CN102214699A - 显示装置的制造方法 - Google Patents

显示装置的制造方法 Download PDF

Info

Publication number
CN102214699A
CN102214699A CN201110140080.7A CN201110140080A CN102214699A CN 102214699 A CN102214699 A CN 102214699A CN 201110140080 A CN201110140080 A CN 201110140080A CN 102214699 A CN102214699 A CN 102214699A
Authority
CN
China
Prior art keywords
layer
conductive layer
electrode layer
insulating barrier
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110140080.7A
Other languages
English (en)
Other versions
CN102214699B (zh
Inventor
山崎舜平
小路博信
川俣郁子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN102214699A publication Critical patent/CN102214699A/zh
Application granted granted Critical
Publication of CN102214699B publication Critical patent/CN102214699B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

显示装置的制造方法当形成导电层时,在要形成的图形的外侧(相当于图形的轮廓、端部)附着液态的包含导电性材料的组合物,以形成框状的第一导电层(或绝缘层)。附着液态的第二包含导电性材料的组合物,以填充框状的第一导电层的内侧空间,从而形成第二导电层。第一导电层及第二导电层接合而形成,并且形成第一导电层以包围第二导电层的周围,所以可以将第一导电层及第二导电层可以用作连续的一个导电层。

Description

显示装置的制造方法
本申请是申请日为2007年7月4日、申请号为200710127144.3、发明名称为“显示装置的制造方法”的发明专利申请的分案申请。
技术领域
本发明涉及一种使用印刷法的显示装置的制造方法。
背景技术
薄膜晶体管(下文中也称作“TFT”)及采用薄膜晶体管的电子电路是通过如下方法制造的:在衬底上层叠半导体膜、绝缘膜、以及导电膜等各种薄膜,并且适当地利用光刻技术形成预定图形。光刻技术是利用光将电路等的图形转印到目标衬底上的技术,所述电路等的图形是在被称作光掩模的透明平板表面上由不透光的材料形成的。该技术已经广泛应用在半导体集成电路等的制造工序中。
在应用以往的光刻技术的制造工序中,仅处理使用被称作光致抗蚀剂的感光性有机树脂材料形成的掩模图形就包括曝光、显影、烧成、剥离等多步工序。因此,光刻工序的数目越多,制造成本越不可避免地增加。为了解决上述问题,已经设法减少光刻工序来制造TFT(例如,参考专利文献1)。在专利文献1中,在一次使用通过光刻工序形成的抗蚀剂掩模之后,通过膨胀而使它的体积增大,将其作为具有不同形状的抗蚀剂掩模进行再利用。
[专利文件1]
日本特开2000-133636号
发明内容
本发明的目的在于提供一种技术,该技术在制作TFT、使用TFT的电子电路、以及由TFT形成的显示装置的工序中,可以减少光刻工序数目且简化制造工序,而且即使在使用一边长超过1米的大面积衬底时也可以以低成本并高成品率地制造显示装置。
本发明的另一个目的在于提供一种可以将构成这些显示装置的布线等的构成物可控性好地形成为所要求的形状的技术。
在本发明中,在不使用光刻工序的情况下选择性地形成具有所要求的形状的导电层(绝缘层)。尤其是,导电层(绝缘层)的形状不良及可控性不足成为降低所获得的显示装置的成品率、可靠性的原因。
在本发明中,在将液态组合物附着到被形成区之后,进行烧成、干燥等使该组合物固化,以形成导电层(绝缘层)。在采用这种方法的情况下,需要以微细且正确的图形将液态组合物附着到被形成区,以便提高导电层(绝缘层)的形状或形成区的正确性。尤其是,当形成用于形成电路的布线层时,布线层的被形成区的位置偏差给电特性带来不好影响如短路等。
因此,在本发明所示的导电层(绝缘层)的形成方法中,当形成导电层(绝缘层)时,至少分成两个以上的工序形成。形成导电层(绝缘层)时,将液态的包含导电性(绝缘性)材料的组合物附着到要形成的图形的外侧(相当于图形的轮廓、端部),以形成框状的第一导电层(绝缘层)。第一导电层(绝缘层)优选是如框那样封闭的区域。接着附着液态的第二包含导电性(绝缘性)材料的组合物,填充框状的第一导电层(绝缘层)的内侧空间,以形成第二导电层(绝缘层)。第一导电层(绝缘层)及第二导电层(绝缘层)彼此接合形成,并且形成第一导电层(绝缘层)以包围第二导电层(绝缘层)的周围,由此,可以将第一导电层(绝缘层)及第二导电层(绝缘层)用作连续的一个导电层(绝缘层)。
在使用液态组合物形成导电层(绝缘层)等时,组合物的粘度或固化时的干燥条件(温度或压力等)、与被形成区的润湿性等对形成的导电层(绝缘层)的形状影响很大。因此,当粘度低或与被形成区的润湿性高时,有液态组合物在被形成区中润湿扩展,而当粘度高或与被形成区的润湿性低时,则导致在导电层(绝缘层)内部或表面上具有空间(也称作针孔)及凹凸而使平坦性恶化的问题。
因此,在本发明中,若附着具有较高粘度且对形成区润湿性低的组合物来形成决定导电层(绝缘层)的被形成区轮廓的第一导电层(绝缘层),则可以可控性好地形成成为所要求的图形的轮廓的侧端部。若将粘度低且对被形成区润湿性高的液态组合物附着到第一导电层(绝缘层)的框中来形成,则可以减轻由内部或表面的气泡等导致的空间或凹凸等,从而形成平坦性高的均匀的导电层(绝缘层)。由此,通过分别制作导电层(绝缘层)外侧和内侧来制作导电层(绝缘层),可以可控性好地形成具有所要求的图形和高平坦性且缺陷减少的导电层(绝缘层)。
另外,通过绝缘层使导电层相互电连接的情况下,在绝缘层中形成开口(成为所谓的接触孔)。在此情况下,在绝缘层上不形成掩模层,而通过激光的照射选择性地形成开口。形成第一导电层,在该第一导电层上层叠绝缘层,并且从绝缘层一侧对在第一导电层及绝缘层的叠层中形成开口的区域选择性地照射激光。激光透过绝缘层,而被第一导电层吸收。第一导电层由于吸收的激光的能量而被加热且蒸发,破坏层叠在其上的绝缘层。因此在第一导电层及绝缘层中形成开口,在绝缘层下的导电层的一部分露出在开口的侧壁及底面(或仅在侧壁)。在开口中形成第二导电层,以使与露出的第一导电层接合,由此第一导电层及第二导电层可以通过绝缘层电连接。换句话说,在本发明中,通过对导电层照射激光并利用激光烧蚀来蒸发导电层的激光照射区,在形成于导电层上的绝缘层中形成开口。
因为可以利用激光选择性地形成开口,所以可以不形成掩模层,因此,可以减少工序及材料。另外,激光可以聚焦成微小的光点,所以可以将要加工的导电层及绝缘层高精度地加工成预定的形状,并且在短时间中瞬间被激光加热,从而具有如下优点,即可以几乎不加热加工区以外的区域。
本发明还可应用于具有显示功能的显示装置。使用本发明的显示装置包括发光显示装置或液晶显示装置等,所述发光显示装置是互相连接发光元件和TFT得到的,所述发光元件是将包含产生被称作场致发光(以下也称作“EL”)的发光的有机物、无机物、或者有机物和无机物的混合物的层插入电极之间得到的,所述液晶显示装置将具有液晶材料的液晶元件用作显示元件。
本发明的显示装置的制造方法之一为:在具有绝缘表面的衬底上排出第一包含导电性材料的组合物形成框状的第一导电层;对被框状的第一导电层包围的区域排出第二包含导电性材料的组合物,在第一导电层的框内形成第二导电层。
本发明的显示装置的制造方法之一为:在具有绝缘表面的衬底上排出第一包含导电性材料的组合物形成框状的第一导电层;对被框状的第一导电层包围的区域排出第二包含导电性材料的组合物,在第一导电层的框内形成第二导电层,其中第一包含导电性材料的组合物的粘度高于第二包含导电性材料的组合物的粘度。
本发明的显示装置的制造方法之一为:在具有绝缘表面的衬底上排出第一包含导电性材料的组合物形成框状的第一导电层;在被框状的第一导电层包围的区域排出第二包含导电性材料的组合物,在第一导电层的框内形成第二导电层,其中第一包含导电性材料的组合物相对于具有绝缘表面的衬底的润湿性低于第二包含导电性材料的组合物相对于具有绝缘表面的衬底的润湿性。
在上述结构中,第一包含导电性材料的组合物及第二包含导电性材料的组合物可以被连续排出,也可以以液滴状态被间歇排出。例如,当形成位于导电层外侧的框状第一导电层时,连续排出第一包含导电性材料的组合物,而在以填充框状的第一导电层内的方式形成第二导电层时,第二包含导电性材料的组合物也可以被间歇排出。像这样,可以根据所形成的图形改变液态组合物的排出方法。
另外,通过不同的工序形成的第一导电层及第二导电层的厚度可以大约相同,也可以不同。例如,在通过前工序形成的第一导电层是框状的,所以若以比第一导电层的框的高度(厚度)低的高度排出第二包含导电性材料的组合物,形成第二导电层,则可以使第一导电层前膜厚大于第二导电层的膜厚。
在上文中形成的导电层可以用于构成显示装置的任何导电层。例如可以用于布线层、栅电极层、源电极层、漏电极层、以及像素电极层等。另外,也可以将制造导电层如上述框状的第一导电层及形成在第一导电层内侧的第二导电层的方法应用到绝缘层。例如,可以应用到用作隔壁的绝缘层等。
本发明的显示装置的制造方法之一为:形成第一导电层以及在第一导电层上形成绝缘层;将激光选择性地照射到第一导电层及绝缘层,去除第一导电层的照射区的一部分及绝缘层的照射区,在第一导电层及绝缘层中形成开口;以及将包含导电性材料的组合物排出到开口中,以形成与第一导电层电连接的第二导电层。
本发明的显示装置的制造方法的之一为:形成第一导电层;在该第一导电层上形成第二导电层;在第一导电层及第二导电层上形成绝缘层;将激光选择性地照射到第一导电层、第二导电层、以及绝缘层,去除第二导电层的照射区及绝缘层的照射区,以在第二导电层及绝缘层中形成开口;将包含导电性材料的组合物排出到开口中,以形成与第一导电层及第二导电层电连接的第三导电层。
在上述结构中,形成开口的导电层可以使用铬、钼、镍、钛、钴、铜或铝中的一种或多种形成。另外,形成开口的绝缘层可以用透过激光的材料例如透光性的有机树脂等形成。
根据本发明,可以以所要求的形状形成构成显示装置等的布线等构成物。另外,可以简化复杂的光刻工序并通过简化了的工序制造显示装置,所以可以减少材料的损失,实现成本的降低。因此,可以高成品率地制造高性能且高可靠性的显示装置。
附图说明
图1是说明本发明的示意图;
图2是说明本发明的示意图;
图3是说明本发明的示意图;
图4是说明本发明的示意图;
图5是说明本发明的示意图;
图6是说明本发明的示意图;
图7是说明本发明的显示装置制造方法的图;
图8是说明本发明的显示装置制造方法的图;
图9是说明本发明的显示装置制造方法的图;
图10是说明本发明的显示装置制造方法的图;
图11是说明本发明的显示装置制造方法的图;
图12是说明本发明的显示装置制造方法的图;
图13是说明本发明的显示装置制造方法的图;
图14是说明本发明的显示装置制造方法的图;
图15是说明本发明的显示装置的图;
图16是说明本发明的显示模块结构例子的截面图;
图17是说明本发明的显示装置的图;
图18是说明本发明的显示装置的图;
图19是说明本发明的显示装置制造方法的图;
图20是说明本发明的显示模块结构例子的截面图;
图21是说明本发明的显示装置的图;
图22是说明可应用于本发明的发光元件的结构图;
图23是说明可应用于本发明的发光元件的结构图;
图24是说明可应用于本发明的发光元件的结构图;
图25是本发明的显示装置的俯视图;
图26是本发明的显示装置的俯视图;
图27是示出应用本发明的电子设备的主要结构的框图;
图28示出应用本发明的电子设备的图;
图29示出应用本发明的电子设备的图;
图30是说明可应用于本发明的液滴排出装置的结构图;
图31是说明可应用于本发明的激光直接描画装置的结构图;
图32是说明在本发明的显示面板中由TFT形成扫描线一侧驱动电路时的电路结构图;
图33是说明在本发明的显示面板中由TFT形成扫描线一侧驱动电路时的电路结构图(移位寄存器电路);
图34是说明在本发明的显示面板中由TFT形成扫描线一侧驱动电路时的电路结构图(缓冲电路);
图35是说明本发明的示意图;
图36是说明本发明的显示装置的制造方法的图;
图37是说明本发明的显示装置的制造方法的图;
图38是说明本发明的显示装置的制造方法的图。
具体实施方式
将参照附图详细说明本发明的实施方式。但是,本发明不局限于以下说明。所属技术领域的普通人员可以很容易地理解一个事实就是其方式和详细内容在不脱离本发明的宗旨及其范围可以被变换为各种各样的形式。因此,本发明不应该被解释为仅限定在以下实施方式所记载的内容中。另外,在以下说明的本发明的构成中,在不同的图中使用相同的附图标记来表示相同的部分或具有相同功能的部分,而省略其重复说明。
实施方式1
在本实施方式中,使用图1及图2说明显示装置的制造方法,该制造方法的目的是以进一步简化了的工序并且以低成本制造高可靠性的显示装置。
本发明的特征在于:通过可选择性地形成所要求的形状的方法来形成构成布线层或电极的导电层等制造显示装置等所必需的构成物中的至少一个或一个以上,来制造显示装置。在本发明中,构成物(也称作图形)是指构成薄膜晶体管或显示装置的布线层、栅电极层、源电极层和漏电极层等导电层、半导体层、掩模层、绝缘层等,并且包括形成具有为预定形状的所有构成要素。作为可以将形成物选择性地形成为所要求的图形的方法,使用液滴排出(喷出)法(根据其方式也称作喷墨法),该液滴排出法可以选择性地排出(喷出)为特定目的而调配的组合物液滴从而以预定的图形形成导电层或绝缘层等。另外,还可以使用将构成物转印或描画成所要求的图形的方法,例如各种印刷法(可以以所要求的图形形成的方法,例如丝网(孔版)印刷、胶(平版)印刷、凸版印刷或照相凹版(凹版)印刷等)、分配器法、选择性的涂敷法等。
在本实施方式中采用下述方法:将为流动体的包含构成物形成材料的组合物以液滴形式排出(喷出),形成所要求的图形。将包含构成物形成材料的液滴排出到构成物的被形成区中,进行烧成、干燥等使其固定,形成具有所要求的图形的构成物。
图30示出用于液滴排出法的液滴排出装置的一个方案。液滴排出单元1403的各喷头1405、喷头1412与控制单元1407连接,并且其通过被计算机1410控制可以描画预先设置好的图形。关于描画的定时,例如以在衬底1400上形成的标记1411为基准进行即可。或者,也可以以衬底1400的边缘为基准确定基准点。其使用摄像单元1404检测,在图像处理单元1409变换为数字信号,计算机1410识别其并产生控制信号,发送到控制单元1407。作为摄像单元1404,可以使用利用电荷耦合元件(CCD)或互补金属氧化物半导体的图像传感器等。当然,在衬底1400上要形成的图形的信息是存入到记忆媒体1408中的,基于该信息将控制信号送到控制单元1407,从而可以分别控制液滴排出单元1403的各个喷头1405、喷头1412。排出的材料从材料供应源1413和材料供应源1414经过管道分别供应到喷头1405、喷头1412。
喷头1405内部如虚线1406所示具有充填液态材料的空间和排出口-喷嘴。虽然附图中没有示出,喷头1412也具有与喷头1405同样的内部结构。在将喷头1405和喷头1412的喷嘴设置为互相不同的大小的情况下,可以以不同的宽度同时描画不同的材料。一个喷头可以分别排出导电性材料或有机、无机材料等进行描画,在层间膜等较大区域上描画的情况下,为了提高生产率可以从多个喷嘴同时排出相同的材料进行描画。在使用大型衬底的情况下,喷头1405和喷头1412可以在衬底上沿箭头方向自如地扫描,并且可以自由地设定描画的区域,从而可以在一片衬底上描画多个相同的图形。
在使用液滴排出法形成导电层的情况下,排出加工为粒子状的含有导电性材料的组合物,通过烧成使其熔接或焊接而固化以形成导电层。如此,通过溅射法等形成的导电层(或绝缘层)的大多具有柱状结构,而通过排出含有导电性材料的组合物并进行烧成形成的导电层(或绝缘层)显示出具有大量粒界的多晶状态的情况居多。
参照图1及图2,通过导电层的形成方法描述本发明的实施方式的概念。图1(A2)及(B2)是导电层的俯视图,而图1(A1)及(B1)是图1(A2)及(B2)沿线Y-Z的截面图。
在本发明中,在不使用光刻工序的情况下选择性地形成具有所要求的形状的导电层。导电层的变形、形成位置的偏差等形状不良及可控性不足是获得的显示装置的成品率、可靠性降低的原因。
在本发明中,将液体组合物附着到被形成区后,通过烧成、干燥等方法使其固化,形成导电层(绝缘层)。在这种方法的情况下,为了提高导电层(绝缘层)的形状或形成区的正确性,必须将液体组合物以微细且正确的图形附着到被形成区中。特别是在形成用来形成电路的布线层时,布线层的被形成区的误差对电特性产生不利影响,例如短路等。
因此,作为本发明所示的导电层(绝缘层)的形成方法,在形成导电层(绝缘层)时,分成至少两个以上的工序形成。形成导电层(绝缘层)时,将液态的第一包含导电性(绝缘性)材料的组合物附着在要形成的图形的外侧(相当于图形的轮廓、端部),形成框状的第一导电层(绝缘层)。第一导电层(绝缘层)优选是如框那样封闭的区域。在本实施方式中,使用液滴排出装置702a、702b将液态的含有导电性形成材料的组合物排出到衬底700上,形成第一导电层703(703a、703b)。沿着形成的导电层图形端部的轮廓将第一导电层703形成为封闭的框状(参照图1(A1)和1(A2))。
接着,附着液态的第二包含导电性(绝缘性)形成材料的组合物,填充框状第一导电层(绝缘层)的内侧空间,形成第二导电层(绝缘层)。在本实施方式中,使用液滴排出装置704排出液态的第二包含导电性材料的组合物,填充环(ring)状的第一导电层703的内侧,形成第二导电层705(参照图1(B1)和(B2))。由于第一导电层及第二导电层相接合而形成,并且形成第一导电层703以包围第二导电层的周围,所以可以将第一导电层703及第二导电层705用作连续的一个导电层。
在使用液态组合物形成导电层等的情况下,组合物的粘度或固化时的干燥条件(温度或压力等)、与被形成区的润湿性等会大大影响形成的导电层的形状。因此,当具有低粘度或与被形成区的润湿性高时,液态组合物在被形成区中润湿扩展,而当具有高粘度或与被形成区的润湿性低时,则会使导电层内部或表面上具有空间(也称作针孔)及凹凸,从而使平坦性恶化。
因此,在本发明中,若附着粘度较高且相对于被形成区润湿性低的组合物形成确定导电层的被形成区轮廓的第一导电层703,则可以可控性好地形成成为所要求的图形的轮廓的侧端部。若将粘度低且相对于被形成区润湿性高的液态组合物附着到第一导电层703的框中而形成,则可以减轻由内部或表面上的气泡等导致的空间或凹凸等,形成平坦性高的均匀的第二导电层705。由此,通过分别制作导电层外侧(第一导电层703)和内侧(第二导电层705)来制作导电层,可以可控性好地形成具有所要求的图形和高平坦性且减轻缺陷的导电层。
可以连续排出第一包含导电性材料的组合物及第二包含导电性材料的组合物,也可以以液滴状态间歇排出。例如,也可以在形成位于导电层外侧的框状第一导电层时,连续排出第一包含导电性材料的组合物,而在以填充框状第一导电层内的方式形成第二导电层时,可以间歇排出第二包含导电性材料的组合物。像这样,也可以根据所形成的图形改变液态组合物的排出方法。将液态组合物的排出方法示出于图6(A)~6(C)。
在图6(A)中,使用液滴排出装置763将含有导电性材料的组合物排出到衬底760上,形成导电层764。在图6(A)中,间歇排出含有导电性材料的组合物。
在图6(B)中,使用液滴排出装置767将含有导电性材料的组合物排出到衬底765上,形成导电层768。在图6(B)中,连续排出含有导电性材料的组合物。
图6(C)示出一例子,其中根据形成的导电层形状将在同一衬底770上分别制作间歇排出含有导电性材料的组合物的区域、以及连续排出含有导电性材料的组合物的区域。在图6(C)中,从液滴排出装置774连续排出含有导电性材料的组合物形成导电层775,而从液滴排出装置772间歇排出含有导电性材料的组合物形成导电层773。像这样,可以根据要形成的导电层的形状适当地设定液态组合物的排出方法。
本实施方式虽然示出通过两个工序制造沿着图形轮廓形成周边端部的第一导电层和填充第一导电层内部的第二导电层的例子,然而也可以通过多个工序形成外框的第一导电层,也可以通过多个工序形成填充第一导电层内的第二导电层。
另外,形成导电层时,也可以沿着导电层的被形成区的轮廓排出含有绝缘性材料的组合物形成框状绝缘层。可以排出含有导电性材料的组合物填充框状绝缘层内部,以形成被绝缘层包围了周围的导电层。像这样,确定图形的外框的框状形成物和被排出以填充框状形成物内部而形成物可以采用不同的材料。
图2(A)至(C)示出第一导电层及第二导电层的其他形状的例子。图2(A)至(C)相当于图1(B1)。图1(B1)为将第二包含导电性材料的组合物不超越框地填充在第一导电层所形成的框内形成第二导电层的例子,其中第二导电层的膜厚小于第一导电层的膜厚。在图2(A)中,第二导电层715a填充为具有与第一导电层703a、703b大致相同的高度,从而第一导电层703a、703b的膜厚和第二导电层715a的膜厚大致相同。在本发明中,在将液态组合物附着在形成区,然后使其固化形成导电层,由此,如图2所示,获得的导电层反映液体(液滴)的形状,形成在端部具有曲率的圆形(如图2的第一导电层703a那样的所谓的穹形)。
图2(B)示出第二导电层715b表面是膜厚越接近中心越大的形状,其中与第一导电层703a、703b接合的第二导电层715b的侧端部的膜厚小于第一导电层703a、703b的膜厚,而第二导电层715b的中央部大于第一导电层703a、703b的膜厚。而图2(C)示出第二导电层715c表面是厚度越接近中心越小的形状,其中与第一导电层703a、703b接合的第二导电层715c的侧端部的膜厚小于第一导电层703a、703b的膜厚,而第二导电层715c的中央部的膜厚进一步小于第一导电层703a、703b的膜厚。像这样,根据第一导电层及第二导电层之间的润湿性或粘度,第二导电层的形状会变成多种形状。另外,导电层的形状有时由于和刚排出之后的液态组合物的情况不同,干燥(或加热)等被固化而变形。这样固化后的形成物的变形根据形成材料、溶剂、固化条件(压力、温度、时间)等而改变,所以适当地设定可获得所要求的形状的条件即可。
另外,为了选择性地形成第一导电层及第二导电层,也可以控制形成区的润湿性。图3(A)至(C)示出如下例子,即进行改性处理使对形成区及非形成区的润湿性有差异,可控性好地形成第一导电层。
如图3A所示,选择性地有差异地控制衬底700表面的润湿性。在本实施方式中,在衬底700上选择性地形成润湿性低的物质701,形成润湿性低于周围(憎液性高)的低润湿性区707a、707b、707c。通过形成润湿性低(憎液性高)的低润湿性区707a、707b、707c,周围的区域成为润湿性高(亲液性高)的高润湿性区708a、708b。
从液滴排出装置709a、709b排出液态的第一包含导电性材料的组合物,以在高润湿性区708a、708b选择性地形成第一导电层710a、710b。像这样,若使形成第一导电层的区域以外的区域成为相对于第一包含导电性材料的组合物的憎液区,则液态的第一包含导电性材料的组合物不润湿扩展至被形成区之外,从而可以控制性好地仅附着在高润湿性区708a、708b,可以形成第一导电层。
之后,通过抛光或紫外线(UV)照射等去除润湿性低的物质,使用液滴排出装置711将第二包含导电性材料的组合物填充到第一导电层710a、710b的框内,以形成第二导电层712。
由于液态的含有导电性材料的组合物是液态的,所以对被形成区的表面状态有很大影响。在本发明中,可以进行控制液态组合物的涂敷区的润湿性的处理。
固体表面的润湿性受表面的化学性质及物理表面形状(表面粗度)的影响。若形成相对于液态组合物润湿性低的物质,则其表面成为相对于液态组合物润湿性低的区域(以下也称作低润湿性区),而若形成相对于液态组合物润湿性高的物质,则其表面成为相对于液态组合物润湿性高的区域(以下也称作高润湿性区)。在本发明中,控制表面的润湿性的处理就是在液态组合物的附着区中形成相对于液态组合物具有不同润湿性的区域。
润湿性不同的区域是相对于液态组合物润湿性有差异的区域,含有导电性材料的组合物的接触角不同,含有导电性材料的组合物的接触角大的区域是润湿性低的区域(以下也称为低润湿性区),而接触角小的区域是润湿性高的区域(以下也称为高润湿性区)。当接触角大时,具有流动性的液态组合物在区域表面上不扩展,排拒此组合物,因而不被润湿。当接触角小时,具有流动性的组合物在表面上扩展,表面因而被很好地润湿。因此,润湿性不同的区域具有不同的表面能。润湿性低的区域的表面的表面能低,而润湿性高的区域的表面的表面能大。
润湿性的差异是两个区域的相对关系,可以通过选择性地形成低润湿性区,来形成润湿性不同的二种区域。作为选择性地形成低润湿性区的方法,可以使用以下方法等:形成掩模层,并且使用该掩模层选择性地形成低润湿性物质的方法;使用掩模层选择性地降低润湿性的表面处理方法。另外,可以采用在形成低润湿性区之后选择性地消除其低润湿性效果的方法(去除或分解润湿性低的物质)等。
作为改变、控制表面润湿性的方法,有通过利用光照射能量分解表面物质,使区域表面改性而改变润湿性的方法。作为润湿性低的物质,可以使用包含氟碳基(氟碳链)的物质或包含硅烷偶联剂的物质。由于硅烷偶联剂可以形成单分子膜,所以可以有效地进行分解、改性,从而在短时间内改变润湿性。另外,上述单分子膜也可以说是自组装膜。另外,硅烷偶联剂通过不仅将具有氟碳基(氟碳链)的物质排列在衬底上,而且也将具有烷基的物质也排列在衬底上,表示低润湿性,因此可以使用。此外,作为润湿性低的物质,也可以使用钛酸酯偶联剂、铝酸盐偶联剂。
根据本发明,可以形成润湿性大大不同的区域(润湿性差异大的区域),所以液态导电性(绝缘性)材料只在被形成区中精确地附着。因此,可以将导电层(绝缘层)精确地形成为所要求的图形。
作为润湿性低的物质,可以采用包含氟碳基(氟碳链)或硅烷偶联剂的物质。硅烷偶联剂用化学式Rn-Si-X4-n(n=1,2,3)来表示。在此,R是包含烷基等的比较惰性的基团的物质。X是能够通过与基质表面的羟基或吸附水的缩合而可键合的水解基,诸如卤素、甲氧基、乙氧基、或乙酸基等。
作为硅烷偶联剂的代表例子,可以通过使用R具有氟代烷基的氟类硅烷偶联剂(氟代烷基硅烷(FAS)),进一步降低润湿性。FAS的R具有以(CF3)(CF2)x(CH2)y(x:0以上~10以下的整数,y:0以上~4以下的整数)表示的结构,当多个R或X与Si键合时,R或X可以互相相同或不同。作为代表的FAS,可以举出十七氟四氢癸基三乙氧基硅烷、十七氟四氢癸基三氯硅烷、十三氟四氢辛基三氯硅烷、三氟丙基三甲氧基硅烷、十三氟代辛基三甲氧基硅烷等氟代烷基硅烷(以下也称作FAS)。此外,还可以使用十三氟辛基三氯硅烷等的水解基为卤素的偶联剂。当然,不局限于上述例举的化合物。
此外,作为润湿性低的物质,还可以使用钛酸酯偶联剂或铝酸盐偶联剂。例如,可以举出异丙基三异辛酰基钛酸酯、异丙基(二辛基焦磷酸酯)钛酸酯、异丙基三(十八烷酰基)钛酸酯、异丙基三(二辛基磷酸酯)钛酸酯、异丙基二甲基丙烯基异十八烷酰基钛酸酯或乙酰烷氧基二异丙酸铝等。
为了在被形成区域形成如上所述的润湿性低的物质作为膜,可以使用通过蒸发液态物质而形成于被形成区(例如衬底等)的气相生长法等。此外,润湿性低的物质也可以通过旋转涂敷法、浸渍法、液滴排出法、印刷法(丝网印刷或平版印刷等)来形成,还可以使用溶解在溶剂中的溶液的形式。
作为含有润湿性低的物质的溶液的溶剂,可以使用水、醇、酮、烃类溶剂(脂肪族烃、芳香族烃、卤代烃等)、醚类化合物、以及这些的混合物。例如,使用甲醇、乙醇、丙醇、丙酮、丁酮、正戊烷、正己烷、正庚烷、正辛烷、正癸烷、二环戊烷、苯、甲苯、二甲苯、杜烯、茚、四氢化萘、十氢化萘、异三十烷、四氯化碳、氯仿、二氯甲烷、三氯乙烷、乙醚、二
Figure BSA00000505837300141
烷、二甲氧基乙烷或四氢呋喃等。对于上述溶液的浓度没有特别的限定,在0.001~20wt%的范围即可。
此外,还可以在上述润湿性低的物质中混合吡啶、三乙胺、二甲基苯胺等的胺。而且,也可以添加甲酸、醋酸等的羧酸作为催化剂。
当如上述那样使用将润湿性低的物质以液态附着在被形成区的旋转涂敷法等形成单分子膜时,将处理温度设定为室温(大约25℃)~150℃,将处理时间设定为几分钟至12个小时即可。处理条件根据润湿性低的物质的性质、溶液的浓度、处理温度、处理时间适当地设定即可。
作为形成低润湿性区的溶液组合物的例子,可以使用具有氟碳(碳氟化物)链的材料(含氟树脂)。作为含氟树脂可以使用下列物质:聚四氟乙烯(PTFE:四氟乙烯树脂);全氟烷氧基烷烃(PFA:四氟乙烯全氟烷基乙烯基醚共聚树脂);全氟乙烯丙烯共聚物(PFEP:四氟乙烯-六氟丙烯共聚树脂);乙烯-四氟乙烯共聚物(ETFE:四氟乙烯-乙烯共聚树脂);聚偏二氟乙烯(PVDF:偏氟乙烯树脂);聚氯三氟乙烯(PCTFE:三氟氯乙烯树脂);乙烯-氯三氟乙烯共聚物(ECTFE:三氟氯乙烯-乙烯共聚树脂);聚四氟乙烯-全氟二氧杂环戊烯共聚物(TFE/PDD);聚氟乙烯(PVF:氟乙烯树脂)等。
