CN101030526B - 制造半导体装置的方法 - Google Patents

制造半导体装置的方法 Download PDF

Info

Publication number
CN101030526B
CN101030526B CN2007100844217A CN200710084421A CN101030526B CN 101030526 B CN101030526 B CN 101030526B CN 2007100844217 A CN2007100844217 A CN 2007100844217A CN 200710084421 A CN200710084421 A CN 200710084421A CN 101030526 B CN101030526 B CN 101030526B
Authority
CN
China
Prior art keywords
layer
substrate
organic compound
light
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007100844217A
Other languages
English (en)
Other versions
CN101030526A (zh
Inventor
神保安弘
森末将文
木村肇
山崎舜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN101030526A publication Critical patent/CN101030526A/zh
Application granted granted Critical
Publication of CN101030526B publication Critical patent/CN101030526B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Recrystallisation Techniques (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种使用剥离方法的半导体装置和显示装置的制造技术,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。此外,本发明提供一种更可靠的半导体装置和显示装置的高产量制造技术且未使用于制造的设备和方法复杂化。根据本发明,在具有透光性的第一基板上形成包含光催化剂物质的有机化合物层,在包含光催化剂物质的有机化合物层上形成元件层,用穿过第一基板的光照射包含光催化剂物质的有机化合物层,并且从第一基板剥离元件层。

Description

制造半导体装置的方法
技术领域
本发明涉及一种制造半导体装置的方法。
背景技术
近些年,个体识别技术已经引起关注。例如,有一种用于生产和管理的技术,其中各个物体被赋予ID(个体识别代码)以确认信息如该物体的历史。首先,能发送和接收数据而无需接触的半导体装置的发展已经获得进展。这种半导体装置,特别是,RFID(无线射频识别)标签(也称为ID标签、IC标签、IC芯片、RF(无线射频)标签、无线标签、电子标签或无线芯片)已经开始用于公司和市场等。
许多这种半导体装置都具有使用半导体基板如Si基板(也称为IC(集成电路)芯片)的电路和天线,该IC芯片包括记忆电路(也称为存储器)或控制电路等。
另外,已经发展了半导体装置如液晶显示装置和电致发光显示装置,其中在玻璃基板上集成薄膜晶体管(下文中也称为TFT)。在这些半导体装置中,均使用形成薄膜的技术在玻璃基板上形成薄膜晶体管,并且在由薄膜晶体管组成的各种电路上形成作为显示元件的液晶元件或发光元件(电致发光元件,下文中也称为EL元件),以使该装置用作半导体装置。
在这些半导体装置的制造方法中,为了降低制造成本,已经使用了一种将在玻璃基板上制造的元件、外围电路等转移至便宜的基板如塑料基板的方法(例如,参见参考文献1:日本公布的专利申请No.2002-26282)。
发明内容
然而,存在一个问题:在待转移的元件层中元件可能会破损,这是因为由于形成元件的薄膜间的低粘合性而使元件层不能很好地从玻璃基板上剥离下来。换句话说,难以在保留元件剥离前形状和性能的良好状态下转移元件层。
考虑到上述问题形成本发明。本发明提供一种利用剥离方法的半导体装置和显示装置的制造技术,其中转移过程能在保留元件剥离前形状和性能的良好状态下进行。因此,本发明的目的是提供一种更可靠的半导体装置和显示装置的高产量制造技术且未使用于制造的设备和方法复杂化。
根据本发明,当在基板上形成元件层时,在基板和元件层之间提供包含具有光催化剂功能的物质(下文中也称为光催化剂物质)的有机化合物层。光催化剂物质吸收光,从而光催化剂物质被光激活。活化能作用在周围的有机化合物上,并因此改变和修改有机化合物的性质。换句话说,通过激活的光催化剂物质的能量(氧化性),该有机化合物的碳-氢键和碳-碳键被分离,一部分有机化合物变成二氧化碳和水,并脱气。所以,包含光催化剂物质的有机化合物层变得粗糙并且被分开(分割)成为在层中的元件层侧和基板侧。从而,元件层可以从基板上剥离下来。
根据本发明,通过在有机化合物层中分散光催化剂物质,有机化合物被光催化剂物质的光催化剂作用分解(分裂),使得有机化合物层变粗糙,从而从基板上剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,就不存在在剥离过程中在层间界面剥离膜而破损元件,并且不以良好形状转移元件的问题。在本说明书中,“良好形状”指保留剥离前形状且不引起在外表上损坏如膜剥离或剩余部分的状态,或保留剥离前的性质且不降低元件导电特性或可靠性的状态。同样在本说明书中,“转移”指从第一基板上剥离在第一基板上形成的元件层,并将其转换至第二基板上。换句话说,它也指提供有元件层的地方被移动到另一基板。
在本发明中,在用光照射光催化剂物质后可以附着上待转移的挠性对基板,或者在元件层附着上待转移的基板后可以用光照射光催化剂物质。
注意:本发明中,“半导体装置”指可以利用半导体性质工作的一般装置。根据本发明,可以制造包括包含半导体元件(如晶体管或二极管)的电路的装置或半导体装置如处理器芯片。
本发明可以用于显示装置,即具有显示功能的装置。使用本发明的显示装置按其类别包括TFT连接到发光元件的发光显示装置,其中在电极间插入含有机材料、无机材料或有机和无机材料混合物的显示出称为电致发光(下文中也称为“EL”)的光发射的层,和使用包括作为显示元件的液晶材料的液晶元件的液晶显示装置等。本发明中,“显示装置”指具有显示元件(如液晶元件或发光元件)的装置。注意:显示装置也包括显示面板本身,其在基板上形成许多像素,包括显示元件如液晶元件或EL元件,和/或驱动像素的外围驱动电路。而且,可以包括挠性印制电路(FPC)或与显示面板(如IC、电阻元件、电容元件、感应器或晶体管)相连的印制插线板(PWB)。这种显示装置还可以包括光学片如起偏振片或推迟板。而且,可以包括背光(其可以包括光导向板、棱镜片、扩散片、反射片和光源(如LED或冷阴极管))。
注意:显示元件或显示装置可以是各种模式并且可以包括各种元件。例如,存在通过电磁作用改变其对比的显示介质,如EL元件(如有机EL元件、无机EL元件或含有机和无机材料的EL元件)、电子发射元件、液晶元件、电子墨水、栅光阀(GLV)、等离子体显示器(PDP)、数字微镜面装置(DMD)、压电陶瓷显示器和碳纳米管。另外,使用EL元件的显示装置包括EL显示器;使用电子发射元件的显示装置包括场致发射显示器(FED)、表面传导电子发射显示器(SED)等;使用液晶元件的显示装置包括液晶显示器、透射液晶显示器、半透射液晶显示器和反射液晶显示器;和使用电子墨水的显示装置包括电子纸张。
本发明的一个特征是一种制造半导体装置的方法,其步骤包括在具有光透射性质的第一基板上形成包含光催化剂物质的有机化合物层;在包含光催化剂物质的有机化合物层上形成元件层;用穿过第一基板的光照射包含光催化剂物质的有机化合物层;和从第一基板上分离元件层。
本发明的一个特征是一种制造半导体装置的方法,其步骤包括在具有光透射性质的第一基板上形成包含光催化剂物质的有机化合物层;在包含光催化剂物质的有机化合物层上形成绝缘层;在绝缘层上形成元件层;用穿过第一基板的光照射包含光催化剂物质的有机化合物层;和从第一基板上分离元件层和绝缘层。
本发明的一个特征是一种制造半导体装置的方法,其步骤包括在具有光透射性质的第一基板上形成包含光催化剂物质的有机化合物层;在包含光催化剂物质的有机化合物层上形成元件层;用穿过第一基板的光照射包含光催化剂物质的有机化合物层;将第二基板附着在元件层上;和将元件层从第一基板分离至第二基板。
本发明的一个特征是一种制造半导体装置的方法,其步骤包括在具有光透射性质的第一基板上形成包含光催化剂物质的有机化合物层;在包含光催化剂物质的有机化合物层上形成绝缘层;在绝缘层上形成元件层;用穿过第一基板的光照射包含光催化剂物质的有机化合物层;将第二基板附着在元件层上;和将元件层和绝缘层从第一基板分离至第二基板。
本发明的一个特征是一种制造半导体装置的方法,其步骤包括在具有光透射性质的第一基板上形成包含光催化剂物质的有机化合物层;在包含光催化剂物质的有机化合物层上形成元件层;用穿过第一基板的光照射包含光催化剂物质的有机化合物层;将第二基板附着在元件层上;将元件层从第一基板分离至第二基板;和通过粘合层将元件层附着在第三基板上。
本发明的一个特征是一种制造半导体装置的方法,其步骤包括在具有光透射性质的第一基板上形成包含光催化剂物质的有机化合物层;在包含光催化剂物质的有机化合物层上形成绝缘层;在绝缘层上形成元件层;用穿过第一基板的光照射包含光催化剂物质的有机化合物层;将第二基板附着在元件层上;将元件层和绝缘层从第一基板分离至第二基板;和通过粘合层将元件层附着在第三基板上。
在上述结构中,在从第一基板分离元件层后,附着在元件层侧的第三基板可以由不会透射激活元件层中剩余光催化剂物质的波长的光的材料形成。另外,当第二基板和第三基板是挠性基板或树脂膜等时,可以制造具有挠性的半导体装置或显示装置。
在本发明中,通过将光催化剂物质分散在有机化合物层中,有机化合物被光催化剂物质的光催化剂作用分解(分裂)并使有机化合物层变粗糙,从而从基板剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,元件层可以容易地且自由地以良好形状状态转移至各种类型的基板上,且在剥离过程中不会破损元件。
根据本发明,可以利用剥离方法来制造半导体装置和显示装置,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。因此,可以以高产量制造更可靠的半导体装置和显示装置且未使用于制造的设备和方法复杂化。
附图说明
在附图中:
图1A至1D显示了本发明的一个方面;
图2A至2D显示了本发明的一个方面;
图3A至3D显示了本发明的一个方面;
图4A至4D显示了本发明的一个方面;
图5A至5C显示了本发明的一个方面;
图6A至6D显示了根据本发明一个方面的显示装置的制造方法;
图7A至7D显示了根据本发明一个方面的显示装置的制造方法;
图8A和8B均显示了根据本发明一个方面的显示装置的制造方法;
图9A至9C显示了根据本发明一个方面的显示装置的制造方法;
图10A和10B显示了根据本发明一个方面的显示装置;
图11A至11C显示了根据本发明一个方面的显示装置的制造方法;
图12A至12C显示了根据本发明一个方面的显示装置的制造方法;
图13A至13C显示了根据本发明一个方面的显示装置的制造方法;
图14A和14B是根据本发明一个方面的显示装置的顶视图和横截面图;
图15A和15B是根据本发明一个方面的显示装置的顶视图和横截面图;
图16是根据本发明一个方面的半导体装置的横截面图;
图17是根据本发明一个方面的半导体装置的横截面图;
图18A至18D均显示了可应用至本发明的发光元件的结构;
图19A至19F均显示了可应用至根据本发明一方面的显示装置的像素的结构;
图20A至20C均是根据本发明一个方面的显示装置的横截面图;
图21A和21B显示了可应用本发明的电子装置;
图22是显示根据本发明一方面的EL显示模块的结构实例的横截面图;
图23A和23B均是显示根据本发明一方面的液晶显示模块的结构实例的横截面图;
图24是具有可应用本发明的电子装置的主要结构的框图;
图25A和25B显示了可应用本发明的电子装置;
图26A至26E均显示了可应用本发明的电子装置;
图27A至27C是可应用本发明的显示装置的顶视图;
图28A和28B是可应用本发明的显示装置的顶视图;
图29A至29G均显示了可应用本发明的半导体装置;
图30A和30B显示了可应用至本发明的背光;
图31A和31B显示了可应用至本发明的背光;
图32A至32C显示了可应用至本发明的背光;
图33A和33B显示了可应用至本发明的背光;
图34A和34B显示了可应用至本发明的背光;
图35A和35B显示了可应用至本发明的背光;
图36显示了可应用至本发明的背光;
图37A至37C均显示了可应用至本发明的发光元件的结构;
图38A至38C均显示了可应用至本发明的发光元件的结构;和
图39是根据本发明一方面的显示装置的横截面图。
具体实施方式
下文中,将参照附图描述本发明的实施方式。注意:本发明可以在许多不同的方式中实现。容易理解的是:本领域的技术人员可以在不违背本发明的精神和范围下对在此公开的方式和细节以各种各样的方式进行修改。因此,应该注意:本发明不应解释为限制在下面描述的实施方式内。注意:附图中类似部分或具有类似功能的部分用相同的参考数字指示,从而省略对其进行的描述。
实施方式1
参照图1A至1D描述本发明的一种实施方式。
