特征是有效的。此外,通过将沟道形成区域做成包括SAS,半非晶TFT能够获得1cm2/V.sec到15cm2/V.sec的电场效应迁移率。因此,该TFT能够用作像素的开关元件,并作组成扫描线驱动电路的元件。
如上所述,能够将驱动电路结合到液晶显示面板中。根据该实施模式,即使使用一侧超过1000mm的第五代之后玻璃基板,也能够容易地制造液晶显示设备。
(实施模式8)
通过实施模式7制造的液晶显示面板,能够完成液晶显示电视接收机。图23示出了液晶显示接收机的主要结构的框图。液晶显示面板能够以下面的任何方式来形成:如图1所示,在只形成像素部分401的情况下,然后用TAB法安装扫描线驱动电路403和信号线驱动电路402;如图2所示,通过COG法,形成像素部分401以及在其外围的扫描线驱动电路403和信号线驱动电路402;且在TFT做成包括SAS的情况下,在基板上整体形成像素部分401和扫描线驱动电路403,并把信号线驱动电路402作为驱动IC单独安装。
外部电路的另一种结构包括放大由调谐器404接收到的视频信号的视频波放大器电路405;把从该放大器输出的视频信号转换为对应于红色、绿色和蓝色的每一色彩的彩色信号的视频信号处理电路406;把视频信号转换为驱动IC的输入规范的控制电路407等。控制电路407把信号分别输出到扫描线侧和信号线侧。在数字驱动的情况下,在信号线侧上设置了信号分离电路,以具有其中通过分成m段来提供输入数字信号的结构。
在从调谐器404接收到的信号中,将音频信号发送给音频波放大器电路409,其输出通过音频信号处理电路410提供给扬声器413。控制电路411接收接收台的控制信息(接收频率)或从输入部分412接收音量,并将信号发送给调谐器404或音频信号处理电路410。
图24是液晶显示模块的例子。用密封剂226固定TFT基板200和对置基板229,在其之间设置了像素部分101和液晶层230以形成显示区域。在执行彩色显示时则需要彩色层268。在RGB系统的情况下,对应于每一像素设置对应于红色、绿色和蓝色中的每种色彩的彩色层268。偏振板226和267设置在TFT基板200和对置基板229的外部。光源由冷阴极管258和导光板259组成,电路板257通过接线板232连接到TFT基板200,并结合诸如控制电路或电源电路等外部电路。
图25示出了通过将这样的液晶显示模块结合进外壳801中所完成的电视接收机。显示屏802可由液晶显示模块构成,并设置扬声器803、操作开关804等作为其它附加的器件。因此,根据本发明可以完成电视接收机。
当然,本发明不限于电视接收机,并可适用于诸如车站、机场等处的信息显示板之类的大尺寸区域的显示介质,或者街上的广告显示板以及个人计算机监视器。
该申请基于2003年10月28日向日本专利局提交的序列号为2003-368166的日本专利申请,其内容通过引用包括在此。
尽管利用实施模式和参照附图已经充分地描述了本发明,但应当理解的是,对本领域技术人员来说各种变化和修改是明显的。因此,除非这样的变化和修改背离了在此限定的本发明的范围,否则它们将被解释为包括在该范围内。

Claims (14)