而且,也可以使用不呈现低润湿性(换言之,即呈现高润湿性)的有机材料,之后用CF4等离子体等进行处理,形成低润湿性区。例如,可以使用将聚乙烯醇(PVA)那样的水溶性树脂混合在H2O等溶剂中的材料。此外,也可以将PVA与其它水溶性树脂组合使用。也可以采用有机材料(有机树脂材料)(聚酰亚胺、丙烯酸酯)或硅氧烷材料。要说明的是,硅氧烷材料相当于包括Si-O-Si键的树脂。硅氧烷的骨架结构由硅(Si)和氧(O)的键构成。使用至少包含氢的有机基(例如烷基或芳基)作为取代基。也可以使用氟基作为取代基。或者,也可以使用至少包含氢的有机基和氟基作为取代基。而且,即使采用具有低润湿性表面的材料时,也可以通过进行等离子体处理等来进一步降低润湿性。
在本实施方式中,通过液滴排出装置形成导电层(绝缘层)。液滴排出装置是一种装置的总称,其具有排出液滴的单元,例如具有组合物的排出口的喷嘴、具有一个或多个喷嘴的喷头等。将液滴排出装置所具备的喷嘴的直径设定为0.02至100μm(优选为30μm以下),将从该喷嘴排出的组合物的排出量设定为0.001pl至100pl(优选为0.1pl以上至40pl以下,更优选为10pl以下)。排出量相对于喷嘴的直径的尺寸成比例增加。此外,优选被处理物和喷嘴的排出口之间的距离尽可能地近,以便将液滴滴落在所要求的位置。更优选,将距离设定为0.1至3mm(优选为1mm以下)左右。
作为从排出口排出出的组合物,采用溶解或者分散在溶剂中的导电性材料。导电性材料相当于Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W、Al等的一种或多种金属的微粒子或分散性纳米粒子。另外,在所述导电性材料中可以混合Cd、Zn等的金属硫化物;Fe、Ti、Ge、Si、Zr、Ba等的氧化物;或者卤化银的一种或多种的微粒子或者分散性纳粒子。此外,作为导电性材料,可以采用用作透明导电膜的铟锡氧化物(ITO)、含有氧化硅的铟锡氧化物(ITSO)、有机铟、有机锡、氧化锌、氮化钛等。导电性材料可以使用单一元素,或混合多种元素的粒子使用。然而,作为从排出口排出的组合物,考虑到电阻率,优选将金、银、铜的任一种材料溶解或分散在溶剂中得到的组合物。更优选采用电阻低的银、铜。但是,当采用银、铜时,作为对付杂质的对策,优选同时设置阻挡膜。可以将氮化硅膜、硼化镍(NiB)用作阻挡膜。
此外,导电性材料的周围被其它导电性材料涂覆,也可以形成多层的粒子。例如,可以采用一种三层结构的粒子等,其中在铜的周围涂覆硼化镍(NiB),并且在其周围涂敷银。作为溶剂,采用醋酸丁酯、醋酸乙酯等酯类;异丙醇、乙醇等醇类;甲乙酮、丙酮等的有机溶剂等;或水。组合物的粘度优选为20mPa·s以下,这是为了防止排出时引起的干燥、以及使组合物顺利地从排出口排出。此外,组合物的表面张力优选为40mN/m以下。然而,可以根据所采用的溶剂、用途适当地调节组合物的粘度等。例如,可以将在溶剂中溶解或者分散了ITO、有机铟、有机锡的组合物的粘度设定为5至20mPa·s,将在溶剂中溶解或分散了银的组合物的粘度设定为5至20mPa·s,将在溶剂中溶解或分散了金的组合物的粘度设定为5至20mPa·s。
另外,导电层可以层叠多种导电性材料。此外,也可以在开始采用银作为导电性材料,通过液滴排出法形成导电层之后,使用铜等进行镀敷。镀敷通过电镀或者化学(无电场)镀敷法实施即可。可以通过将衬底表面浸在充满含有镀敷材料的溶液的容器中,但也可以将衬底倾斜(或者垂直)竖起,使含有镀敷材料的溶液流过衬底表面来进行涂敷。通过将衬底竖起涂布溶液来进行涂敷,具有以下优点:即使是大面积衬底,在工序中使用的装置也可以实现小型化。
尽管依存于各喷嘴的直径或所要求的图形的形状等,为了防止喷嘴被塞住、制造高精细图形,导体的粒子的直径优选尽可能地小,粒子的直径优选为0.1μm以下。组合物是通过电解法、雾化法、或湿还原法等各种方法形成的,其粒子大小一般约为0.01~10μm。然而,如果通过气体蒸发法形成,由分散剂保护的纳米粒子微小,大约为7nm,另外,当使用覆盖剂覆盖各粒子的表面时,纳米粒子在溶液中不凝集,并在室温下稳定地分散,示出和液体几乎相近的行为。因此,优选使用覆盖剂。
排出组合物的工序也可以在减压下进行。在排出组合物之后,进行干燥和烧成的一方或两方工序。干燥和烧成的工序虽然都是加热处理工序,但是其目的、温度和时间不同,例如干燥在100℃进行3分钟,而烧成在200℃~550℃进行15分钟~60分钟。干燥工序和烧成工序在常压或减压下,通过照射激光、瞬间热退火、加热炉等来进行。要说明的是,进行该加热处理的时机、加热处理次数没有特别的限定。为了良好地进行干燥和烧成工序,可以先加热衬底,此时的温度尽管依赖于衬底等的材质,但一般设定为100℃~800℃(优选为200℃~550℃)。根据本工序,挥发组合物中的溶剂或化学性去除分散剂的同时,周围的树脂硬化收缩,由此使得纳米粒子彼此接触,加速熔接和焊接。
将连续振荡或者脉冲振荡的气体激光器或者固体激光器用于激光的照射即可。作为前者的气体激光器,可以举出激基激光器、YAG激光器等,而作为后者的固体激光器,可以举出采用掺杂有Cr、Nd等的YAG、YVO4、GdVO4等晶体的激光器等。要说明的是,涉及到激光的吸收率,优选采用连续振荡激光器。此外,也可以采用组合了脉冲振荡和连续振荡的激光照射方法。然而,根据衬底的耐热性,利用激光束的照射的加热处理优选在几微秒到几十秒之内瞬间进行,以便不破坏该衬底。瞬间热退火(RTA)通过在惰性气体环境中利用照射从紫外到红外的光的红外线灯或者卤素灯等,使温度迅速升高,瞬间加热几微秒~几分钟来进行。因为瞬间进行该处理,因此可以仅加热最表面的薄膜,而位于下层的膜不受影响。亦即,对塑料衬底等耐热性低的衬底也没有影响。
另外,在通过液滴排出法排出组合物形成导电层等之后,为了提高其平坦性,可以用压力压平表面来使其平坦化。作为压平的方法,可以使用辊状物体在其表面上扫描来使凹凸平坦化,减少凹凸,或者也可以使用平坦的板形物体垂直压平其表面等。当压平时,也可以进行加热工序。此外,也可以使用溶剂等软化或溶解其表面,用气刀消除其表面的凹凸部。此外,也可以用CMP法进行抛光。该工序可以适用于平坦由液滴排出法在表面上产生的凹凸。
本实施方式示出了使用本发明形成导电层的例子,然而也可以通过将包含在被排出的液态组合物中的形成材料改变成绝缘性材料或半导体材料,利用本发明制造绝缘层或半导体层等。
根据本发明,可以以所要求的形状形成构成显示装置的布线等构成物。另外,可以简化复杂的光刻工序,通过简化了的工序制造显示装置,所以可以减少材料的损失且实现成本的降低。因此,可以高成品率地制造高性能且高可靠性的显示装置。
实施方式2
在本实施方式中,使用图4描述接触孔的形成方法,该方法目的在于以进一步简化了的工序低成本地制造接触孔。
通过绝缘层使导电层和导电层彼此电连接时,在绝缘层中形成开口(成为所谓的接触孔)。在此情况下,在绝缘层上不形成掩模,通过激光的照射选择性地形成开口。形成第一导电层,在该第一导电层上层叠绝缘层,并且从绝缘层一侧对在第一导电层及绝缘层的叠层中形成开口的区域选择性地照射激光。激光透过绝缘层,而被第一导电层吸收。第一导电层由于所吸收的激光的能量而被加热且蒸发,从而破坏层叠在其上的绝缘层。因此在第一导电层和绝缘层上形成开口,在绝缘层下的导电层的一部分露出在开口的侧壁及底面(或仅在侧壁)。在开口中形成第二导电层,与露出的第一导电层接合,由此第一导电层及第二导电层可以通过绝缘层彼此电连接。换句话说,在本发明中,通过对导电层照射激光并利用激光烧蚀来蒸发导电层的激光照射区,在形成于导电层上的绝缘层中形成开口。
使用图4来具体描述。在本实施方式中,如图4所示,在衬底720上形成有导电层721a、导电层721b、绝缘层722。
导电层721a和导电层721b是叠层结构,在本实施方式中,导电层721b使用比较容易蒸发的低熔点金属(在本实施方式中使用铬),并且导电层721a使用比导电层721b不容易蒸发的高熔点金属(在本实施方式中使用钨)。
如图4(B)所示,从绝缘层722一侧对导电层721a及导电层721b选择性地照射激光723(照射区724),通过所照射激光的能量导电层721b的照射区蒸发。导电层721b照射区上的绝缘层722被去除,从而可以形成开口725。导电层721b被分离成导电层728a、728b,而绝缘层722被分离成绝缘层727a、727b(参照图4(C))。可以在导电层721a和导电层721b露出的开口725中形成导电层726,以使导电层721a、导电层721b与导电层726电连接(参照图4(D))。
参照图31说明用于将激光(激光束)描画到处理区中的激光束描画装置。在本实施方式中由于,将激光束直接照射到处理区来进行处理,因此使用激光束直接描画装置。如图31所示,激光束直接描画装置1001包括:在照射激光束时进行各种控制的个人计算机(下文中称为PC)1002;用于输出激光束的激光振荡器1003;激光振荡器1003的电源1004;用于衰减激光束的光学系统(ND滤光器)1005;用于调制激光束的强度的音频光学调制器(AOM)1006;由用于放大或者减小激光束截面的透镜、用于改变光路的镜面等构成的光学系统1007;具有X载物台和Y载物台的衬底移动机构1009;用于将PC所输出的控制数据由数字转化成模拟数据的D/A转换部1010;用于根据D/A转换部所输出的模拟电压来控制音频光学调制器1006的驱动器1011;以及用于输出用于驱动衬底移动机构1009的驱动信号的驱动器1012。
作为激光振荡器1003,可以使用能够振荡紫外光、可见光、或红外光的激光振荡器。作为激光振荡器,可以使用KrF、ArF、XeCl、Xe等的激基激光振荡器;He、He-Cd、Ar、He-Ne或HF等的气体激光振荡器;使用在YAG、GdVO4、YVO4、YLF、YAlO3等结晶中掺杂了Cr、Nd、Er、Ho、Ce、Co、Ti或Tm的结晶的固态激光振荡器;或者GaN、GaAs、GaAlAs、InGaAsP等半导体激光振荡器。要说明的是,在固态激光振荡器中,优选采用基波的一次谐波至五次谐波。为了调节从激光振荡器发射的激光的形状或激光行进的路径,还可以设置由遮光板、反射镜或半反射镜等反射体、柱面透镜或凸透镜等构成的光学系统。
接着,说明使用激光束直接描画装置进行的膜改性处理。在衬底移动机构1009上安装了衬底1008之后,PC 1002使用未图示的照像机来检测印在衬底上的标记的位置。接着,PC 1002根据所检测到的标记的位置数据以及已预先输入的描画图形数据来产生用于移动衬底移动机构1009的移动数据。之后,PC 1002通过驱动器1011来控制音频光学调制器1006的输出光量,激光振荡器1003所输出的激光束被光学系统1005衰减,然后在音频光学调制器1006中将光量调整到预定的量。另一方面,在光学系统1007中,改变由音频光学调制器1006所输出的激光束的光路和光束形状,在用透镜聚光之后,将该光束照射到形成在衬底上的基底膜上,进行膜的改性处理。这时,根据由PC 1002所产生的移动数据,控制衬底移动机构1009在X方向和Y方向上移动。结果是,激光束照射到预定位置,进行膜的改性处理。
激光的波长越短,可以将光束径聚焦得越短,因此,优选照射短波长的激光束,以便处理具有微细宽度的区域。
另外,通过光学系统激光束在膜表面的点形状被加工成点形、圆形、椭圆形、矩形或线形(严格意义来讲,细长长方形)。
另外,虽然图31所示的装置示出了从衬底表面一侧照射激光来曝光的例子,但也可以使用适当地改变光学系统或衬底移动机构并且从衬底背面一侧照射激光束来曝光的激光束描画装置。
要说明的是,这里移动衬底来选择性地照射激光束,但并不限定于此,可以将激光束沿XY轴方向扫描来照射激光束。在此情况下,光学系统1007优选使用多面体镜或检流计反射镜。
导电层721a、721b可以通过蒸镀法、溅射法、PVD法(物理气相沉积法)、减压CVD法(LPCVD法)或等离子体CVD法等的CVD法(化学气相沉积法)等形成。另外,也可以使用可以将构成物转印或描画为所要求的图形的方法如各种印刷法(丝网(孔版)印刷、胶(平版)印刷、凸版印或刷照相凹版(凹版)印刷等以所要求的图形形成的方法)、分配器法、选择性涂敷法等。可以使用铬、钼、镍、钛、钴、铜或铝中的一种或多种来形成导电层721a、721b。
图4示出如下例子:由于激光723的照射,导电层721b蒸发,在绝缘层722中形成开口725,而层叠的导电层721a残留。图5,示出形成开口的其他例子,该开口到达形成在绝缘层下的导电层。
图5(A)示出使用激光束仅将在绝缘层下层叠的导电层中的上层导电层的上方部激光烧蚀的例子。在衬底730上设置导电层731、导电层732、绝缘层733,在形成于导电层732、绝缘层733中的开口750中设置导电层734。在开口750中,导电层732露出并且与导电层734接合而电连接。
在绝缘层下的导电层也可以层叠具有不同熔点的多种导电层,当然也可以为单层。图5(B)(C)所示为绝缘层下的导电层是单层的例子。图5(B)是使用激光仅将在绝缘层下的导电层的上方部激光烧蚀的例子,而图5(C)是进行激光烧蚀直到衬底740露出,从而去除在绝缘层下的导电层的例子。
在图5(B)中,在衬底735上设置有导电层736、绝缘层738,在形成于导电层736、绝缘层738中的开口751中设置有导电层739。在开口751中导电层736露出并且与导电层739接合而电连接。当如图5(B)那样在导电层的膜厚度方向上仅将其上方部分地去除时,控制激光的照射条件(能量、照射时间等)或将导电层736形成得较厚即可。
在图5(C)中,在衬底740上设置有导电层741a、741b、绝缘层743,并且在形成于导电层741a和741b之间、以及绝缘层743中的开口752中设置有导电层744。在开口752中导电层741a、741b露出并且与导电层744接合而电连接。如图5(B)所示,可以不需要下部导电层和上部导电层在开口底面彼此接合,也可以具有如下结构:形成上部导电层,以使与在开口侧面露出的下部导电层接合,从而电连接。
另外,用作接触孔的开口的形状也可以不是侧面垂直于底面的形状,也可以如图5(D)那样开口的侧边具有锥形的形状。在图5(D)中,在衬底745上形成有导电层746、导电层747、绝缘层748,并且在绝缘层748及导电层747中形成有开口753。开口753是研钵形状,并且开口753的侧面相对于底面具有锥形的形状。在开口753中设置有导电层749。
像这样,在设置于绝缘层的开口处使在绝缘层下的下部导电层和在绝缘层上的上部导电层电连接。在本实施方式中,通过在第一导电层上形成包括高升华性金属的第二导电层,并且利用激光使第二导电层蒸发,在形成于第一导电层及第二导电层上的绝缘层中形成开口。根据激光的照射条件(能量强度、照射时间等)及绝缘层、导电层的材料的性质(热导电率、熔点、沸点等),可以控制形成于绝缘层及导电层的开口的大小或形状。图35示出激光的大小及被形成的开口的大小的例子。
在衬底300上层叠形成有第一导电层301a(301a1、301a2、301a3)、第二导电层301b,并且形成有绝缘层302以覆盖第一导电层301a(301a1、301a2、301a3)及第二导电层301b。在图35中,第一导电层301a(301a1、301a2、301a3)具有包括多个薄膜的叠层结构,例如第一导电层301a1使用钛,第一导电层301a2使用铝,第一导电层301a3使用钛,第二导电层301b使用铬。另外,第一导电层301a3也可以使用钨或钼等。当然,第二导电层301b也可以具有叠层结构,可以使用铜和铬的叠层等。
将激光直径为L1的激光303照射到绝缘层302及第二导电层301b,在绝缘层302及第二导电层301b中选择性地形成照射区304。若激光303的能量大,则如图35(C)那样供给第二导电层301b的能量也变大,在第二导电层301b中热量传导到照射区中及其周边。因此,在第二导电层301b中形成具有比激光303的直径L1大的直径L2的开口,从而在形成于第二导电层301b上的绝缘层302中也形成开口。如上所述,第二导电层301b被分成第二导电层308a、308b,并且绝缘层302被分成绝缘层307a、307b,以形成开口305。在第一导电层301a3露出的开口305中形成导电膜306,以使与第一导电层301a(301a1、301a2、301a3)及第二导电层308a、308b电连接(参照图35(D))。
开口相对于由激光的直径决定的照射区的大小依赖于激光能量的大小。若激光具有使第二导电层蒸发的充分大的能量,则能量传达到照射区周边,第二导电层蒸发,因此,在第二导电层中形成比激光的照射区大的开口。而若激光能量小,则在第二导电层中形成与照射区大致相同大小的开口。另外,当第二导电层使用热传导率高的升华金属材料时,激光的能量容易传达,所以可以形成大于照射区的开口。
像这样,通过控制激光的能量,可以控制被照射激光束的第二导电层的蒸发范围,因此,也可以适当地控制形成在第二导电层及绝缘层的开口的大小。
也可以在通过激光的照射形成开口之后,使用液体洗涤残留在开口附近的导电性材料或绝缘性材料(导电层或绝缘层的被去除部分的残留物),以去除残留物。在此情况下,既可使用水等无反应物质洗涤,又可使用与绝缘层反应(溶解)的蚀刻剂等试剂洗涤。当使用蚀刻剂时开口被过度蚀刻,碎屑等被去除,表面被进一步平坦化。另外,也可以扩展开口。
因为可以利用激光选择性地形成开口,无需形成掩模层,从而可以减少工序及材料。另外,具有如下优点:因为可以将激光聚焦为非常小的点,所以可以将要加工的导电层及绝缘层高精度地加工成预定的形状,并且因为在短时间被瞬间加热,所以几乎不会加热加工区以外的区域。
像这样,可以通过激光照射在绝缘层形成使导电层和导电层电连接的开口(接触孔),而不需进行复杂的光刻工序和形成掩模层。
因此,当使用本发明制造显示装置时可以使工序简化,所以可以减少材料的损失,实现成本的降低。因此,可以高成品率地制造显示装置。
实施方式3
图25(A)是显示本发明的显示面板的结构的俯视图,其中形成有在具有绝缘表面的衬底2700上矩阵排列的像素2702的像素部2701、扫描线一侧输入端子2703、信号线一侧输入端子2704。像素数可以根据各种标准来设定,若是XGA且使用RGB的全色显示,像素数是1024×768×3(RGB),若是UXGA且使用RGB的全色显示,像素数量是1600×1200×3(RGB),若对应于全规格高清晰画质使用RGB的全色显示,像素数是1920×1080×3(RGB)即可。
像素2702是通过从扫描线一侧输入端子2703延伸的扫描线和从信号线一侧输入端子2704延伸的信号线交叉,以矩阵状排列的。像素2702中的每一个具备开关元件和连接于该开关元件的像素电极。开关元件的典型实例是TFT。通过TFT的栅电极一侧连接到扫描线,且源极一侧或漏极一侧连接到信号线,由此能够利用从外部输入的信号独立地控制各像素。
图25(A)示出了使用外部驱动电路控制输入到扫描线及信号线中的信号的显示面板的结构,如图26(A)所示,也可以通过COG(Chip On Glass,玻璃上安装芯片)方式将驱动器IC 2751安装在衬底2700上。此外,作为其它安装方式,也可以使用如图26(B)所示的TAB(Tape Automated Bonding,带式自动接合)方式。驱动器IC既可以是形成在单晶半导体衬底上的,又可以是在玻璃衬底上由TFT形成电路的。在图26中,驱动器IC 2751与FPC 2750连接。
此外,当由结晶性高的多晶(微晶)半导体形成设置在像素中的TFT时,如图25(B)所示,也可以在衬底3700上形成扫描线一侧驱动电路3702。在图25(B)中,3701表示像素部,3704表示信号线一侧输入端子,并且与图25(A)同样地使用外部驱动电路来控制信号线一侧驱动电路。如在本发明中形成的TFT,在设置于像素4701中的TFT由迁移度高的多晶(微晶)半导体、单晶半导体等形成的情况下,如图25(C)所示,也可以在衬底4700上集成地形成像素4701、扫描线驱动电路4702和信号线驱动电路4704。
参照图7~14来描述本发明的一个实施方式。更详细地描述其中应用本发明的具有反交错型薄膜晶体管的显示装置的制造方法。图7~图13的(A)是显示装置的像素部的俯视图。图7~图13的(B)是沿图7~图13的(A)的线A-C的截面图,而(C)是沿图中的线B-D的截面图。图14(A)(B)也是显示装置的截面图。
衬底100含有使用钡硼硅酸盐玻璃和铝硼硅酸盐玻璃等的玻璃衬底;石英衬底;金属衬底;或具有能够承受本制造工序的处理温度的耐热性的塑料衬底。另外,也可以用CMP法等来抛光衬底100的表面,以使表面平坦。另外,也可以在衬底100上形成绝缘层。利用诸如CVD法、等离子体CVD法、溅射法、旋转涂敷法等的各种方法,并且使用包含硅的氧化物材料、氮化物材料以单层或叠层形成绝缘层。虽然也可以不形成该绝缘层,但它具有阻挡来自衬底100的污染物质等的效果。
在衬底100上形成导电膜。可以通过溅射法、PVD法(物理气相沉积)、减压CVD法(LPCVD法)或等离子体CVD法等CVD法(化学气相沉积)等来形成导电膜。导电膜由选自Ag、Au、Ni、Pt、Pd、Ir、Rh、Ta、W、Ti、Mo、Al、Cu的元素、以上述元素为主要成分的合金材料或者化合物材料形成即可。另外,也可以采用以掺杂有磷等杂质元素的多晶硅膜为代表的半导体膜、或者AgPdCu合金。另外,可以采用单层结构或者叠层结构,例如,氮化钨(WN)膜和钼(Mo)膜的双层结构,或者按顺序层叠膜厚50nm的钨膜、膜厚500nm的铝和硅的合金(Al-Si)膜、以及膜厚30nm的氮化钛膜的三层结构。此外,在采用三层结构的情况下,可以采用氮化钨代替第一导电膜的钨,可以采用铝和钛的合金(Al-Ti)膜代替第二导电膜的铝和硅的合金(A1-Si)膜,以及可以采用钛膜代替第三导电膜的氮化钛膜。
在本实施方式中,选择性地排出组合物来形成栅电极层。若像这样选择性地形成栅电极层,则具有使加工工序简化的效果。
本实施方式的特征在于:根据导电层的形成区的大小及形状,从液滴排出装置的排出口排出组合物的方法不同。如图7所示,从液滴排出装置136a、136b不停止地连续排出组合物来形成在较大范围形成的相当于栅极布线的栅电极层104(104a、104b)。另一方面,如图7所示,从液滴排出装置137a、137b滴落组合物来形成在较小范围中形成的栅电极层105(105a、105b)。像这样,也可以根据形成的图形改变液态组合物的排出方法。
栅电极层104(104a、104b)及栅电极层105(105a、105b)由选自Ag、Au、Ni、Pt、Pd、Ir、Rh、Ta、W、Ti、Mo、Al、Cu中的元素;以这些元素作为主要成分的合金材料或者化合物材料形成即可。另外,也可以采用这些元素的混合物。栅电极层不仅可以具有单层结构,也可以具有双层以上的叠层结构。
需要对栅电极层104(104a、104b)及栅电极层105(105a、105b)的形状进行加工时,形成掩模,采用干蚀刻或湿蚀刻进行蚀刻加工即可。可以用ICP(感应耦合等离子体)蚀刻法,并适当地控制蚀刻条件(施加到线圈型电极的电量、施加到衬底一侧电极的电量、衬底一侧电极的温度等),来将电极层蚀刻成锥形。要说明的是,作为用于蚀刻的气体,可以适当地使用以C12、BCl3、SiCl4或CCl4等为代表的氯类气体;以CF4、SF6或NF3等为代表的氟类气体;或者O2
掩模层使用环氧树脂、酚醛树脂、酚醛清漆树脂、丙烯酸类树脂、蜜胺树脂、聚氨酯树脂等树脂材料。此外,可以采用有机材料诸如苯并环丁烯、聚对二甲苯、氟化亚芳基醚、具有透过性的聚酰亚胺;由硅氧烷类聚合物等的聚合得到的化合物材料;或含有水溶性的聚合物以及水溶性的共聚物的组合物材料等通过液滴排出法形成掩模层。或者,也可以采用市场上销售的含有感光剂的抗蚀剂材料,例如,可以采用典型的正性抗蚀剂酚醛清漆树脂和感光剂重氮萘醌、负性抗蚀剂基质树脂、二苯基硅烷二醇和酸发生剂等。采用任一材料,通过调整溶剂的浓度、添加表面活性剂等适当地控制其表面张力和粘性。
接着,在栅电极层104a、104b、105a、105b上形成栅极绝缘层106。栅极绝缘层106由硅的氧化物材料或者氮化物材料等材料形成即可,可以是叠层或者也可以是单层。在本实施方式中,可采用氮化硅膜、氧化硅膜的双层结构。或者,它们也可以采用单层的氧氮化硅膜、或者包含三层以上的叠层。优选使用具有致密膜质的氮化硅膜。另外,在将银、铜等用于通过液滴排出法形成的导电层的情况下,若在其上形成氮化硅膜或者NiB膜作为阻挡膜,则有防止杂质的扩散和平坦表面的效果。要说明的是,为了在较低的成膜温度下形成栅漏电流小的致密绝缘膜,优选在反应气体中包括氩等稀有气体元素,并且使该气体混入要形成的绝缘膜中。
接下来,形成半导体层。根据需要形成具有一种导电性型的半导体层即可。另外,也可以通过形成具有n型的半导体层来制造n沟道型TFT的NMOS结构、形成具有p型的半导体层来制造p沟道型TFT的PMOS结构、或者n沟道型TFT和p沟道型TFT的CMOS结构。此外,也可以为了赋予导电性,通过掺杂工序添加赋予导电性的元素,并且在半导体层中形成杂质区,来形成n沟道型TFT和p沟道型TFT。也可以通过使用PH3气体进行等离子体处理来对半导体层赋予导电性,而代替形成具有n型的半导体层。
用于形成半导体层的材料可以采用以下半导体,即利用以硅烷或锗烷为代表的半导体材料气体通过气相生长法或溅射法制造的非晶半导体(下文中也称作“AS”)、利用光能或热能来使所述非晶半导体结晶而成的多晶半导体、半非晶(也称作微晶或者微晶体,并且下文中也称作“SAS”)半导体等。半导体层可以通过各种方法(溅射法、LPCVD法或等离子体CVD法等)来形成。
SAS是这样一种半导体,其具有介于非晶结构和晶体结构(包括单晶和多晶)之间的中间结构,且具有在自由能方面稳定的第三态,还包括具有短程序列和晶格畸变的结晶区。在膜内至少一部分区域可以观察到0.5nm至20nm的结晶区。当以硅作为主要成分时,拉曼光谱迁移到低于520cm-1的低波数一侧。在X射线衍射中观察到被认为是由硅的晶格引起的衍射峰(111)和(220)。为了使未键合键(悬空键)处于末端,SAS含有至少1原子%或更多的氢或卤素。通过含有硅的气体的辉光放电分解(等离子体CVD)来形成SAS。作为含有硅的气体使用SiH4。此外,也可以使用Si2H6、SiH2Cl2、SiHCl3、SiCl4、SiF4等。此外,也可以混合F2、GeF4。也可以使用H2或者H2和选自He、Ar、Kr、Ne中的一种或者多种稀有气体元素来稀释该含硅气体。稀释率在2~1000的范围。压力的范围大致从0.1Pa~133Pa的范围,以及电源频率从1MHz~120MHz,优选13MHz~60MHz。衬底加热温度优选为300℃以下,也可以在100℃~200℃的衬底加热温度形成。这里,作为在形成膜时掺入的主要杂质元素,氧、氮或碳等来自大气成分的的杂质优选为1×1020cm-3以下;尤其,氧浓度为5×1019cm-3以下,优选为1×1019cm-3以下。另外,通过添加稀有气体元素诸如氦、氩、氪、氖以进一步加强晶格畸变来获得稳定性,得到良好的SAS。此外,作为半导体层,可以将由氢类气体形成的SAS层层叠在由氟类气体形成的SAS层之上。
作为非晶半导体可以代表性地举出氢化非晶硅,作为晶体半导体可以代表性地举出多晶硅等。多晶硅包括:用经过800℃以上的处理温度形成的多晶硅作为主要材料的所谓高温多晶硅;用在600℃以下的处理温度下形成的多晶硅为主要材料的所谓低温多晶硅;以及添加促进结晶的元素等而结晶的多晶硅等。当然还可以采用如上所述的半非晶半导体或者在部分半导体层中含有结晶相的半导体。
当半导体层使用结晶性半导体层时,该结晶性半导体层的制造方法可以使用各种方法(激光晶化法、热晶化法、利用镍等促进晶化的元素的热晶化法等)。另外,也可以通过对作为SAS的微晶半导体进行激光照射使其结晶而提高结晶性。在不导入促进晶化的元素的情况下,在对非晶硅膜照射激光之前,通过在温度500℃的氮气环境中加热一个小时,来使非晶硅膜中的含氢浓度释放至1×1020atoms/cm3以下。这是因为使用激光照射含有多量氢的非晶硅膜时,该膜会被破坏。
作为将金属元素导入到非晶半导体层的方法,只要是能够使得该金属元素存在于非晶半导体层的表面或者其内部的方法就没有特别限制。例如,可以使用溅射法、CVD法、等离子体处理法(包括等离子体CVD法)、吸附法、涂敷金属盐溶液的方法。这些方法中,利用溶液的方法简单方便并且由于可以容易地调整金属元素的浓度所以有用。另外,为了改善非晶半导体层表面的润湿性,使水溶液散布于非晶半导体层的整个表面上,优选通过在氧气环境中的UV光照射、热氧化法、用含有羟基的臭氧水或过氧化氢的处理等形成氧化膜。
可以组合热处理和激光照射使非晶半导体层结晶,也可以多次单独进行热处理或激光照射。
也可以通过等离子体法在衬底上直接形成结晶性半导体层。或者,也可以利用线状等离子体法在衬底上选择性地形成结晶性半导体层。
作为半导体,使用有机半导体材料,可以利用印刷法、分配器法、喷涂法、旋转涂敷法、液滴排出法等。在此情况下,由于不需要上述蚀刻工序,所以可以减少工序数量。作为有机半导体,可以使用并五苯等低分子材料、高分子材料等,也可以采用有机色素、导电性高分子材料等材料。优选将由共轭双键组成骨架的π电子共轭高分子材料用作本发明的有机半导体材料。代表性地,可以采用可溶性的高分子材料诸如聚噻吩、聚芴、聚(3-烷基噻吩)、聚噻吩衍生物等。
可以用于本发明的有机半导体材料还有可以通过将可溶性的前体成膜之后进行处理形成半导体层的材料。作为这种有机半导体材料,可以举出聚亚噻吩基亚乙烯、聚(2,5-噻吩基亚乙烯)、聚乙炔、聚乙炔衍生物、聚亚芳基亚乙烯等。
将前体转换为有机半导体时,除了进行加热处理以外,还添加氯化氢气体等反应催化剂。作为溶解可溶性有机半导体材料的典型溶剂,可以适用甲苯、二甲苯、氯苯、二氯苯、苯甲醚、氯仿、二氯甲烷、γ-丁内酯、丁基溶纤剂、环己胺、NMP(N-甲基-2-吡咯烷酮)、环己酮、2-丁酮、二