根据本发明,当在基板上形成元件层时,向基板和元件层之间提供包含具有光催化剂作用的物质(下文中也称为光催化剂物质)的有机化合物层。光催化剂物质吸收光,因此光催化剂物质被光激活。活化能作用在周围的有机化合物上,并因此改变和修改有机化合物的性质。换句话说,通过激活的光催化剂物质的能量(氧化性),该有机化合物的碳-氢键和碳-碳键被分离,一部分有机化合物变成二氧化碳和水,并脱气。所以,包含光催化剂物质的有机化合物层变得粗糙并且被分开(分割)成为在层中的元件层侧和基板侧。从而,元件层可以从基板上剥离下来。
根据本发明,通过在有机化合物层中分散光催化剂物质,有机化合物被光催化剂物质的光催化剂作用分解(分裂),使得有机化合物层变粗糙,从而从基板上剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,就不存在在剥离过程中在层间界面剥离膜和破损元件,并且不以良好形状转移元件的问题。在本说明书中,“良好形状”指保留剥离前形状和不引起在外表上损坏如膜剥离或剩余部分的状态,或保留剥离前的性质且不降低元件电特性或可靠性的状态。同样在本说明书中,“转移”指从第一基板上剥离在第一基板上形成的元件层,并将其转换至第二基板上。换句话说,也指将提供有元件层的位置移动到另一基板。
在图1A至1D中,向第一基板70和元件层73之间提供包含光催化剂物质的有机化合物层72。作为第一基板70,可以选择适合的基板,其适合制造过程中的条件,换句话说,其能经受形成包括在元件层73或元件如显示元件(发光元件(如有机EL元件或无机EL元件)或液晶显示元件)中的薄膜晶体管的处理(如热处理)。有机化合物层72中包含一种光催化剂物质71。该光催化剂物质可以具有任何形状如粒状、柱状、针状或板状,并且光催化剂物质的多个颗粒聚集在一起并形成作为一个单体的集合。
下文中,描述一个形成包含光催化剂物质的有机化合物层72的例子。光催化剂物质71分散在含有机化合物的溶液中。可以搅拌该溶液以使光催化剂物质71均匀地分散在含有机化合物的溶液中。溶液的粘度可以确定为合适,以获得作为一层的所需厚度,并保持流动性。有机化合物还具有保持粒状光催化剂物质的分散状态和保持混合物为层形状的作用。
通过湿法如印刷法使含有机化合物并在其中分散有光催化剂物质71的溶液附着在第一基板70上,再干燥使之固化,从而形成包含光催化剂物质的有机化合物层72。通过蒸发去除溶剂,在有机化合物层72中包括有机化合物和光催化剂物质71。光催化剂物质72因有机化合物而在包含光催化剂物质的有机化合物层72中均匀地分散并固定。
作为包含光催化剂物质的有机化合物层72的形成方法,可以使用能选择性地形成包含光催化剂物质的有机化合物层的液滴喷出(droplet-discharging)法或印刷法(如丝网印刷或胶版印刷)、涂覆法如旋涂法、浸渍法或滴涂器(dispenser method)法等。对包含光催化剂物质的有机化合物层72的膜厚度没有特别限制。而且,在包含光催化剂物质的有机化合物层中,虽然可以以任何比例包含光催化剂物质,但是优选以大于或等于10wt%并小于或等于90wt%的比例包含光催化剂物质。该比例可以确定为合适,由于其受到光催化剂物质的光催化剂作用性质、光照射强度或待分解的有机化合物的强度的影响。另外,对包含在有机化合物层中的光催化剂物质的形状没有特别限制。在有机化合物层中可以分散地包含比膜厚度小的微小光催化剂物质,或者可以用有机化合物覆盖或附着具有与膜厚度几乎相同尺寸的粒状光催化剂物质,其形成层的形状。而且,不需要所包含的光催化剂物质的尺寸一致,并且可以在有机化合物层中混合具有不同尺寸的许多光催化剂物质。
通过上述过程,在包含光催化剂物质的有机化合物层72上形成元件层73(图1A)。
此后,从透光的第一基板70侧,由光源76发射光77,并且光77穿过第一基板70,从而用光77照射光催化剂物质71。
对所使用的光无需特别限制,可以使用红外光、可见光和紫外光或其组合中的任一种。例如,可以使用从紫外灯、背光、卤素灯、金属卤化物灯、氙弧灯、碳弧灯、高压钠灯或高压汞灯射出的光。在这种情况下,为进行照射可以点亮灯光源所需的一段时间,或者为了照射可以多次发射光。
另外,也可以使用激光作为光。作为激光振荡器,可以使用能发射紫外光、可见光或红外光的激光振荡器。作为激光振荡器,可以使用受激准分子激光器如KrF受激准分子激光器、ArF受激准分子激光器、XeCl受激准分子激光器或Xe受激准分子激光器;气体激光器如He激光器、He-Cd激光器、Ar激光器、He-Ne激光器或HF激光器;使用掺杂Cr、Nd、Er、Ho、Ce、Co、Ti或Tm的晶体如YAG、GdVO4、YVO4、YLF或YAlO3的固态激光器;或半导体激光器如GaN激光器、GaAs激光器、GaAlAs激光器或InGaAsP激光器。至于固态激光器,优选使用基波的第一至第五谐波。为了调整从激光振荡器射出的激光的形状或路径,可以提供包括快门、反射器如反射镜或半透明反射镜、柱面透镜或凸透镜等的光学系统。
要注意:激光照射可以通过移动基板选择性地进行或者通过光在X-和Y-轴方向内扫描来进行。这种情况下,对于光学系统优选使用多角镜或检流计镜。
另外,也可以使用由灯光源射出的光和激光的组合作为光。对于相对宽范围内进行曝光的区域可以使用灯来照射,而仅进行高清晰度曝光的区域可以用激光来照射。而且,以这种方式进行光照射,可以提高生产量。
光催化剂物质71吸收光77,并且光催化剂物质被光77激活。活化能作用在包括在包含光催化剂物质的有机化合物层72中的周围有机化合物上,并因此改变和修改有机化合物的性质。换句话说,通过激活的光催化剂物质的能量(氧化性),该有机化合物的碳-氢键和碳-碳键被分离,一部分有机化合物变成二氧化碳和水,并脱气。所以,包含光催化剂物质的有机化合物层72变得粗糙,从而它变成包含光催化剂物质的有机化合物层75。
在元件层73上提供第二基板78(图1B)。使用粘合层等可以将第二基板附着在元件层73上,或者可以在元件层上直接形成保护层如树脂层。
当向第二基板78侧施加力以转移元件层71时,包含光催化剂物质的有机化合物层75的强度降低,从而在元件层侧包含光催化剂物质的有机化合物层79b和在基板侧包含光催化剂物质的有机化合物层79a在层内彼此分开(分割)。因此,元件层71可以从第一基板70剥离。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物分解(分裂),使得层变粗糙,并从基板上剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状适当地转移至各种类型的基板。
因此,由于元件可被适当地转移至各种类型的基板,可以从更广范围的材料中选择用于基板的材料。另外,可以使用廉价材料用于基板,并且除了具有适于应用的各种功能外,还可以以低成本制造半导体装置。
包含在有机化合物层中的光催化剂物质的浓度在包含光催化剂物质的有机化合物层中可以是均匀的,或者可具有在膜厚度方向的梯度。不需要同时以混合状态形成光催化剂物质和有机化合物。首先光催化剂物质的颗粒可以点在基板上,然后可以形成有机化合物层以填充颗粒间的空间。或者,可以首先形成有机化合物层,然后可以将光催化剂物质引入有机化合物层(分散在有机化合物层上之后,其可以扩散进入有机化合物层)。在本发明中,可以以任何方法形成包含光催化剂物质的有机化合物层,只要在混合状态光催化剂物质和有机化合物作为一层形成。
在本说明书中,“高浓度”指光催化剂物质的出现概率或分布高。按照物质的性质,该浓度可以体积比、重量比或组份比等表示。
作为包含在有机化合物层中的光催化剂物质的混合状态的例子,图2A至2D和3A至3D显示了包含在有机化合物层中的光催化剂物质浓度在包含光催化剂物质的有机化合物层中具有在膜厚度方向上的梯度的情况。
图2A中显示的包含光催化剂物质的有机化合物层是本发明包含光催化剂物质的有机化合物层的一个例子。在第一基板70上,形成包括在其中混合光催化剂物质的区域85的有机化合物层86,并且在有机化合物层86上形成元件层73。在有机化合物层86中混合的光催化剂物质具有浓度梯度,并且光催化剂物质不均匀地存在于有机化合物层86中。在有机化合物层86和元件层73间的界面附近包括在其中混合光催化剂物质的区域85。因此,包含在有机化合物层86中的光催化剂物质的浓度在有机化合物层86和元件层73间的界面处最高。在其中混合光催化剂物质的区域85可以具有一种结构,其中在有机化合物层内部浓度以膜厚度方向向着元件层73逐渐地改变,与不混合光催化剂物质的区域无清晰界面。
用从第一基板70侧的光照射光催化剂物质,并且活化能分解有机化合物以形成强度降低的包含光催化剂物质的有机化合物层88。此后,将第二基板78附着在元件层73上,再从第一基板70上剥离元件层73(图2B至2D)。由于光催化剂物质使得有机化合物层变得粗糙是发生在混合光催化剂物质的区域87中,在元件层侧包含光催化剂物质的有机化合物层89b和在基板侧包含光催化剂物质的有机化合物层89a在层中彼此分开(分割)。
图3A中显示的包含光催化剂物质的有机化合物层是本发明包含光催化剂物质的有机化合物层的一个例子。在第一基板70上,形成包括在其中混合光催化剂物质的区域80的有机化合物层81,并且在有机化合物层81上形成元件层73。在有机化合物层81中混合的光催化剂物质具有浓度梯度,并且光催化剂物质不均匀地存在于有机化合物层81中。在有机化合物层81和元件层70间的界面附近包括在其中混合光催化剂物质的区域80。因此,包含在有机化合物层81中的光催化剂物质的浓度在有机化合物层81和第一基板70间的界面处最高。在其中混合光催化剂物质的区域80可以具有一种结构,其中在有机化合物层内部浓度以膜厚度方向向着元件层73逐渐地改变,与不混合光催化剂物质的区域无清晰界面。
用从第一基板70侧的光照射光催化剂物质,并且活化能分解有机化合物以形成强度降低的包含光催化剂物质的有机化合物层83。此后,将第二基板78附着在元件层73上,再从第一基板70上剥离元件层73(图3B至3D)。由于光催化剂物质使得有机化合物层变得粗糙是发生在混合光催化剂物质的区域82中,在元件层侧包含光催化剂物质的有机化合物层84b和在基板侧包含光催化剂物质的有机化合物层84a在层中彼此分开(分割)。
而且,可以向包含光催化剂物质的有机化合物层和元件层间提供绝缘层。在图4A至4D中,向包含光催化剂物质的有机化合物层72和元件层73间提供绝缘层90。绝缘层90可以防止杂质等污染元件层,而且,如果将可吸收或反射用于曝光的光的材料用作绝缘层90,绝缘层90可以阻挡发射至包含光催化剂物质的有机化合物层72的光。另外,从第一基板70剥离元件层73后,绝缘层90可被用作支撑和密封元件层73的基板。
可用于本发明的光催化剂物质优选为氧化钛(TiO2)、钛酸锶(SrTiO3)、硒化镉(CdSe)、钽酸钾(KTaO3)、硫化镉(CdS)、氧化锆(ZrO2)、氧化铌(Nb2O5)、氧化锌(ZnO)、氧化铁(Fe2O3)或氧化钨(WO3)等。用紫外光区域的光(具有400nm或更短,优选380nm或更短的波长)照射光催化剂物质可以产生光催化活性。
通过混合并熔化组成元素的盐可以形成包含含有多种金属的氧化物半导体的光催化剂物质。当需要去除溶剂时,可以进行烘烤和/或干燥。特别地,可以在预定温度(例如300℃或更高)下加热,并优选在含有氧气的气氛中加热。
通过这一热处理,光催化剂物质可以具有预定的晶体结构。例如,对于氧化钛(TiO2),光催化剂物质是锐钛矿型或金红石-锐钛矿混合型,并且锐钛矿型优先在低温相下形成。因此,如果光催化剂物质不具有预定的晶体结构,也可以被加热。
通过用过渡金属(如Pd、Pt、Cr、Ni、V、Mn、Fe、Ce、Mo或W)进一步掺杂光催化剂物质可以提高光催化活性,或者通过可见光区域的光(具有400nm至800nm的波长)可以产生光催化活性。这是因为过渡金属可以在具有宽带隙的活性光催化剂禁止带中形成一个新能级,并且可以将光吸收范围扩展至可见光区域。例如,为了掺杂可以使用受体型如Cr或Ni,给体型如V或Mn,两性型如Fe、Ce、Mo或W等。由于光的波长可以由如上述的光催化剂物质确定,光照射意味着照射具有这种波长的光以激活光催化剂物质。
另外,当光催化剂物质受热并在真空或氢回流下还原时,在晶体中产生氧缺位。无需以这种方法掺杂过渡金属,氧缺位可以起与电子给体相同的作用。特别,在使用溶胶-凝胶法时,由于最初存在氧缺位,不需要进行还原。通过用N2气等进行掺杂,可以形成氧缺位。
作为可以用于本发明的有机化合物,可以使用有机材料或有机材料和无机材料的混合材料。作为有机材料,可以使用树脂,如氰乙基纤维素基树脂、聚乙烯、聚丙烯、聚苯乙烯基树脂、有机硅树脂、环氧树脂或偏二氟乙烯等。另外,也可以使用耐热高分子材料如芳香族聚酰胺或聚苯并咪唑,或者硅氧烷树脂。硅氧烷树脂是包括Si-O-Si键的树脂。硅氧烷具有由硅(Si)和氧(O)键形成的骨架结构。作为取代基,使用至少含有氢的有机基团(例如,烷基或芳烃)。或者,可以使用氟基作为取代基。另外,作为取代基,也可以使用氟基和至少含有氢的有机基团二者。而且,也可以使用树脂材料,例如乙烯基树脂如聚乙烯醇或聚乙烯醇缩丁醛、酚醛树脂、酚醛清漆树脂、丙烯酸树脂、三聚氰胺甲醛树脂、氨基甲酸酯树脂或唑树脂(聚苯并噁唑)等。
作为在有机化合物中所含的无机材料,可以使用氧化硅、氮化硅、氧氮化硅、氮氧化硅、氮化铝(AlN)、氧氮化铝(A1ON)、氮氧化铝(AlNO)、氧化铝、氧化钛(TiO2)、BaTiO3、SrTiO3、PbTiO3、KNbO3、PbNbO3、Ta2O3、BaTa2O6、LiTaO3、Y2O3、Al2O3、ZrO2或ZnS,或者其它含无机材料的物质。
作为可在本发明中使用的含有机化合物的溶液的溶剂,可以适当地选择能形成具有可以溶解有机化合物材料并适用于形成有机化合物层的方法(各种类型的湿法)和所需膜厚度的粘度的溶液的溶剂。也可以使用有机溶剂等,当例如使用硅氧烷树脂作为有机化合物时,可以使用丙二醇一甲醚、丙二醇一甲醚醋酸酯(也称为PGMEA)或3-甲氧基-3-甲基-1-丁醇(也称为MMB)等。