1.一种液晶显示设备,包括:
一对基板;
置于所述一对基板之间的液晶;
所述一对基板中的一个上的薄膜晶体管;以及
与所述薄膜晶体管相连接的像素电极,
其中,所述薄膜晶体管包括:
通过熔融导电纳米颗粒在所述基板上形成的栅极电极,
包括在所述栅极电极上形成并与所述栅极电极直接接触的氮化硅和氧氮化硅中的至少一个的层,
在所述层上至少包含包括氧化硅的层的栅极绝缘层,以及
所述栅极绝缘层上的半导体层。
2.一种液晶显示设备,包括:
一对基板;
置于所述一对基板之间的液晶;
所述一对基板中的一个上的薄膜晶体管;以及
与所述薄膜晶体管相连接的像素电极,
其中,所述薄膜晶体管包括:
通过熔融导电纳米颗粒在所述基板上形成的栅极电极,
包括在所述栅极电极上形成并与所述栅极电极直接接触的氮化硅和氧氮化硅中的至少一个的第一层,
在所述第一层上至少包含氧化硅层的栅极绝缘层,以及
所述栅极绝缘层上的半导体层;
与源极和漏极中的至少一个相连接的引线;以及
包括在所述引线上形成并与所述引线直接接触的氮化硅和氧氮化硅中的至少一个的第二层,
其中,所述引线通过熔融导电纳米颗粒来形成。
3.一种液晶显示设备,包括:
一对基板;
置于所述一对基板之间的液晶;
所述一对基板中的一个上的第一薄膜晶体管;
与所述薄膜晶体管相连接的像素电极;
由第二薄膜晶体管构成的驱动电路,所述第二薄膜晶体管包括与所述第一薄膜晶体管相同的层结构;以及
从所述驱动电路延伸并与所述第一薄膜晶体管的栅极电极相连接的引线,
其中,所述第一薄膜晶体管包括:
通过熔融导电纳米颗粒在所述基板上形成的栅极电极,
包括在所述栅极电极上形成并与所述栅极电极直接接触的氮化硅和氧氮化硅中的至少一个的层,
在所述层上至少包含包括氧化硅的层的栅极绝缘层,以及
所述栅极绝缘层上的半导体层。
4.一种液晶显示设备,包括:
一对基板;
置于所述一对基板之间的液晶;
所述一对基板中的一个上的第一薄膜晶体管;
与所述薄膜晶体管相连接的像素电极;
由第二薄膜晶体管构成的驱动电路,所述第二薄膜晶体管包括与所述第一薄膜晶体管相同的层结构;以及
从所述驱动电路延伸并与所述第一薄膜晶体管的栅极电极相连接的引线,
其中,所述薄膜晶体管包括:
通过熔融导电纳米颗粒在所述基板上形成的栅极电极,
包括在所述栅极电极上形成并与所述栅极电极直接接触的氮化硅和氧氮化硅中的至少一个的第一层,
在所述第一层上至少包含氧化硅层的栅极绝缘层,以及
所述栅极绝缘层上的半导体层;
与源极和漏极中的至少一个相连接的引线;以及
包括在所述引线上形成并与所述引线直接接触的氮化硅和氧氮化硅中的至少一个的第二层,
其中,所述引线通过熔融导电纳米颗粒来形成。
5.如权利要求1至4的任一个所述的液晶显示设备,其特征在于,所述导电纳米颗粒包括Ag。
6.如权利要求2或4所述的液晶显示设备,其特征在于,
所述半导体层包含氢和卤素中的至少一个;
所述半导体层是具有晶体结构的半非晶半导体。
7.如权利要求2或4所述的液晶显示设备,其特征在于,所述驱动电路仅由n沟道型薄膜晶体管构成。
8.如权利要求1或2所述的液晶显示设备,其特征在于,
所述薄膜晶体管包括半导体层,所述半导体层包含氢和卤素,并且是具有晶体结构的半导体,
所述薄膜晶体管能够用从1cm2/V·sec到15cm2/V·sec的电场效应迁移率来工作。
9.如权利要求3或4所述的液晶显示设备,其特征在于,
所述第一薄膜晶体管和所述第二薄膜晶体管包括半导体层,所述半导体层包含氢和卤素,并且是具有晶体结构的半导体,
所述第一薄膜晶体管和所述第二薄膜晶体管能够用从1cm2/V·sec到15cm2/V·sec的电场效应迁移率来工作。
10.一种包括如权利要求1到4的任一个所述的液晶显示设备的液晶电视接收机。
11.一种制造液晶显示设备的方法,包括以下步骤:
用微滴排放法在具有绝缘表面的基板上形成栅极电极;
将栅极绝缘层、半导体层和绝缘层层叠在所述栅极电极上;
用微滴排放法在与所述栅极电极重叠的位置上形成第一掩膜;
使用所述第一掩膜通过蚀刻所述绝缘层形成沟道保护层;
形成包含一种导电类型杂质的半导体层;
用微滴排放法在包括所述栅极电极的区域中形成第二掩膜;
蚀刻包含一种导电类型杂质的半导体层和上述的半导体层;
用微滴排放法形成源极和漏极引线;以及
通过使用所述源极和漏极引线作为掩膜,蚀刻所述沟道保护层上包含一种导电类型杂质的半导体层。
12.一种制造液晶显示设备的方法,包括以下步骤:
用微滴排放法在具有绝缘表面的基板上形成栅极电极和连接引线;
将栅极绝缘层、半导体层和绝缘层层叠在所述栅极电极上;
用微滴排放法在与所述栅极电极重叠的位置上形成第一掩膜;
用所述第一掩膜通过蚀刻所述绝缘层形成沟道保护层;
形成包含一种导电类型杂质的半导体层;
用微滴排放法在包括所述栅极电极的区域中形成第二掩膜;
蚀刻包含一种导电类型杂质的半导体层和上述的半导体层;
通过选择性地蚀刻所述栅极绝缘层来局部暴露所述连接引线;
形成源极引线和漏极引线,同时并将源极引线和漏极引线中的至少一条与所述连接引线相连接;以及
通过使用所述源极和漏极引线作为掩膜,蚀刻所述沟道保护层上包含一种导电类型杂质的半导体层。
13.如权利要求11或12所述的制造液晶显示设备的方法,其特征在于,所述将栅极绝缘层、半导体层和绝缘层层叠在所述栅极电极上的步骤是在不暴露于空气的情况下执行的。
14.如权利要求11或12所述的制造液晶显示设备的方法,其特征在于,所述栅极绝缘膜由第一氮化硅膜、氧化硅膜和第二氮化硅膜依次层叠。
CNB2004800318146A 2003-10-28 2004-10-25 液晶显示设备及其制造方法,以及液晶电视接收机 Expired - Fee Related CN100464429C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003368166 2003-10-28
JP368166/2003 2003-10-28