Figure BSA00000505837300281
烷、二甲基甲酰胺(DMP)、或THF(四氢呋喃)等。
在栅极绝缘层106上形成半导体膜107及具有一种导电类型的半导体膜108。在本实施方式中,形成非晶半导体层作为半导体膜107及具有一种导电类型的半导体膜108。在本实施方式中,作为具有一种导电类型的半导体膜,形成具有n型的半导体膜,该半导体膜包含赋予n型的杂质元素的磷(P)。具有一种导电类型的半导体膜用作源区及漏区。根据需要形成具有一种导电类型的半导体膜即可,可以形成具有n型的半导体膜或具有p型的半导体膜,具有n型的半导体膜具有赋予n型的杂质元素(P、As),并且具有p型的半导体膜具有赋予p型的杂质元素(B)。
与栅电极层104、105同样,使用掩模层将半导体膜107及具有一种导电类型的半导体膜108加工成所要求的形状。在半导体膜107及具有一种导电类型的半导体膜108上使用液滴排出装置110a、110b排出包含掩模层形成材料的组合物,选择性地形成掩模层109a、109b(参照图8(A)至8(C))。
使用掩模层109a、109b加工半导体膜107及具有一种导电类型的半导体膜108,以形成半导体层111a、111b、具有一种导电类型的半导体层112a、112b。
通过利用液滴排出法形成包括抗蚀剂或聚酰亚胺等绝缘体的掩模层,并且利用该掩模层通过蚀刻加工在栅极绝缘层106的一部分中形成开口114,以露出位于其下层的栅电极层105的一部分。作为蚀刻加工,等离子体蚀刻(干蚀刻)或者湿蚀刻都可以采用。然而,等离子体蚀刻适于处理大面积衬底。将CF4、NF3、Cl2、BCl3等氟类或者氯类气体用作蚀刻气体,并且也可以适当地添加惰性气体诸如He或Ar等。此外,当适用大气压放电的蚀刻加工时,可以进行局部地放电加工,从而不需要在整个衬底上形成掩模层。
也可以如实施方式2所示那样利用激光形成开口114。从栅极绝缘层106一侧将激光选择性地照射到栅电极层105,因为被照射的能量,栅电极层105的照射区的一部分蒸发。在栅电极层105的照射区上的栅极绝缘层106被去除,从而可以形成开口114。在栅电极层105被露出的开口114中形成源电极层或漏电极层121,从而栅电极层105与源电极层或漏电极层121可以电连接。源电极层或漏电极层的一部分形成电容元件。
在本实施方式中,选择性地排出组合物来形成源电极层或漏电极层。若像这样选择性地形成源电极层或漏电极层,则有简化加工工序的效果。
本实施方式的特征在于:根据源电极层或漏电极层的被形成区的大小及形状,使从液滴排出装置的排出口排出组合物的方法不同。如图9所示,从液滴排出装置116a、116b不停止地连续排出组合物来形成在较大范围中形成的相当于源极布线或漏极布线的源电极层或漏电极层120、122。另一方面,如图9所示,从液滴排出装置117a、117b间歇滴落组合物来形成在较小范围中形成的源电极层或漏电极层121、123。由此可以根据形成的图形使液态组合物的排出方法不同。
作为形成源电极层或漏电极层120、源电极层或漏电极层121、源电极层或漏电极层122、源电极层或漏电极层123的导电性材料,可以使用以Ag(银)、Au(金)、Cu(铜)、W(钨)、Al(铝)等金属颗粒为主要成分的组合物。另外,也可以组合具有透光性的铟锡氧化物(ITO)、含有氧化硅的铟锡氧化物(ITSO)、有机铟、有机锡、氧化锌、氮化钛等。
与采用旋转涂敷法涂敷形成整个表面的情况相比,通过组合液滴排出法,能够防止材料损失,并能够降低成本。根据本发明,即使是被密集、复杂地配置的设计时,也可以以良好的紧密性稳定地形成布线等。
在本实施方式中,在通过液滴排出法形成用来加工成所需形状的源电极层或漏电极层的情况下,作为前处理,也可以在被形成区及其附近进行形成润湿性不同的区域的处理。在本发明中,当通过液滴排出法排出液滴来形成导电层、绝缘层、掩模层等构成物时,可以在构成物的被形成区内形成相对于该形成材料具有低润湿性的区域、高润湿性的区域,从而控制形成物的形状。通过在被形成区上进行这一处理,在被形成区中产生了润湿性的差异,液滴仅停留在高润湿性的被形成区内,从而可以以良好的可控性将形成物形成为所需图形。在采用液体材料的情况下,此工序可用作形成各种形成物(绝缘层、导电层、掩模层、布线层等)的前处理。
源电极层或漏电极层120也用作源极布线层,而源电极层或漏电极层122也用作电源线。在形成源电极层或漏电极层120、121、122、123之后,将半导体层111a、111b、以及具有一种导电类型的半导体层112a、112b加工成所需形状。在本实施方式中,用源电极层或漏电极层120、121、122、123作为掩模,通过蚀刻对半导体层111a、111b、以及具有一种导电类型的半导体层112a、112b进行加工,以形成半导体层118a、118b、以及具有一种导电类型的半导体层119a、119b、119c、119d。
通过上述工序制造反交错型薄膜晶体管-晶体管124a、124b(参照图10(A)至10(C))。
接着,在栅极绝缘层106、晶体管124a、124b上形成绝缘层126。作为绝缘层126,可以使用包括无机材料(氧化硅、氮化硅、氧氮化硅、氮氧化硅等)、感光性或非感光性有机材料(有机树脂材料)(聚酰亚胺、丙烯酸、聚酰胺、聚酰亚胺酰胺、抗蚀剂、苯并环丁烯等)、低介电常数材料等的一种或多种的膜;或这些膜的叠层等。另外,也可以使用硅氧烷材料。
在绝缘层126中形成开口125。在本实施方式中,如实施方式2所示,利用激光形成开口125。从绝缘层126一侧将激光选择性地照射到源电极层或漏电极层123,由于所照射的能量,源电极层或漏电极层123的照射区的一部分蒸发。在源电极层或漏电极层123的照射区上的绝缘层126被去除,从而可以形成开口125。在源电极层或漏电极层123露出的开口125中形成第一电极层,从而可以将源电极层或漏电极层123与第一电极层电连接。
将含有导电性材料的组合物选择性地排出到绝缘层126上,形成第一电极层。在从衬底100一侧放射光的情况下,可以由包含铟锡氧化物(ITO)、含有氧化硅的铟锡氧化物(ITSO)、含有氧化锌(ZnO)的铟锌氧化物(IZO)、氧化锌(ZnO)、在ZnO中掺杂了镓(Ga)的物质、氧化锡(SnO2)等的组合物来形成预定的图形,并且进行烧成来形成第一电极层。
在本实施方式中,选择性地排出组合物来形成第一电极层。若像这样选择性地形成第一电极层,则有简化加工工序的效果。
在本实施方式中,作为第一电极层形成方法,形成第一电极层时,分成至少两个以上的工序形成第一电极层。在本实施方式中,第一电极层由第一导电层及第二导电层形成。形成第一电极层时,将液态的第一包含导电性材料的组合物附着到要形成的图形的外侧(相当于图形的轮廓、端部),形成框状的第一导电层。图11(A)至11(C)所示,使用液滴排出装置128a、128b在绝缘层126上形成框状的第一导电层127(127a、127b)。
第一导电层优选是如框那样封闭的区域。接着附着液态的第二包含导电性材料的组合物,填充框状的第一导电层的内侧空间,形成第二电极层。如图12(A)至(C)所示,使用液滴排出装置130在绝缘层126上的第一导电层127的框中形成第二导电层129。因为第一导电层127及第二导电层129相接合地形成,并且形成第一导电层127以包围第二导电层129的周围,因此可以将第一导电层127及第二导电层129用作连续的第一导电层134(参照图13(A)至(C))。
在使用液态组合物形成导电层等的情况下,组合物的粘度或固化时的干燥条件(温度或压力等)、与被形成区的润湿性等对形成的导电层的形状有很大的影响。因此,当组合物具有低粘度或与被形成区的润湿性高时,液态组合物在被形成区中润湿扩展,而当组合物具有高粘度或与被形成区的润湿性低时,则有导致在导电层内部或表面上具有空间(也称作针孔)及凹凸而使平坦性恶化的问题。
因此,在本发明中,若附着具有较高粘度且相对于形成区具有低润湿性的组合物来形成决定导电层的被形成区的轮廓的第一导电层,则可以可控性好地形成成为所要求的图形的轮廓的侧端部。若将具有低粘度且相对于被形成区具有高润湿性的液态组合物附着到第一导电层的框中来形成,则可以减轻由内部或表面上的气泡等导致的空间或凹凸等,从而形成平坦性高且均匀的导电层。由此,通过分别形成导电层外侧和内侧来完成导电层,而可以可控性好地形成具有所要求的图形和高平坦性且减轻缺陷的导电层。
也可以采用CMP法或者利用聚乙烯醇类多孔体来擦拭并抛光第一电极层134,以使其表面平坦化。在用CMP法抛光之后,也可以对第一电极层134的表面进行紫外线照射或者氧等离子体处理等。
通过上述工序,完成底栅型的TFT和第一电极层134连接到衬底100上的用于显示面板的TFT衬底。在本实施方式中的TFT是反交错型的。
接着,选择性地形成绝缘层131(也称作隔壁)。以在第一电极层134上具有开口部的方式形成绝缘层131。在本实施方式中,在整个表面上形成绝缘层131,利用抗蚀剂等的掩模进行蚀刻来加工。当采用液滴排出法、印刷法、分配器法等可以选择性地直接形成绝缘层131时,不一定要进行蚀刻加工。
可以使用以下材料形成绝缘层131:氧化硅、氮化硅、氧氮化硅、氧化铝、氮化铝、氧氮化铝、以及其他无机绝缘材料;丙烯酸、甲基丙烯酸、以及其衍生物;耐热高分子诸如聚酰亚胺、芳香族聚酰胺、聚苯并咪唑(polybenzimidazole)等;由以硅氧烷类材料为初始材料形成的含有硅、氧、氢的化合物中的包含Si-O-Si键的无机硅氧烷;或者与硅键合的氢被有机基团诸如甲基或者苯基取代得到的有机硅氧烷类绝缘材料。也可以通过利用感光性材料或非感光性材料诸如丙烯酸类或聚酰亚胺来形成。绝缘层131优选具有其曲率半径连续变化的形状,从而在其上形成的电致发光层132、第二电极层133的覆盖性得到提高。
通过液滴排出法排出组合物来形成绝缘层131之后,为了提高平坦性,也可以通过压力压平表面以进行平坦化。作为压平的方法,可以用辊状物体在其表面上扫描来减少凹凸,或者也可以用平坦的板形物体垂直按压其表面等。或者,也可以利用溶剂等软化或者溶化表面,用气刀消除表面上的凹凸。此外,也可以用CMP法进行抛光。当由于液滴排出法而产生凹凸时,可以将该工序应用于平坦其表面。当通过该工序提高平坦性时,可以防止显示面板的显示不均匀等,因此,可以显示高清晰度的图像。
在用于显示面板的TFT衬底-衬底100上形成发光元件(参照图14(A)(B))。
在形成电致发光层132之前,通过在大气压下以200℃的温度进行热处理来去除第一电极层134、绝缘层131中的或者吸附在其表面上的水分。此外,在减压下以200~400℃,优选以250~350℃进行热处理,然后不暴露于大气中直接通过真空蒸镀法或者减压下的液滴排出法,形成电致发光层132。
作为电致发光层132,通过使用蒸镀掩模的蒸镀法等选择性地分别形成呈现红色(R)、绿色(G)、蓝色(B)的发光的材料。与彩色滤光器相同,通过液滴排出法可以形成呈现红色(R)、绿色(G)、蓝色(B)的发光的材料(低分子材料或高分子材料等)。在此情况下,由于即便不使用掩模也可以分别涂敷RGB,所以是优选的。在电致发光层132上层叠形成第二电极层133,以完成使用发光元件且具有显示功能的显示装置。
尽管未图示,以覆盖第二电极层133地方式设置钝化膜是有效的。在构成显示装置时设置的钝化(保护)膜可以是单层结构也可以是多层结构。钝化膜可以包括下述绝缘膜,所述绝缘膜包含氮化硅(SiN)、氧化硅(SiO2)、氧氮化硅(SiON)、氮氧化硅(SiNO)、氮化铝(AlN)、氧氮化铝(AlON)、含氮量大于含氧量的氮氧化铝(AlNO)、氧化铝、类金刚石碳(Diamond-Like Carbon)(DLC)、含氮碳膜(CNx),并且可以采用该绝缘膜的单层或组合的叠层。例如,可以采用含氮碳膜(CNx)、氮化硅(SiN)的叠层,或者可以采用有机材料,还可以采用苯乙烯聚合体等高分子的叠层。此外,也可以使用硅氧烷材料。
此时,优选采用具有良好覆盖性的膜作为钝化膜,使用碳膜、尤其使用DLC膜是有效的。DLC膜由于可以在从室温到100℃以下的温度范围内形成,因此在具有低耐热性的电致发光层之上也可容易地形成。可以通过等离子体CVD法(代表性的是RF等离子体CVD法、微波CVD法、电子回旋共振(ECR)CVD法、热丝CVD法等)、燃烧火焰法、溅射法、离子束蒸镀法、激光蒸镀法等来形成DLC膜。作为用于形成膜的反应气体,使用氢气和烃类气体(例如CH4、C2H2、C6H6等),并且通过辉光放电使该反应气体离子化,使该离子加速撞击在施加了负的自偏压的阴极上来形成膜。此外,可以通过采用C2H4气和N2气作为反应气体来形成CN膜。DLC膜由于具有对于氧的高阻挡效果,从而能够抑制电致发光层的氧化。因此,可以防止在随后进行的密封工序中电致发光层被氧化的问题。
在具有元件的衬底100上形成密封材,并使用密封衬底来密封衬底100。之后,也可以将柔性线路板连接于与栅电极层104电连接而形成的栅极布线层,以与外部电连接。其与也是源布线层的源电极层或漏电极层120电连接而形成的源极布线层也是相同的。
在具有元件的衬底100和密封衬底之间封入充填剂进行密封。可以采用滴落法来封入充填剂。也可以充填氮等的惰性气体代替充填剂。此外,通过在显示装置内设置干燥剂,可以防止由发光元件的水分引起的老化。干燥剂可以在密封衬底一侧或具有元件的衬底100一侧设置,也可以在密封材所形成的区域中,在衬底上形成凹部来设置。此外,若在对应于和显示无关的区域诸如密封衬底的驱动电路区或布线区等设置干燥剂,即使干燥剂是不透明的物质也不会降低开口率。也可以使填充剂含有吸湿性材料而形成,从而使其具有干燥剂的功能。如上述,完成使用发光元件、并且具有显示功能的显示装置。
在本实施方式中,尽管示出了开关TFT是单栅极结构的例子,但也可以应用多栅极结构诸如双栅极结构等。另外,在通过利用SAS或者结晶性半导体制造半导体层的情况下,也可以通过添加赋予一种导电类型的杂质来形成杂质区。在此情况下,半导体层也可以具有不同浓度的杂质区。例如,可以使半导体层的沟道区附近、与栅电极层层叠的区域为低浓度杂质区,使其外侧区域为高浓度杂质区。
本实施方式可以与实施方式1或实施方式2适当地组合。
根据本发明,可以以所要求的形状形成构成显示装置的布线等构成物。另外,可以简化复杂的光刻工序,通过简化了的工序制造显示装置,所以可以减少材料的损失,可以降低成本。因此,可以高成品率地制造高性能且高可靠性的显示装置。
实施方式4
在本实施方式中描述目的于以进一步简化了的工序并且以低成本制造的高可靠性的显示装置的一例。详细地说,说明将发光元件用于显示元件的发光显示装置。使用图15详细描述本实施方式的显示装置的制造方法。
在具有绝缘表面的衬底150上作为基底膜,通过溅射法、PVD法(物理气相沉积)、减压CVD法(LPCVD法)或等离子体CVD法等CVD法(化学气相沉积)等使用氮氧化硅膜成形10nm~200nm(优选50nm~150nm)的基底膜151a,并且使用氧氮化硅膜层叠50nm~200nm(优选100nm~150nm)的基底膜151b。也可以使用丙烯酸、甲基丙烯酸、以及它们的衍生物;聚酰亚胺、芳香族聚酰胺或聚苯并咪唑等的耐热性高分子;或者硅氧烷树脂。也可以使用下列树脂材料:聚乙烯醇、聚乙烯醇缩丁醛等乙烯基树脂、环氧树脂、酚醛树脂、酚醛清漆树脂、丙烯酸类树脂、蜜胺树脂、聚氨酯树脂等。此外,还可以使用苯并环丁烯、聚对二甲苯、氟代亚芳基醚、聚酰亚胺等有机材料;含有水溶性均聚物和水溶性共聚物的组合物材料;等等。也可以使用唑树脂,例如,可以使用光固化型聚苯并
Figure BSA00000505837300352
唑等。
也可以使用液滴排出法、印刷法(丝网印刷或胶版印刷等形成图形的方法)、旋转涂敷法等的涂敷法、浸渍法、分散器法等。在本实施方式中,使用等离子体CVD法形成基底膜151a、151b。作为衬底150,可以使用玻璃衬底、石英衬底、硅衬底、金属衬底、或在表面上形成有绝缘膜的不锈钢衬底。另外,还可以使用具有能够耐受本实施方式的处理温度的耐热性的塑料衬底,也可以使用薄膜之类的挠性衬底。作为塑料衬底,可以使用包括PET(聚对苯二甲酸乙二醇酯)、PEN(聚萘二甲酸乙二醇酯)、PES(聚醚砜)的衬底,而作为挠性衬底,可以使用丙烯酸等的合成树脂。因为在本实施方式中制造的显示装置具有来自发光元件的光通过衬底150射出的结构,所以该衬底150需要具有透光性。
作为基底膜,可以使用氧化硅、氮化硅、氧氮化硅、氮氧化硅等,并且可以为单层结构,或者也可以为双层、三层的叠层结构。
接下来,在基底膜上形成半导体膜。半导体膜通过各种方法(溅射法、LPCVD法或等离子体CVD法等)以25nm~200nm(优选30nm~150nm)的厚度形成即可。在本实施方式中,优选使用通过激光晶化使非晶半导体膜形成的晶体半导体膜。
为了控制薄膜晶体管的阈值电压,在这样所获得的半导体膜中可以掺杂微量的杂质元素(硼或磷)。也可以对在晶化工序之前的非晶半导体膜中进行该杂质元素掺杂。如果在非晶半导体膜的状态下掺杂杂质元素,还可以通过其后的用于晶化的加热处理,使杂质活化。还可以改善在掺杂时产生的缺陷等。
接下来,将结晶性半导体膜蚀刻加工成所要求的形状,以形成半导体层。
对于蚀刻加工,可以采用等离子体蚀刻(干蚀刻)或湿蚀刻中的任一种,然而,处理大面积的衬底适用等离子体蚀刻。作为蚀刻气体,使用CF4、NF3等氟类气体、或者C12、BCl3等氯类气体,还可以适当地添加He、Ar等惰性气体。当采用大气压放电的蚀刻加工时,可以进行局部放电加工,从而不需要在衬底的整个面上形成掩模层。
在本发明中,形成布线层或电极层的导电层、用于形成预定图形的掩模层等也可以通过选择性地形成图形的方法比如液滴排出法形成。液滴排出(喷出)法(根据其方式也被称作喷墨法)可以通过有选择性地排出(喷出)为特定目的而调制的组合物的液滴,形成预定的图形(导电层或绝缘层等)。在此时,也可以对被形成区域进行控制润湿性或密着性的处理。此外,可以转印或绘制图形的方法例如印刷法(丝网印刷或胶版印刷等形成图形的方法)、分配器法等也都可以使用。可以将如实施方式1那样通过液滴排出法等以多个工序选择性地正确地形成的导电层和半导体层用于本实施方式中的栅电极层、半导体层、源电极层、漏电极层等。因此,可以简化工序并且防止材料的损失,因而可以实现低成本化。
在本实施方式中,使用的掩模使用环氧树脂、丙烯酸类树脂、酚醛树脂、酚醛清漆树脂、蜜胺树脂、聚氨酯树脂等树脂材料。可以采用苯并环丁烯、聚对二甲苯、氟代亚芳基醚、具有透光性的聚酰亚胺等有机材料;由硅氧烷类聚合物等的聚合得到的化合物材料;含有水溶性均聚物以及水溶性共聚物的组合物材料等。也可以采用市场上销售的含有感光剂的抗蚀剂材料,例如,代表性的正性抗蚀剂酚醛清漆树脂和感光剂重氮萘醌化合物、负性抗蚀剂基质树脂、二苯基硅烷二醇和酸发生剂等。在使用液滴排出法时,采用任一材料,其表面张力和粘性都可以通过调节溶剂的浓度、添加表面活性剂等来适当地调节。
形成覆盖半导体层的栅极绝缘层。栅极绝缘层通过等离子体CVD法或溅射法等以10nm~150nm的厚度由含硅的绝缘膜形成。栅极绝缘层可以由以氮化硅、氧化硅、氧氮化硅、氮氧化硅为代表的硅的氧化物材料或氮化物材料等材料形成,并且可以是叠层也可以是单层。绝缘层可以采用氮化硅膜、氧化硅膜、氮化硅膜的三层的叠层结构、或者氧氮化硅膜的单层结构、包括2层的叠层结构。
接下来,在栅极绝缘层上形成栅电极层。栅电极层可以通过溅射法、蒸镀法、CVD法等方法来形成。栅电极层可以由选自钽(Ta)、钨(W)、钛(Ti)、钼(Mo)、铝(Al)、铜(Cu)、铬(Cr)、钕(Nd)中的元素;以上述元素为主要成分的合金材料或化合物材料形成。此外,作为栅电极层,也可以使用以掺杂了磷等杂质元素的多晶硅膜为代表的半导体膜或AgPdCu合金。此外,栅电极层可以是单层也可以是叠层。
在本实施方式中,栅电极层形成为锥形。然而,本发明不局限于此,也可以使栅电极层为叠层结构,其中只有一层为锥形,其它可以通过各向异性蚀刻而具有垂直的侧面。如本实施方式,锥形角度在层叠的栅电极层之间可以不同,也可以相同。由于具有锥形形状,在其上层叠的膜的覆盖性提高,并且缺陷减少,从而可靠性提高。
通过形成栅电极层时的蚀刻工序,栅极绝缘层在一定程度上被蚀刻,膜厚变薄(所谓的膜厚度的降低)。
通过将杂质元素添加到半导体层中,形成杂质区。可以通过控制其浓度,使杂质区成为高浓度杂质区及低浓度杂质区。将具有低浓度杂质区的薄膜晶体管称作LDD(轻掺杂漏极,Light doped drain)结构。此外,低浓度杂质区可以与栅电极重叠地形成,将这种薄膜晶体管称作GOLD(栅极重叠的LDD,Gate Overlaped LDD)结构。此外,因为将磷(P)等用于杂质区,从而薄膜晶体管的极性为n型。在为p型的情况下,添加硼(B)等即可。
在本实施方式中,杂质区通过栅极绝缘层与栅电极层重叠的区域示为Lov区,而杂质区通过栅极绝缘层不与栅电极层的重叠区域示为Loff区。在图15中,杂质区由阴影线和空白表示,然而空白部分不表示没有添加杂质元素,而是为了能够直观了解该区域的杂质元素的浓度分布反映着掩模或掺杂条件。此情况在本说明书中的其他附图上也是相同的。
为了使杂质元素活化,也可以进行加热处理、强光照射或激光照射。在活化的同时,能够恢复对于栅极绝缘层的等离子体损害或对于栅极绝缘层和半导体层的界面的等离子体损害。
接着,形成覆盖栅电极层、栅极绝缘层157的第一层间绝缘层。在本实施方式中,采用绝缘膜167和绝缘膜168的叠层结构。绝缘膜167及绝缘膜168可以使用采用溅射法或等离子体CVD的氮化硅膜、氮氧化硅膜、氧氮化硅膜、氧化硅膜等,并且还可以以单层、或者三层以上的叠层结构使用其他含有硅的绝缘膜。
在氮气环境中、在300℃~550℃进行1小时~12小时热处理,进行使半导体层氢化的工序。优选在400℃~500℃进行。在这一工序是使用包含在作为层间绝缘层的绝缘膜167中的氢封端半导体层的悬空键的工序。在本实施方式中,加热处理是在410℃下进行的。
绝缘膜167、绝缘膜168还可以由选自下述物质的材料形成:氮化铝(AlN)、氧氮化铝(AlON)、氮含量高于氧含量的氮氧化铝(AlNO)、氧化铝、类金刚石碳(DLC)、含氮碳(CN)、聚硅氮烷、其它含有无机绝缘性材料的物质。另外,也可以使用包含硅氧烷的材料。另外,也可以使用有机绝缘性材料,作为有机材料,可以使用聚酰亚胺、丙烯酸类、聚酰胺、聚酰亚胺酰胺、抗蚀剂、或苯并环丁烯。此外,也可以使用唑树脂,例如,可以使用光固化聚苯并
Figure BSA00000505837300382
唑等。
接着,使用包括抗蚀剂的掩模在绝缘膜167、绝缘膜168、以及栅极绝缘层中形成到达半导体层的接触孔(开口)。形成导电膜以覆盖开口,并且蚀刻导电膜,以形成分别电连接于各个源区或漏区的一部分的源电极层或漏电极层。源电极层或漏电极层可以在通过PVD法、CVD法、蒸镀法等形成导电膜之后,将导电膜蚀刻成所要求的形状来形成。另外,可以通过液滴排出法、印刷法、分配器法或电镀法等选择性地在预定的位置上形成导电膜。而且,还可以使用回流法、镶嵌(damascene)法。作为源电极层或漏电极层的材料,使用Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W、Al、Ta、Mo、Cd、Zn、Fe、Ti、Si、Ge、Zr、Ba等金属;它们的合金;或它们的金属氮化物。此外,也可以采用这些材料的叠层结构。
在本实施方式中,也可以如实施方式1所示,通过多个工序排出液态的包含形成材料的组合物,来形成构成显示装置的栅电极层、半导体层、源电极层、漏电极层、布线层、或第一电极层等。如实施方式1所示,首先沿着导电层的图形轮廓通过第一排出工序形成框状的第一导电层,然后通过第二排出工序填充第一导电层的框中,形成第二导电层。
因此,若附着具有较高粘度且相对于形成区润湿性低的组合物来形成决定导电层(绝缘层)的被形成区的轮廓的第一导电层(绝缘层),则可以可控性好地形成成为所要求的图形的轮廓的侧端部。若将具有低粘度且相对于被形成区润湿性高的液态组合物附着到第一导电层(绝缘层)的框中来形成,则可以减轻由内部或表面上的气泡等导致的空间或凹凸等,形成平坦性高的均匀的导电层(绝缘层)。由此,通过分别制作导电层(绝缘层)外侧和内侧来制作导电层(绝缘层),可以可控性好地形成具有所要求的图形和高平坦性且减轻缺陷的导电层(绝缘层)。
通过以上工序,可以制造出有源矩阵矩衬底,其中在外围驱动电路区204中有在Lov区中具有p型杂质区的p沟道型薄膜晶体管的薄膜晶体管285、在Lov区中具有n型杂质区的n沟道型薄膜晶体管的薄膜晶体管275;以及在像素区206中有在Loff区中具有n型杂质区的多沟道型的n沟道型薄膜晶体管的薄膜晶体管265、在Lov区中具有p型杂质区的p沟道型薄膜晶体管的薄膜晶体管255。
在像素区的薄膜晶体管的结构不局限于本实施方式,而可以采用形成有一个沟道被形成区的单栅极结构、形成有两个沟道被形成区的双栅极结构或形成有三个沟道被形成区的三栅极结构。另外,外围驱动电路区的薄膜晶体管也可以为单栅极结构、双栅极结构或三栅极结构。
接着,作为第二层间绝缘层形成绝缘膜181。图15显示了通过划线分离的分离区201、用作FPC的粘结部的外部端子连接区202、用作外围部的引线区的布线区203、外围驱动电路区204、像素区206。布线179a、布线179b设置在布线区203中,与外部端子连接的端子电极层178设置在外部端子连接区202中。
绝缘膜181可以由选自下述物质的材料形成:氧化硅、氮化硅、氧氮化硅、氮氧化硅、氮化铝(AlN)、含有氮的氧化铝(也称为氧氮化铝)(AlON)、含有氧的氮化铝(也称为氮氧化铝)(AlNO)、氧化铝、类金刚石碳(DLC)、含氮碳膜(CN)、PSG(磷玻璃)、BPSG(硼磷玻璃)、氧化铝膜、含有其他无机绝缘材料的物质。也可以使用硅氧烷树脂。另外,也可以使用有机绝缘性材料,有机材料可以为感光性的,也可以为非感光性的,可以使用聚酰亚胺、丙烯酸类、聚酰胺、聚酰亚胺酰胺、抗蚀剂、苯并环丁烯、聚硅氮烷、低介电常数(Low-k)材料。此外,也可以使用
Figure BSA00000505837300401
唑树脂,例如,可以使用光固化型聚苯并
Figure BSA00000505837300402
唑等。对于为平坦化所设置的层间绝缘层,要求其具有高耐热性和高绝缘性、以及高平坦度,因此,绝缘膜181的形成方法优选使用以旋转涂敷法为代表的涂敷法。
绝缘膜181还可以使用浸渍法、喷涂法、刮刀、辊涂、幕涂、刮刀涂布、CVD法、蒸镀法等。绝缘膜181也可以通过液滴排出法来形成。当使用液滴排出法时,可以节省材料溶液。还可以使用如液滴排出法那样的能够转印或绘制图形的方法,例如印刷法(丝网印刷或胶版印刷等形成图形的方法)或分配器法等。
在像素区206的绝缘膜181中形成微细的开口,即接触孔。源电极层或漏电极层在形成于绝缘膜181的开口处与第一电极层185电连接。如实施方式2所示,可以通过照射激光形成形成于绝缘膜181的开口。在本实施方式中,源电极层或漏电极层使用比较容易蒸发的低熔点金属(在本实施方式中使用铬)。从绝缘膜181一侧将激光选择性地照射到源电极层或漏电极层,由于照射的能量,源电极层或漏电极层的照射区的一部分蒸发。在源电极层或漏电极层的照射区上的绝缘膜181被去除,可以形成开口。在源电极层或漏电极层被露出的开口中形成第一电极层185,从而源电极层或漏电极层与第一电极层185可以电连接。
第一电极层185用作阳极或阴极,可以以总膜厚100nm~800nm范围使用选自Ti、Ni、W、Cr、Pt、Zn、Sn、In或Mo中的元素;或者TiN、TiSiXNY、WSiX、WNX、WSiXNY、NbN等的以上述元素为主要成分的合金材料或者化合物材料为主要成分的膜或它们的叠层膜。
在本实施方式中,将发光元件用作显示元件,并且因为具有来自发光元件的光从第一电极层185一侧射出的结构,所以第一电极层185具有透光性。通过形成透明导电膜并且将其蚀刻成所要求的形状来形成第一电极层185。
在本发明中,作为透光性电极层的第一电极层185具体地可以使用包括具有透光性的导电性材料的透明导电膜,可以使用含有氧化钨的铟氧化物、含有氧化钨的铟锌氧化物、含有氧化钛的铟氧化物、含有氧化钛的铟锡氧化物等。当然,也可以使用铟锡氧化物(ITO)、铟锌氧化物(IZO)、添加了氧化硅的铟锡氧化物(ITSO)等。
即使是没有透光性的金属膜之类的材料,也能通过将其膜厚设成较薄(优选为5nm~30nm左右的厚度),使其成为能够透射光的状态,从而可以从第一电极层185射出光。此外,作为可以用于第一电极层185的金属薄膜,可以使用包括钛、钨、镍、金、铂、银、铝、镁、钙、锂、以及它们的合金的导电膜等。
第一电极层185可以通过蒸镀法、溅射法、CVD法、印刷法、分配器法或液滴排出法等形成。在本实施方式中,第一电极层185是通过溅射法使用含有氧化钨的铟锌氧化物制造的。第一电极层185优选以100nm~800nm范围的总膜厚使用。
第一电极层185也可以通过CMP法或通过使用聚乙烯醇类多孔质体擦净、抛光,以便使其表面平坦化。此外,还可以在进行使用CMP法的抛光后,对第一电极层185的表面进行紫外线照射、氧等离子体处理等。
还可以在形成第一电极层185之后进行加热处理。通过该加热处理,包含在第一电极层185中的水分被排出。由此,在第一电极层185中不会产生脱气等,从而即使在第一电极层上形成容易因水分而劣化的发光材料,该发光材料也不会劣化,从而可以制造高可靠性的显示装置。
接下来,形成覆盖第一电极层185的端部、源电极层或漏电极层的绝缘层186(也称为隔壁、阻挡层等)。