根据本发明,利用剥离方法可以制造半导体装置和显示装置,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。因此,可以以高产量制造更可靠的半导体装置且未使用于制造的设备和方法复杂化。
实施方式2
参照附图,实施方式2将说明一个应用本发明转移过程的显示装置的结构例子。更具体地,将说明显示装置的结构是无源矩阵型。
显示装置包括在第一方向上延伸的第一电极层751a、751b和751c;覆盖在第一电极层751a、751b和751c上的电致发光层752;和在与第一方向垂直的第二方向上延伸的第二电极层753a、753b和753c(图5A)。在第一电极层751a、751b和751c和第二电极层753a、753b和753c间提供电致发光层752。另外,提供作用保护膜的绝缘层754以覆盖在第二电极层753a、753b和753c上。提供包括第一电极层751a、751b和751c、第二电极层753a、753b和753c、电致发光层752和绝缘层754的元件层以与基板758接触(图5B)。当考虑到相邻发光元件间在横向上的电场影响时,可以在每个发光元件中分开电致发光层752。
图5C是图5B的变形例子。提供包括第一电极层791a、791b和791c、电致发光层792、第二电极层793b和作为保护层的绝缘层794的元件层以与基板798接触。第一电极层可具有与图5C中第一电极层791a、791b和791c相似的锥形,或曲率半径连续改变的形状。使用液滴喷出法等可以形成与第一电极层791a、791b和791c相似的形状。通过这种具有曲率的曲面,绝缘层或在其上堆叠的导电层的覆盖是有利的。
另外,可以形成隔断墙(绝缘层)以覆盖第一电极层的端部。隔断墙(绝缘层)用作将一个发光元件与另一个发光元件分开的墙。图8A和8B均显示用隔断墙(绝缘层)覆盖第一电极层端部的结构。
在图8A所示的发光元件的例子中,形成具有锥形的隔断墙(绝缘层)775以覆盖第一电极层771a、771b和771c的端部。提供包括第一电极层771a、771b和771c、隔断墙(绝缘层)775、电致发光层772、第二电极层773b、绝缘层774和绝缘层776的元件层以与基板778接触。
图8B所示的发光元件的例子具有一种形状,其中隔断墙(绝缘层)765具有曲率,并且曲率半径连续改变。提供包括第一电极层761a、761b和761c、电致发光层762、第二电极层763b和绝缘层764的元件层以与基板768接触。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物被分解(分裂)使得层变粗糙,并从基板上剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状适当地转移至各种类型的基板。在元件层侧剥离包含光催化剂物质的有机化合物层后的残留层是包含光催化剂物质的有机化合物层759b、769b、779b和799b。
因此,由于元件可被转移至各种类型的基板上,可以从更广范围的材料中选择用于基板的材料。另外,廉价材料可以用于基板,并且除了具有适于应用的各种功能外,可以以低成本地制造半导体装置。
图6A至6D显示了图5A和5B所示的显示装置的制造方法。在图6A中,在第一基板750和第一电极751a、751b和751c间提供包含光催化剂物质的有机化合物层756。作为第一基板750,可以选择适当的基板,其适合制造方法中的各种条件,换句话说,其能经受形成包括在元件层中的显示元件的处理(如热处理)。有机化合物层756中包含光催化剂物质。
此后,从透光第一基板750侧,用从光源780射出的并穿过第一基板750的光781照射光催化剂物质(图6B)。
光催化剂物质吸收光781,从而光催化剂物质被光781激活。活化能作用在包括在包含光催化剂物质的有机化合物层756中的周围有机化合物上,并因此改变和修改有机化合物的性质。换句话说,通过激活的光催化剂物质的能量(氧化性),该有机化合物的碳-氢键和碳-碳键被分离,一部分有机化合物变成二氧化碳和水,并脱气。所以,包含光催化剂物质的有机化合物层756变得粗糙,从而它变为包含光催化剂物质的有机化合物层757。
在包含发光元件785的元件层的绝缘层754上提供第二基板758(图6C)。使用粘合剂等可以使第二基板758附着在元件层上,或者可在元件层上直接形成保护层如树脂层。
当向第二基板758侧施加力以转移包括发光元件785的元件层时,包含光催化剂物质的有机化合物层757的强度降低,从而在元件层侧包含光催化剂物质的有机化合物层759b和在基板侧包含光催化剂物质的有机化合物层759a在层内彼此分开(分割)。因此,包括发光层785的元件层可以从第一基板750剥离。
图7A至7D显示了应用本发明的无源矩阵型液晶显示装置的制造方法。在图7A中,第一基板1700和第二基板1710互相面对,液晶层1703插入其中,其中向第一基板1700提供包含光催化剂物质的有机化合物层1707、第一像素电极层1701a、1701b、1701c和用作取向膜的绝缘层1712,并且向第二基板1710提供用作取向膜的绝缘层1704、对电极1705和用作彩色滤光片的着色层1706。在第一基板1700和第一像素电极1701a、1701b、1701c间,提供包含光催化剂物质的有机化合物层1707。作为第一基板1700,可以选择适当的基板,其适合制造方法中的各种条件,换句话说,其能经受形成包括在元件层中的显示元件1713的处理(如热处理)。有机化合物层1707中包含光催化剂物质。
此后,从透光第一基板1700侧,用从光源780射出的并穿过第一基板1700的光781照射光催化剂物质(图6B)。
光催化剂物质吸收光781,从而光催化剂物质被光781激活。活化能作用在包括在包含光催化剂物质的有机化合物层1707中的周围有机化合物上,并因此改变和修改有机化合物的性质。换句话说,通过激活的光催化剂物质的能量(氧化性),该有机化合物的碳-氢键和碳-碳键被分离,一部分有机化合物变成二氧化碳和水,并脱气。所以,包含光催化剂物质的有机化合物层1707变得粗糙,从而它变成包含光催化剂物质的有机化合物层1708。
当向第二基板1710侧施加力以转移包括液晶显示元件1713的元件层时,包含光催化剂物质的有机化合物层1708的强度降低,从而在元件层侧包含光催化剂物质的有机化合物层1709b和在基板侧包含光催化剂物质的有机化合物层1709a在层内彼此分开(分割)。因此,包括液晶显示元件1713的元件层可以从第一基板1700剥离。
在从第一基板1700上剥离包括液晶显示元件1713的元件层后,将第三基板1711附着在元件层的包含光催化剂物质的有机化合物层1709a侧(图7D)。附着的第三基板1711可以由能阻挡激活在元件层中剩余的光催化剂物质的波长的光的材料形成。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物被分解(分裂)使得层变粗糙,并从基板上剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状适当地转移至各种类型的基板。
因此,由于元件可被转移至各种类型的基板上,可以从更广范围的材料中选择用于基板的材料。另外,廉价材料可以用于基板,并且除了具有适于应用的各种功能外,可以以低成本地制造半导体装置。
基板758、766、768和798可以是玻璃基板、挠性基板或石英基板等。挠性基板是可以弯曲的基板,如由聚碳酸酯、多芳基化合物或聚醚砜等形成的塑料基板。另外,可以使用膜(使用聚丙烯、聚酯、乙烯树脂、聚氟乙烯或氯乙烯等形成)、纤维材料纸或带基薄膜(聚酯、聚酰胺、蒸发的无机膜或纸等)等。
在该实施方式中所示的第一电极层、第二电极层和电致发光层可以通过使用在其它实施方式中所述的任何材料和方法来形成。
作为隔断墙(绝缘层)765和775,可以使用氧化硅、氮化硅、氧氮化硅、氧化铝、氮化铝、氧氮化铝或其它无机绝缘材料;丙烯酸、甲基丙烯酸或其衍生物;耐热高分子材料如聚酰亚胺、芳族聚酰胺或聚苯并咪唑;或硅氧烷树脂。或者,可以使用下面的树脂材料:乙烯基树脂如聚乙烯醇或聚乙烯醇缩丁醛、环氧树脂、酚醛树脂、酚醛清漆树脂、丙烯酸树脂、三聚氰胺甲醛树脂或氨基甲酸酯树脂等。而且,可以使用有机材料如苯并环丁烯、聚对亚苯基二甲基、氟化亚芳基醚或聚酰亚胺;或含水溶性均聚物和水溶性共聚物的复合材料等。作为形成方法,可以使用气相生长法如等离子体CVD法或热CVD法,或者溅射法。也可以使用液滴喷出法或印刷法(形成图案的方法,如丝网印刷或胶版印刷)。也可以使用由涂覆法等获得的有机膜或无机膜(SOG膜等)。
在通过液滴喷出法喷出成分形成导电层或绝缘层等后,可以通过用压力挤压使其表面平面化以增加平面性。作为挤压方法,可以通过辊型物体扫描表面减小表面的凹陷和凸起,或者可以用平板型物体挤压表面。也可以在挤压的同时进行热处理。或者,在用溶剂等软化或熔化表面后,可以用气刀去除表面的凹陷和凸起。也可以使用CMP法来抛光表面。当凹陷和凸起是由液滴喷出法生成时,可以在平面化表面时使用该方法。
根据本发明,利用剥离方法可以制造半导体装置和显示装置,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。因此,可以以高产量制造更可靠的半导体装置且未使用于制造的设备和方法复杂化。
实施方式3
实施方式3将描述由本发明的转移过程形成的具有晶体管的半导体装置。
在图9A至9C中,在透光基板500上的透光绝缘层512和包含晶体管510a和510b的元件层间,提供包含光催化剂物质的有机化合物层516。作为第一基板500和绝缘层512,可以选择适当的基板,其适合制造方法中的各种条件,换句话说,其能经受形成包括在元件层中的显示元件的处理(如热处理)。有机化合物层516中包含光催化剂物质。
此后,从透光第一基板500侧,用从光源580射出的并穿过第一基板500和绝缘层512的光581照射光催化剂物质(图9B)。
光催化剂物质吸收光581,从而光催化剂物质被光581激活。活化能作用在包括在包含光催化剂物质的有机化合物层516中的周围有机化合物上,并因此改变和修改有机化合物的性质。换句话说,通过激活的光催化剂物质的能量(氧化性),该有机化合物的碳-氢键和碳-碳键被分离,一部分有机化合物变成二氧化碳和水,并脱气。所以,包含光催化剂物质的有机化合物层516变得粗糙,从而它变成包含光催化剂物质的有机化合物层517。
在包含晶体管510a和510b的元件层的绝缘层509和绝缘层511上提供第二基板518(图9C)。使用粘合剂等可以使第二基板518附着在元件层上,或者可在元件层上直接形成保护层如树脂层。
当向第二基板518侧施加力以转移包括晶体管510a和510b的元件层时,包含光催化剂物质的有机化合物层517的强度降低,从而在元件层侧包含光催化剂物质的有机化合物层519b和在基板侧包含光催化剂物质的有机化合物层519a在层内彼此分开(分割)。因此,包括晶体管510a和510b的元件层可以从第一基板500剥离。
图9A至9C显示了晶体管510a和510b是通道蚀刻型反向交错晶体管的例子。在图9A至9C中,晶体管510a和510b包括栅电极层502a、502b、栅绝缘层508、半导体层504a、504b、具有一种导电率的半导体层503a、503b、503c、503d、和用作源或漏电极层的配线层505a、505b、505c、505d。
形成半导体层的材料可以是使用由硅烷或锗烷为代表的半导体材料气体通过气相生长法或溅射法形成的非晶态半导体(下文也称为“AS”)、使用光能或热能晶化非晶态半导体而形成的多晶半导体或半非晶态半导体(也称为微晶并且下文中也称为“SAS”)等。
SAS是具有在非晶态和晶态(包括单晶和多晶)结构间的中间结构和自由能稳定的第三状态的半导体。而且,SAS包括具有近程次序和点阵畸变的晶态区域。SAS通过含硅的气体的辉光放电分解(等离子体CVD)而形成。作为含硅的气体,可以使用SiH4,另外,也可以使用Si2H6、SiH2Cl2、SiHCl3、SiCl4或SiF4等。而且,F2和GeF4可以混合。含硅的气体可以用H2、或H2和一种或多种稀有气体元素He、Ar、Kr和Ne稀释。使之含有稀有元素如氦、氩、氪或氖以促进点阵畸变,从而可以获得具有增强稳定性的有利的SAS。使用氢基气体形成的SAS层可以在使用氟基气体形成的作为半导体膜的SAS层上堆叠。
一般可以氢化非晶硅作为非晶态半导体的例子,而一般可以多晶硅等作为晶态半导体的例子。多晶硅(多晶态硅)包括使用多晶硅作为主要材料形成的所谓的高温多晶硅,其在800℃或更高的处理温度下形成;使用多晶硅作为主要材料形成的所谓的低温多晶硅,其在600℃或更低的处理温度下形成;或通过加入促进晶化的元素而晶化的多晶硅等。无需说也可以使用半非晶态半导体或其部分含晶相的半导体,如上所述。
在晶态半导体膜用作半导体膜的情况下,可以通过已知方法如激光晶化法、热晶化法和使用促进晶化的元素如镍的热晶化法来形成晶态半导体膜。而且,可以通过激光照射来晶化微晶半导体即SAS以提高结晶度。在不使用促进晶化的元素的情况下,在用激光束照射非晶态半导体膜前,在氮气气氛下于500℃加热非晶态半导体膜一小时以放出氢,使得非晶态半导体膜中的氢浓度小于或等于1×1020原子/cm3。这是因为,如果非晶态半导体膜含有大量氢,非晶态半导体膜可能被激光束照射损坏。可以使用加热炉、激光照射或从灯射出的光的照射(也称为灯光退火)等来进行用于晶化的热处理。作为加热方法,可以使用RTA法如GRTA(气体快速加热退火)法或LRTA(灯光快速加热退火)法。GRTA法是通过高温气体进行热处理的方法,而LRTA法是通过从灯发射的光进行热处理的方法。