Publications (2)

Publication Number Publication Date
CN1875488A true CN1875488A (zh) 2006-12-06
CN100464429C CN100464429C (zh) 2009-02-25

Family

ID=34510334

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800318146A Expired - Fee Related CN100464429C (zh) 2003-10-28 2004-10-25 液晶显示设备及其制造方法,以及液晶电视接收机

Country Status (4)

Country Link
US (3) US8101467B2 (zh)
KR (1) KR101072410B1 (zh)
CN (1) CN100464429C (zh)
WO (1) WO2005041311A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740334B (zh) * 2008-11-13 2012-10-03 中芯国际集成电路制造(北京)有限公司 光刻预处理方法及光刻方法
CN103392198A (zh) * 2011-02-28 2013-11-13 夏普株式会社 电极基板以及具备该电极基板的显示装置和触摸面板
CN103839834A (zh) * 2008-07-31 2014-06-04 株式会社半导体能源研究所 半导体装置及其制造方法
CN106816383A (zh) * 2010-08-16 2017-06-09 株式会社半导体能源研究所 半导体装置的制造方法
CN108508265A (zh) * 2017-09-27 2018-09-07 中国计量科学研究院 功率传感器
CN108508264A (zh) * 2017-09-27 2018-09-07 中国计量科学研究院 功率传感器
CN108508263A (zh) * 2017-09-27 2018-09-07 中国计量科学研究院 功率传感器