作为绝缘层186,可以使用氧化硅、氮化硅、氧氮化硅、氮氧化硅等,并且可以是单层也可以是双层、三层的叠层结构。另外,作为绝缘层186的其他材料,可以使用选自氮化铝、氧含量高于氮含量的氧氮化铝、氮含量高于氧含量的氮氧化铝或氧化铝、类金刚石碳(DLC)、含氮的碳、聚硅氮烷、含有其他无机绝缘材料的物质中的材料形成。也可以使用含有硅氧烷的材料。此外,也可以使用有机绝缘性材料,作为有机材料可以是感光性的,也可以为非感光性的,可以采用聚酰亚胺、丙烯酸类、聚酰胺、聚酰亚胺酰胺、抗蚀剂或苯并环丁烯、聚硅氮烷。此外,也可以使用
Figure BSA00000505837300421
唑树脂,例如,可以使用光固化型聚苯并
Figure BSA00000505837300422
唑等。
绝缘层186可以通过溅射法、PVD(物理气相沉积)法、减压CVD法(LPCVD法)或等离子体CVD法等CVD(化学气相沉积)法、或者能够选择性地形成图形的液滴排出法、能够转印或绘制图形的印刷法(丝网印刷或胶版印刷等形成图形的方法)、分配器法、旋转涂敷法等涂敷法、或浸渍法等来形成。
加工成所要求的形状的蚀刻加工,可以使用等离子体蚀刻(干蚀刻)或湿蚀刻中的任一种。对于处理大面积衬底,应用等离子体蚀刻。作为蚀刻气体,使用CF4、NF3等氟类气体、或Cl2、BCl3等氯类气体,还可以在其中适当地添加惰性气体如He或Ar等。此外,当使用大气压放电的等离子体蚀刻加工时,可以进行局部放电加工,而不需要将掩模层形成在衬底的整个表面上。
在图15(A)所示的连接区205中,以与第二电极层相同的工序、相同的材料形成的布线层和以与栅电极层相同的工序、相同的材料形成的布线层电连接。
在第一电极层185上形成发光层188。要说明的是,虽然在图15中仅显示了一个像素,但在本实施方式中分别制作对应于R(红)、G(绿)、B(蓝)每一种颜色的电场电极层。
接着,在发光层188上设置包括导电膜的第二电极层189。作为第二电极层189,使用Al、Ag、Li、Ca、它们的合金或化合物MgAg、MgIn、AlLi、CaF2、或者氮化钙即可。如此,形成了包括第一电极层185、发光层188以及第二电极层189的发光元件190(参照图15(B))。
在图15所示的本实施方式的显示装置中,从发光元件190发出的光在沿图15(B)中的箭头方向从第一电极层185一侧透过而射出。
在本实施方式中,在第二电极层189上也可以设置绝缘层作为钝化膜(保护膜)。像这样以覆盖第二电极层189的方式设置钝化膜是有效的。该钝化膜包括绝缘膜,该绝缘膜含有氮化硅、氧化硅、氧氮化硅、氮氧化硅、氮化铝、氧氮化铝、氮含量高于氧含量的氮氧化铝或氧化铝、类金刚石碳(DLC)、含氮的碳膜,可以使用所述绝缘膜的单层或将其组合的叠层。也可以使用硅氧烷树脂。
优选使用覆盖性良好的膜作为钝化膜,使用碳膜,尤其使用DLC膜是有效的。DLC膜能够在从室温~100℃以下的温度范围内形成,因此,也可以容易地在耐热性低的发光层188的上方形成。DLC膜可以通过等离子体CVD法(代表性地,RF等离子体CVD法、微波CVD法、电子回旋共振(ECR)CVD法、热丝CVD法等)、燃烧火焰法、溅射法、离子束蒸镀法、激光蒸镀法等来形成。作为用于成膜的反应气体,使用氢气和烃类气体(例如,CH4、C2H2、C6H6等),并且通过辉光放电来使其离子化,使离子加速撞击在施加了负的自偏压的阴极上形成。另外,CN膜通过使用C2H4气体和N2气体作为反应气体来形成即可。DLC膜对于氧具有高阻挡效果,所以可以抑制发光层188的氧化。因此,可以防止在后续的密封工序中发光层188氧化的问题。
通过用密封材192固定如上那样形成有发光元件190的衬底150和密封衬底195来密封发光元件(参照图15)。作为密封材192,代表性地,优选使用可见光固化性、紫外线固化性或热固性树脂。例如,可以使用双酚A型液体树脂、双酚A型固体树脂、含溴环氧树脂、双酚F型树脂、双酚AD型树脂、酚醛树脂、甲酚型树脂、酚醛清漆型树脂、环状脂肪族环氧树脂、Epi-Bis型环氧树脂、缩水甘油酯树脂、缩水甘油胺类树脂、诸如杂环环氧树脂、改性环氧树脂等环氧树脂。要说明的是,由密封材包围的区域可以用填充材193填充,也可以通过在氮气环境中密封来封入氮气等。因为本实施方式采用了底部发射型,所以填充材193不需要具有透光性,然而,当具有透过填充材193发光的结构时,必需具有透光性。代表性地,可以使用可见光固化环氧树脂、紫外线固化环氧树脂、或热固化环氧树脂。通过以上工序,完成本实施方式的使用发光元件且具有显示功能的显示装置。另外,填充材可以以液态滴落而填充在显示装置中。可以通过使用含有干燥剂等吸湿性的物质作为填充材,获得进一步大的吸水效果,可以防止元件的劣化。
在EL显示面板中设置干燥剂,以防止元件由于水分而劣化。在本实施方式中,干燥剂设置在凹部中,该凹部围绕像素区形成在密封衬底上,因此不防碍薄型化。另外,在对应于栅极布线层的区域中也形成干燥剂,如果增大吸水面积,吸水效果高。另外,由于在不直接发光的栅极布线层上形成干燥剂,所以不会降低光发射效率。
要说明的是,在本实施方式中,虽然示出了用玻璃衬底密封发光元件的情况,然而,密封处理是保护发光元件免受水分影响的处理,可以使用下列方法中的任一方法:用覆盖材料机械封入的方法、用热固性树脂或紫外线固化性树脂封入的方法、用金属氧化物或金属氮化物等阻挡能力高的薄膜密封的方法。作为覆盖材料,可以使用玻璃、陶瓷、塑料或金属,但是当光射出到覆盖材料一侧时必需使用透光性的材料。覆盖材料和形成有上述发光元件的衬底使用热固性树脂或紫外线固化性树脂等密封材彼此贴合,并且通过热处理或紫外线照射处理固化树脂来形成密闭空间。在该密闭空间中设置以氧化钡为代表的吸湿材料也是有效的。该吸湿材料可以接合地设在密封材上,或者也可以设在隔壁上或周围部分,以便不阻碍来自发光元件的光。而且,也能用热固性树脂或紫外线固化性树脂填充覆盖材料和形成有发光元件的衬底之间的空间。在这种情况下,在热固性树脂或紫外线固化性树脂中添加以氧化钡为代表的吸湿材料是有效的。
源电极层或漏电极层与第一电极层可以通过布线层连接,而不直接接合而电连接。
本实施方式的结构为:在外部端子连接区202中,端子电极层178通过各向异性导电层196与FPC 194连接,与外部电连接。另外,如显示装置的俯视图-图15(A)所示,在本实施方式中制造的显示装置除了具有信号线驱动电路的外围驱动电路区204、外围驱动电路区209之外,还设置具有扫描线驱动电路的外围驱动电路区207、外围驱动电路区208。
在本实施方式中,使用如上所述的电路形成,然而,本发明不局限于此,还可以将通过上述的COG方式、TAB方式安装的IC芯片作为外围驱动电路。栅极线驱动电路、源极线驱动电路可以是多个也可以是一个。
此外,在本发明的显示装置中,对于画面显示的驱动方法没有特别限制,例如可以使用点顺序驱动方法、线顺序驱动方法或面积顺序驱动方法等。代表性地,作为线顺序驱动方法,可以适当地使用时间分割灰度驱动方法、面积灰度驱动方法。输入到显示装置的源极线中的视频信号可以是模拟信号,也可以是数字信号,根据该视频信号而适当地设计驱动电路等即可。
本实施方式可以与实施方式1或实施方式2适当地组合。
根据本发明,可以以预定的形状形成构成显示装置的布线等的构成物。另外,可以简化复杂的光刻工序而通过简化了的工序制造显示装置,所以可以减少材料的损失且降低成本。因此,可以高成品率地制造高性能且高可靠性的显示装置。
实施方式5
可以应用本发明来形成薄膜晶体管,并可以使用该薄膜晶体管来制作显示装置。此外,当采用发光元件且将n沟道型晶体管用作驱动该发光元件的晶体管时,从该发光元件发出的光进行底部发射、顶部发射、双向发射中的任一种发射。此处,参照图17来描述对应于各情况的发光元件的叠层结构。
在本实施方式中,使用应用本发明的沟道保护型薄膜晶体管461、471、481。薄膜晶体管481被设在具有透光性的衬底480上,并且由栅电极层493、栅极绝缘膜497、半导体层494、具有n型的半导体层495a、具有n型的半导体层495b、源电极层或漏电极层487a、源电极层或漏电极层487b、沟道保护层496形成。
在本实施方式中,也可以如实施方式1所示那样通过多个工序排出液态的包含形成材料的组合物,来形成构成显示装置的栅电极层、半导体层、源电极层、漏电极层、布线层、或第一电极层等。如实施方式1所示,首先沿着导电层的图形的轮廓通过第一排出工序形成框状的第一导电层,然后通过第二排出工序形成第二导电层,填充第一导电层的框中。
因此,若附着粘度较高且相对于被形成区润湿性低的组合物来形成决定导电层(绝缘层)的形成区轮廓的第一导电层(绝缘层),则可以可控性好地形成成为所要求的图形的轮廓的侧端部。若将粘度低且相对于被形成区润湿性高的液态组合物附着到第一导电层(绝缘层)的框中来形成,则可以减轻内部或表面由气泡等导致的空间或凹凸等,以形成平坦性高的均匀的导电层(绝缘层)。由此,通过分别制作导电层(绝缘层)外侧和内侧来制作导电层(绝缘层),可以可控性好地形成具有所要求的图形和高平坦性且减轻缺陷的导电层(绝缘层)。由此可以使工序简化并且防止材料的损失,可以实现低成本化。
在本实施方式中,使用非晶半导体层作为半导体层。然而,不局限于本实施方式,也可以使用晶体半导体层作为半导体层,并且使用具有n型的半导体层作为具有一种导电类型的半导体层。代替形成具有n型的半导体层,也可以通过利用PH3气体进行等离子体处理,对半导体层赋予导电性。在采用多晶硅这样的晶体半导体层的情况下,也可以通过将杂质引入(添加)到晶体半导体层中来形成具有一种导电类型的杂质区,而不形成具有一种导电类型的半导体层。而且,也可以使用并五苯等的有机半导体,当用液滴排出法等选择性地形成有机半导体时,可以简化加工工序。
这里说明将晶体半导体层用作半导体层的情况。首先,使非晶半导体层结晶,形成晶体半导体层。在结晶工序中,对非晶半导体层添加促进结晶的元素(也表示为催化元素、金属元素),并且通过热处理(在550℃~750℃下进行3分钟~24小时),来使其结晶。作为促进结晶的元素,可以使用选自铁(Fe)、镍(Ni)、钴(Co)、钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)、铂(Pt)、铜(Cu)及金(Au)中的一种或多种元素。
为了从晶体半导体层去除或减少促进结晶的元素,与晶体半导体层接合形成包含杂质元素的半导体层,使它发挥吸杂装置(getteringsink)的功能。作为杂质元素,可以使用赋予n型的杂质元素、赋予p型的杂质元素、或稀有气体元素等。例如,可以采用选自磷(P)、氮(N)、砷(As)、锑(Sb)、铋(Bi)、硼(B)、氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)中的一种或多种。与包含促进结晶的元素的晶体半导体层接合形成具有n型的半导体层,并且进行热处理(在550℃~750℃下进行3分钟~24小时)。晶体半导体层中所含的促进结晶的元素移动到具有n型的半导体层中,从而去除或减少晶体半导体层中的促进结晶的元素,形成半导体层。另一方面,具有n型的半导体层成为包含促进结晶的元素的金属元素的具有n型的半导体层,之后被加工成所要求的形状,成为具有n型的半导体层。这种具有n型的半导体层也发挥半导体层的吸杂装置的功能,也直接用作源区或漏区。
可以通过多个加热处理来进行半导体层的结晶工序和吸杂工序,也可以通过一次加热处理来进行结晶工序和吸杂工序。在此情况下,在形成非晶半导体层、添加促进结晶的元素、形成用作吸杂装置的半导体层之后,进行热处理即可。
在本实施方式中,通过层叠多个层来形成栅极绝缘层,从栅电极层493一侧形成氮氧化硅膜、氧氮化硅膜作为栅极绝缘膜497,制成双层的叠层结构。优选在同一个室内保持真空并且在相同的温度下一边切换反应气体一边连续形成层叠的绝缘层。当在保持真空的状态下连续形成时,可以防止层叠的膜之间的界面被污染。
也可以采用液滴排出法滴加聚酰亚胺或聚乙烯醇等,形成沟道保护层496。结果,可以省略曝光工序。作为沟道保护层,可以使用包括无机材料(氧化硅、氮化硅、氧氮化硅、氮氧化硅等)、感性或非感光性有机材料(有机树脂材料)(聚酰亚胺、丙烯酸类、聚酰胺、聚酰亚胺酰胺、抗蚀剂、苯并环丁烯等)、低介电常数材料等的一种或多种的膜;或者这些膜的叠层等。另外,也可以采用硅氧烷材料。作为制造方法,可以采用诸如等离子体CVD法或热CVD法等的气相生长方法或溅射法。也可以采用液滴排出法、分配器法、印刷法(丝网印刷或胶版印刷等的形成图形的方法)。也可以使用通过涂敷法获得的SOG膜等。
首先,参照图17(A)说明向衬底480一侧发射的情况,亦即进行底部发射的情况。在此情况下,第一电极层484以与薄膜晶体管481电连接的方式与源电极层或漏电极层487b接合,依次层叠第一电极层484、电致发光层485、第二电极层486。光透过的衬底480必需至少相对于可见光具有透光性。
接着,使用图17(B)说明向与衬底460相反一侧发射的情况,亦即进行顶部发射的情况。可以以与上述的薄膜晶体管相同的方式形成薄膜晶体管461。与薄膜晶体管461电连接的源电极层或漏电极层462与第一电极层463接合而电连接。依次层叠第一电极层463、电致发光层464、第二电极层465。源电极层或漏电极层462是具有反射性的金属层,并向箭头的上面反射从发光元件发射的光。因为源电极层或漏电极层462与第一电极层463层叠,因此,即使第一电极层463使用透光性材料且光透过,该光也会被源电极层或漏电极层462反射,而射出到与衬底460相反一侧。当然,也可以使用具有反射性的金属膜形成第一电极层463。由于从发光元件射出的光透过第二电极层465而射出,故第二电极层465使用至少在可见区具有透光性的材料形成。
最后,参照图17(C)说明向衬底470一侧和其相反一侧二者发射光的情况,亦即进行双向发射的情况。薄膜晶体管471也是沟道保护型薄膜晶体管。在电连接到薄膜晶体管471的半导体层的源电极层或漏电极层475上电连接有第一电极层472。依次层叠第一电极层472、电致发光层473、第二电极层474。此时,当第一电极层472和第二电极层474都使用至少在可见区具有透光性的材料形成,或以可透过光的厚度形成时,就实现了双向发射。在此情况下,光透过的绝缘层、衬底470也需要至少相对于可见区的光具有透光性。
本实施方式可以分别与实施方式1至4自由地组合。
根据本发明,可以以所要求的形状形成构成显示装置的布线等的构成物。另外,可以简化复杂的光刻工序,通过简化了的工序制造显示装置,所以可以减少材料的损失且降低成本。因此,可以高成品率地制造高性能且高可靠性的显示装置。
实施方式6
在本实施方式中描述目的在于以进一步简化了的工序并且以低成本制造的高可靠性的显示装置的一例。详细地说,描述将发光元件用于显示元件的发光显示装置。
在本实施方式中,使用图22描述一种发光元件的结构,该发光元件可以用作本发明的显示装置的显示元件。
图22显示了发光元件的元件结构,其中混合有机化合物和无机化合物而形成的电致发光层860夹在第一电极层870和第二电极层850之间。如图所示,电致发光层860由第一层804、第二层803、第三层802构成。尤其是,第一层804和第三层802具有特殊的特征。
首先,第一层804为具有向第二层803传输空穴的功能的层,并且是至少包括第一有机化合物和相对于第一有机化合物呈现出电子接收性能的第一无机化合物的结构。重要的是第一无机化合物不仅与第一有机化合物混合,而且第一无机化合物相对于第一有机化合物呈现出电子接收性能。通过采用这种结构,在本来几乎没有固有的载流子的第一有机化合物中产生大量的空穴载流子,从而呈现出非常优异的空穴注入性能及空穴传输性能。
因此,第一层804不仅获得被认为是通过混合无机化合物而获得的效果(耐热性的提高等),而且能够获得优异的导电性(在第一层804中,尤其是空穴注入性能及传输性能)。这是不能从常规的空穴传输层获得的效果,常规的空穴传输层中只混合了互相没有电子相互作用的有机化合物和无机化合物。因为该效果,可以使得驱动电压比以前降低。另外,由于可以在不导致驱动电压上升的情况下使第一层804变厚,从而也可以抑制由灰尘等所造成的元件的短路。
如上所述,由于在第一有机化合物中产生空穴载流子,所以,作为第一有机化合物,优选空穴传输性的有机化合物。作为空穴传输性的有机化合物,例如,可以举出酞菁染料(缩写:H2Pc)、酞菁铜(缩写:CuPc)、酞菁氧钒(缩写:VOPc)、4,4,’4”-三(N,N-二苯基氨基)三苯胺(缩写:TDATA)、4,4’,4”-三[N-(3-甲基苯基)-N-苯基氨基]-三苯胺(缩写:MTDATA)、1,3,5-三[N,N-二(间甲苯基)氨基]苯(缩写:m-MTDAB)、N,N’-二苯基-N,N’-双(3-甲基苯基)-1,1’-联苯-4,4’-二胺(缩写:TPD)、4,4’-双[N-(1-萘基)-N-苯基氨基]联苯(缩写:NPB)、4,4’-双{N-[4-二(间甲苯基)氨基]苯基-N-苯基氨基}联苯(缩写:DNTPD)、4,4’,4”-三(N-咔唑基)三苯胺(缩写:TCTA)等,然而不局限于上述化合物。另外,在上述化合物中,以TDATA、MTDATA、m-MTDAB、TPD、NPB、DNTPD、TCTA等为代表的芳香族胺化合物容易产生空穴载流子,所以为优选用作第一有机化合物的化合物组。
另一方面,第一无机化合物可以为任何材料,只要该材料容易从第一有机化合物接收电子即可,可以是各种金属氧化物或金属氮化物,周期表中第4族至第12族中任一种的过渡金属氧化物容易呈现出电子接收性能,所以是优选的。具体地,可以举出氧化钛、氧化锆、氧化钒、氧化钼、氧化钨、氧化铼、氧化钌、氧化锌等。在上述金属氧化物中,周期表中第4族至第8族中任一种过渡金属氧化物具有高电子接收性能的较多,它们是优选的化合物组。特别地,氧化钒、氧化钼、氧化钨、氧化铼能够真空蒸镀,容易使用,所以优选。
第一层804也可以通过层叠多个应用上述有机化合物和无机化合物的组合的层来形成。可以进一步包括其他有机化合物或其他无机化合物。
接着,说明第三层802。第三层802为具有向第二层803传输电子的功能的层,并且至少包括第三有机化合物和相对于第三有机化合物呈现出电子给予性能的第三无机化合物。重要的是第三无机化合物不仅与第三有机化合物混合,而且第三无机化合物相对于第三有机化合物呈现出电子给予性能。通过采用这种结构,在本来几乎没有固有载流子的第三有机化合物中产生大量的电子载流子,从而呈现出优异的电子注入性能及电子传输性能。
因此,第三层802不仅获得被认为是通过混合无机化合物而获得的效果(耐热性的提高等),而且可以获得优异的导电性(在第三层802中,尤其是电子注入性能和传输性能)。这是不能从常规的电子传输层获得的效果,常规的电子传输层中只混合了互相没有电子相互作用的有机化合物和无机化合物。因为该效果,可以使得驱动电压比以前降低。另外,由于可以在不导致驱动电压上升的情况下使第三层802变厚,从而也可以抑制由灰尘等所造成的元件的短路。
如上所述,由于在第三有机化合物中产生电子载流子,所以,作为第三有机化合物,优选电子传输性的有机化合物。作为电子传输性的有机化合物,例如,可以举出三(8-喹啉)铝(缩写:Alq3)、三(4-甲基-8-喹啉)铝(缩写:Almq3)、双(10-羟基苯并[h]喹啉)铍(缩写:BeBq2)、双(2-甲基-8-喹啉)(4-苯基苯酚)铝(缩写:BAlq)、双[2-(2’-羟基苯基)苯并
Figure BSA00000505837300501
唑]锌(缩写:Zn(BOX)2)、双[2-(2,-羟基苯基)苯并噻唑]锌(缩写:Zn(BTZ)2)、红菲咯啉(缩写:BPhen)、浴铜灵(缩写:BCP)、2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-
Figure BSA00000505837300502
二唑(缩写:PBD)、1,3-双[5-(4-叔丁基苯基)-1,3,4-
Figure BSA00000505837300503
二唑-2-基]苯(缩写:OXD-7)、2,2’,2”-(1,3,5-苯三基(benzenetriyl))-三(1-苯基-1H-苯并咪唑)(缩写:TPBI)、3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(缩写:TAZ)、3-(4-联苯基)-4-(4-乙基苯基)-5-(4-叔丁基苯基)-1,2,4-三唑(缩写:p-EtTAZ)等,然而不局限于此。另外,在上述化合物中,如下化合物容易产生电子载流子:以Alq3、Almq3、BeBq2、BAlq、Zn(BOX)2、Zn(BTZ)2等为代表的具有包括芳环的螯合配体的螯合金属络合物;以BPhen、BCP等为代表的具有菲咯啉骨架的有机化合物;以及以PBD、OXD-7等为代表的具有
Figure BSA00000505837300511
二唑骨架的有机化合物,它们是优选用作第三有机化合物的化合物组。
另一方面,第三无机化合物可以为任何材料,只要该材料容易对第三有机化合物给予电子即可,可以为各种金属氧化物或金属氮化物,碱金属氧化物、碱土金属氧化物、稀土金属氧化物、碱金属氮化物、碱土金属氮化物、稀土金属氮化物容易呈现出电子给与性能,所以优选。具体地,可以举出氧化锂、氧化锶、氧化钡、氧化铒、氮化锂、氮化镁、氮化钙、氮化钇、氮化镧等。特别地,氧化锂、氧化钡、氮化锂、氮化镁、氮化钙可以真空蒸镀,并且容易处理,所以优选。
第三层802可以通过层叠多个应用上述有机化合物和无机化合物的组合的层形成。可以进一步包括其他有机化合物或其他无机化合物。
接着,说明第二层803。第二层803为具有发光功能的层,并且包括发光性的第二有机化合物。还可以为包括第二无机化合物的结构。第二层803可以使用各种发光性的有机化合物、无机化合物形成。第二层803与第一层804、第三层802相比,被认为难以流过电流,因此,其厚度优选为10nm至100nm左右。
对于第二有机化合物没有特别的限定,只要是发光性的有机化合物即可,例如,可以举出9,10-二(2-萘基)蒽(缩写:DNA)、9,10-二(2-萘基)-2-叔丁基蒽(缩写:t-BuDNA)、4,4’-双(2,2-二苯基乙烯基)联苯(缩写:DPVBi)、香豆素30、香豆素6、香豆素545、香豆素545T、苝、红荧烯、Periflanthene、2,5,8,11-四(叔丁基)苝(缩写:TBP)、9,10-二苯基蒽(缩写:DPA)、5,12-二苯基并四苯、4-(二氰基亚甲基)-2-甲基-[对(二甲基氨基)苯乙烯基]-4H-吡喃(缩写:DCM1)、4-(二氰基亚甲基)-2-甲基-6-[2-(久洛尼定-9-基)乙烯基]-4H-吡喃(缩写:DCM2)、4-(二氰基亚甲基)-2,6-双[对(二甲基氨基)苯乙烯基]-4H-吡喃(缩写:BisDCM)等。另外,也可以使用能发射磷光的化合物,例如双[2-(4’,6’-二氟苯基)吡啶-N,C2’]铱(吡啶甲酸化物)(缩写:FIrpic)、双{2-[3’,5’-双(三氟甲基)苯基]吡啶-N,C2’}铱(吡啶甲酸化物)(缩写:Ir(CF3ppy)2(pic))、三(2-苯基吡啶-N,C2’)铱(缩写:Ir(ppy)3)、双(2-苯基吡啶-N,C2’)铱(乙酰丙酮化物)(缩写:Ir(ppy)2(acac))、双[2-(2’-噻吩基)吡啶-N,C3’]铱(乙酰丙酮化物)(缩写:Ir(thp)2(acac))、双(2-苯基喹啉-N,C2’)铱(乙酰丙酮化物)(缩写:Ir(pq)2(acac))、双[2-(2’-苯基噻吩基)吡啶-N,C3’]铱(乙酰丙酮化物)(缩写:Ir(btp)2(acac))等。
除了单态激发发光材料之外,还可以将含有金属络合物等的三重态激发发光材料用于第二层803。例如,在红色发光性的像素、绿色发光性的像素和蓝色发光性的像素中,亮度半衰时间比较短的红色发光性的像素由三重态发光材料形成,并且余下的由单态激发发光材料形成。三重态激发发光材料具有良好的发光效率,从而获得相同的亮度时具有更低的耗电量。亦即,当用于红色像素时,流过发光元件少量的电流即可,因而,可以提高可靠性。作为低耗电量化,红色发光性的像素和绿色发光性的像素可以由三重态激发发光材料形成,蓝色发光性的像素可以由单态激发发光材料形成。由三重态激发发光材料形成人的视觉灵敏度高的绿色发光元件,可以进一步实现低耗电量化。
此外,第二层803中,不仅可以添加呈现上述发光的第二有机化合物,还可以添加其他有机化合物。作为可以添加的有机化合物,例如可以使用上述的TDATA、MTDATA、m-MTDAB、TPD、NPB、DNTPD、TCTA、Alq3、Almq3、BeBq2、BAlq、Zn(BOX)2、Zn(BTZ)2、BPhen、BCP、PBD、OXD-7、TPBI、TAZ、p-EtTAZ、DNA、t-BuDNA、DPVBi等,除此之外还有4,4’-双(N-咔唑基)-联苯(缩写:CBP)1,3,5-三[4-(N-咔唑基)-苯基]苯(缩写:TCPB)等,然而,不局限于此。为了第二有机化合物效率良好地发光,如此在第二有机化合物以外添加的有机化合物优选具有比第二有机化合物的激发能大的激发能,并且,其添加量比第二有机化合物大(由此,可以防止第二有机化合物的浓度消光)。作为其他功能,也可以与第二有机化合物一起显示发光(由此,还可以为白色发光等)。
第二层803可以采用在每个像素中形成发光波长带不同的发光层而用作进行彩色显示的结构。典型的是形成与R(红)、G(绿)、B(蓝)各色对应的发光层。在此情况下,通过在像素的光发射一侧设置透过该发光波长带的光的滤色器的结构,可以实现色纯度的提高和防止像素部的镜面化(映入)。通过设置滤色器,能够省略在现有技术中所必需的圆偏光板等,可以不损失发光层发出的光。可以减少从倾斜方向看像素部(显示画面)时发生的色调变化。
在第二层803中可以使用的材料可以是低分子类有机发光材料,也可以是高分子类有机发光材料。高分子类有机发光材料与低分子类有机材料相比,物理强度大,元件的耐久性高。由于能够通过涂敷形成膜,所以,元件制造比较容易。
发光颜色取决于形成发光层的材料,因而可以通过选择发光层的材料来形成显示所要求的发光的发光元件。可用于形成发光层的高分子类电致发光材料,可以举出聚对亚苯基亚乙烯基类、聚对亚苯基类、聚噻吩类、聚芴类等。
作为聚对亚苯基亚乙烯基类,可以举出聚(对亚苯基亚乙烯基)[PPV]的衍生物,如聚(2,5-二烷氧基-1,4-亚苯基亚乙烯基)[RO-PPV]、聚(2-(2’-乙基-己氧基)-5-甲氧基-1,4-亚苯基亚乙烯基)[MEH-PPV]、聚(2-(二烷氧基苯基)-1,4-亚苯基亚乙烯基)[ROPh-PPV]等。作为聚对亚苯基类,可以举出聚对亚苯基[PPP]的衍生物,如聚(2,5-二烷氧基-1,4-亚苯基)[RO-PPP]、聚(2,5-二己氧基-1,4-亚苯基)等。作为聚噻吩类,可以举出聚噻吩[PT]的衍生物,如聚(3-烷基噻吩)[PAT]、聚(3-己基噻吩)[PHT]、聚(3-环己基噻吩)[PCHT]、聚(3-环己基-4-甲基噻吩)[PCHMT]、聚(3,4-二环己基噻吩)[PDCHT]、聚[3-(4-辛基苯基)噻吩][POPT]、聚[3-(4-辛基苯基)-2,2-双噻吩][PTOPT]等。作为聚芴类,可以举出聚芴[PF]的衍生物,如聚(9,9-二烷基芴)[PDAF]、聚(9,9-二辛基芴)[PDOF]等。
作为所述第二无机化合物,可以使用任何不容易使第二有机化合物的发光消光的无机化合物,可以使用各种金属氧化物、金属氮化物。特别是,周期表第13族或第14族的金属氧化物不容易使第二有机化合物的发光消光,所以优选,具体而言,氧化铝、氧化镓、氧化硅、氧化锗是优选的。但是,第二无机化合物不局限于此。
第二层803可以层叠多个应用上述有机化合物和无机化合物的组合的层形成。也可以进一步包含其他有机化合物或无机化合物。发光层的层结构可以变化,只要在不脱离本发明的要旨的范围内,可以允许一些变形,例如,代替不具备特定的电子注入区、发光区,可以具有专门用于此目的的电极层或使发光性材料分散。
由上述材料形成的发光元件,通过正向偏压来发光。使用发光元件形成的显示装置的像素,可以以单纯矩阵方式或有源矩阵方式驱动。采用任何方式时,都是以某个特定的时机来施加正向偏压使每个像素发光,在某一特定期间处于非发光状态。通过在该非发光时间段内施加反向的偏压,可以提高发光元件的可靠性。发光元件中,有在一定驱动条件下发光强度降低的劣化、以及像素内非发光区扩大而表观上亮度降低的劣化模式,通过进行正向及反向施加偏压的交流驱动,可以延迟劣化的进行,提高发光显示装置的可靠性。数字驱动、模拟驱动都可以适用。
也可以在密封衬底上形成彩色滤光片(着色层)。彩色滤光片(着色层)可以通过蒸镀法、液滴排出法形成,若使用彩色滤光片(着色层),也可以进行高清晰度的显示。这是因为可以通过彩色滤光片(着色层)进行修正,使在每个RGB的发光光谱上宽峰修正陡峭的峰。
形成显示单色发光的材料,通过组合彩色滤光片或色转换层进行全色显示。彩色滤光片(着色层)或色转换层,例如,形成在密封衬底上,粘贴在衬底上即可。
当然,也可以进行单色发光的显示。例如,也可以使用单色发光,被形成区域彩色型(area color type)显示装置。区域彩色型适宜于无源矩阵型的显示部,可以主要显示文字或符号。
选择第一电极层870和第二电极层850的材料时,需要考虑其功函数,并且,根据像素结构,第一电极层870及第二电极层850的任一个可以为阳极或阴极。当驱动薄膜晶体管的极性为p沟道型时,如图22(A)所示,优选将第一电极层870用作阳极,将第二电极层850用作阴极。此外,当驱动薄膜晶体管的极性为n沟道型时,如图22(B)所示,优选将第一电极层870用作阴极,将第二电极层850用作阳极。对可以用于第一电极层870及第二电极层850的材料进行说明。当第一电极层870、第二电极层850用作阳极时,优选使用功函数大的材料(具体地,4.5eV以上的材料),当第一电极层、第二电极层850用作阴极时,优选使用功函数小的材料(具体地,3.5eV以下的材料)。但是,由于第一层804的空穴注入、空穴传输性能或第三层802的电子注入性能、电子传输性能优异,所以第一电极层870、第二电极层850的功函数几乎都没有限制,可以使用各种材料。