在非晶态半导体层晶化以形成晶态半导体层的晶化过程中,可以向非晶态半导体层中加入促进晶化的元素(也称为催化元素或金属元素),并且晶化可以通过热处理(在550至750℃下3分钟至24小时)来进行。作为促进硅晶化的金属元素,可以使用一种或多种金属如铁(Fe)、镍(Ni)、钴(Co)、钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)、铂(Pt)、铜(Cu)和金(Au)。
用于向非晶态半导体膜引入金属元素的方法没有特别限制,只要该方法可使得金属元素存在于非晶态半导体膜的表面或内部。例如,可以使用溅射法、CVD法、等离子体处理法(也包括等离子体CVD法)、吸附法或应用金属盐溶液的方法。在它们中,使用溶液的方法是简单且有利的,因为可以容易地控制金属元素浓度。此时,优选通过在氧气气氛中用UV光照射、热氧化法或用含羟基或过氧化氢的臭氧水处理等来形成氧化物膜,使得非晶态半导体膜的表面湿润性提高,并且在非晶态半导体膜的整个表面上散布水溶液。
为了从晶态半导体层中去除或减少促进晶化的元素,形成含杂质元素的半导体层以与晶态半导体层接触,并且使其用作吸气设备(gettering sink)。作为杂质元素,可以使用给予n-型的杂质元素、给予p-型的杂质元素或稀有气体元素等。例如,可以使用一种或多种元素如磷(P)、氮(N)、砷(As)、锑(Sb)、铋(Bi)、硼(B)、氦(He)、氖(Ne)、氩(Ar)、氪(Kr)和氙(Xe)。在含促进晶化的元素的晶态半导体层上形成含稀有气体元素的半导体层,并且进行热处理(在550至750℃温度下3分钟至24小时)。在晶态半导体层中所包含的促进晶化的元素移动至含稀有气体元素的半导体层中,并去除或减少晶态半导体层中所包含的促进晶化的元素。之后,除去起吸气设备作用的含稀有气体的半导体层。
通过相对地扫描激光束和半导体膜,可以进行激光照射。而且,在激光束照射中,可以形成记号以高精度地与光束重叠,或控制激光束照射起始和结束的位置。在形成非晶态半导体膜的同时可以在基板上形成记号。
在激光束照射的情况下,可以使用连续波长振荡型激光束(CW激光束)或脉冲振荡型激光束(脉冲激光束)。作为可在此使用的激光束,可以使用从一种或多种气体激光器如Ar激光器、Kr激光器或受激准分子激光器射出的激光束;使用单晶YAG、YVO4、镁橄榄石(Mg2SiO4)、YAlO3或GdVO4,或掺杂一种或多种Nd、Yb、Cr、Ti、Ho、Er、Tm和Ta作为掺杂剂的多晶(陶瓷)YAG、Y2O3、YVO4、YAlO3或GdVO4作为介质的激光;玻璃激光;红宝石激光;变石激光;Ti:蓝宝石激光;铜蒸气激光;和金蒸气激光。通过用这种激光束的基波或基波的第二谐波至第四谐波激光束来照射,可以获得大颗粒晶体。例如,可以使用Nd:YVO4激光束(基波:1064nm)的第二谐波(532nm)或第三谐波(355nm)。至于Nd:YVO4激光,可以进行连续波长振荡或脉冲振荡。在连续波长振荡的情况下,激光束的功率密度需要为大约0.01至100MW/cm2(优选0.1至10MW/cm2)。然后,以大约10至2000cm/sec的扫描速率进行照射。
而且,使用单晶YAG、YVO4、镁橄榄石(Mg2SiO4)、YAlO3或GdVO4,或掺杂一种或多种Nd、Yb、Cr、Ti、Ho、Er、Tm和Ta作为掺杂剂的多晶(陶瓷)YAG、Y2O3、YVO4、YAlO3或GdVO4作为介质的激光;Ar离子激光;或Ti:蓝宝石激光可以进行连续波长振荡。另外,通过Q-转换操作或振荡型同步等,在大于或等于10MHz重复速率下的脉冲振荡也是可以的。通过在大于或等于10MHz重复速率下的激光束的脉冲振荡,在用激光束熔化半导体膜后且膜固化前用下一个脉冲照射半导体膜。因此,不同于使用较低重复速率的脉冲激光的情况,固-液界面可以在半导体膜中连续地移动,并且可以获得在扫描方向上连续生长的晶体颗粒。
陶瓷(多晶)用作介质使得介质在短时间内低成本地形成任意形状。虽然通常在单晶中使用直径为几mm且长度为几十mm的圆柱形介质,但在陶瓷情况下可以形成较大介质。
由于介质中直接有助于光发射的掺杂剂如Nd或Yb的浓度难以同时在单晶和多晶中显著改变,通过增加掺杂剂浓度而改进激光束输出具有一定程度的限制。然而,在陶瓷情况下,可以期待输出大幅改善,因为介质的尺寸相对单晶可以显著增加。
而且,在陶瓷情况下,可以容易地形成具有平行六面体形或长方体形的介质。当使用具有这种形状的介质且振荡光在介质中以锯齿形前进时,振荡光路可以更长。因此,放大率增加且具有光输出的振荡是可能的。由于从具有这种形状的介质中射出的激光束当被射出时具有四边形的横截面,线性束相对圆形束可以容易地成型。以这种方式射出的激光束通过用光学系统成型;因此,可以容易地获得具有小于或等于1mm短边和几mm至几m长边的线性束。另外,通过用激发光均匀地照射介质,线性束在长边方向上具有均匀的能量分布。而且,可以以相对半导体膜的入射角θ(0<θ<90°)用激光束照射半导体膜,从而可以防止激光束干扰。
通过用该线性束照射半导体膜,半导体膜的整个表面可以更均匀地退火。当需要从线性束的一端到另一端均匀退火时,可以向两端提供缝隙以屏护能量削弱的部分。
当使用由此获得的具有均匀强度的线性束来使半导体膜退火并且该半导体膜用于制造显示装置时,显示装置具有有利且均匀的特性。
也可以在惰性气体气氛如稀有气体或氮气中用激光束照射半导体膜。从而,用激光照射可以防止半导体膜的表面粗糙,并且可以防止由于界面状态密度变化而导致的阈电压变化。
非晶态半导体膜可以通过热处理和激光束照射的组合而晶化,或者热处理或激光束照射可以进行多次。
栅电极层可以通过溅射法、蒸发法或CVD法等形成。栅电极层可以使用元素如钽(Ta)、钨(W)、钛(Ti)、钼(Mo)、铝(Al)、铜(Cu)、铬(Cr)或钕(Nd)或者含这些元素作为主组分的合金材料或化合物材料来形成。而且,作为栅电极层,可以使用以掺杂杂质元素如磷的多晶硅膜为代表的半导体膜,也可以使用AgPdCu合金。另外,栅电极层可以是单层或堆叠层。
在该实施方式中,形成栅电极层以具有锥形;然而,本发明不受此限制。栅电极层可以具有堆叠层结构,其中仅一层具有锥形而其它层通过各向异性蚀刻可以具有垂直侧表面。锥角在堆叠栅电极层中可以不同或相同。由于锥形,改善了在其上堆叠的膜的覆盖并减少了缺陷,从而提高了可靠性。
为了形成源电极层或漏电极层,通过PVD法、CVD法或蒸发法等形成导电膜,并且将导电膜蚀刻成为所需形状。而且,通过液滴喷出法、印刷法、滴涂器法或电解电镀法等在预定位置上可以选择性地形成导电膜。也可以使用逆流法或波纹装饰法。使用元素如Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W、Al、Ta、Mo、Cd、Zn、Fe、Ti、Si、Ge、Zr或Ba或其合金或金属氮化物来形成源电极层或漏电极层。另外,也可以使用这些材料的堆叠层结构。
作为绝缘层512、511、509,可以使用氧化硅、氮化硅、氧氮化硅、氧化铝、氮化铝、氧氮化铝或其它无机绝缘材料;丙烯酸、甲基丙烯酸或其衍生物;耐热高分子材料如聚酰亚胺、芳族聚酰胺或聚苯并咪唑;或硅氧烷树脂。或者,可以使用下面的树脂材料:乙烯基树脂如聚乙烯醇或聚乙烯醇缩丁醛、环氧树脂、酚醛树脂、酚醛清漆树脂、丙烯酸树脂、三聚氰胺甲醛树脂或氨基甲酸酯树脂等。而且,可以使用有机材料如苯并环丁烯、聚对亚苯基二甲基、氟化亚芳基醚或聚酰亚胺;或含水溶性均聚物和水溶性共聚物的复合材料等。作为形成方法,可以使用气相生长法如等离子体CVD法或热CVD法,或者溅射法。也可以使用液滴喷出法或印刷法(形成图案的方法,如丝网印刷或胶版印刷)。也可以使用由涂覆法等获得的有机膜或无机膜(SOG膜等)。
在通过液滴喷出法喷出成分形成导电层或绝缘层等后,可以通过用压力挤压使其表面平面化以增加平面性。作为挤压方法,可以通过辊型物体扫描表面减小表面的凹陷和凸起,或者可以用平板型物体挤压表面。也可以在挤压的同时进行热处理。或者,在用溶剂等软化或熔化表面后,可以用气刀去除表面的凹陷和凸起。也可以使用CMP法来抛光表面。当凹陷和凸起是由液滴喷出法生成时,可以在平面化表面中使用该方法。
在像素部分中薄膜晶体管的结构不受该实施方式的限制,并且可以使用形成一个通道形成区域的单栅结构、形成两个通道形成区域的双栅结构或形成三个通道形成区域的三栅结构。而且,在外围驱动电路区域的薄膜晶体管也可以使用单栅结构、双栅结构或三栅结构。
本发明不限于制造该实施方式中所示的薄膜晶体管的方法,也可以应用至顶栅型(共面型和交错型)、底栅型(反共面型)或具有两个放置在高于和低于通道形成区域的用栅绝缘膜插入其中的栅电极层的两栅型,或其它结构。
虽然该实施方式举例说明了用光照射光催化剂物质后附着具有挠性的对基板(也称为挠性对基板)的例子,但可以在把待转移的基板附着于元件层后用光照射光催化剂物质。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物被分解(分裂)使得层变粗糙,并从基板上剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状适当地转移至各种类型的基板。
因此,由于元件可被转移至各种类型的基板上,可以从更广范围的材料中选择用于基板的材料。另外,廉价材料可以用于基板,并且除了具有适于应用的各种功能外,可以以低成本地制造半导体装置。
实施方式4
实施方式4将描述具有不同于实施方式2的结构的显示装置。具体地,显示了有源矩阵型显示装置。
图10A显示了该显示装置的顶视图,图10B显示了图10A中沿E-F线的横截面图。另外,在图10A中,省略且未说明但提供了电致发光层532、第二电极层533和绝缘层534,如图10B所示。
在矩阵中提供了在第一方向延伸的第一配线和在垂直于第一方向的第二方向延伸的第二配线。第一配线与晶体管521的源电极或漏电极相连,并且第二配线与晶体管521的栅电极相连。第一电极层531与晶体管521的源电极或漏电极相连,但不与第一配线相连。通过第一电极层531、电致发光层532和第二电极层533的堆叠结构提供发光元件530。在相连的发光元件间提供隔断墙(绝缘层)528。在第一电极层和隔断墙(绝缘层)528上,堆叠电致发光层532和第二电极层533。在第二电极层533上提供绝缘层534即保护层。另外,图9A至9C中所示的反向交错型薄膜晶体管用作晶体管521(图10B和11A)。
在图10B所示的显示装置中,在用有机化合物层539b插入其中的第三基板540上提供元件层,该元件层包括绝缘层523、526、527、528和晶体管521。
图11A至11C显示了图10A和10B所示显示装置的制造方法。在图11A至11C中,在第一基板520和包括晶体管521和发光元件530的元件层间提供包含光催化剂物质的有机化合物层524。作为第一基板520,可以选择适当的基板,其适合制造方法中的各种条件,换句话说,其能经受形成包括在元件层中的显示元件的处理(如热处理)。有机化合物层524中包含光催化剂物质。
此后,从透光第一基板520侧,用从光源580射出的并穿过第一基板520的光781照射光催化剂物质(图11B)。
光催化剂物质吸收光581,从而光催化剂物质被光581激活。活化能作用在包括在包含光催化剂物质的有机化合物层524中的周围有机化合物上,并因此改变和修改有机化合物的性质。换句话说,通过激活的光催化剂物质的能量(氧化性),该有机化合物的碳-氢键和碳-碳键被分离,一部分有机化合物变成二氧化碳和水,并脱气。所以,包含光催化剂物质的有机化合物层524变得粗糙,从而它变成包含光催化剂物质的有机化合物层537。
在包括晶体管521和发光元件530的元件层的绝缘膜534上提供第二基板538(图11C)。使用粘合剂等可以使第二基板538附着在元件层上,或者可在元件层上直接形成保护层如树脂层。
当向第二基板538侧施加力以转移包括晶体管521和发光元件530的元件层时,包含光催化剂物质的有机化合物层537的强度降低,从而在元件层侧包含光催化剂物质的有机化合物层539b和在基板侧包含光催化剂物质的有机化合物层539a在层内彼此分开(分割)。因此,包括晶体管521和发光元件530的元件层可以从第一基板520剥离。
图12A至12C显示了一种应用本发明的有源矩阵型液晶显示装置的制造方法。在图12A至12C中,第一基板550和第二基板568互相面对,液晶层562插入其间,其中包含光催化剂物质的有机化合物层566、具有多栅结构的晶体管551、像素电极层560和用作取向膜的绝缘层561提供给第一基板550,用作取向膜的绝缘层563、对电极564和用作彩色滤光片的着色层565提供给第二基板568。在第一基板550与包括晶体管551和像素电极层560的元件层之间提供包含光催化剂物质的有机化合物层566。作为第一基板550,可选择合适的基板,其适合制造方法中的各种条件,换句话说,其能经受形成包括在元件层中的液晶显示元件的处理(如热处理)。有机化合物层566中包括光催化剂物质。
此后,从透光第一基板550侧,用从光源580射出的并穿过第一基板550的光581照射光催化剂物质(图12B)。
光催化剂物质吸收光581,从而,光催化剂物质被光581激活。活化能作用在包括在包含光催化剂物质的有机化合物层566中的周围有机化合物上,并因此变化和修改有机化合物的性质。换句话说,通过激活的光催化剂物质的能量(氧化性),该有机化合物的碳-氢键和碳-碳键被分离,一部分有机化合物变成二氧化碳和水,并脱气。所以,包含光催化剂物质的有机化合物层566变得粗糙,从而它变为包含光催化剂物质的有机化合物层570。
当向第二基板568侧施加力以转移包括晶体管551和液晶显示元件的元件层时,包含光催化剂物质的有机化合物层570的强度降低,从而,在元件层侧包含光催化剂物质的有机化合物层569b和在基板侧包含光催化剂的有机化合物层569a在层内彼此分开(分割)。因此,包括晶体管551和显示元件的元件层可以从第一基板550剥离(图12C)。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物被分解(分裂)使得层变粗糙并从基板剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状适当地转移至各种类型的基板。