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7439086B2 (en) 2003-11-14 2008-10-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing liquid crystal display device
US8247965B2 (en) * 2003-11-14 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting display device and method for manufacturing the same
US7537976B2 (en) 2005-05-20 2009-05-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor
WO2007097074A1 (ja) 2006-02-24 2007-08-30 Sharp Kabushiki Kaisha アクティブマトリクス基板、表示装置、テレビジョン受像機、アクティブマトリクス基板の製造方法、ゲート絶縁膜形成方法
TWI427682B (zh) 2006-07-04 2014-02-21 Semiconductor Energy Lab 顯示裝置的製造方法
US7994021B2 (en) * 2006-07-28 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
TWI427702B (zh) * 2006-07-28 2014-02-21 Semiconductor Energy Lab 顯示裝置的製造方法
TWI412079B (zh) * 2006-07-28 2013-10-11 Semiconductor Energy Lab 製造顯示裝置的方法
US7943287B2 (en) * 2006-07-28 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
KR101346246B1 (ko) 2006-08-24 2013-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 제작방법
US7795154B2 (en) 2006-08-25 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device that uses laser ablation, to selectively remove one or more material layers
US8563431B2 (en) * 2006-08-25 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8148259B2 (en) 2006-08-30 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7651896B2 (en) * 2006-08-30 2010-01-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5110830B2 (ja) * 2006-08-31 2012-12-26 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7732351B2 (en) 2006-09-21 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device and laser processing apparatus
US7767595B2 (en) * 2006-10-26 2010-08-03 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
EP2076924B1 (en) * 2006-11-17 2017-03-08 Semiconductor Energy Laboratory Co, Ltd. Unerasable memory element and method for manufacturing the same
KR101485926B1 (ko) * 2007-02-02 2015-02-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 기억장치
US8283724B2 (en) 2007-02-26 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Memory element and semiconductor device, and method for manufacturing the same
US7960261B2 (en) * 2007-03-23 2011-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing crystalline semiconductor film and method for manufacturing thin film transistor
JP5255870B2 (ja) * 2007-03-26 2013-08-07 株式会社半導体エネルギー研究所 記憶素子の作製方法
US7745344B2 (en) * 2007-10-29 2010-06-29 Freescale Semiconductor, Inc. Method for integrating NVM circuitry with logic circuitry
JP5505757B2 (ja) * 2008-03-25 2014-05-28 Nltテクノロジー株式会社 液晶表示装置の製造方法および液晶表示装置
KR101008379B1 (ko) * 2008-04-15 2011-01-14 한국전자통신연구원 박막 트랜지스터 및 그 제조 방법
JP2010028105A (ja) 2008-06-20 2010-02-04 Semiconductor Energy Lab Co Ltd 記憶素子及び記憶素子の作製方法
TWI469354B (zh) 2008-07-31 2015-01-11 Semiconductor Energy Lab 半導體裝置及其製造方法
US8945981B2 (en) * 2008-07-31 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI491048B (zh) * 2008-07-31 2015-07-01 Semiconductor Energy Lab 半導體裝置
KR102094683B1 (ko) * 2008-09-19 2020-03-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치
CN101714546B (zh) 2008-10-03 2014-05-14 株式会社半导体能源研究所 显示装置及其制造方法
KR101634411B1 (ko) * 2008-10-31 2016-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 구동 회로, 표시 장치 및 전자 장치
EP2184783B1 (en) 2008-11-07 2012-10-03 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and method for manufacturing the same
US8441007B2 (en) * 2008-12-25 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
EP2428994A1 (en) 2010-09-10 2012-03-14 Applied Materials, Inc. Method and system for depositing a thin-film transistor
US9660092B2 (en) 2011-08-31 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor thin film transistor including oxygen release layer
KR20140026257A (ko) * 2012-08-23 2014-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR102161078B1 (ko) 2012-08-28 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제작 방법
CN103777793B (zh) * 2012-10-17 2017-05-31 宸鸿光电科技股份有限公司 触控面板及其制备方法
KR102186576B1 (ko) 2014-03-21 2020-12-04 삼성디스플레이 주식회사 액정 표시 패널 및 이의 제조 방법
TWI553836B (zh) * 2014-05-07 2016-10-11 群創光電股份有限公司 顯示裝置
US11302717B2 (en) * 2016-04-08 2022-04-12 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the same