图22(A)(B)中的发光元件具有从第一电极层870发出光的结构,所以,第二电极层850未必需要具有透光性。作为第二电极层850,可以以总膜厚为100nm至800nm范围使用选自Ti、Ni、W、Cr、Pt、Zn、Sn、In、Ta、Al、Cu、Au、Ag、Mg、Ca、Li或Mo中的元素;或者TiN、TiSiXNY、WSiX、WNX、WSiXNY、NbN等以上述元素为主要成分的合金材料或化合物材料为主要成分的膜或它们的叠层膜。
第二电极层850可以使用蒸镀法、溅射法、CVD法、印刷法、分配器法或液滴排出法等来形成。
如果将如第一电极层870中使用的材料的具有透光性的导电性材料用于第二电极层850,则成为也从第二电极层850发射光的结构,可以使其具有由发光元件发射的光从第一电极层870和第二电极层850的双方发射的双面发射结构。
要说明的是,通过改变第一电极层870或第二电极层850的种类,本发明的发光元件具有各种各样的变化形式。
图22(B)所示为从第一电极层870一侧开始依次设置第三层802、第二层803、第一层804而构成电致发光层860的情形。
如上所述,在本发明的发光元件中,夹在第一电极层870和第二电极层850之间的层包括电致发光层860,所述电致发光层860包括有机化合物和无机化合物复合得到的层。其为有机无机复合型发光元件,其中设置有通过混合有机化合物和无机化合物获得不能各自获得的高载流子注入性能、载流子传输性能的功能的层(即,第一层804和第三层802)。而且,当设置在第一电极层870一侧时,特别必要的是,上述第一层804、第三层802是有机化合物和无机化合物复合得到的层,当设置在第二电极层850一侧时,可以仅是有机化合物或无机化合物。
另外,电致发光层860为混合有有机化合物和无机化合物的层,作为其形成方法可以使用各种方法。例如,可以举出通过电阻加热,使有机化合物和无机化合物双方蒸发进行共蒸镀的方法。此外,还可以通过电阻加热蒸发有机化合物一方,而通过电子束(EB)蒸发无机化合物,来将它们共蒸镀。此外,还可以举出在通过电阻加热蒸发有机化合物的同时溅射无机化合物,来同时堆积二者的方法。另外,也可以通过湿法来成膜。
此外,对于第一电极层870及第二电极层850也可以同样使用通过电阻加热的蒸镀法、EB蒸镀法、溅射、湿法等。
图22(C)示出在图22(A)中将具有反射性的电极层用于第一电极层870并且将具有透光性的电极层用于第二电极层850,由发光元件发射的光被第一电极层870反射,然后透过第二电极层850而发射。相同地,图22(D)示出在图22(B)的结构中将具有反射性的电极层用于第一电极层870并且将具有透光性的电极层用于第二电极层850,由发光元件发射的光被第一电极层870反射,然后透过第二电极层850而发射。
本实施方式可以与关于具有发光元件的显示装置的上述实施方式自由地组合。
根据本发明,可以所要求的形状形成构成显示装置等的布线等的构成物。另外,可以简化复杂的光刻工序而通过简化了的工序制造显示装置,所以可以减少材料的损失且降低成本。因此,可以高成品率地制造高性能且高可靠性的显示装置。
本实施方式可以分别与上述实施方式1至5适当地自由地组合。
实施方式7
在本实施方式中描述目的在于以进一步简化了的工序并且以低成本制造的高可靠性的显示装置的例子。详细地说,描述将发光元件用于显示元件的发光显示装置。在本实施方式中,使用图23和图24描述可以用作本发明的显示装置的发光元件的发光元件的结构显示装置。
利用电致发光的发光元件根据其发光材料是有机化合物还是无机化合物来进行区别,一般来说,前者被称为有机EL元件,而后者被称为无机EL元件。
根据元件的结构,将无机EL元件分类为分散型无机EL元件和薄膜型无机EL元件。它们的不同点在于,前者具有将发光材料的粒子分散在粘合剂中的电致发光层,而后者具有包括发光材料的薄膜的电致发光层。然而,它们的共同点在于,两个都需要由高电场加速的电子。此外,作为获得的发光的机理,有两种类型:利用施主能级和受主能级的施主-受主复合型发光、以及利用金属离子的内层电子跃迁的局部发光。一般地,在很多情况下,将施主-受主复合型发光使用于分散型无机EL元件,而将局部发光使用于薄膜型无机EL元件。
可以用于本发明的发光材料由母体材料和成为发光中心的杂质元素构成。可以通过改变所含有的杂质元素,获得各色的发光。作为发光材料的制造方法,可以使用固相法、液相法(共沉淀法)等各种方法。此外,还可以使用诸如喷雾热分解法、复分解法、利用母体的热分解反应的方法、反胶束(reverse micelle)法、组合上述方法和高温烧成的方法、冷冻干燥法等的液相法等。
固相法是使母体材料包含杂质元素的方法:称量母体材料及杂质元素或含有杂质元素的化合物,在研钵中混合,用电炉加热,并进行烧成使其进行反应。烧成温度优选为700℃至1500℃。这是因为在温度过低的情况下固体反应不进行,而在温度过高的情况下母体材料会分解。另外,也可以在粉末状态下进行烧成,然而优选在颗粒状态下进行烧成。该方法需要在比较高的温度下进行烧成,然而,因为该方法很简单,所以生产率好,适合于大量生产。
液相法(共沉淀法)是在溶液中使母体材料或含有母体材料的化合物及杂质元素或含有杂质元素的化合物反应,并使其干燥,然后进行烧成的方法。通过该方法,发光材料的粒子均匀地分布,粒径小,并且即使在烧成温度低的情况下,也可以进行反应。
作为用于发光材料的母体材料,可以使用硫化物、氧化物、氮化物。作为硫化物,例如可以使用硫化锌(ZnS)、硫化镉(CdS)、硫化钙(CaS)、硫化钇(Y2S3)、硫化镓(Ga2S3)、硫化锶(SrS)、硫化钡(BaS)等。作为氧化物,例如可以使用氧化锌(ZnO)氧化钇(Y2O3)等。作为氮化物,例如可以使用氮化铝(AlN)、氮化镓(GaN)、氮化铟(InN)等。可以使用硒化锌(ZnSe)、碲化锌(ZnTe)等,也可以使用硫化钙-镓(CaGa2S4)、硫化锶-镓(SrGa2S4)、硫化钡-镓(BaGa2S4)等的三元系混晶。
作为局部型发光的发光中心,可以使用锰(Mn)、铜(Cu)、钐(Sm)、铽(Tb)、铒(Er)、铥(Tm)、铕(Eu)、铈(Ce)、镨(Pr)等。也可以添加氟(F)、氯(Cl)等卤素。卤素还可以用于电荷补偿。
另一方面,作为施主-受主复合型发光的发光中心,可以使用包含形成施主能级的第一杂质元素和形成受主能级的第二杂质元素的发光材料。作为第一杂质元素,例如,可以使用氟(F)、氯(Cl)、铝(Al)等。作为第二杂质元素,例如,可以使用铜(Cu)、银(Ag)等。
在通过固相法合成施主-受主复合型发光的发光材料的情况下,分别称量母体材料、第一杂质元素或含有第一杂质元素的化合物、以及第二杂质元素或含有第二杂质元素的化合物,在研钵中混合,然后用电炉加热并且进行烧成。作为母体材料,可以使用上述母体材料。作为第一杂质元素或含有第一杂质元素的化合物,例如,可以使用氟(F)、氯(Cl)、硫化铝(Al2S3)等。作为第二杂质元素或含有第二杂质元素的化合物,例如,可以使用铜(Cu)、银(Ag)、硫化铜(Cu2S)、硫化银(Ag2S)等。烧成温度优选为700至1500℃。这是因为在温度过低的情况下固体反应不进行,而在温度过高的情况下母体材料会分解。烧成可以以粉末状态进行,优选以颗粒状态进行烧成。
作为在利用固相反应的情况下的杂质元素,可以将由第一杂质元素和第二杂质元素构成的化合物组合使用。在这种情况下,由于杂质元素容易扩散,固相反应变得容易进行,因此可以获得均匀的发光材料。由于不会进入其他杂质元素,所以可以获得纯度高的发光材料。作为由第一杂质元素和第二杂质元素构成的化合物,例如,可以使用氯化铜(CuCl)、氯化银(AgCl)等。
要说明的是,这些杂质元素的浓度相对于母体材料为0.01至10atom%即可,优选在0.05至5atom%的范围。
在采用薄膜型无机EL的情况下,电致发光层是包含上述发光材料的层,其可通过电阻加热蒸镀法、电子束蒸镀(EB蒸镀)法等真空蒸镀法;溅射法等物理气相生长法(PVD);有机金属CVD法、氢化物输送减压CVD法等化学气相生长法(CVD);或原子层外延法(ALE)等形成。
图23(A)至(C)示出了可用作发光元件的薄膜型无机EL元件的一例。在图23(A)至(C)中,发光元件包括第一电极层50、电致发光层52、第二电极层53。
图23(B)和图23(C)所示的发光元件具有在图23(A)的发光元件中的电极层和电致发光层之间设置绝缘层的结构。图23(B)所示的发光元件在第一电极层50和电致发光层52之间具有绝缘层54。图23(C)所示的发光元件在第一电极层50和电致发光层52之间具有绝缘层54a,在第二电极层53和电致发光层52之间具有绝缘层54b。绝缘层可以仅设置在夹住电致发光层的一对电极层中的一方之间,也可以设置在两方之间。绝缘层可以是单层也可以是包括多个层的叠层。
尽管在图23(B)中与第一电极层50相接合设置绝缘层54,可以通过颠倒绝缘层和电致发光层的顺序而与第二电极层53相接合设置绝缘层54。
在分散型无机EL元件的情况下,将粒子状态的发光材料分散在粘合剂中以形成膜状的电致发光层。当通过发光材料的制造方法不能充分获得具有所需尺寸的粒子时,通过用研钵等粉碎而加工成粒子状态即可。粘合剂指的是用于以分散状态固定粒状的发光材料并且用于保持作为电致发光层的形状的物质。发光材料利用粘合剂均匀分散并固定在电致发光层中。
在分散型无机EL元件的情况下,作为形成电致发光层的方法,可以使用可以选择性地形成电致发光层的液滴喷出法、印刷法(如丝网印刷或胶版印刷等)、旋转涂敷法等的涂敷法、浸渍法、分配器法等。对电致发光层的膜厚没有特别限制,但优选在10至1000nm的范围。另外,在包含发光材料及粘合剂的电致发光层中,发光材料的比例优选设为50wt%以上至80wt%以下。
图24(A)至(C)示出可用作发光元件的分散型无机EL元件的一例。图24(A)中的发光元件具有第一电极层60、电致发光层62、第二电极层63的叠层结构,其中电致发光层62包含由粘合剂保持的发光材料61。
作为可用于本实施方式的粘合剂,可以使用有机材料或无机材料,并且也可以使用有机材料和无机材料的混合材料。作为有机材料,可以使用氰乙基纤维素类树脂这样的具有比较高介电常数的聚合物;聚乙烯、聚丙烯、聚苯乙烯类树脂、硅氧烷树脂、环氧树脂、偏二氟乙烯等树脂。可以使用芳香族聚酰胺、聚苯并咪唑等耐热性高分子,或者硅氧烷树脂。要说明的是,硅氧烷树脂相当于包括Si-O-Si键的树脂。硅氧烷由硅(Si)和氧(O)的键构成骨架结构。作为取代基,使用至少含有氢的有机基(如烷基、芳烃)。也可以使用氟作为取代基。此外,作为取代基,也可以使用至少含有氢的有机基和氟。也可以使用聚乙烯醇、聚乙烯醇缩丁醛等乙烯基树脂;酚醛树酯;酚醛清漆树脂;丙烯酸类树脂;蜜胺树脂;聚氨酯树脂;
Figure BSA00000505837300601
唑树脂(聚苯并
Figure BSA00000505837300602
唑)等树脂材料。也可以通过合适地将这些树脂与具有高介电常数的微粒如钛酸钡(BaTiO3)或钛酸锶(SrTiO3)等混合来调节介电常数。
包含在粘合剂中的无机材料可以由选自以下物质的材料形成:氧化硅(SiOx)、氮化硅(SiNx)、含氧及氮的硅、氮化铝(AlN)、含氧及氮的铝或氧化铝(Al2O3)、氧化钛(TiO2)、BaTiO3、SrTiO3、钛酸铅(PbTiO3)、铌酸钾(KNbO3)、铌酸铅(PbNbO3)、氧化钽(Ta2O5)、钽酸钡(BaTa2O6)、钽酸锂(LiTaO3)、氧化钇(Y2O3)、氧化锆(ZrO2)、包含其它无机材料的物质。通过在有机材料中包含(通过添加等)具有高介电常数的无机材料,可以进一步控制包括发光材料和粘合剂的电致发光层的介电常数,并且可以进一步提高介电常数。对于粘合剂,通过采用无机材料和有机材料的混合层,提高其介电常数时,可以由发光材料产生大电荷。
在制造工序中,发光材料被分散在包含粘合剂的溶液中,然而,作为可用在本实施方式中的包含粘合剂的溶液的溶剂,适当地选择如下溶剂即可,其溶解粘合剂材料并且可以制备适合于形成电致发光层的方法(各种湿法)和所需膜厚的粘度的溶液。可以使用有机溶剂等,例如使用硅氧烷树脂作为粘合剂的情况下,可以使用丙二醇一甲基醚、丙二醇一甲基醚乙酸酯(也称为PGMEA)、3-甲氧基-3-甲基-1-丁醇(也称为MMB)等。
图24(B)和24(C)所示的发光元件具有在图24(A)的发光元件中的电极层和电致发光层之间设置绝缘层的结构。图24(B)所示的发光元件在第一电极层60和电致发光层62之间具有绝缘层64,图24(C)所示的发光元件在第一电极层60和电致发光层62之间具有绝缘层64a,在第二电极层63和电致发光层62之间具有绝缘层64b。像这样,绝缘层可以仅设置在夹住电致发光层的一对电极层中的一方之间,也可以设置在两方之间。绝缘层可以是单层也可以是包括多个层的叠层。
尽管在图24(B)中与第一电极层60相接合提供绝缘层64,但也可以通过颠倒绝缘层和电致发光层的顺序而与第二电极层63相接合设置绝缘层64。
尽管对图23中的绝缘层54、图24中的绝缘层64那样的绝缘层没有特别限制,但优选具有高绝缘破坏电压、致密膜质,而且更优选具有高介电常数。例如,可以使用氧化硅(SiO2)、氧化钇(Y2O3)、氧化钛(TiO2)、氧化铝(Al2O3)、氧化铪(HfO2)、氧化钽(Ta2O5)、钛酸钡(BaTiO3)、钛酸锶(SrTiO3)、钛酸铅(PbTiO3)、氮化硅(Si3N4)、氧化锆(ZrO2)等,或者它们的混合膜或两种以上的叠层膜。这些绝缘膜可以通过溅射、蒸镀、CVD等形成。另外,绝缘层也可以通过在粘合剂中分散这些绝缘材料的粒子形成。粘合剂材料通过使用与包含在电致发光层中的粘合剂相同的材料、方法形成即可。对其膜厚没有特别限制,但是优选在10至1000nm的范围。
本实施方式所示的发光元件可以通过在夹住电致发光层的一对电极层之间施加电压获得发光,发光元件通过直流驱动或交流驱动都可以工作。
根据本发明,可以以所要求的形状形成构成显示装置等的布线等的构成物。可以简化复杂的光刻工序而通过简化了的工序制造显示装置,所以可以减少材料的损失且降低成本。因此,可以高成品率地制造高性能且高可靠性的显示装置。
本实施方式可以分别与上述实施方式1至5适当地自由地组合。
实施方式8
在本实施方式中描述目的于以进一步简化了的工序并且以低成本制造的高可靠性的显示装置的例子。详细地说,描述将液晶显示元件用于显示元件的液晶显示装置。
图19(A)是液晶显示装置的俯视图,而图19(B)是沿图19(A)中的线G-H的截面图。在图19(A)的俯视图中省略反射防止膜。
如图19(A)所示,使用密封材692将像素区606、作为扫描线驱动电路的驱动电路区608a、作为扫描线驱动电路的驱动电路区608b密封在衬底600和相对衬底695之间,并且在衬底600上设置有由IC驱动器形成的信号线驱动电路-驱动电路区607。在像素区606中设置有晶体管622以及电容元件623,并且在驱动电路区608b中设置有具有晶体管620以及晶体管621的驱动电路。作为衬底600,可以适用与上述实施方式相同的绝缘衬底。通常担心含有合成树脂的衬底与其他衬底相比其耐热温度低,但是通过在使用耐热性高的衬底的制造工序之后进行转置,也可以采用。
在本实施方式中,也可以如实施方式1所示那样通过多个工序排出液态的包含形成材料的组合物,来形成构成显示装置的栅电极层、半导体层、源电极层、漏电极层、布线层或第一电极层等。如实施方式1所示,首先沿着导电层的图形轮廓通过第一排出工序形成框状的第一导电层,然后通过第二排出工序填充第一导电层的框中,形成第二导电层。
因此,若附着粘度较高且相对于被形成区润湿性低的组合物来形成第一导电层(绝缘层),该第一导电层(绝缘层)决定导电层(绝缘层)的被形成区的轮廓,则可以可控性好地形成成为所要求的图形的轮廓的侧端部。若将粘度低且相对于被形成区润湿性高的液态组合物附着到第一导电层(绝缘层)的框中来形成,则可以减轻内部或表面的由气泡等导致的空间或凹凸等,形成平坦性高的均匀的导电层(绝缘层)。由此,通过分别制作导电层(绝缘层)外侧和内侧来制作导电层(绝缘层),而可以可控性好地形成具有所要求的图形和高平坦性且减轻缺陷的导电层(绝缘层)。由此可以使工序简化并且防止材料的损失,而可以实现低成本化。
在像素区606中,在衬底600上通过基底膜604a、基底膜604b设置有成为开关元件的晶体管622。在本实施方式中,晶体管622使用多栅型薄膜晶体管(TFT),包括具有发挥源区及漏区的功能的杂质区的半导体层、栅极绝缘层、具有两层叠层结构的栅电极层、源电极层以及漏电极层,源电极层或漏电极层与半导体层的杂质区和像素电极层630接合而电连接。
源电极层及漏电极层具有叠层结构,并且源电极层或漏电极层644a、644b在形成于绝缘层615中的开口中与像素电极层630电连接。如实施方式2所示,可以通过照射激光形成在绝缘层615中形成的开口。在本实施方式中,源电极层或漏电极层644b使用比较容易蒸发的低熔点金属(在本实施方式中使用铬),并且源电极层或漏电极层644a使用比源电极层或漏电极层644b不容易蒸发的高熔点金属(在本实施方式中使用钨)。从绝缘层615一侧将激光选择性地照射到源电极层或漏电极层644a、644b,因为照射的能量,源电极层或漏电极层644b的照射区蒸发。源电极层或漏电极层644b的照射区上的绝缘层615被去除,从而可以形成开口。在源电极层或漏电极层644a、644b被露出的开口中形成像素电极层630,从而源电极层或漏电极层644a、644b与像素电极层630可以电连接。
薄膜晶体管可以以多种方法来制作。例如作为活性层,适用晶体半导体膜。在晶体半导体膜上通过栅极绝缘膜设置栅电极。可以使用该栅电极对该活性层添加杂质元素。通过添加使用栅电极的杂质元素,不需要形成用于添加杂质元素的掩模。栅电极可以具有单层结构或叠层结构。杂质区通过控制其浓度,可以成为高浓度杂质区及低浓度杂质区。将如此具有低浓度杂质区的薄膜晶体管称为LDD(Light doped drain,轻掺杂漏极)结构。低浓度杂质区可以与栅电极重叠地形成,将这种薄膜晶体管称为GOLD(Gate Overlaped LDD,栅极重叠轻掺杂漏极)结构。通过在杂质区使用磷(P)等,使薄膜晶体管的极性成为n型。当使其成为p型时,可以添加硼(B)等。然后,形成覆盖栅电极等的绝缘膜611以及绝缘膜612。通过混入绝缘膜611(以及绝缘膜612)中的氢元素,可以使晶体半导体膜的悬空键封端。
为了进一步提高平坦性,也可以形成绝缘膜615作为层间绝缘膜。作为绝缘层615,可以使用有机材料、无机材料或它们的叠层结构。绝缘膜615例如可以由选自氧化硅、氮化硅、氧氮化硅、氮氧化硅、氮化铝、氧氮化铝、氮含量比氧含量多的氮氧化铝或氧化铝、类金刚石碳(DLC)、聚硅氮烷、含氮碳(CN)、PSG(磷玻璃)、BPSG(硼磷玻璃)、氧化铝、含有其他无机绝缘材料的物质中的材料形成。另外,可以使用有机绝缘性材料,并且作为有机材料,感光性、非感光性的都可以使用。可以使用聚酰亚胺、丙烯酸类、聚酰胺、聚酰亚胺酰胺、抗蚀剂、苯并环丁烯、硅氧烷树脂等。要说明的是,硅氧烷树脂相当于含有Si-O-Si键的树脂。硅氧烷的骨架结构由硅(Si)和氧(O)的键构成。作为取代基,使用至少包含氢的有机基(例如,烷基、芳烃)。作为取代基,也可以使用氟。此外,作为取代基,也可以使用至少包含氢的有机基和氟。
另外,通过使用晶体半导体膜,可以在同一衬底上集成地形成像素区和驱动电路区。在此情况下,将像素部中的晶体管和驱动电路区608b中的晶体管同时形成。用于驱动电路区608b的晶体管构成CMOS电路。构成CMOS电路的薄膜晶体管为GOLD结构,然而也可以使用如晶体管622的LDD结构。
在像素区中的薄膜晶体管的结构不局限于本实施方式,可以为形成一个沟道形成区的单栅极结构、形成两个的双栅极结构、或形成三个的三栅极结构。在外围驱动电路区中的薄膜晶体管也可以为单栅极结构,双栅极结构或三栅极结构。
要说明的是,不局限于本实施方式所示的薄膜晶体管的制造方法,顶栅型(例如,正交错型)、底栅型(例如,反交错型)、具有在沟道区的上下通过栅极绝缘膜配置的两个栅电极层的双栅型、或者其他结构也适用本发明。
下面,通过印刷法或液滴排出法,覆盖像素电极层630以形成称为取向膜的绝缘层631。另外,如果使用丝网印刷法或胶印刷法,则可以选择性地形成绝缘层631。然后,进行研磨处理。如果液晶模式例如为VA模式,则有时不进行上述研磨处理。用作取向膜的绝缘层633与绝缘层631同样。接着,通过液滴排出法,将密封材692形成在形成有像素的区域的周边区域。
然后,通过间隔物637将设置有用作取向膜的绝缘层633、用作相对电极的导电层634、用作彩色滤光片的着色层635、偏光器641(也称为偏振板)、以及偏光器642的相对衬底695和作为TFT衬底的衬底600贴合,并且在其空隙中设置液晶层632。由于本实施方式的液晶显示装置是透过型,所以在衬底600的具有元件的面和与该面相反一侧都设置偏光器(偏振板)643。偏光器可以通过粘合层设置在衬底上。在密封材中也可以混入填充剂,并且在相对衬底695上还可以形成屏蔽膜(黑矩阵)等。在液晶显示装置为全色显示的情况下,由呈现红色(R)、绿色(G)、蓝色(B)的材料形成彩色滤光片等即可,而显示装置为单色显示的情况下,不形成着色层或由呈现至少一种颜色的材料形成即可。
当在背光灯中配置RGB的发光二极管(LED)等,并且采用通过时间分割进行彩色显示的继时加法混色法(field sequential method:场序制方法)时,有时不设置彩色滤光片。因为黑矩阵减少晶体管或CMOS电路的布线引起的外光反射,所以优选与晶体管或CMOS电路重叠地设置。也可以与电容元件重叠地形成黑矩阵。这是因为可以防止构成电容元件的金属膜引起的反射的缘故。
作为形成液晶层的方法,可以使用分配器式(滴落式)、或者注入法,该注入法为在将具有元件的衬底600和相对衬底695贴合后,利用毛细现象注入液晶的方法。当处理不容易应用注入法的大型衬底时,优选应用滴落法。
间隔物也可以通过散布几μm的粒子来设置,但在本实施方式中采用在衬底的整个表面上形成树脂膜后,将其蚀刻加工来形成隔离物的方法。在通过旋涂器涂敷这种隔离物的材料后,通过曝光和显影处理将其形成为预定的图形。而且,通过用洁净烘箱等在150℃至200℃进行加热并使其固化。这样制造的间隔物可以根据曝光和显影处理的条件而具有不同形状,但是,间隔物的形状优选为顶部平坦的柱状,这样可以当与相对一侧的衬底贴在一起时,确保液晶显示装置的机械强度。形状可以为圆锥、棱锥等而没有特别的限制。
接着,在与布线区603相邻的外部端子连接区602中,在与像素区电连接的端子电极层678a、678b上,通过各向异性导电体层696设置用于连接的布线衬底FPC 694。FPC 694具有传达来自外部的信号或电位的作用。通过上述工序,可以制造具有显示功能的液晶显示装置。
作为晶体管所具有的布线、栅电极层、像素电极层630、作为相对电极层的导电层634,可以从铟锡氧化物(ITO)、在氧化铟中混合了氧化锌(ZnO)的IZO(indium zinc oxide,氧化铟锌)、在氧化铟中混合了氧化硅(SiO2)的导电材料、有机铟、有机锡、含有氧化钨的铟氧化物、含有氧化钨的铟锌氧化物、含有氧化钛的铟氧化物、含有氧化钛的铟锡氧化物、钨(W)、钼(Mo)、锆(Zr)、铪(Hf)、钒(V)、铌(Nb)、钽(Ta)、铬(Cr)、钴(Co)、镍(Ni)、钛(Ti)、铂(Pt)、铝(Al)、铜(Cu)、银(Ag)等的金属、其合金或其金属氮化物中选择。
也可以在偏振板和液晶层之间具有相位差板的状态下层叠。
本实施方式虽然示出TN型液晶面板,但是上述工序也可以同样地应用于其他方式的液晶面板。例如,本实施方式可以应用于与玻璃衬底平行地施加电场来使液晶取向的横电场方式的液晶面板。本实施方式可以应用于VA(Vertical Aligment,垂直取向)方式的液晶面板。
图36和图37示出VA型液晶面板的像素结构。图36是平面图,并且图37示出对应于图36中所示的切断线I-J的截面结构。在以下所示的说明中参照该两个图来描述。
在该像素结构中,在一个像素中具有多个像素电极,并且各个像素电极与TFT连接。各个TFT以由不同的栅极信号驱动地方式构成。换句话说,具有如下结构,即在被多象限设计的像素中独立控制施加给各个像素电极的信号。
像素电极层1624在开口(接触孔)1623中通过布线层1618与TFT 1628连接。另外,像素电极层1626在开口(接触孔)1627中通过布线层1619与TFT 1629连接。TFT 1628的栅极布线层1602和TFT 1629的栅电极层1603分离,以便提供不同的栅极信号。另一方面,TFT 1628和TFT 1629共同使用用作数据线的布线层1616。
使用利用两个工序的液滴排出工序与实施方式1同样地制作像素电极层1624和像素电极层1626。具体而言,通过第一液滴排出工序沿着像素电极层的图形轮廓排出第一导电性材料,形成框状的第一导电层。通过第二液滴排出工序以填充框状的第一导电层内部的方式排出第二包含导电性材料的组合物,形成第二导电层。可以将第一导电层及第二导电层用作连续的像素电极层,可以形成像素电极层1624、1626。像这样,通过使用本发明,可以简化工序且防止材料的损失,从而可以以低成本且生产性好地制造显示装置。
像素电极层1624和像素电极层1626的形状不同,并且由槽缝(slit)1625分离。以包围以V字形扩展的像素电极层1624的外侧的方式形成像素电极层1626。通过TFT 1628及TFT 1629改变施加给像素电极层1624和像素电极层1626的电压的定时,控制液晶的取向。TFT 1628包括在衬底1600上的栅极布线层1602、栅极绝缘层1606、半导体层1608、具有一种导电类型的半导体层1610、布线层1617、1618。TFT 1629包括在衬底1600上的栅极布线层1603、栅极绝缘层1606、半导体层1609、具有一种导电类型的半导体层1611、布线层1616、1619。在布线层1616、1617、1618、1619上形成有绝缘层1620、绝缘层1622。在相对衬底1601上形成有遮光膜1632、着色层1636、相对电极层1640。另外,在着色层1636和相对电极层1640之间形成有平坦化膜1637,防止液晶层1650的液晶的取向无序。图38示出相对衬底一侧的结构。相对电极层1640是在不同的像素之间共同使用的电极,形成有槽缝1641。通过将该槽缝1641和像素电极层1624及像素电极层1626一侧的槽缝相互咬合地配置,可以有效地产生斜向电场控制液晶的取向。据此,可以根据地点改变液晶的取向方向,从而扩大视角。在像素电极层1626上形成有取向膜1648,并且在相对电极层1640上形成有取向膜1646。
像这样,可以使用复合了有机化合物和无机化合物的复合材料作为像素电极层来制造液晶面板。通过使用这种像素电极,可以无须使用以铟为主要成分的透明导电膜,解除在原材料表面的瓶颈状态。
本实施方式可以与上述实施方式1、实施方式2适当地自由地组合。
根据本发明,可以以所要求的形状形成构成显示装置的布线等构成物。另外,因为也可以减轻复杂的光刻工序并且通过简化了的工序制造显示装置,所以减少材料的损失并且可以降低成本。因此,可以高成品率地制造高性能且高可靠性的显示装置。
实施方式9
在本实施方式中描述目的于以进一步简化了的工序并且以低成本制造的高可靠性的显示装置的例子。详细地说,描述将液晶显示元件用于显示元件的液晶显示装置。
在图18所示的显示装置中,在衬底250上,在像素区中设置有作为反交错型薄膜晶体管的晶体管220、像素电极层251、绝缘层252、绝缘层253、液晶层254、间隔物281、绝缘层235、相对电极层256、彩色滤光片258、黑矩阵257、相对衬底210、偏振板(偏光器)231、偏振板(偏光器)233、密封区中的密封材282、端子电极层287、各向异性导电层288、FPC 286。
在本实施方式中制造的反交错型薄膜晶体管-晶体管220的栅电极层、源电极层、以及漏电极层可以使用如实施方式1所示那样通过液滴排出法形成的导电层来形成。工序简化,并且可以防止材料的损失,因此,可以以低成本且生产性好地制造显示装置。
在本实施方式中,也可以如实施方式1所示那样通过多个工序排出液态的包含形成材料的组合物,来形成构成显示装置的作为反交错型薄膜晶体管的晶体管220的栅电极层、源电极层、漏电极层、布线层、像素电极层等。如实施方式1所示,首先沿着导电层的图形轮廓通过第一排出工序形成框状的第一导电层,然后通过第二排出工序填充第一导电层的框中,形成第二导电层。
因此,若附着粘度较高且相对于被形成区润湿性低的组合物来形成第一导电层(绝缘层),该第一导电层(绝缘层)决定导电层的形成区的轮廓,则可以可控性好地形成成为所要求的图形的轮廓的侧端部。若将粘度低且相对于被形成区润湿性高的液态组合物附着到第一导电层(绝缘层)的框中来形成,则可以减轻内部或表面的由气泡等导致的空间或凹凸等,形成平坦性高的均匀的导电层(绝缘层)。由此,通过分别制作导电层(绝缘层)外侧和内侧来制作导电层(绝缘层),而可以可控性好地形成具有所要求的图形和高平坦性且减轻缺陷的导电层(绝缘层)。因此,工序简化且可以防止材料的损失,而可以实现低成本化。
在本实施方式中,使用非晶半导体作为半导体层,根据需要形成具有一种导电类型的半导体层即可。在本实施方式中,层叠半导体层和作为具有一种导电类型的半导体层的非晶n型半导体层。另外,可以制造形成n型半导体层的n沟道型薄膜晶体管的NMOS结构、形成p型半导体层的p沟道型薄膜晶体管的PMOS结构、n沟道型薄膜晶体管和p沟道型薄膜晶体管的CMOS结构。
为了赋予导电性,通过掺杂而添加赋予导电性的元素,在半导体层中形成杂质区,可以形成n沟道型薄膜晶体管、p沟道型薄膜晶体管。还可以代替形成n型半导体层,通过进行使用PH3气体的等离子体处理,对半导体层赋予导电性。