因此,由于元件可以自由地被转移至各种类型的基板,可以从更广范围的材料中选择用于基板的材料。另外,廉价材料可以用于基板,并且除了具有适于应用的各种功能外,可以以低成本制造半导体装置。
图13A至13C显示了一种应用本发明的有源矩阵型电子纸张。尽管图13A至13C显示的是有源矩阵型,但本发明也可应用于无源矩阵型电子纸张。
尽管图12A至图12C显示了液晶显示元件作为显示元件的例子,但可以使用采用扭转球(twist ball)显示系统的显示装置。扭转球显示系统是指一种方法,其中分别以黑色和白色着色的球形颗粒被安置在第一导电层与第二导电层之间,并且在第一导电层与第二导电层之间产生电位差以控制球形颗粒的方向,从而进行显示。
在透光基板596与包括球形颗粒589的元件层之间提供包含光催化剂物质的有机化合物层583。作为第一基板596,可选择合适的基板,其适合制造方法中的各种条件,换句话说,其能经受形成包括在元件层中的显示元件的处理(如热处理)。有机化合物层583中包括光催化剂物质。
晶体管597是一种反向共面(reverse coplanar)型薄膜晶体管,且包括栅电极层582、栅绝缘层584、配线层585a和585b和半导体层586。另外,配线层585b通过在绝缘层598中形成的开口电连接至第一电极层587a和587b。在第一电极层587a和587b与第二电极层588之间,提供球形颗粒589,每个颗粒均包括黑色区域590a和白色区域590b,以及在其外围用液体填充的空腔594。球形颗粒589的周围用填充物595如树脂等填充(图13A至13C)。
此后,从透光第一基板596侧,用从光源580射出的并穿过第一基板596的光581照射光催化剂物质(图13B)。
光催化剂物质吸收光581,从而,光催化剂物质被光激活。活化能作用在包括在包含光催化剂物质的有机化合物层583中的周围有机化合物上,并因此变化和修改有机化合物的性质。换句话说,通过激活的光催化剂物质的能量(氧化性),该有机化合物的碳-氢键和碳-碳键被分离,一部分有机化合物变成二氧化碳和水,并脱气。所以,包含光催化剂物质的有机化合物层583变得粗糙,从而它变为包含光催化剂物质的有机化合物层591。
当向第二基板592侧上施加力以转移包括晶体管597和显示元件的元件层时,包含光催化剂物质的有机化合物层591的强度降低,从而,在元件层侧包含光催化剂物质的有机化合物层593b和在基板侧包含光催化剂的有机化合物层593a在层内彼此分开(分割)。因此,包括晶体管597和球形颗粒589的元件层可以从第一基板596剥离(图13C)。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物被分解(分裂)使得层变粗糙并从基板剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状容易地和自由地转移至各种类型的基板。
因此,由于元件可以被转移至各种类型的基板,可以从更广范围的材料中选择用于基板的材料。另外,廉价材料可以用于基板,并且除了具有适于应用的各种功能外,可以以低成本制造半导体装置。
此外,还可以使用电泳元件,而不是扭转球。使用直径为10μm至20μm的用透明液体、带正电白色微粒和带负电黑色微粒填充并且密封的微胶囊。在提供在第一电极层与第二电极层之间的微胶囊中,当由第一电极层和第二电极层施加电场时,白色微粒和黑色微粒各自移动至相反端,从而可以显示白色或黑色。利用这种原理的显示元件就是一种电泳显示元件,通常被称为电子纸张。电泳显示元件具有比液晶显示元件更高的反射率,从而不需要辅助光,能耗低,并且在昏暗的地方也能辨别显示部分。即使未向显示部分没有供电时,已经显示过一次的图像也能被存储。因此,它使得存储显示过的图像成为可能,即使具有显示功能的半导体装置远离电子波源。
晶体管可以具有任意结构,只要晶体管能用作开关元件。作为半导体层,可以使用各种半导体如非晶态半导体、晶态半导体、多晶半导体和微晶半导体,或者使用有机化合物可以形成有机晶体管。
根据本发明,使用剥离方法可以制造半导体装置和显示装置,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。因此,可以以高产量制造更可靠的半导体装置和显示装置且未使用于制造的设备和方法复杂化。
实施方式5
参照图14A和14B描述了本发明的一种实施方式。实施方式5显示了一个例子,其中使用通道蚀刻型反向交错的薄膜晶体管作为薄膜晶体管,并且在薄膜晶体管上没有形成层间绝缘层。从而,省略了相同部分或具有相同功能部分的详细描述。图14A是使用本发明转移过程制造的发光显示装置的顶视图,图14B是图14A的横截面图。
如图14A和14B所示,通过密封材料612把像素部分655、扫描线驱动电路的驱动电路区域651a和651b和驱动电路653密封在基板600和密封基板610之间,并在基板600上提供驱动电路区域652,它是使用IC驱动器的信号线驱动电路。在基板600之上,在驱动电路区域653中提供了反向交错型薄膜晶体管601和602;在像素部分655中提供了反向交错型薄膜晶体管603、栅绝缘层605、绝缘膜606、绝缘层609、其中堆叠第一电极层604、电致发光层607和第二电极层608的发光元件650、填充物611、密封基板610;在密封区域中提供了密封材料612、终端电极层613、各向异性导电层614和FPC615。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物被分解(分裂)使得层变粗糙并从基板剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状适当地转移至各种类型的基板。在剥离包含光催化剂物质的有机化合物层之后在元件层侧的残留层就是包含光催化剂物质的有机化合物层630。包含光催化剂物质的有机化合物层630可以被转移至密封基板610,然后,可以通过抛光等被去除。
因此,由于元件可以被转移至各种类型的基板,可以从更广范围的材料中选择用于基板的材料。另外,廉价材料可以用于基板,并且除了具有适于应用的各种功能外,可以以低成本制造半导体装置。
通过液滴喷出法形成反向交错型薄膜晶体管601、602、603的栅电极层、源电极层和漏电极层。液滴喷出法是一种其中含有液态导电材料的组合物被喷出、通过干燥或烘烤被固化以形成导电层或电极层的方法。当包括绝缘材料的组合物被喷出和通过干燥或烘烤固化时,也可以形成绝缘层。由于显示装置的部件如导电层或绝缘层可以选择性地形成,简化了方法并防止了材料的损失。因此,可以以低成本高产量制造显示装置。
在液滴喷出法中使用的液滴喷出工具通常是用于喷出液滴的工具,如配备有成分喷出口的喷嘴或有一个或多个喷嘴的喷头等。液滴喷出工具的每个喷嘴设置成直径为0.02至100μm(优选小于或等于30μm)和从喷嘴的部件喷出量为0.001至100pl(优选大于或等于0.1pl和小于或等于40pl,更优选地小于或等于10pl)。喷出量随喷嘴的直径成比例地增加。为了在所需位置滴落液滴,待处理对象与喷嘴喷出口之间的距离优选尽可能短;该距离优选地设为0.1至3mm(更优选地小于或等于1mm)。
在通过液滴喷出法形成膜(例如绝缘膜或导电膜)的情况下,膜如下形成:喷出含有已处理成颗粒态的膜材料的组合物,并通过烘烤熔化或焊接组合物来使之固化。通过溅射法等形成的膜倾向于具有柱状结构,而这样通过喷出和烘烤含有导电材料的组合物而形成的膜倾向于具有带有大量晶界的多晶结构。
作为将从喷出口喷出的组合物,使用一种溶解或分散在溶剂中的导电材料。该导电材料对应于金属如Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W或Al,金属硫化物如Cd或Zn,Fe、Ti、Si、Ge、Zr或Ba等的氧化物,或者卤化银等的细粒或分散的纳米颗粒。另外,上述导电材料也可以组合使用。作为透明的导电膜,可以使用氧化铟锡(ITO)、含氧化硅的氧化铟锡(ITSO)、有机铟、有机锡、氧化锌或氮化钛等。此外,还可以使用含氧化锌(ZnO)的氧化铟锌(IZO)、氧化锌(ZnO)、掺杂镓(Ga)的ZnO、氧化锡(SnO2)、含氧化钨的氧化铟、含氧化钨的氧化铟锌、含氧化钛的氧化铟或含氧化钛的氧化铟锡等。对于将从喷出口喷出的组合物,优选使用溶解或分散在溶剂中的金、银和铜材料中任何一种,考虑到比电阻,更优选地使用具有低阻抗的银或铜。当使用银或铜时,可以额外提供阻挡膜作为对付杂质的对策。可以使用氮化硅膜或硼化镍(NiB)膜作为阻挡膜。
待喷出的组合物是一种溶解或分散在溶剂中的导电材料,其进一步包含分散剂或热固树脂。特别地,热固树脂具有防止在烘烤中产生裂缝或不均匀烘烤的作用。从而,所形成的导电层可以含有有机材料。所包含的有机材料视加热温度、气氛或时间而不同。该有机材料是一种有机树脂,其用作热固树脂、溶剂、分散剂和金属颗粒涂层等;一般地,可以举例为聚酰亚胺、丙烯酸类物质、酚醛清漆树脂、三聚氰铵树脂、酚醛树酯、环氧树脂、硅树脂、呋喃树脂、邻苯二甲酸二烯丙酯树脂或其它有机树脂。
另外,还可以使用具有多层的其中用另一种导电材料涂覆导电材料的颗粒。例如,可以使用具有三层结构的其中用硼化镍(NiB)涂覆铜和再用银涂覆硼化镍的颗粒等。对于溶剂,使用酯如乙酸丁酯或乙酸乙酯、醇如异丙醇或乙醇、有机溶剂如甲基乙基酮或丙酮、或水。组合物的粘度优选小于或等于20mPa·s(cp),该粘度防止组合物干燥,且使得组合物能够从喷出口顺利地喷出。组合物的表面张力优选小于或等于40mN/m。然而,可以根据所要用的溶剂或预定目的来适当地控制组合物的粘度等。例如,在溶剂中溶解或分散ITO、有机铟或有机锡的组合物的粘度可以设为5至20mPa·s,在溶剂中溶解或分散银的组合物的粘度可以设为5至20mPa·s,和在溶剂中溶解或分散金的组合物的粘度可以设为5至20mPa·s。
此外,导电层还可以由多个堆叠的导电材料形成。另外,导电层可以首先通过使用银作为导电材料的液滴喷出法形成和然后可以用铜等镀覆。可以通过电镀或化学(非电镀的)镀覆方法来进行镀覆。可以通过把基板表面浸入装有含镀覆材料的溶液的容器中来进行镀覆;或者,含镀覆材料的溶液可以施用至倾斜(或垂直)放置的基板以使含镀覆材料的溶液在基板表面上流动。当通过施用溶液至倾斜放置的基板来进行镀覆时,有一个优点是使处理设备小型化。
为了防止喷嘴阻塞和制造微小图案,导电材料颗粒的直径优选尽可能小,尽管它取决于每个喷嘴的直径或图案的所需形状等。优选地,导电材料颗粒的直径小于或等于0.1μm。通过已知方法如电解法、雾化法或除湿法来形成组合物,且颗粒尺寸一般为大约0.01至10μm。当采用气体蒸发法时,由分散剂保护的纳米颗粒的尺寸小至大约7nm,且当每个颗粒的表面均被涂层覆盖时,纳米颗粒不会在溶剂中聚集并在室温下稳定地分散在溶剂中,且与液体表现相似。因此,优选使用涂层。
另外,喷出组合物的步骤可以在低压下进行。当该步骤在低压下进行时,氧化物膜等不会在导电材料的表面形成,这是优选的。在组合物喷出之后,进行干燥或烘烤或两者一起进行。干燥步骤和烘烤步骤都是热处理;然而,例如,干燥在100℃下进行3分钟,烘烤在200至350℃下进行15至60分钟,且它们的目的、温度和时间段都不同。通过激光照射、快速加温退火或使用加热炉加热等在常压或低压下进行干燥和烘烤的步骤。需要注意的是这种热处理的时间安排没有特别限制。基板可以被提前加热以有利地进行干燥和烘烤的步骤,那时的温度一般为100至800℃(优选200至350℃),尽管它取决于基板的材料等。通过这些步骤,纳米颗粒彼此接触并且促进了熔化和焊接,因为周围树脂被硬化和收缩,组合物中的溶剂也挥发了或者分散剂被化学地去除了。
连续波或脉冲气体激光器或固态激光器可以用于激光照射。受激准分子激光器、YAG激光器等可以用作前面的气体激光器。使用掺杂Cr或Nd等的YAG、YVO4或GdVO4等晶体的激光器可以用作后面的固态激光器。考虑到激光束的吸收优选使用连续波激光器。而且,可以使用结合脉冲和连续波激光器的激光照射方法。根据基板100的热阻,优选在几微秒至几十秒内瞬时进行激光照射的热处理以免损坏基板100。通过使用在惰性气体氛围中发射紫外至红外光的红外灯或卤素灯迅速提升温度并瞬时加热基板几微秒至几分钟来进行快速加温退火(RTA)。由于该处理是瞬时进行的,实际上只有最外面的薄膜能被加热并且膜的较低层不会受到不利的影响。换句话说,即使具有低热阻的基板如塑料基板也不会受到不利影响。
在通过液滴喷出法喷出液态成分形成导电层或绝缘层后,可以通过用压力挤压使其表面平面化以增加平面性。作为挤压方法,可以通过辊型物体扫描表面减小表面的凹陷和凸起,或者可用平板型物体挤压表面。也可以在挤压的同时进行热处理。或者,在用溶剂等软化或熔化表面后,可以用气刀去除表面的凹陷和凸起。也可以使用CMP法来抛光表面。当凹陷和凸起是由液滴喷出法生成时,可以在平面化表面中使用该步骤。
在本实施方式中,非晶态半导体被用作半导体层且可以按需要形成具有同一导电型的半导体层。在本实施方式中,半导体层和作为有同一导电型的半导体层的非晶态n-型半导体层堆叠。此外,能够制造n-型半导体层形成于其中的N-通道TFT的NMOS结构、p-型半导体层形成于其中的P-通道TFT的PMOS结构、或者N-通道TFT和P-通道TFT的CMOS结构。在本实施方式中,反向交错薄膜晶体管601和603是N-通道TFT,反向交错薄膜晶体管602是P-通道TFT,从而反向交错薄膜晶体管601和602在驱动电路区域653中形成一个CMOS结构。