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456168A (ja) * 1990-06-21 1992-02-24 Stanley Electric Co Ltd 薄膜トランジスタおよびその製造方法
JPH0456158A (ja) * 1990-06-21 1992-02-24 Matsushita Electric Works Ltd 表面実装用半導体パッケージ
US5440168A (en) * 1993-02-22 1995-08-08 Ryoden Semiconductor System Engineering Corporation Thin-film transistor with suppressed off-current and Vth
JP3406681B2 (ja) 1994-04-22 2003-05-12 株式会社東芝 薄膜トランジスタの製造方法
CN100405530C (zh) * 1996-05-15 2008-07-23 精工爱普生株式会社 薄膜器件的制造方法
US5947783A (en) * 1996-11-01 1999-09-07 Si Diamond Technology, Inc. Method of forming a cathode assembly comprising a diamond layer
JPH10270843A (ja) 1997-03-28 1998-10-09 Vacuum Metallurgical Co Ltd 導電パターンの補修方法と装置
CA2306384A1 (en) * 1997-10-14 1999-04-22 Patterning Technologies Limited Method of forming an electronic device
JP4087949B2 (ja) 1998-05-20 2008-05-21 セイコーエプソン株式会社 電気光学装置の製造方法及び電気光学装置
JP2000029053A (ja) * 1998-07-14 2000-01-28 Mitsubishi Electric Corp 液晶表示装置およびその製造方法
US6294401B1 (en) * 1998-08-19 2001-09-25 Massachusetts Institute Of Technology Nanoparticle-based electrical, chemical, and mechanical structures and methods of making same
US7402467B1 (en) * 1999-03-26 2008-07-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
WO2001011426A1 (en) 1999-05-27 2001-02-15 Patterning Technologies Limited Method of forming a masking pattern on a surface
US7288420B1 (en) * 1999-06-04 2007-10-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
CA2382082A1 (en) * 1999-08-13 2001-02-22 Mark L. Brongersma Optoelectronic device and method utilizing nanometer-scale particles
JP5183838B2 (ja) * 2000-05-12 2013-04-17 株式会社半導体エネルギー研究所 発光装置
US7633471B2 (en) * 2000-05-12 2009-12-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electric appliance
JP4338934B2 (ja) 2001-03-27 2009-10-07 株式会社半導体エネルギー研究所 配線の作製方法
SG116443A1 (en) * 2001-03-27 2005-11-28 Semiconductor Energy Lab Wiring and method of manufacturing the same, and wiring board and method of manufacturing the same.
JP2003080694A (ja) * 2001-06-26 2003-03-19 Seiko Epson Corp 膜パターンの形成方法、膜パターン形成装置、導電膜配線、電気光学装置、電子機器、並びに非接触型カード媒体
JP3980312B2 (ja) * 2001-09-26 2007-09-26 株式会社日立製作所 液晶表示装置およびその製造方法
KR100980008B1 (ko) * 2002-01-02 2010-09-03 삼성전자주식회사 배선 구조, 이를 이용하는 박막 트랜지스터 기판 및 그제조 방법
JP2003258226A (ja) 2002-02-27 2003-09-12 Canon Inc 放射線検出装置及びその製造方法
US7183146B2 (en) * 2003-01-17 2007-02-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
WO2005025787A1 (ja) * 2003-09-12 2005-03-24 National Institute Of Advanced Industrial Science And Technology 微細な液滴の形状で噴射し、積層塗布可能な金属ナノ粒子分散液
CN100568457C (zh) * 2003-10-02 2009-12-09 株式会社半导体能源研究所 半导体装置的制造方法
CN1871711B (zh) * 2003-10-28 2011-12-07 株式会社半导体能源研究所 显示器件及其制造方法,以及电视接收机
US7270694B2 (en) * 2004-10-05 2007-09-18 Xerox Corporation Stabilized silver nanoparticles and their use
US8088484B2 (en) * 2007-09-03 2012-01-03 Rohm Co. Ltd. Metallic structure and photodetector