在本实施方式中,晶体管220为n沟道型反交错型薄膜晶体管。此外,也可以使用在半导体层的沟道区上设置有保护层的沟道保护型反交错型薄膜晶体管。
接着,描述背光灯单元352的结构。背光灯单元352包括作为发出荧光的光源331的冷阴极管、热阴极管、发光二极管、无机EL、有机EL、将荧光高效率地引导到导光板335的灯光反射器332、在全反射荧光的同时将光引导到整个面的导光板335、减少明亮度的不均匀的扩散板336、用于再利用泄漏到导光板335的下面的光的反射板334。
背光灯单元352与用于调整光源331的亮度的控制电路连接。通过来自控制电路的信号供应,可以控制光源331的亮度。
晶体管220的源电极层或漏电极层232在形成于绝缘层252中的开口与像素电极层251电连接。如实施方式2所示,可以通过照射激光形成在绝缘膜252中形成的开口。在本实施方式中,源电极或漏电极层使用比较容易蒸发的低熔点金属(在本实施方式中使用铬)。从绝缘膜252一侧将激光选择性地照射到源电极层或漏电极层,由于所照射的能量,源电极层或漏电极层照射区的一部分蒸发。在源电极层或漏电极层的照射区上的绝缘膜252被去除,从而可以形成开口。在源电极层或漏电极层被露出的开口中形成像素电极层251,从而源电极层或漏电极层可以与像素电极层251电连接。
本实施方式可以与实施方式1或实施方式2适当地组合。
根据本发明,可以以所要求的形状形成构成显示装置的布线等构成物。另外,可以减轻复杂的光刻工序并且通过简化了的工序制造显示装置,所以减少材料的损失并且可以降低成本。因此,可以高成品率地制造高性能且高可靠性的显示装置。
实施方式10
在本实施方式中描述目的在于以进一步简化了的工序并且以低成本制造的高可靠性的显示装置的一例。
图21示出了一种应用本发明的有源矩阵型电子纸。尽管图21示出了有源矩阵型,但本发明也可应用于无源矩阵型。
作为电子纸可以使用扭转球(twist ball)显示方式。扭转球显示方式就是如下所述进行显示的方式:将分别涂成白和黑的球形粒子配置在第一电极层及第二电极层之间,在第一电极层及第二电极层之间产生电位差而控制所述球形粒子的方向。
衬底580上的晶体管581是非共面(reverse coplanar)型薄膜晶体管,包括栅电极层582、栅极绝缘层584、布线层585a、布线层585b、以及半导体层586。另外,布线层585b与第一电极层587a、587b在形成于绝缘层598中的开口接合并电连接。在第一电极层587a、587b和相对衬底596上的第二电极层588之间设置有球形粒子589,该球形粒子589包括具有黑色区590a及白色区590b且周围充满了液体的空洞594,并且在球形粒子589的周围填充有树脂等填充材料595(参照图21)。
在本实施方式中,也可以如实施方式1所示那样通过多个工序排出液态的包含形成材料的组合物,来形成构成显示装置的栅电极层、半导体层、源电极层、漏电极层、布线层、或第一电极层等。如实施方式1所示,首先沿着导电层的图形的轮廓通过第一排出工序形成框状的第一导电层,然后通过第二排出工序填充第一导电层的框中,形成第二导电层。
因此,若附着粘度较高且相对于被形成区润湿性低的组合物来形成第一导电层(绝缘层),该第一导电层(绝缘层)决定导电层的形成区的轮廓,则可以可控性好地形成成为所要求的图形的轮廓的侧端部。若将粘度低且相对于被形成区润湿性高的液态组合物附着到第一导电层(绝缘层)的框中来形成,则可以减轻内部或表面上的由气泡等导致的空间或凹凸等,形成平坦性高的均匀的导电层(绝缘层)。由此,通过分别制作导电层(绝缘层)外侧和内侧来制作导电层(绝缘层),而可以可控性好地形成具有所要求的图形和高平坦性且减轻缺陷的导电层(绝缘层)。因此,工序成简化且可以防止材料的损失,而可以实现低成本化。
布线层585b在形成于绝缘层598中的开口中与第一电极层587a电连接。如实施方式2所示,可以通过照射激光形成在绝缘膜598中形成的开口。在本实施方式中,配线层585b使用比较容易蒸发的低熔点金属(在本实施方式中使用铬)。从绝缘膜598一侧将激光选择性地照射到布线层585b,因为被照射的能量,布线层585b的照射区的一部分蒸发。在布线层585b的照射区上的绝缘膜598被去除,可以形成开口。在布线层585b被露出的开口中形成第一电极层587a,从而布线层585b与第一电极层587a可以电连接。
还可以代替扭转球而使用电泳元件。使用透明液体和直径为10μm至20μm的微胶囊,该微胶囊中密封有带正电白色微粒和带负电的黑色微粒。对于设置在第一电极层和第二电极层之间的微胶囊,当由第一电极层和第二电极层施加电场时,白色微粒和黑色微粒移动至相反方向,从而可以显示白色或黑色。利用这种原理的显示元件就是电泳显示元件,通常被称为电子纸。电泳显示元件具有比液晶显示元件高的反射率,因而不需要辅助光。耗电量低,并且在昏暗的地方也能辨别显示部。即使不供应给显示部电源时,也能够保持显示过的图像,因此,即使使具有显示功能的显示装置远离电子波源,也能保存储显示过的图像。
晶体管可以具有任意结构,只要晶体管能用作开关元件。作为半导体层,可以使用各种半导体如非晶半导体、晶体半导体、多晶半导体、微晶半导体等,也可以使用有机化合物形成有机晶体管。
在本实施方式中,具体示出了显示装置的结构是有源矩阵型的情况,但是本发明当然也可以应用于无源矩阵型的显示装置。当在无源矩阵型的显示装置中形成布线层、电极层、绝缘层等时,也如实施方式1那样通过多个选择性的排出工序来进行即可,可以制造形成为正确且良好形状的导电层、绝缘层。
本实施方式可以与上述实施方式1、实施方式2适当地自由地组合。
根据本发明,可以以所要求的形状形成构成显示装置的布线等构成物。另外,也可以减轻复杂的光刻工序并且通过简化了的工序制造显示装置,所以减少材料的损失并且可以降低成本。因此,可以高成品率地制造高性能且高可靠性的显示装置。
实施方式11
接着来说明在根据实施方式3至10制造的显示面板上安装用于驱动的驱动器电路的方式。
首先,参照图26(A)说明采用COG方式的显示装置。在衬底2700上设置有用来显示文字、图像等信息的像素部2701和保护电路2713。设置有多个驱动电路的衬底被分成矩形,且分割后的驱动电路(也称为驱动器IC)2751被安装在衬底2700上。图26(A)示出了安装多个驱动器IC 2751、在驱动器IC 2751端部上的FPC 2750的方式。此外,也可以使分割的尺寸与像素部在信号线一侧上的边长大致相同,从而将带安装在单数的驱动器IC、该驱动器IC的端部上。
也可以采用TAB方式。在此情况下,如图26(B)所示那样粘贴多个带,将驱动器IC安装在该带上即可。与COG方式的情况相同,也可以将单个驱动器IC安装在单数的带上。在此情况下,从强度上来看,优选一起贴合固定驱动器IC的金属片等。
从提高生产性的观点来看,优选将这些安装在显示面板上的驱动器IC形成在一边长为300mm至1000mm以上的矩形衬底上。
换言之,在衬底上形成多个将驱动电路部和输出-输入端子作为一个单元的电路图形,并最终分割使用即可。对于驱动器IC的长边的长度,考虑到像素部的一边的长度或像素间距,可以形成为长边为15至80mm短边为1至6mm的矩形,或者可以形成为像素区的一边长的长度,或形成为像素部的一边长加上各个驱动电路的一边长的长度。
驱动器IC在外部尺寸方面胜于IC芯片的优点是长边的长度。当采用长边为15至80mm形成的驱动器IC时,对应于像素部安装所需的数目少于采用IC芯片时的数目即可。因此,能够提高制造成品率。另外,当在玻璃衬底上形成驱动器IC时,由于对用作母体的衬底的形状没有限制,故不会降低生产性。与从圆形硅晶片取得IC芯片的情况相比,这是一个很大的优点。
当扫描线一侧驱动电路3702如图25(B)所示那样集成地形成在衬底上时,形成有信号线一侧驱动电路的驱动器IC被安装在像素部3701外侧的区域上。这些驱动器IC是信号线一侧的驱动电路。为了形成对应于RGB全色的像素区,XGA级要求3072个信号线,而UXGA级要求4800个信号线。以这样的数目形成的信号线在像素部3701的端部分成几个区块并形成引线,并且对应于驱动器IC的输出端子的间距而聚集。
驱动器IC优选由形成在衬底上的晶体半导体组成,并且该晶体半导体优选借助于照射连续发光的激光来形成。因此,使用连续发光的固体激光器或气体激光器作为所述产生激光的振荡器。当采用连续发光的激光器时,晶体缺陷少,所以能够使用大晶粒的多晶半导体层来制造晶体管。此外,由于迁移率或响应速度良好,故能够实现高速驱动,从而与常规元件相比可以进一步提高元件工作频率。因此,由于特性偏差很小而可以获得高可靠性。优选使晶体管的沟道长度方向和激光的扫描方向一致,以便进一步改善工作频率。这是因为在使用连续发光激光器进行激光结晶化的工序中,当晶体管的沟道长度方向与激光在衬底上的扫描方向大致平行(优选为-30度以上至30度以下)时,能够获得最高迁移率。要说明的是,沟道长度方向与在沟道被形成区中的电流流动方向一致,亦即电荷所移动的方向。这样制造的晶体管具有由其中晶粒在沟道方向上延伸存在的多晶半导体层构成的活性层,这意味着晶粒界面大致沿沟道方向上形成。
为了进行激光晶化,优选将激光大幅度缩窄,且该激光的形状(射束点)优选与驱动器IC的短边的宽度相同,即为1mm以上至3mm以下左右。此外,为了确保被照射体有足够和有效的能量密度,激光的照射区优选为线形。但是此处所用的术语“线形”指的不是严格意义上的线条,而是纵横比大的长方形或长椭圆形。例如,指纵横比为2以上(优选为10以上至10000以下)的。像这样,借助于使激光的形状(射束点)的宽度与驱动器IC的短边的长度相同,可以提供生产性提高的显示装置的制造方法。
如图26(A)、(B)所示,可以安装驱动器IC作为扫描线驱动电路及信号线驱动电路。在此情况下,优选在扫描线一侧和信号线一侧采用具有不同规格的驱动器IC。
在像素区中,信号线和扫描线交叉而形成矩阵,且对应于各个交叉处布置晶体管。本发明的特征在于,使用非晶半导体或半非晶半导体作为沟道部的TFT作为布置在像素区中的晶体管。使用等离子体CVD法或溅射法等的方法来形成非晶半导体。可以采用等离子体CVD法以300℃以下的温度形成半非晶半导体。例如,即使为外部尺寸为550mm×650mm的非碱性玻璃衬底,也在短时间内形成晶体管形成所需的膜厚。这种制造技术的特点在制造大画面显示装置时有效。此外,通过用SAS来构成沟道被形成区,半非晶TFT可以获得2至10cm2/Vsec的场效应迁移率。当采用本发明时,由于可以以良好的可控性来形成所需形状的图形,故可以稳定地形成微细的布线,而没有产生短路等缺陷。像这样,可以制造实现了系统型面板(system on panel)的显示面板。
利用具有由SAS形成的半导体层的TFT,扫描线一侧驱动电路也可以集成地形成在衬底上。在使用具有由AS形成的半导体层的TFT的情况下,优选将驱动器IC安装在扫描线一侧驱动电路及信号线一侧驱动电路二者上。
在此情况下,优选在扫描线一侧和信号线一侧使用具有不同规格的驱动器IC。例如,构成扫描线一侧的驱动器IC的晶体管被要求承受大约30V左右的电压;但驱动频率为100kHz以下,不要求比较高速工作。因此,优选将构成扫描线一侧驱动器的晶体管的沟道长度(L)设定得足够大。另一方面,信号线一侧的驱动器IC的晶体管承受大约12V的电压即足够,但驱动频率在3V下为65MHz左右,要求高速工作。因此,优选根据微米规则来设定构成驱动器的晶体管的沟道长度等。
对安装驱动器IC的方法没有特殊的限制,可以采用诸如COG法、引线接合法、或TAB法。
通过将IC驱动器的厚度设定为与相对衬底相同的厚度,使它们之间的高度大致相同,这有助于显示装置整体的薄型化。另外,通过用相同材质制作各衬底,即使该显示装置产生温度变化,也不产生热应力,不会损害由TFT制作的电路的特性。而且,如本实施方式所述通过使用比IC芯片长的驱动器IC来安装驱动电路,可以减小安装在一个像素区中的驱动器IC的数目。
如上所述,可以将驱动电路组合在显示面板上。
实施方式12
本实施方式示出以下例子:在根据实施方式3至10制造的显示面板(EL显示面板、液晶显示面板)中用非晶半导体或SAS形成半导体层,并且在衬底上形成扫描线一侧的驱动电路。
图32示出由使用获得1至15cm2/V·sec的电场效应迁移率的SAS的n沟道型TFT构成的扫描线一侧驱动电路的框图。
在图32中,8500所示的区块相当于输出一段取样脉冲的脉冲输出电路,并且移位寄存器由n个脉冲输出电路构成。8501表示缓冲电路,像素8502连接在其末端。
图33示出脉冲输出电路8500的具体结构,其中电路由n沟道型TFT 8601至8613构成。此时,TFT的尺寸可以根据使用SAS的n沟道型TFT的工作特性来确定。例如,当将沟道长度设定为8μm时,沟道宽度可以设定为10至80μm的范围。
另外,图34示出缓冲电路8501的具体结构。缓冲电路也同样地由n沟道型TFT 8620至8635构成。此时,TFT的尺寸可以根据使用SAS的n沟道型TFT的工作特性来确定。例如,当沟道长度设定为10μm时,沟道宽度可以设定为10至1800μm的范围。
为了实现这种电路,需要通过布线使TFT相互连接。
通过上述工序,可以将驱动电路组合到显示面板中。
实施方式13
参照图16来描述本实施方式。图16示出了使用根据本发明制造的TFT衬底2800构成EL显示模块的一个例子。在图16中,在TFT衬底2800上形成有由像素构成的像素部。
在图16中,在像素部的外侧且在驱动电路和像素之间设有保护电路2801。保护电路2801具有与形成在像素中的TFT相同的TFT,或通过将所述TFT的栅极连接到源极或漏极的一方,以相同于二极管的方式工作的部分。由单晶半导体形成的驱动器IC、由多晶半导体膜形成在玻璃衬底上的保持驱动器(stick driver)IC、或由SAS形成的驱动电路等被应用于驱动电路2809。
TFT衬底2800通过由液滴排出法形成的间隔物2806a、间隔物2806b与密封衬底2820固定。间隔物的设置优选满足如下条件:即使当衬底的厚度薄或像素部的面积加大时,也使两个衬底的间隔保持恒定。在与TFT 2802、TFT2803分别连接的发光元件2804、发光元件2805上且在TFT衬底2800和密封衬底2820之间的空隙中,可以填充至少对可见光具有透光性的树脂材料,并使其固化,或者也可以填充无水化的氮或惰性气体。
在本实施方式中,也可以如实施方式1所示那样通过多个工序排出液态的包含形成材料的组合物,来形成构成显示装置的栅电极层、半导体层、源电极层、漏电极层、布线层、或第一电极层等。如实施方式1所示,首先沿着导电层的图形轮廓通过第一排出工序形成框状的第一导电层,然后通过第二排出工序填充第一导电层的框中,形成第二导电层。
因此,若附着粘度较高且相对于被形成区润湿性低的组合物来形成决定导电层的形成区轮廓的第一导电层(绝缘层),则可以可控性好地形成成为所要求的图形的轮廓的侧端部。若将粘度低且相对于被形成区润湿性高的液态组合物附着到第一导电层(绝缘层)的框中来形成,则可以减轻内部或表面上的由气泡等导致的空间或凹凸等,形成平坦性高的均匀的导电层(绝缘层)。由此,通过分别制作导电层(绝缘层)外侧和内侧来制作导电层(绝缘层),而可以可控性好地形成具有所要求的图形和高平坦性且减轻缺陷的导电层(绝缘层)。因此,工序简化且可以防止材料的损失,而可以实现低成本化。
图16示出了发光元件2804、发光元件2805具有沿图中的箭头方向发光的顶部发射结构(top emission type)的情况。通过使各像素发射红色、绿色、蓝色的不同颜色的光,可以进行多彩色显示。此时,通过在密封衬底2820一侧形成对应于各种颜色的着色层2807a、着色层2807b、着色层2807c,可以提高发射到外部的光的颜色纯度。而且,也可以采用发射白色光的元件作为像素,并与着色层2807a、着色层2807b、着色层2807c组合。
作为外部电路的驱动电路2809通过布线衬底2810与设在外部电路衬底2811一端的扫描线或信号线连接端子连接。此外,也可以具有以下结构:与TFT衬底2800相接合或靠近,设置热管2813和散热板2812以提高散热效果,其中热管2813是用于将热传导到装置外部的管状高效热传导装置。
图16示出了顶部发射的EL模块,但也可以改变发光元件的结构或外部电路衬底的配置,采用底部发射结构,当然,也可以采用从顶面、底面双侧发射光的双向发射结构。在顶部发射型结构的情况下,也可以将成为隔壁的绝缘层着色,用作黑矩阵。可以采用液滴排出法来形成该隔壁,将颜料类的黑色树脂、碳黑等混合到聚酰亚胺等的树脂材料中形成即可,还可以采用其叠层。
在EL显示模块中,也可以使用相位差板、偏振板来遮挡从外部入射的光的反射光。如果是顶部发射型显示装置,也可以将成为隔壁的绝缘层着色,用作黑矩阵。可以采用液滴排出法等来形成该隔壁,可以将碳黑等混合到颜料类黑色树脂、聚酰亚胺等树脂材料中来形成,还可以采用其叠层。也可以通过液滴排出法将不同的材料多次排出到同一个区域,以形成隔壁。将λ/4板和λ/2板用作相位差板、相位差板,并设计成能够控制光即可。作为其结构,从TFT元件衬底一侧按顺序为发光元件、密封衬底(密封材)、相位差板(λ/4板、λ/2板)、以及偏振板,其中,从发光元件发射的光通过它们从偏振板一侧发射到外部。将上述相位差板、偏振板设置在光发射的一侧即可,或在两方发射的双向发射型显示装置中,也可以设在两方。在偏振板的外侧可以具有反射防止膜。由此,可以显示分辨率更高、精确的图像。
在TFT衬底2800中,可以使用密封材、粘结性树脂将树脂薄膜贴到形成有像素部的一侧,来形成密封结构。虽然在本实施方式中描述了使用玻璃衬底的玻璃密封,但也可以采用诸如使用树脂的树脂密封、使用塑料的塑料密封、使用薄膜的薄膜密封等各种密封方法。在树脂薄膜的表面上优选设置防止蒸汽透过的气体阻挡膜。利用薄膜密封结构,可以进一步实现薄型化及轻量化。
本实施方式可以分别与实施方式1至7、实施方式11、12组合来使用。
实施方式14
参照图20(A)和20(B)来描述本实施方式。图20(A)和20(B)示出了用根据本发明制造的TFT衬底2600来构成液晶显示模块的一个例子。
图20(A)为液晶显示模块的一个例子,其中,TFT衬底2600和相对衬底2601被密封材2602固定,且在它们之间设有像素部2603和液晶层2604,以形成显示区。进行彩色显示时,着色层2605是必须的。在RGB方式的情况下,对应于各个像素设有对应于红、绿、蓝各种颜色的着色层。TFT衬底2600和相对衬底2601的外侧设置有偏振板2606、2607、漫射片2613。光源由冷阴极管2610和反射板2611构成。电路衬底2612通过柔性线路板2609与TFT衬底2600的布线电路部2608连接,并且组合入控制电路、电源电路等外部电路。另外,也可以在偏振板和液晶层之间层叠相位差板。
液晶显示模块可以采用TN(扭曲向列)模式、IPS(平面内转换)模式、FFS(Fringe Field Switching,散射场转换)模式、MVA(Multi-domain Vertical Alignment,多畴垂直取向)模式、PVA(Patterned Vertical Alignment,图形垂直取向)模式、ASM(Axially Symmetric aligned Micro-cell,轴对称排列微胞)模式、OCB(Optical Compensated Birefringence,光学补偿双折射)模式、FLC(Ferroelectric Liquid Crystal,铁电液晶)模式、AFLC(Antiferroelectric Liquid Crystal,反铁电液晶)模式等。
图20(B)示出了一个例子,其中,将OCB模式应用于图20(A)的液晶显示模块,于是该成为FS-LCD(Field sequential-LCD;场顺序液晶显示装置)。FS-LCD在一帧周期内分别进行红色发光、绿色发光、以及蓝色发光,通过时间分割来合成图像,从而能够进行彩色显示。而且,采用发光二极管或冷阴极管等来进行各个发光,因而不需要彩色滤光片。因此,由于不需要排列三原色的彩色滤光片、限定各种颜色的显示区,所以哪个区域都可以进行三种颜色的显示。另一方面,由于在一帧周期内进行三种颜色的发光,因此要求液晶高速响应。当将采用FS方式的FLC模式及OCB模式应用于本发明的显示装置时,能够完成高性能且高画质的显示装置或液晶电视装置。
OCB模式的液晶层具有所谓的π单元结构。π单元结构是指液晶分子被取向成其预倾角相对于有源矩阵衬底和相对衬底的衬底之间的中心面呈面对称关系的结构。当对衬底间未施加电压时,π单元结构中的取向状态是展曲取向,当施加电压时转入弯曲取向。当成为弯曲取向时进行白显示。若进一步施加电压,弯曲取向的液晶分子垂直于两个衬底而取向,并且成为光不透过的状态。另外,利用OCB模式,能够获得比以往的TN模式快约10倍的高响应速度。
另外,作为一种对应于FS方式的模式,还可以采用HV(Half V)-FLC和SS(Surface Stabilized,表面稳定)-FLC等,所述HV-FLC和SS-FLC采用能够高速工作的强诱电性液晶(FLC:Ferroelectric Liquid Crystal,铁电液晶)。将粘度比较低的向列相液晶可以用于OCB模式,HV-FLC、SS-FLC可以使用具有强诱电相的近晶状液晶。
通过使液晶显示模块的盒间隙变窄,来提高液晶显示模块的光学响应速度。或者,通过降低液晶材料的粘度,也可以提高光学响应速度。在TN模式液晶显示模块的像素区的像素间距为30μm以下时,上述高速化更有效。另外,通过一瞬提高(或降低)外加电压的过驱动法,能够进一步实现高速化。
图20(B)的液晶显示模块是透射型液晶显示模块,设有红色光源2910a、绿色光源2910b、蓝色光源2910c作为光源。为了分别控制红色光源2910a、绿色光源2910b、蓝色光源2910c的开通或关断,设置有控制部2912。各种颜色的发光由控制部2912控制,光入射至液晶,并且通过时间分割来合成图像,从而进行彩色显示。
如上所述,通过利用本发明,可以制造高分辨率且高可靠性的液晶显示模块。
本实施方式能够与实施方式1、实施方式2、实施方式8、实施方式9、实施方式11、实施方式12分别组合使用。
实施方式15
通过使用根据本发明形成的显示装置,可以制造电视装置(也简称为电视、或电视接收机)。图27为示出了电视装置的主要结构的框图。
图25(A)是显示本发明的显示面板的结构的俯视图,其中在具有绝缘表面的衬底2700上形成有以矩阵状排列像素2702的像素部2701、扫描线一侧输入端子2703、信号线一侧输入端子2704。像素数可以根据各种标准来设定,若是XGA且用RGB的全色显示,像素数是1024×768×3(RGB),若是UXGA且用RGB的全色显示,像素数是1600×1200×3(RGB),若对应于全规格高清晰画质(full spec high defination)且用RGB的全色显示,像素数是1920×1080×3(RGB)即可。
像素2702是通过从扫描线一侧输入端子2703延伸的扫描线和从信号线一侧输入端子2704延伸的信号线交叉,以矩阵状排列的。像素部2701的像素中的每一个具有开关元件和连接于该开关元件的像素电极层。开关元件的典型例子是TFT。通过TFT的栅电极层一侧连接到扫描线,源极一侧或漏极一侧连接到信号线,能够利用从外部输入的信号独立地控制每一个像素。
图25(A)示出了使用外部驱动电路控制输入到扫描线及信号线的信号的显示面板的结构。然而,如图26(A)所示,也可以通过COG(Chip On Glass;玻璃上安装芯片)方式将驱动器IC 2751安装在衬底2700上。此外,作为其它安装方式,也可以使用如图26(B)所示的TAB(Tape Automated Bonding;带式自动接合)方式。驱动器IC既可以是形成在单晶半导体衬底上的,又可以是在玻璃衬底上由TFT形成电路的。在图26中,驱动器IC 2751与FPC(Flexible printed circuit,柔性印刷电路)2750连接。
此外,当由具有结晶性的半导体形成设置在像素中的TFT时,如图25(B)所示,也可以在衬底3700上形成扫描线一侧驱动电路3702。在图25(B)中,与图25(A)同样地使用连接于信号线一侧输入端子3704的外部驱动电路来控制像素部3701。在设置在像素中的TFT由迁移度高的多晶(微晶)半导体、单晶半导体等形成的情况下,如图25(C)所示,也可以在衬底4700上集成地形成像素部4701、扫描线驱动电路4702、信号线驱动电路4704。
在图27中,显示面板可以具有如下结构:如图25(A)所示的结构,其中只形成有像素部901并且扫描线一侧驱动电路903和信号线一侧驱动电路902通过如图26(B)所示的TAB方式或如图26(A)所示的COG方式安装;如图25(B)所示的结构,其中形成TFT,在衬底上形成像素部901和扫描线一侧驱动电路903,且另外安装信号线一侧驱动电路902作为驱动器IC;或者如图25(C)所示的结构,其中将像素部901、信号线一侧驱动电路902和扫描线一侧驱动电路903集成地形成在衬底上等。但是,任一结构都可以采用。
在图27中,作为其他外部电路的结构,在视频信号的输入一侧包括放大由调谐器904接收的信号中的放大视频信号的视频信号放大电路905、将从其输出的信号转换为与红、绿、蓝每种颜色相应的色信号的视频信号处理电路906、以及将该视频信号转换为驱动器IC的输入规格的控制电路907等。控制电路907将信号分别输出至扫描线一侧和信号线一侧。在进行数字驱动的情况下,也可以具有如下结构,即在信号线一侧设信号分割电路908,并且将输入数字信号分成m个来供给。
由调谐器904接收的信号中的音频信号被传送至音频信号放大电路909,并且其输出通过音频信号处理电路910供给至扬声器913中。控制电路911从输入部912接收接收站(接收频率)和音量的控制信息,并且将信号传送至调谐器904、音频信号处理电路910。
如图28(A)、(B)所示,将上述显示模块结合在框体中,从而可以完成电视装置。如使用液晶显示模块作为显示模块,可以完成液晶电视装置。使用EL显示模块作为显示模块,可以完成EL电视装置、等离子体电视、电子纸等。在图28(A)中,由显示模块形成主画面2003,并且作为其它辅助设备具有扬声器部2009、操作开关等。以这种方式,根据本发明可以完成电视装置。
将显示面板2002组合在框体2001中,可以由接收器2005接收普通的电视广播的信号。而且,通过调制解调器2004连接到采用有线或无线方式的通讯网络,可以进行单方向(从发送者到接收者)或双方向(在发送者和接收者之间或在接收者之间)的信息通信。可以使用安装在框体中的开关或遥控装置2006来操作电视装置。也可以在遥控装置2006中设置用于显示输出信息的显示部2007。
另外,除了主画面2003之外,电视装置可以包括用第二显示面板形成的子画面2008来显示频道或音量等。在这种结构中,可以使用本发明的液晶显示面板形成主画面2003及子画面2008。可以使用视度好的EL显示面板形成主画面2003,并且使用能够以低耗电量进行显示的液晶显示面板形成子画面。另外,为了优先降低耗电量,可以使用液晶显示面板形成主画面2003,使用EL显示面板形成子画面,以使子画面可以闪亮和闪灭。通过使用本发明,甚至当使用这种大尺寸衬底并且使用许多TFT、电子部件时,也可以形成高可靠性的显示装置。
图28(B)显示了具有例如20英寸至80英寸的大型显示部的电视装置,其包括框体2010、显示部2011、作为操作部的遥控装置2012、扬声器部2013等。将本发明应用于显示部2011的制造中。图28(B)的电视装置是壁挂式的,所以不需要大的设置空间。
当然,本发明不局限于电视装置,并且可以应用于各种各样的用途,如个人计算机的监视器、尤其是大面积的显示媒体如火车站或机场等的信息显示板或者街头上的广告显示板等。
本实施方式可以与上述实施方式1至14适当地自由地组合。
实施方式16
作为本发明的电子器具,可以举出电视装置(简称为电视,或者电视接收机)、如数码相机、数码摄像机、便携式电话装置(简称为移动电话机、手机)、PDA等便携式信息终端、便携式游戏机、计算机用的监视器、计算机、汽车音响等的声音再现装置、家用游戏机等的具备记录媒体的图像再现装置等。对于其具体例子将参照图29来说明。
图29(A)所示的便携式信息终端设备包括主体9201、显示部9202等。显示部9202可以应用本发明的显示装置。结果,可以通过简化了的工序以低成本制造显示装置,所以可以低成本地提供高可靠性的便携式信息终端设备。
图29(B)所示的数码摄像机包括显示部9701、显示部9702等。显示部9701可以应用本发明的显示装置。结果,可以通过简化了的工序以低成本制造显示装置,所以可以低成本地提供高可靠性的数码摄像机。
图29(C)所示的移动电话机包括主体9101、显示部9102等。显示部9102可以应用本发明的显示装置。结果,可以通过简化了的工序以低成本制造显示装置,所以可以低成本地提供高可靠性的移动电话机。
图29(D)所示的便携式电视装置包括主体9301、显示部9302等。显示部9302可以应用本发明的显示装置。结果,可以通过简化了的工序以低成本制造显示装置,所以可以低成本地提供高可靠性的电视装置。此外,可以将本发明的显示装置广泛地应用于如下的电视装置:安装到移动电话机等的便携式终端的小型电视装置;能够搬运的中型电视装置;以及大型电视装置(例如40英寸以上)。
图29(E)所示的便携式计算机包括主体9401、显示部9402等。显示部9402可以应用本发明的显示装置。结果,可以通过简化了的工序以低成本制造显示装置,所以可以低成本地提供高可靠性的计算机。
如此,通过采用本发明的显示装置,可以提供高性能的电子设备,该电子设备可以显示可视性优异且高图像质量的图像。
本实施方式可以与上述的实施方式1至15适当地自由地组合。