而且,为了给予导电性,通过掺杂加入给予导电性的元素或在半导体层中形成杂质区域;从而,能够形成N-通道TFT和/或P-通道TFT。可以通过用PH3气体等离子处理把导电性给予半导体层,而不是形成n-型半导体层。
此外,可以通过印刷法、雾化法、旋涂法、液滴喷出法、滴涂器法等使用有机半导体材料形成半导体层。在此情况下,不需要前述的蚀刻步骤;因此,可以减少步骤数。作为有机半导体,可以使用低分子材料如并五苯或高分子材料等,也可以使用材料如有机颜料或导电高分子材料。作为在本发明中使用的有机半导体材料,优选其骨架由共轭双键构成的π电子共轭体系的高分子材料。一般地,可以使用可溶性高分子材料如聚噻吩、聚芴、聚(3-烷基噻吩)或聚噻吩衍生物。
根据本发明,使用剥离方法可以制造半导体装置和显示装置,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。因此,可以以高产量制造更可靠的半导体装置和显示装置且未使用于制造的设备和方法复杂化。
实施方式6
参照图15A和15B描述了本发明的一种实施方式。图15A和15B显示了一种使用本发明剥离方法制造的液晶显示装置。
图15A是使用本发明剥离方法制造的液晶显示装置的顶视图,图15B是图15A的横截面图。
如图15A所示,通过密封材料282把像素部分256和扫描线驱动电路的驱动电路区域258a和258b密封在基板200和密封基板210之间,并在基板200上提供驱动电路区域257,它是使用IC驱动器的信号线驱动电路。在像素部分256中,提供了晶体管220。基板200被附着至剥离的元件层和包含光催化剂物质的有机化合物层230,可以由不会透射激活元件层中剩余光催化剂物质的波长的光的材料形成。对基板210和基板200是挠性基板或树脂膜等。关心的是由合成树脂形成的基板一般具有比其它基板更低的容许温度极限。然而,首先在制造方法中采用高热阻的基板并且用由合成树脂形成的基板替换该基板,从而使得使用这种由合成树脂形成的基板成为可能。
在图15A和15B所示的显示装置中,在基板200之上,在像素部分内提供了其为反向交错型薄膜晶体管的晶体管220、像素电极层201、绝缘层202、用作取向膜的绝缘层203、液晶层204、隔板281、用作取向层的绝缘层205、对电极层206、彩色滤光片208、黑色基质207、对基板210和起偏振片231;在密封区域内,提供了密封材料282、终端电极层287、各向异性导电层285和FPC 286。
通过液滴喷出法形成在本实施方式中形成的其为反向交错型薄膜晶体管的晶体管220的栅电极层、源电极层和漏电极层。液滴喷出法是一种其中含有液态导电材料的组合物被喷出、通过干燥或烘烤被固化以形成导电层或电极层的方法。当包括绝缘材料的组合物被喷出和通过干燥或烘烤被固化时,也可以形成绝缘层。由于显示装置的部件如导电层或绝缘层可以选择性地形成,简化了方法并防止了材料的损失。因此,可以以低成本高产量制造显示装置。
在本实施方式中,非晶态半导体被用作半导体层且可以按需要形成具有同一导电型的半导体层。在本实施方式中,半导体层和作为有同一导电型的半导体层的非晶态n-型半导体层堆叠。此外,能够制造n-型半导体层形成于其中的N-通道TFT的NMOS结构、p-型半导体层形成于其中的P-通道TFT的PMOS结构、或者N-通道TFT和P-通道TFT的CMOS结构。
此外,为了给予导电性,通过掺杂加入给予导电性的元素并且在半导体层形成杂质区域;因此,可以形成N-通道TFT和/或P-通道TFT。可以通过PH3气体等离子处理把导电性给予半导体层,而不是形成n-型半导体层。
在本实施方式中,晶体管220是N-通道反向交错型薄膜晶体管。另外,也可以使用通道保护型反向交错薄膜晶体管,其中在半导体层的通道区域上提供保护层。
此外,可以通过蒸发法、印刷法、雾化法、旋涂法、液滴喷出法或滴涂器法等使用有机半导体材料形成半导体层。在此情况下,不需要前述的蚀刻步骤;因此,可以减少步骤数。作为有机半导体,可以使用低分子材料如并五苯或高分子材料等,也可以使用材料如有机颜料或导电高分子材料。作为在本发明中使用的有机半导体材料,优选其骨架由共轭双键构成的π电子共轭体系的高分子材料。一般地,可以使用可溶高分子材料如聚噻吩、聚芴、聚(3-烷基噻吩)、或聚噻吩衍生物。
在像素部分256中,在晶体管220与包含光催化剂物质的有机化合物层之间可以提供带基薄膜(base film)。带基薄膜可以由无机绝缘膜或有机绝缘膜,或无机绝缘膜和有机绝缘膜的堆叠形成。除了上述方法之外还有许多方法形成薄膜晶体管,并且薄膜晶体管可以通过任何方法制造。例如,使用晶态半导体膜作为活性层。在晶态半导体膜上提供栅电极,在其间插入栅绝缘膜。可以通过使用栅电极而不是掩膜在活性层中加入杂质元素。通过使用栅电极而不是掩膜添加杂质元素使得不必要为了添加杂质元素而形成掩膜。栅电极可以具有单层结构或堆叠层结构。可以通过控制其浓度使杂质区成为高浓度杂质区或低浓度杂质区。具有这种低浓度杂质区的这种薄膜晶体管的结构被称为LDD(轻掺杂漏极)结构。另外,低浓度杂质区可以形成与栅电极重叠。这种薄膜晶体管的结构被称为GOLD(栅重叠LDD)结构。通过在杂质区使用磷(P)等该薄膜晶体管的极性为n-型。当薄膜晶体管的极性为p-型时,可以加入硼(B)等。随后,形成覆盖栅电极等的绝缘膜。可以通过混合入绝缘膜的氢元素终结晶态半导体膜的悬空键。
为了改进平面性,可以形成层间绝缘膜。对于该层间绝缘膜,可以使用有机材料、无机材料或其堆叠结构。可以由选自氧化硅、氮化硅、氧氮化硅、氮氧化硅、氮化铝、氧氮化铝、氮氧化铝或含有比氧含量更多的氮含量的氧化铝、类金刚石碳(DLC)、聚硅氮烷、含氮的碳(CN)、PSG(磷硅酸盐玻璃)、BPSG(硼磷硅酸盐玻璃)、氧化铝和含有另一种无机绝缘材料的物质的材料形成层间绝缘膜。此外,可以使用有机绝缘材料。作为可以是光敏或非光敏的有机绝缘材料,可以使用聚酰亚胺、丙烯酸酯类(acryl)、聚酰胺、聚酰亚胺酰胺(polyimide amide)、抗蚀剂(resist)、苯并环丁烯或硅氧烷树脂等。需要注意硅氧烷树脂对应于包括Si-O-Si键的树脂。硅氧烷具有硅(Si)和氧(O)键的骨架结构。对于取代基,使用至少含有氢的有机基团(如烷基或芳烃)。对于取代基,可以使用氟基。此外,对于取代基,可以使用至少含有氢的有机基团和氟基。
可以通过使用晶态半导体膜在同一基板上形成像素部分和驱动电路区域。
在像素部分中的薄膜晶体管的结构不限于本实施方式,并且在像素部分中的薄膜晶体管可以具有一个通道形成区域形成于其中的单栅结构、两个通道形成区域形成于其中的双栅结构或三个通道形成区域形成于其中的三栅结构。在周围驱动电路区域中的薄膜晶体管可以具有单栅结构、双栅结构或三栅结构。
此外,本发明不限于本实施方式中所示的薄膜晶体管的制造方法。本发明可以应用于具有顶栅结构的薄膜晶体管(如交错型)、具有底栅结构的薄膜晶体管(如共面型)、具有两栅结构其中通过栅绝缘膜把两个栅电极层安排在高于和低于通道形成区域或一些其它结构的薄膜晶体管。
下面,通过印刷法或液滴喷出法形成称为取向膜的绝缘层203以覆盖像素电极层201和隔板281。当使用丝网印刷法或胶版印刷法时绝缘层203可以选择性地形成。此后,进行摩擦处理。当使用液晶模式例如VA模式时,有些情况不进行摩擦处理。用作取向膜的绝缘层205与绝缘层203类似。随后,在通过液滴喷出法或滴涂器法等形成像素的周围区域形成密封材料282。
此后,将其中具有用作取向膜的绝缘层205、对电极层206、用作彩色滤光片的着色层208和黑色基质的对基板210被附着至TFT基板,其中隔板281在对基板和TFT基板之间。将液晶层204提供在对基板和TFT基板之间的空间。然后,在对基板210的外侧提供起偏振片231。在本发明方式中,具有可见光反射性的金属层被用于像素电极层201,并且光穿过对基板210以从外部提取。因而,显示了只在对基板210侧提供起偏振片的例子。然而,当通过使用透明电极层作为像素电极层从基板200侧提取光时,在与形成元件的基板的表面相对的一侧也提供起偏振片。另外,可以在起偏振片231和对基板210之间提供推迟板,其可以用作圆形起偏振片。通过使用粘合层在基板上提供起偏振片。在密封材料中可以混合填充物。注意:在液晶显示装置进行全色显示的情况下彩色滤光片等可由显示红(R)、绿(G)和蓝(B)的材料形成,或者在单色显示的情况下它可以由显示至少一种颜色的材料形成。
注意:在其中安排RGB发光二极管(LED)等作为背光并且使用通过时间分割进行彩色显示的顺序加法混色方法(场序制方法)的一些情况下不提供彩色滤光片。为了降低由于晶体管线路和CMOS电路的配线引起的外部光的反射,提供黑色基质以使之与晶体管和CMOS电路重叠。注意:可以提供黑色基质以使之与电容器元件重叠。这是因为可以防止在构成一部分电容器元件的金属膜上的反射。
作为形成液晶层的方法,可以使用滴涂器法(滴注法)或注射法,其中在附着具有元件的基板和对基板210之后利用毛细现象注入液晶。当使用难于应用注射法的大尺寸基板时可以应用滴注法。
在本发明中,在能够经受处理条件(如温度)的基板上形成元件层其间插入包含光催化剂物质的有机层之后,进行至所需基板(例如,挠性基板如膜)的转移过程。在转移过程中,通过使光透射穿过其上形成了包含光催化剂物质的有机化合物层的基板来进行光照射(所谓后曝光)。由光激活的光催化剂物质把周围的有机化合物分解成二氧化碳和水,并且使得层变得粗糙。使包含光催化剂物质的有机化合物层的结构变得粗糙且其强度降低以使层变脆。从而,当在基板侧和元件层侧两侧施加相反方向的力时,把包含光催化剂物质的有机化合物层分割(分开)成基板侧和元件层侧,由此转移元件层至对基板侧。在本实施方式中,在转移元件层至对基板侧之后,元件层被附着至基板200。
对于液晶层的形成,可以在形成液晶层之前或之后进行至基板200的转移过程。例如,当使用滴涂器法作为形成方法时,可以形成TFT和取向膜,包含TFT元件的元件层可以在滴落液晶之前被转移至基板200,然后,可以滴落液晶至在基板200上形成的元件层上以形成液晶层,然后,可以通过使用对基板而将其密封。或者,元件层可以形成在能够经受所述工艺的玻璃基板等之上,并在保持由隔板形成的空间的同时被附着至对基板,然后,可以通过注射法在元件层和对基板之间注入液晶以形成液晶层。在完成直到并包括液晶层步骤的显示装置中,元件层和在包含光催化剂物质的有机化合物层上形成的液晶层可以利用光催化剂物质的作用从处理基板剥离,然后,被附着至基板200。
可以以使得具有几μm尺寸的颗粒被喷射,或者树脂膜形成在基板的整个表面上并被蚀刻的方式提供隔板。通过喷嘴来施用该隔板的材料然后经受曝光和显影,以形成预定的图案。而且,隔板在150至200℃下于清洁烘箱等中加热以使之硬化。取决于曝光和显影的条件,由此制造的隔板能具有各种形状。优选隔板具有带平顶的柱形以使当附着对基板时能够确保液晶显示装置的机械强度。形状可以是锥形或金字塔形等,形状上没有特别限制。此外,在本实施方式中,在像素电极层201上提供带曲率的隔板281,并且其被用作取向层的绝缘层203覆盖。当以这种方式在隔板上形成取向膜时,可以防止元件层侧的元件电极层与对基板之间由缺陷覆盖等造成的接触或短路。另外,隔板281的形状为柱形,且在圆柱的脊(ridge)部分具有弯曲。换言之,在柱形隔板顶部的尾部曲率半径R为2μm或更小,优选1μm或更小。由于像这样的形状所以可以应用均匀压力,从而,可以防止过量压力应用在一点上。注意:隔板的下端表示挠性基板200侧的柱形隔板的端部分,而其上端表示柱形隔板的顶端部分。柱形隔板在高度方向的中心部分的宽度为L1,柱形隔板在挠性第二基板侧的端部分的宽度为L2。满足0.8≤L2/L1≤3。另外,在柱形隔板侧表面中心的切面与第一挠性基板表面之间的角度或者在柱形隔板侧表面中心的切面与第二挠性基板表面之间的角度优选在65°至115°的范围内。此外,隔板的高度优选在0.5μm至10μm的范围内或者在1.2μm至5μm的范围内。
随后,用FPC286即一种用于连接的配线板通过各项异性导电层285提供电连接至像素部分的终端电极层287。FPC286具有传送外部信号或电位的功能。通过上述步骤,可以制造具有显示功能的液晶显示装置。
可以由一种选自氧化铟锡(ITO)、氧化锌(ZnO)与氧化铟混合的氧化铟锌(IZO)、氧化硅(SiO2)与氧化铟混合的导电材料、有机铟、有机锡、含氧化钨的氧化铟、含氧化钨的氧化铟锌、含氧化钛的氧化铟或含氧化钛的氧化铟锡材料;金属如钨(W)、钼(Mo)、锆(Zr)、铪(Hf)、钒(V)、铌(Nb)、钽(Ta)、铬(Cr)、钴(Co)、镍(Ni)、钛(Ti)、铂(Pt)、铝(Al)、铜(Cu)或银(Ag);上述金属的合金;或其金属氮化物来形成包括在晶体管中的配线、栅电极层、像素电极层201和作为对电极层的导电层206。
根据显示装置的类型,即透射型显示装置或反射型显示装置,可以合适选择像素电极层201和导电层206的材料。当需要光通过时,透光电极或足以透射光的金属膜可以选自上述电极材料。
根据本发明,使用剥离方法可以制造半导体装置和显示装置,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。因此,可以以高产量制造高度可靠的半导体装置和显示装置且未使用于制造的设备和方法复杂化。
实施方式7
参照附图实施方式7将描述一个在前述实施方式中描述的半导体装置的例子。
在本实施方式中描述的半导体装置能够非接触读写数据。数据传输方法被大致分为三种:通过用一对彼此相对放置的线圈的互感应来进行通信的电磁耦合方法、通过感应电磁场进行通信的电磁感应方法和通过使用电波进行通信的电波方法;可以使用这些方法中任一种。可以以两种方式提供用于传输数据的天线。一种方式是在提供有多个元件和记忆元件的基板上提供天线,而另一种方式是提供终端部分给提供有多个元件和记忆元件的基板并且把提供在另一基板上的天线连接至该终端部分。
首先,参照图16描述了一个半导体装置结构的例子,其中在提供有多个元件和记忆元件的基板上提供天线。