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10559695B2 (en) 2008-07-31 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN103839834A (zh) * 2008-07-31 2014-06-04 株式会社半导体能源研究所 半导体装置及其制造方法
CN103839834B (zh) * 2008-07-31 2017-05-03 株式会社半导体能源研究所 半导体装置及其制造方法
US9666719B2 (en) 2008-07-31 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10930792B2 (en) 2008-07-31 2021-02-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN101740334B (zh) * 2008-11-13 2012-10-03 中芯国际集成电路制造(北京)有限公司 光刻预处理方法及光刻方法
CN106816383A (zh) * 2010-08-16 2017-06-09 株式会社半导体能源研究所 半导体装置的制造方法
CN106816383B (zh) * 2010-08-16 2020-12-08 株式会社半导体能源研究所 半导体装置的制造方法
CN103392198A (zh) * 2011-02-28 2013-11-13 夏普株式会社 电极基板以及具备该电极基板的显示装置和触摸面板
CN103392198B (zh) * 2011-02-28 2015-11-25 夏普株式会社 电极基板以及具备该电极基板的显示装置和触摸面板
CN108508264A (zh) * 2017-09-27 2018-09-07 中国计量科学研究院 功率传感器
CN108508263B (zh) * 2017-09-27 2020-04-17 中国计量科学研究院 功率传感器
CN108508265B (zh) * 2017-09-27 2020-05-05 中国计量科学研究院 功率传感器
CN108508264B (zh) * 2017-09-27 2020-05-05 中国计量科学研究院 功率传感器
CN108508263A (zh) * 2017-09-27 2018-09-07 中国计量科学研究院 功率传感器
CN108508265A (zh) * 2017-09-27 2018-09-07 中国计量科学研究院 功率传感器

Also Published As

Publication number Publication date
WO2005041311A1 (en) 2005-05-06
US8987068B2 (en) 2015-03-24
KR101072410B1 (ko) 2011-10-11
CN100464429C (zh) 2009-02-25
US20110186850A1 (en) 2011-08-04
US20140080238A1 (en) 2014-03-20
US20070051952A1 (en) 2007-03-08
KR20060134939A (ko) 2006-12-28
US8101467B2 (en) 2012-01-24
US8629442B2 (en) 2014-01-14

Similar Documents

Publication Publication Date Title
CN1875488A (zh) 液晶显示设备及其制造方法,以及液晶电视接收机
CN1871711B (zh) 显示器件及其制造方法,以及电视接收机
CN1906527A (zh) 显示装置及其制造法
CN102790075B (zh) 显示装置以及显示装置的制造方法
CN1160759C (zh) 半导体器件及其制造方法
CN1311558C (zh) 半导体器件
CN1781184A (zh) 液滴排出装置、图案的形成方法及半导体装置的制造方法
CN1655326A (zh) 掺杂方法,制造半导体器件和施加电子仪器的方法
CN101030536A (zh) 电路图案、薄膜晶体管及电子设备的制造方法
CN1755943A (zh) 具有半导体元件的显示器件及其制造方法
CN1877448A (zh) 蚀刻剂及使用蚀刻剂制造布线及薄膜晶体管基板的方法
CN1828932A (zh) 半导体装置、电子器具以及制造半导体装置的方法
CN1945855A (zh) 薄膜晶体管、tft阵列基板、液晶显示器及其制造方法
CN1801479A (zh) 制造包括塑料基板的柔性薄膜晶体管阵列板的方法
CN1683980A (zh) 显示装置
CN1765009A (zh) 半导体装置及其制造方法
CN1620208A (zh) 显示器件
CN1109213A (zh) 半导体薄膜及使用这种薄膜的半导体器件的制造方法
CN1883061A (zh) 有源矩阵显示器和具有等离子基板的其它电子装置
CN102214699A (zh) 显示装置的制造方法
CN1610859A (zh) 布线结构、利用该布线结构的薄膜晶体管基片及其制造方法
CN1790750A (zh) 薄膜晶体管、其制造方法、显示设备及其制造方法
CN1599523A (zh) 显示器件及其制造方法
CN1697196A (zh) 半导体器件及其制造方法
CN1773341A (zh) 制造柔性显示装置的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090225

Termination date: 20171025

CF01 Termination of patent right due to non-payment of annual fee