Claims (12)

1.一种显示装置,包括:
包含栅电极层、栅极绝缘层、第一布线层、第二布线层和半导体层的晶体管;
绝缘层;
第一电极层,该第一电极层通过形成于绝缘层中的开口电连接至所述第一布线层和所述第二布线层中的一个;
第二电极层;和
在所述第一电极层和所述第二电极层之间的颜色为黑和白的扭转球,
其中所述扭转球的方向能够通过产生于所述第一电极层和所述第二电极层之间的电位来控制;和
其中所述栅电极层、所述第一布线层、所述第二布线层、所述第一电极层和所述第二电极层中的至少一个具有轮廓部分和所述轮廓部分内的部分。
2.一种显示装置,包括:
包含栅电极层、栅极绝缘层、第一布线层、第二布线层和半导体层的晶体管;
绝缘层;
第一电极层,该第一电极层通过形成于绝缘层中的开口电连接至所述第一布线层和所述第二布线层中的一个;
第二电极层;和
在所述第一电极层和所述第二电极层之间的颜色为黑和白的扭转球;
其中所述扭转球的方向能够通过产生于所述第一电极层和所述第二电极层之间的电位来控制;
其中所述栅电极层、所述第一布线层、所述第二布线层、所述第一电极层和所述第二电极层中的至少一个具有轮廓部分和所述轮廓部分内的部分,和
其中所述轮廓部分和所述轮廓部分内的部分是彼此接触地形成的。
3.一种显示装置,包括:
包含栅电极层、栅极绝缘层、第一布线层、第二布线层和半导体层的晶体管;
绝缘层;
第一电极层,该第一电极层通过形成于绝缘层中的开口电连接至所述第一布线层和所述第二布线层中的一个;
第二电极层;和
在所述第一电极层和所述第二电极层之间的颜色为黑和白的扭转球;
其中所述扭转球的方向能够通过产生于所述第一电极层和所述第二电极层之间的电位来控制;
其中所述栅电极层、所述第一布线层、所述第二布线层、所述第一电极层和所述第二电极层中的至少一个具有轮廓部分和所述轮廓部分内的部分,
其中所述轮廓部分含有第一导电材料,和
其中所述轮廓部分内的部分含有第二导电材料。
4.权利要求1的显示装置,其中所述轮廓部分内的部分的厚度小于所述轮廓部分的厚度。
5.权利要求2的显示装置,其中所述轮廓部分内的部分的厚度小于所述轮廓部分的厚度。
6.权利要求3的显示装置,其中所述轮廓部分内的部分的厚度小于所述轮廓部分的厚度。
7.权利要求1的显示装置,其中所述轮廓部分内的部分的厚度大于所述轮廓部分的厚度。
8.权利要求2的显示装置,其中所述轮廓部分内的部分的厚度大于所述轮廓部分的厚度。
9.权利要求3的显示装置,其中所述轮廓部分内的部分的厚度大于所述轮廓部分的厚度。
10.权利要求1的显示装置,其中所述轮廓部分的外侧边缘是具有曲率的圆形形状。
11.权利要求2的显示装置,其中所述轮廓部分的外侧边缘是具有曲率的圆形形状。
12.权利要求3的显示装置,其中所述轮廓部分的外侧边缘是具有曲率的圆形形状。
CN201110140080.7A 2006-07-04 2007-07-04 显示装置的制造方法 Expired - Fee Related CN102214699B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006184719 2006-07-04
JP2006-184719 2006-07-04