图16显示了一种有源矩阵型半导体装置。在基板300上提供了包括具有晶体管310a和310b的晶体管部分330、具有晶体管320a和320b的晶体管部分340和绝缘层301a、301b、308、309、311、316和314的元件形成层335。在元件形成层335之上提供了记忆元件部分325和用作天线的导电层343。
尽管在此显示的例子中记忆元件部分325或用作天线的导电层343提供在元件形成层335之上,结构并不限于此。记忆元件部分325或用作天线的导电层343也可以提供在元件形成层335之下或在与元件形成层335相同的层中。
记忆元件部分325包括记忆元件315a和315b。通过在第一导电层306a上堆叠隔断墙(绝缘层)307a、307b、绝缘层(记忆层)312和第二导电层313来形成记忆元件315a。通过在第一导电层306b上堆叠隔断墙(绝缘层)307b、307c、绝缘层(记忆层)312和第二导电层313来形成记忆元件315b。另外,形成用作保护膜的绝缘层314以覆盖第二导电层313。用于形成记忆元件315a和315b的第一导电层306a和306b分别连接至晶体管310a和310b的源电极层或漏电极层。即,每个记忆元件连接至一个晶体管。另外,尽管这里在整个表面上形成绝缘层(记忆层)312以覆盖第一导电层306a和306b和隔断墙(绝缘层)307a、307b和307c,但对每个记忆单元可以选择性地形成绝缘层312。
如前述实施方式所述,在记忆元件315a中,可以在第一导电层306a和绝缘层(记忆层)312之间或者在绝缘层(记忆层)312与第二导电层313之间提供具有整流性能的元件。作为具有整流性能的元件,还可以使用如上所述的元件。上述也同样适用于记忆元件315b。
这里,在由与第二导电层313相同的层形成的导电层342上提供用作天线的导电层343,并通过由与第一导电层306a和306b相同的层形成的导电层341电连接至晶体管320a。注意:用作天线的导电层也可以由与第二导电层313相同的层形成。
作为用作天线的导电层343的材料,可以使用元素金(Au)、铂(Pt)、镍(Ni)、钨(W)、钼(Mo)、钴(Co)、铜(Cu)、铝(Al)、锰(Mn)和钛(Ti)等中的一种、或包含多种这些元素的合金等。另外,作为用作天线的导电层343的形成方法,可以使用蒸发、溅射、CVD、任何印刷法如丝网印刷或照相凹版印刷或液滴喷出法等。
可以提供P-通道TFT、N-通道TFT或结合它们的CMOS中的任一种作为包括在元件形成层335中的各个晶体管310a、301b、320a和320b。而且,包括在晶体管310a、301b、320a和320b中的半导体层可以具有任意结构。例如,可以形成杂质区域(包括源区、漏区和LDD区),或者可以使用P-通道型或N-通道型之一。另外,可以形成与栅电极侧表面相接触的绝缘层(侧壁),或者可以在源和漏区域之一或两者和栅电极中形成硅化物层。作为硅化物层的材料,可以使用镍、钨、钼、钴或铂等。
此外,对于包括在元件形成层335中的各个晶体管310a、301b、320a和320b可以使用由有机化合物形成半导体层的有机半导体。包括有机晶体管的元件形成层335可以通过印刷法或液滴喷出法等形成。通过使用印刷法或液滴喷出法等形成元件形成层335,可以以较低成本制造半导体装置。
如上所述,可以通过蒸发法、溅射法、CVD法、印刷法或液滴喷出法等形成元件形成层335、记忆元件315a和315b和用作天线的导电层343。另外,根据不同部分可以使用不同的方法。例如,可以通过在基板上形成Si等半导体层然后用热处理结晶该半导体膜而提供需要高速操作的晶体管,此后,可以通过印刷法或液滴喷出法在元件形成层之上提供用作开关元件的另一个晶体管即有机晶体管。
另外,可以提供连接至晶体管的感应器。作为感应器,可以给出一种通过物理或化学方法检测性质如温度、湿度、照明度、气体、重力、压力、声音(振动)或加速度的元件。感应器一般由半导体元件形成,如电阻元件、电容耦合元件、感应耦合元件、光致电压元件、光电转换元件、热电转换元件、晶体管、热敏电阻或二极管。
下面,参照图17描述了一个半导体装置的结构例子,其中提供终端部分给提供有多个元件和记忆元件的基板并且把提供在另一基板上的天线连接至该终端部分。
图17显示了一种无源矩阵型半导体装置。在基板350上形成了包括具有晶体管360a和360b的晶体管部分380、具有晶体管370a和370b的晶体管部分390和绝缘层351a、351b、358、359、361、366和384的元件形成层385,在元件形成层385上提供记忆元件部分375,并提供配给基板396的用作天线的导电层393以连接至元件形成层385。注意:尽管在此显示的例子中记忆元件部分375或用作天线的导电层393提供在元件形成层385之上,本发明不限于这种结构。记忆元件部分375也可以提供在元件形成层385之下或与元件形成层385相同的层中,或者用作天线的导电层393也可以提供在元件形成层385之下。
记忆元件部分375包括记忆元件365a和365b。通过在第一导电层356上堆叠隔断墙(绝缘层)357a、隔断墙(绝缘层)357b、绝缘层(记忆层)362a和第二导电层363a来形成记忆元件365a。通过在第一导电层356上堆叠隔断墙(绝缘层)357b、隔断墙(绝缘层)357c、绝缘层(记忆层)362b和第二导电层363b来形成记忆元件365b。形成用作保护膜的绝缘层364以覆盖第二导电层363a和363b。用于形成多个记忆元件365a和365b的第一导电层356与一个晶体管360b的源电极层或漏电极层之一相连。即,记忆元件连接至同一个晶体管。另外,尽管通过提供隔断墙(绝缘层)357a、357b和357c使绝缘层(记忆层)362a和第二导电层363a从绝缘层(记忆层)362b和第二导电层363b分开从而使各个记忆单元彼此分开;它们也可以在整个表面上形成,假如不担心相邻记忆单元之间在横向上的电场影响的话。注意:可以使用前述实施方式中描述的任何材料和制造方法形成记忆元件365a和365b。因此,不会产生那样的缺陷,即由于在形成元件于第一基板上之后元件至第二基板的转移步骤而在层间界面处发生膜剥离。使用能经受制造过程中条件如温度的玻璃基板,然后元件被转移至第二基板,从而可以使用挠性基板如膜作为基板350。因此,记忆元件可以被剥离并以良好形状转移,从而可以制造半导体装置。
通过粘合树脂395把提供有元件形成层385和记忆元件部分375的基板附着至提供有用作天线的导电层393的基板396。在元件形成层385中形成的晶体管370a与导电层393通过包含在树脂395中的导电微粒394、由与第一导电层356相同的层形成的导电层391和由与第二导电层363a和363b相同的层形成的导电层392电相连。或者,可通过导电粘合剂如银膏、铜膏或碳膏或者通过焊接把提供有元件形成层385和记忆元件部分375的基板附着至提供有用作天线的导电层393的基板396。
此外,也可以在提供有用作天线的导电层的基板上提供记忆元件部分。而且,还可以提供连接至晶体管的感应器。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物被分解(分裂)使得层变粗糙并从基板剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状适当地转移至各种类型的基板。在剥离包含光催化剂物质的有机化合物层之后在元件层侧的残留层就是包含光催化剂物质的有机化合物层326和376。
因此,由于元件可以被转移至各种类型的基板,可以从更广范围的材料中选择用于基板的材料。另外,廉价材料可以用于基板,并且除了具有适于应用的各种功能外,可以以低成本制造半导体装置。
注意:本实施方式可以自由地与任何前述实施方式相结合。此外,通过在剥离过程中从基板分开并附着至挠性基板,本实施方式中的半导体装置可以提供在挠性底部上;从而可以形成挠性半导体材料。挠性基底对应于由聚丙烯、聚酯、乙烯树脂、聚氟乙烯或氯乙烯等形成的膜;由纤维材料形成的纸;或基材膜(如聚酯、聚酰胺、无机蒸发膜或纸)和粘性合成树脂膜(如丙烯酸合成树脂或环氧合成树脂)的堆叠膜等。通过热处理和压力处理把膜附着至一个物体。当对膜进行热处理和压力处理时,在膜的最外层表面中提供的粘合层或在最外层中提供的层(不是上述粘合层)被热熔化并通过压力附着。粘合层可以但不是必需提供在基底内。粘合层对应于含有粘合剂如热固性树脂、紫外线固化树脂、环氧树脂粘合剂或树脂添加剂的层。
根据本发明,使用剥离方法可以制造半导体装置和显示装置,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。因此,可以以高产量制造更可靠的半导体装置和显示装置且未使用于制造的设备和方法复杂化。
实施方式8
使用本发明可以形成薄膜晶体管发光元件并转移至各种类型的基板,从而可以形成显示装置。当使用发光元件并使用N-通道晶体管作为驱动发光元件的晶体管时,从发光元件发射的光进行底发射、顶发射和双发射中的任何一种。这里,参照图20A至20C将描述对应于各个发射类型的发光元件的堆叠结构。
此外,在本实施方式中,使用根据本发明形成的通道保护薄膜晶体管461、471和481。薄膜晶体管481提供在透光基板480上并且包括栅电极层493、栅绝缘膜497、半导体层494、n-型半导体层495a和495b、源或漏电极层487a和487b和通道保护层496。在本实施方式中,使用具有非晶态结构的硅膜作为半导体层,使用n-型半导体层作为具有同一导电性的半传导层。可以使用PH3气体等离子处理把导电性给予半导体层,而不是形成n-型半导体层。半导体层不限于本实施方式中的那种,且也可以使用晶态半导体层,只要包含光催化剂物质的有机化合物层能够经受处理温度。在使用晶态半导体层如多晶硅的情况下,可以在晶态半导体层引入(加入)杂质元素以形成具有同一导电性的杂质区域,而不用形成具有同一导电性的半导体层。此外,可以使用有机半导体如并五苯。当通过液滴喷出法等选择性地形成这种有机半导体时,可以简化蚀刻至所需形状的过程。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物被分解(分裂)使得层变粗糙并从基板剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状适当地转移至各种类型的基板。在剥离包含光催化剂物质的有机化合物层之后在元件层侧的残留层就是包含光催化剂物质的有机化合物层499、469和479。附着至元件层侧的基板480、460和470可以由能阻挡激活在元件层中剩余光催化剂物质的波长的光的材料形成。
因此,由于元件可以被转移至各种类型的基板,可以从更广范围的材料中选择用于基板的材料。另外,廉价材料可以用于基板,并且除了具有适于应用的各种功能外,可以以低成本制造半导体装置。
可以通过液滴喷出法使用聚酰亚胺或聚乙烯醇等形成通道保护层496。结果,可以省略曝光过程。通道保护层可以是由一种或多种无机材料(氧化硅、氮化硅、氧氮化硅或氮氧化硅等)、光敏或非光敏有机材料(有机树脂材料)(聚酰亚胺、丙烯酸类物质、聚酰胺、聚酰亚胺酰胺、抗蚀剂或苯并环丁烯等)或一种具有低介电常数的材料等形成的膜;或上述膜的堆叠等。另外,可以使用硅氧烷树脂。需要注意硅氧烷树脂对应于包括Si-O-Si键的树脂。硅氧烷具有硅(Si)和氧(O)键的骨架结构。对于取代基,使用至少含有氢的有机基团(如烷基或芳烃)。对于取代基,可以使用氟基。此外,对于取代基,可以使用至少含有氢的有机基团和氟基。作为制造方法,可以使用气相生长法如等离子CVD或热CVD,或者溅射。也可以使用液滴喷出法、印刷法(一种形成图案的方法,如丝网印刷法或胶版印刷法)、滴涂器法。还可以使用通过涂覆方法获得的有机膜或无机膜(SOG膜等)。
首先,参照图20A将描述光向透光基板480发射的情况,换句话说,底发射情况。在这种情况下,形成第一电极层484与源或漏电极层487b相接触以使之电连接至薄膜晶体管481,并且在第一电极层484上顺序堆叠电致发光层485和第二电极层486。接着,参照图20B将描述光向透光基板460的相对侧发射的情况,换句话说,顶发射情况。薄膜晶体管461可以以类似于上述薄膜晶体管的方式形成。
顺序堆叠电连接至薄膜晶体管461的源或漏电极层462、第一电极层463、电致发光层464和第二电极层465。在这一结构中,即使当光穿过第一电极层463时,光在源或漏电极层462上反射并发射至透光基板460的相对侧。注意:在这一结构中,第一电极层463不是必需由透光材料形成。最后,参照图20C描述了光向透光基板470侧和相对侧都发射的情况,换句话说,双发射情况。薄膜晶体管471也是像薄膜晶体管481的通道保护薄膜晶体管,并且可以以与薄膜晶体管481相同的方式形成。形成第一电极层472与源或漏电极层475相接触以使之电连接至薄膜晶体管471,并且在第一电极层472上顺序堆叠电致发光层473和第二电极层474。此时,当第一电极层472和第二电极层474都由具有光透射性质的材料形成或者形成具有能透射光的厚度时,双发射就实现了。
参照图18A至18D将详细描述可应用于本实施方式的透光元件的结构。
图18A至18D每个均显示了一个发光元件的元件结构的例子,所述的发光元件中通过混合有机化合物和无机化合物形成的电致发光层860被夹在第一电极层870和第二电极层850中间。如图所示,电致发光层860包括第一层804、第二层803和第三层802,并且特别在第一层804和第三层802中有重要特征。
首先,第一层804是具有传输空穴至第二层803的功能的层,并且至少包含第一有机化合物和显示出对第一有机化合物电子接受性质的第一无机化合物。重要的是第一有机化合物和第一无机化合物不仅是简单的混合而且第一无机化合物相对第一有机化合物具有电子接受性质。这种结构在原来几乎没有内在载体的第一有机化合物中产生许多空穴载体,并且可以得到非常好的空穴注入和空穴传输性质。