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200710127144.3A Division CN101101872B (zh) 2006-07-04 2007-07-04 一种半导体装置及其制造方法

Publications (2)

Publication Number Publication Date
CN102214699A true CN102214699A (zh) 2011-10-12
CN102214699B CN102214699B (zh) 2013-02-06

Family

ID=39036070

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200710127144.3A Expired - Fee Related CN101101872B (zh) 2006-07-04 2007-07-04 一种半导体装置及其制造方法
CN201110140080.7A Expired - Fee Related CN102214699B (zh) 2006-07-04 2007-07-04 显示装置的制造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200710127144.3A Expired - Fee Related CN101101872B (zh) 2006-07-04 2007-07-04 一种半导体装置及其制造方法

Country Status (3)

Country Link
US (2) US7768617B2 (zh)
CN (2) CN101101872B (zh)
TW (1) TWI427682B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676325A (zh) * 2012-09-21 2014-03-26 株式会社东芝 用于形成膜的方法
CN103969910A (zh) * 2014-05-05 2014-08-06 京东方科技集团股份有限公司 一种电泳显示装置及其制造方法、显示方法
CN109540344A (zh) * 2018-11-23 2019-03-29 重庆天胜科技有限公司 一种不易开裂的oled显示器
CN110109293A (zh) * 2019-04-04 2019-08-09 深圳市华星光电技术有限公司 液晶无机配向薄膜的制造方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412079B (zh) * 2006-07-28 2013-10-11 Semiconductor Energy Lab 製造顯示裝置的方法
US7943287B2 (en) * 2006-07-28 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
KR101346246B1 (ko) * 2006-08-24 2013-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 제작방법
US8563431B2 (en) * 2006-08-25 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7749907B2 (en) * 2006-08-25 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8148259B2 (en) 2006-08-30 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5110830B2 (ja) * 2006-08-31 2012-12-26 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101485926B1 (ko) * 2007-02-02 2015-02-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 기억장치
US7738050B2 (en) * 2007-07-06 2010-06-15 Semiconductor Energy Laboratory Co., Ltd Liquid crystal display device
TWI389211B (zh) * 2008-04-30 2013-03-11 Chimei Innolux Corp 影像顯示系統及其製造方法
US20090311799A1 (en) * 2008-06-13 2009-12-17 Sotzing Gregory A Nucleic Acid Materials for Nonradiative Energy Transfer and Methods of Production and Use
KR101563527B1 (ko) * 2008-09-19 2015-10-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
KR101298358B1 (ko) * 2008-12-19 2013-08-20 엘지디스플레이 주식회사 액정표시장치 제조용 연마장치 및 연마방법
TWI415283B (zh) * 2009-02-18 2013-11-11 Au Optronics Corp X射線感測器及其製作方法
JP5099061B2 (ja) * 2009-03-26 2012-12-12 セイコーエプソン株式会社 塗膜形成方法および圧電素子の製造方法
WO2010135319A1 (en) * 2009-05-18 2010-11-25 University Of Connecticut Nucleic acid-based photovoltaic cell
US7867916B2 (en) * 2009-06-15 2011-01-11 Palo Alto Research Center Incorporated Horizontal coffee-stain method using control structure to pattern self-organized line structures
US20110036400A1 (en) * 2009-08-17 2011-02-17 First Solar, Inc. Barrier layer
CN102823331A (zh) * 2010-02-17 2012-12-12 视觉动力控股有限公司 产生用于对衬底表面图案化的等离子体放电的设备和方法
KR20130062919A (ko) * 2010-03-26 2013-06-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치를 제작하는 방법
WO2012043151A1 (ja) * 2010-09-27 2012-04-05 凸版印刷株式会社 印刷用凸版及びそれを用いた有機el素子の製造方法
JP5852855B2 (ja) 2010-11-24 2016-02-03 株式会社半導体エネルギー研究所 発光素子、発光装置、照明装置、及び電子機器
JP6076038B2 (ja) * 2011-11-11 2017-02-08 株式会社半導体エネルギー研究所 表示装置の作製方法
US8681417B2 (en) * 2011-12-27 2014-03-25 Visitret Displays Ou Fast response electrophoretic display device
CN102651317B (zh) * 2011-12-28 2015-06-03 京东方科技集团股份有限公司 金属氧化物半导体表面处理方法和薄膜晶体管的制备方法
US8940647B2 (en) 2011-12-28 2015-01-27 Boe Technology Group Co., Ltd. Method for surface treatment on a metal oxide and method for preparing a thin film transistor
JP5756422B2 (ja) * 2012-03-05 2015-07-29 富士フイルム株式会社 パターン形成方法
JP5732428B2 (ja) * 2012-04-17 2015-06-10 東芝テック株式会社 インクジェットヘッド
US8872764B2 (en) 2012-06-29 2014-10-28 Qualcomm Mems Technologies, Inc. Illumination systems incorporating a light guide and a reflective structure and related methods
US9366913B2 (en) 2013-02-21 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
CN104124379A (zh) * 2013-04-24 2014-10-29 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN105324707B (zh) 2013-06-12 2020-06-12 唯景公司 用于改进的电接触的透明导电氧化物(tco)薄膜的预处理
WO2015157513A1 (en) 2014-04-09 2015-10-15 Cornell University Misfit p-type transparent conductive oxide (tco) films, methods and applications
US10414980B2 (en) * 2014-07-29 2019-09-17 Dic Corporation Liquid-crystal display
JP6469728B2 (ja) * 2015-01-21 2019-02-13 富士フイルム株式会社 電子デバイスの製造方法および電子デバイス
TWI682237B (zh) * 2015-02-10 2020-01-11 日商大日本印刷股份有限公司 蒸鍍遮罩
JP6568953B2 (ja) 2015-12-24 2019-08-28 株式会社フジクラ 配線基板の製造方法及び配線基板
CN105882012A (zh) * 2016-04-25 2016-08-24 苏州普京真空技术有限公司 一种高品质复合真空镀膜
JP6414141B2 (ja) * 2016-05-31 2018-10-31 日亜化学工業株式会社 発光装置
CN106211580B (zh) * 2016-06-30 2019-01-18 广州兴森快捷电路科技有限公司 一种pcb板介质厚度均匀化的方法
KR102601451B1 (ko) 2016-09-30 2023-11-13 엘지디스플레이 주식회사 전극 및 이를 포함하는 유기발광소자, 액정표시장치 및 유기발광표시장치
US11036045B2 (en) * 2017-03-14 2021-06-15 Pioneer Corporation Display device
WO2018179264A1 (ja) * 2017-03-30 2018-10-04 シャープ株式会社 成膜装置、成膜方法、電子デバイス、および電子デバイスの製造装置
US9953927B1 (en) * 2017-04-26 2018-04-24 Globalfoundries Inc. Liner replacements for interconnect openings
US20200324570A1 (en) * 2017-06-29 2020-10-15 Toyoda Gosei Co., Ltd. Decorative product
JP6616368B2 (ja) * 2017-09-14 2019-12-04 ファナック株式会社 レーザ加工前に光学系の汚染レベルに応じて加工条件を補正するレーザ加工装置
CN108181749B (zh) * 2017-12-29 2020-08-28 深圳市华星光电技术有限公司 制造液晶显示面板的方法
CN109713002B (zh) * 2018-12-07 2021-08-31 德淮半导体有限公司 图像传感器及其形成方法
CN110112311B (zh) * 2019-05-10 2020-10-27 武汉华星光电半导体显示技术有限公司 一种显示面板及显示模组
CN112242296A (zh) * 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 形成拓扑受控的无定形碳聚合物膜的方法
CN112327536B (zh) * 2020-11-03 2023-10-17 Tcl华星光电技术有限公司 显示面板、显示装置
CN112557299B (zh) * 2020-11-19 2023-03-10 河北光兴半导体技术有限公司 复合板贴合强度检测装置及检测方法
CN112951929B (zh) * 2021-01-25 2022-12-30 浙江爱旭太阳能科技有限公司 太阳能电池电极及其制备方法、太阳能电池
WO2023056086A1 (en) * 2021-10-01 2023-04-06 PsiQuantum Corp. Patterning methods for photonic devices
CN116130406B (zh) * 2023-03-14 2023-09-19 华中科技大学 一种基于气动直写工艺的晶圆浅沟道聚合物填充固化方法

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594471A (en) * 1983-07-13 1986-06-10 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US5708252A (en) * 1986-09-26 1998-01-13 Semiconductor Energy Laboratory Co., Ltd. Excimer laser scanning system
US6149988A (en) * 1986-09-26 2000-11-21 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
JPS6384789A (ja) * 1986-09-26 1988-04-15 Semiconductor Energy Lab Co Ltd 光加工方法
JPS63155645A (ja) 1986-12-18 1988-06-28 Mitsubishi Electric Corp 表面平坦化方法
US6261856B1 (en) * 1987-09-16 2001-07-17 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
US5480097A (en) * 1994-03-25 1996-01-02 General Electric Company Gas atomizer with reduced backflow
JP2985692B2 (ja) * 1994-11-16 1999-12-06 日本電気株式会社 半導体装置の配線構造及びその製造方法
US6137467A (en) * 1995-01-03 2000-10-24 Xerox Corporation Optically sensitive electric paper
JPH1032217A (ja) 1996-07-16 1998-02-03 Nec Corp ベアチップ封止方法及び該方法により製造された半導体装置
US6459200B1 (en) * 1997-02-27 2002-10-01 Chad Byron Moore Reflective electro-optic fiber-based displays
JPH10284645A (ja) 1997-04-01 1998-10-23 Fuji Electric Co Ltd 半導体チップの樹脂封止構造及びその製造方法
US5900858A (en) * 1997-05-30 1999-05-04 Xerox Corporation Rotation mechanism for bichromal balls of a twisting ball display sheet based on contact potential charging
JP3641111B2 (ja) * 1997-08-28 2005-04-20 株式会社ルネサステクノロジ 半導体装置の製造方法
JP3391717B2 (ja) * 1997-12-24 2003-03-31 シャープ株式会社 反射型液晶表示装置
JP3236266B2 (ja) 1998-10-27 2001-12-10 鹿児島日本電気株式会社 パターン形成方法
JP3810629B2 (ja) 2000-11-24 2006-08-16 シャープ株式会社 半導体装置およびその半導体装置の製造方法
GB2373095A (en) 2001-03-09 2002-09-11 Seiko Epson Corp Patterning substrates with evaporation residues
JP2003115650A (ja) * 2001-10-03 2003-04-18 Yazaki Corp 回路体の製造方法および製造装置
JP4192456B2 (ja) 2001-10-22 2008-12-10 セイコーエプソン株式会社 薄膜形成方法ならびにこれを用いた薄膜構造体の製造装置、半導体装置の製造方法、および電気光学装置の製造方法
TWI258317B (en) * 2002-01-25 2006-07-11 Semiconductor Energy Lab A display device and method for manufacturing thereof
JP2003280540A (ja) * 2002-03-25 2003-10-02 Sharp Corp 電子機器
JP4042460B2 (ja) 2002-04-22 2008-02-06 セイコーエプソン株式会社 製膜方法及びデバイス及び電子機器並びにデバイスの製造方法
JP4245329B2 (ja) * 2002-10-31 2009-03-25 大日本印刷株式会社 機能性素子の製造方法
EP1592049A1 (en) * 2003-02-05 2005-11-02 Sel Semiconductor Energy Laboratory Co., Ltd. Process for manufacturing display
JP4496713B2 (ja) * 2003-03-31 2010-07-07 セイコーエプソン株式会社 表示装置、電子機器及び表示方法
JP2006524457A (ja) * 2003-04-04 2006-10-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コントラスト向上のための電子ペーパに基づいたスクリーンの使用
CN100467141C (zh) * 2003-04-25 2009-03-11 株式会社半导体能源研究所 图形的制作方法和液滴排出装置
CN100380596C (zh) * 2003-04-25 2008-04-09 株式会社半导体能源研究所 液滴排出装置、图案的形成方法及半导体装置的制造方法
US7601386B2 (en) 2003-07-11 2009-10-13 Seiko Epson Corporation Process for forming a film, process for manufacturing a device, electro-optical device and electronic equipment
JP3687663B2 (ja) 2003-07-11 2005-08-24 セイコーエプソン株式会社 膜形成方法、デバイス製造方法、電気光学装置の製造方法、及び電子機器の製造方法
JP2005049770A (ja) * 2003-07-31 2005-02-24 Sanyo Electric Co Ltd エレクトロクロミック表示装置
WO2005012993A1 (ja) * 2003-07-31 2005-02-10 Sanyo Electric Co., Ltd. エレクトロクロミック表示装置
US7202155B2 (en) * 2003-08-15 2007-04-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring and method for manufacturing semiconductor device
US8101467B2 (en) * 2003-10-28 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same, and liquid crystal television receiver
US7226819B2 (en) * 2003-10-28 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Methods for forming wiring and manufacturing thin film transistor and droplet discharging method
JP4877868B2 (ja) 2003-12-02 2012-02-15 株式会社半導体エネルギー研究所 表示装置の作製方法
CN1890698B (zh) 2003-12-02 2011-07-13 株式会社半导体能源研究所 显示器件及其制造方法和电视装置
US7495644B2 (en) * 2003-12-26 2009-02-24 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing display device
JP5093985B2 (ja) 2004-01-16 2012-12-12 株式会社半導体エネルギー研究所 膜パターンの形成方法
US8053171B2 (en) 2004-01-16 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Substrate having film pattern and manufacturing method of the same, manufacturing method of semiconductor device, liquid crystal television, and EL television
KR101127889B1 (ko) 2004-02-17 2012-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 박막 트랜지스터, 표시장치 및 그것들의 제조 방법
JP4879496B2 (ja) 2004-02-17 2012-02-22 株式会社半導体エネルギー研究所 パターン形成方法
JP4179288B2 (ja) 2005-02-01 2008-11-12 セイコーエプソン株式会社 膜パターン形成方法
US7651932B2 (en) * 2005-05-31 2010-01-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing antenna and method for manufacturing semiconductor device
US8173519B2 (en) * 2006-03-03 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8222116B2 (en) * 2006-03-03 2012-07-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676325A (zh) * 2012-09-21 2014-03-26 株式会社东芝 用于形成膜的方法
CN103676325B (zh) * 2012-09-21 2016-08-24 株式会社东芝 用于形成膜的方法及液晶显示装置
CN103969910A (zh) * 2014-05-05 2014-08-06 京东方科技集团股份有限公司 一种电泳显示装置及其制造方法、显示方法
CN103969910B (zh) * 2014-05-05 2018-02-13 京东方科技集团股份有限公司 一种电泳显示装置及其制造方法、显示方法
CN109540344A (zh) * 2018-11-23 2019-03-29 重庆天胜科技有限公司 一种不易开裂的oled显示器
CN109540344B (zh) * 2018-11-23 2024-02-13 佛山市铂彩光电有限公司 一种不易开裂的oled显示器
CN110109293A (zh) * 2019-04-04 2019-08-09 深圳市华星光电技术有限公司 液晶无机配向薄膜的制造方法

Also Published As

Publication number Publication date
TW200811931A (en) 2008-03-01
US20100289026A1 (en) 2010-11-18
CN102214699B (zh) 2013-02-06
CN101101872B (zh) 2011-07-13
US8520178B2 (en) 2013-08-27
CN101101872A (zh) 2008-01-09
TWI427682B (zh) 2014-02-21
US7768617B2 (en) 2010-08-03
US20080042288A1 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
CN101101872B (zh) 一种半导体装置及其制造方法
CN101162703B (zh) 显示装置的制造方法以及蚀刻设备
CN101114612B (zh) 显示器件的制造方法
CN101114611B (zh) 显示器件的制造方法
CN102522504B (zh) 半导体装置的制造方法以及半导体装置
KR101389298B1 (ko) 반도체 장치를 제작하는 방법
CN102709242B (zh) 显示装置的制造方法
CN100592477C (zh) 半导体装置制造方法
CN101030526B (zh) 制造半导体装置的方法
KR101346246B1 (ko) 표시장치 제작방법
CN100437976C (zh) 显示装置的制造方法及电视机
KR101351813B1 (ko) 반도체 장치의 제조 방법
CN101170058B (zh) 半导体器件的制造方法
CN100565909C (zh) 半导体装置、电子装置及半导体装置的制造方法
CN102208419B (zh) 半导体器件的制造方法及显示器件的制造方法
CN1862848B (zh) 制造显示器的方法
KR20080011131A (ko) 표시장치의 제조방법
JP2008033284A (ja) 表示装置の作製方法
JP2006186332A (ja) 半導体装置の作製方法
JP2008034832A (ja) 表示装置の作製方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130206

Termination date: 20200704

CF01 Termination of patent right due to non-payment of annual fee