因此,对于第一层804,不仅所设想的通过混合无机化合物得到的有利效果(如热阻的改善)而且极好的导电性(特别是,第一层804中的空穴注入性质和空穴传输性质)也能够获得。这种极好的导电性是有利的效果,其无法在传统的简单混合没有相互电子作用的有机化合物和无机化合物的空穴传输层中获得。这种有利效果能使驱动电压低于传统的。另外,因为第一层804能制成厚的而不会导致驱动电压的增加,可以抑制由于灰尘等引起的元件短路。
然而,优选使用空穴传输有机化合物作为第一有机化合物,因为如上所述在第一有机化合物中产生空穴载体。空穴传输有机化合物的例子包括酞菁(缩写:H2Pc)、铜酞菁(缩写:CuPc)、氧钒酞菁(缩写:VOPc)、4,4’,4”-三(N,N-二苯基氨基)三苯胺(缩写:TDATA)、4,4’,4”-三[N-(3-甲基苯基)-N-苯基氨基]三苯胺(缩写:MTDATA)、1,3,5-三[N,N-二(间甲苯基)氨基]苯(缩写:m-MTDAB)、N,N’-二苯基-N,N’-双(3-甲基苯基)-1,1’-联苯-4,4’-二胺(缩写:TPD)、4,4’-双[N-(1-萘基)-N-苯基氨基]联苯(缩写:NPB)、4,4’-双{N-[4-二(间甲苯基)氨基]苯基-N-苯基氨基}联苯(缩写:DNTPD)、和4,4’,4”-三(N-咔唑基)三苯胺(缩写:TCTA)等。然而,本发明不限于这些例子。另外,在上述化合物中,由TDATA、MTDATA、m-MTDAB、TPD、NPB、DNTPD和TCTA代表的芳族胺化合物易于产生空穴载体,并且是适合于第一有机化合物的化合物组。
另一方面,第一无机化合物可以是任何材料,只要该材料能易于从第一有机化合物接受电子,可以使用各种金属氧化物和金属氮化物。优选任何属于周期表第4至12族的过渡金属氧化物,因为易于提供电子接受性质。具体地,例如,可以给出氧化钛、氧化锆、氧化钒、氧化钼、氧化钨、氧化铼、氧化钌和氧化锌等。另外,在上述金属氧化物中,任何属于周期表第4至8族的过渡金属氧化物通常具有高电子接受性质,其为优选组。特别地,优选氧化钒、氧化钼、氧化钨和氧化铼,因为它们可以通过真空蒸发形成且易于使用。
注意:第一层804可以通过堆叠多个如上所述的每个均包含有机化合物和无机化合物组合的层形成,或者可以进一步包含另一种有机化合物或无机化合物。
下面,将说明第三层802。第三层802是具有传输电子至第二层803的功能的层,并且至少包含第三有机化合物和显示出对第三有机化合物电子给予性质的第三无机化合物。重要的是第三有机化合物和第三无机化合物不仅是简单的混合,而且第三无机化合物相对第三有机化合物具有电子给予性质。这种结构在原来几乎没有内在载体的第三有机化合物中产生许多电子载体,并且可以得到非常好的电子注入和电子传输性质。
因此,对于第三层802,不仅所设想的通过混合无机化合物得到的有利效果(如热阻的改善)而且极好的导电性(特别是,第三层802中的电子注入性质和电子传输性质)也能够获得。这种极好的导电性是有利的效果,其无法在传统的简单混合没有相互电作用的有机化合物和无机化合物的电子传输层中获得。这种有利效果能使驱动电压低于传统的。另外,因为第三层802能制成厚的而不会导致驱动电压的增加,可以抑制由于灰尘引起等的元件短路。
然而,优选使用电子传输有机化合物作为第三有机化合物,因为如上所述在第三有机化合物中产生电子载体。电子传输有机化合物的例子包括三(8-羟基喹啉)铝(缩写:Alq3)、三(4-甲基-8-羟基喹啉)铝(缩写:Almq3)、双(10-羟基苯并[h]-羟基喹啉)铍(缩写:BeBq2)、双(2-甲基-8-羟基喹啉)(4-苯基苯氧基)铝(缩写:BAlq)、双[2-(2’-羟基苯基)苯并噁唑氧基]锌(缩写:Zn(BOX)2)、双[2-(2’-羟基苯基)苯并噻唑氧基]锌(缩写:Zn(BTZ)2)、红菲绕啉(缩写:BPhen)、浴铜灵(缩写:BCP)、2-(4-联苯基)5-(4-叔丁基苯基)-1,3,4-噁二唑(缩写:PBD)、1,3-双[5-(4-叔丁基苯基)-1,3,4-噁二唑-2-基]苯(缩写:OXD-7)、2,2’,2”-(1,3,5-苯三基)-三(1-苯基-1H-苯并咪唑)(缩写:TPBI)、3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(缩写:TAZ)和3-(4-联苯基)-4-(4-乙基苯基)-5-(4-叔丁基苯基)-1,2,4-三唑(缩写:p-EtTAZ)等。然而,本发明不限于这些例子。另外,在上述化合物中,具有包括由Alq3、Almq3、BeBq2、BAlq、Zn(BOX)2和Zn(BTZ)2代表的芳环的螯合配体的螯合金属配合物、具有由BPhen和BCP代表的菲咯啉骨架的有机化合物和具有由PBD和OXD-7代表的噁二唑骨架的有机化合物易于产生电子载体,并且是适合于第三有机化合物的化合物组。
另一方面,第三无机化合物可以是任何材料,只要该材料能易于把电子给予第三有机化合物,可以使用各种金属氧化物和金属氮化物。优选碱金属氧化物、碱土金属氧化物、稀土金属氧化物、碱金属氮化物、碱土金属氮化物和稀土金属氮化物,因为易于提供电子给予性质。具体地,例如,可以给出氧化锂、氧化锶、氧化钡、氧化铒、氮化锂、氮化镁、氮化钙、氮化钇和氮化镧等。特别地,优选氧化锂、氧化钡、氮化锂、氮化镁和氮化钙,因为它们可以通过真空蒸发形成且易于使用
注意:第三层802可以通过堆叠多个如上所述的每个均包含有机化合物和无机化合物组合的层形成,或者可以进一步包含另一种有机化合物或无机化合物。
然后,将说明第二层803。第二层803是具有发射光的功能的层,并且包含具有发光性质的第二有机化合物。也可以包含第二无机化合物。可以通过使用各种发光有机化合物和无机化合物形成第二层803。然而,因为认为与第一层804或第三层802相比电流难于通过第二层803,第二层803的厚度优选为10nm至100nm。
对第二有机化合物没有特别限制,只要它是发光有机化合物。第二有机化合物的例子包括,例如,9,10-二(2-萘基)蒽(缩写:DNA)、9,10-二(2-萘基)-2-叔丁基蒽(缩写:t-BuDNA)、4,4’-双(2,2-二苯基乙烯基)联苯(缩写:DPVBi)、香豆素30、香豆素6、香豆素545、香豆素545T、二萘嵌苯、红荧烯、periflanthene、2,5,8,11-四(叔丁基)二萘嵌苯(缩写:TBP)、9,10-二苯基蒽(缩写:DPA)、5,12-二苯基蒽、4-(二氰基亚甲基)-2-甲基-[对-(二甲氨基)苯乙烯基]-4H-吡喃(缩写:DCM1)、4-(二氰基亚甲基)-2-甲基-6-[2-(久洛尼定-9-基)乙烯基]-4H-吡喃(缩写:DCM2)和4-(二氰基亚甲基)-2,6-双[对-(二甲氨基)苯乙烯基]-4H-吡喃(缩写:BisDCM)等。另外,使用能够发射磷光的化合物也是可能的,如双[2-(4’,6’-二氟苯基)吡啶-N,C2’]铱(皮考啉化物)(缩写:FIirpic)、双{2-[3’,5’-双(三氟甲基)苯基]吡啶-N,C2’}铱(皮考啉化物)(缩写:Ir(CF3ppy)2(pic))、三(2-苯基吡啶-N,C2’)铱(缩写:Ir(ppy)3)、双(2-苯基吡啶-N,C2’)铱(乙酰丙酮化物)(缩写:Ir(ppy)2(acac))、双[2-(2’-噻吩基)吡啶-N,C3’]铱(乙酰丙酮化物)(缩写:Ir(thp)2(acac))、双(2-苯基羟基喹啉-N,C2’)铱(乙酰丙酮化物)(缩写:Ir(pq)2(acac))或双[2-(2’-苯噻吩基)吡啶-N,C3’]铱(乙酰丙酮化物)(缩写:Ir(btp)2(acac))。
此外,对于第二层803,除了单态激发发光材料之外可以使用含有金属配合物等的三重态激发发光材料。例如,在发射红、绿和蓝光的像素中,通过使用三重态激发发光材料形成发射红光的像素,其亮度在相对短时间内降低一半,而其它像素通过使用单态激发发光材料形成。三重态激发发光材料具有良好发光效率和更少能耗以获得相同亮度的特征。换句话说,当三重态激发发光材料用于红色像素时,只需要应用少量电流至发光元件;因而,可靠性得以改善。可以通过使用三重态激发发光材料形成发射红光的像素和发射绿光的像素,也可以通过使用单态激发发光材料形成发射蓝光的像素以实现低能耗。通过使用三重态激发发光材料形成发射对于人眼具有高能见度的绿光的发光元件可以进一步实现低能耗。
第二层803可以不仅包含如上所述的产生光发射的第二有机化合物,也包含另一种加入其中的有机化合物。可以加入的有机化合物的例子包括上面提及的TDATA、MTDATA、m-MTDAB、TPD、NPB、DNTPD、TCTA、Alq3、Almq3、BeBq2、BAlq、Zn(BOX)2、Zn(BTZ)2、BPhen、BCP、PBD、OXD-7、TPBI、TAZ、p-EtTAZ、DNA、t-BuDNA和DPVBi,此外还有4,4’-双(N-咔唑基)联苯(缩写:CBP)和1,3,5-三[4-(N-咔唑基)苯基]苯(缩写:TCPB)等。然而,本发明不限于这些例子。除了第二有机化合物之外加入的有机化合物优选具有比第二有机化合物更大的激发能并且以比第二有机化合物更多的量加入,以使第二有机化合物有效地发光(其使得防止第二有机化合物的浓度猝灭变成可能)。或者,作为另一种功能,加入的有机化合物可以和第二有机化合物一起发光(其使得发射白光等成为可能)。
通过给每个像素提供具有不同发射波长范围的发光层,第二层803可以具有进行彩色显示的结构。一般,形成对应于R(红)、G(绿)和蓝(B)的每种颜色的发光层。并且在这种情况下,色纯度可以改善且可以通过给像素的发光侧提供透射光发射波长范围的光的滤片来防止像素部分具有镜像表面(反射)。通过提供滤片,可以省略传统必需的圆形起偏振片等,而且,可以消除由发光层发射的光的损失。此外,可以减少当倾斜地观看像素部分(显示屏)时发生的色调变化。
低分子有机发光材料或者高分子有机发光材料可以被用于第二层803的材料。与低分子材料相比高分子有机发光材料物理上更坚固且在元件的耐久性上较好。另外,可以通过涂覆形成高分子有机发光材料;因此,可以相对容易地制造元件。
发射颜色由形成发光层的材料决定;因此,可以通过选择合适的材料用于发光层来形成显示所需光发射的发光元件。作为一种可以用来形成发光层的高分子电致发光材料,可以使用聚对亚苯基-亚乙烯基基材料、聚对亚苯基基材料、聚噻吩基材料或聚芴基材料。
作为聚对亚苯基-亚乙烯基基材料,可以给出聚(对亚苯基亚乙烯基)[PPV]的衍生物如聚(2,5-二烷氧基-1,4-亚苯基亚乙烯基)[RO-PPV]、聚(2-(2’-乙基-己氧基)-5-甲氧基-1,4-亚苯基亚乙烯基)[MEH-PPV]或聚(2-(二烷氧基苯基)-1,4-亚苯基亚乙烯基)[ROPh-PPV]。作为聚对亚苯基基材料,可以给出聚对亚苯基[PPP]的衍生物如聚(2,5-二烷氧基-1,4-亚苯基)[RO-PPP]或聚(2,5-二己氧基-1,4-亚苯基)。作为聚噻吩基材料,可以给出聚噻吩[PT]的衍生物如聚(3-烷基噻吩)[PAT]、聚(3-己基噻吩)[PHT]、聚(3-环己基噻吩)[PCHT]、聚(3-环己基-4-甲基噻吩)[PCHMT]、聚(3,4-二环己基噻吩)[PDCHT]、聚[3-(4-辛基苯基)-噻吩][POPT]或聚[3-(4-辛基苯基)-2,2-双噻吩][PTOPT]。作为聚芴基材料,可以给出聚芴[PF]的衍生物如聚(9,9-二烷基芴)[PDAF]或聚(9,9-二辛基芴)[PDOF]。
第二无机化合物可以是任何无机化合物,只要第二有机化合物的光发射不易被该无机化合物抑制,可以使用各种金属氧化物和金属氮化物。特别地,优选含有属于周期表第13或14族的金属的金属氧化物,因为第二有机化合物的光发射不易被抑制,且具体地,优选氧化铝、氧化镓、氧化硅和氧化锗。然而,第二无机化合物不限于此。
注意:第二层803可以通过堆叠多个如上所述的每个均包含有机化合物和无机化合物组合的层形成,或者可以进一步包含另一种有机化合物或无机化合物。可以改变发光层的层结构,且可以提供用于注入电子的电极层或者可以分散发光材料,而不是不提供特殊的电子注入区域或发光区域。这样的改变是允许的,除非它偏离了本发明的精神。
使用上述材料形成的发光元件通过正向偏压发光。通过使用发光元件形成的显示装置的像素可以由简单矩阵(无源矩阵)模式或有源矩阵模式驱动。在任何情况下,各个像素通过在特定时间向其施加正向偏压来发光;然而,像素有一段时间处于不发射状态。可以通过在不发射时间施加反向偏压来改善发光元件的可靠性。在发光元件中,有一种在不变的驱动条件下降低发射强度的退化模式或者一种在像素中扩大非发光区域且明显地降低亮度的退化模式。然而,可以通过当正向和反向施加偏压时交替当前驱动使退化进程慢下来;从而,可以改善发光显示装置的可靠性。或者,可以应用数字驱动或者模拟驱动。
彩色滤光片(着色层)可以在密封基板上形成。彩色滤光片可以通过蒸发法或液滴喷出法形成。使用彩色滤光片(着色层)可以进行高分辨率显示。这是因为彩色滤光片(着色层)可以在各个R、G和B的发射光谱中把宽峰修改尖锐。
可以通过形成发射单色光的材料并结合彩色滤光片或彩色转换层进行全色显示。优选地,彩色滤光片(着色层)或彩色转换层形成在例如第二基板(密封基板)上并附着至一个基板。
不用说,也可以进行单色发射的显示。例如,可以使用单色发射来制造区域颜色型显示装置。区域颜色型适用于无源矩阵显示部分且能主要显示字符和符号。
需要考虑功函数来选择第一电极层870和第二电极层850的材料。取决于像素结构,第一电极层870和第二电极层850可以是阳极或阴极。在驱动薄膜晶体管的极性为P-通道型的情况下,第一电极层870优选用作阳极,而第二电极层850优选用作阴极,如图18A所示。在驱动薄膜晶体管的极性为N-通道型的情况下,第一电极层870优选用作阴极,而第二电极层850优选用作阳极,如图18B所示。将描述可用于第一电极层870和第二电极层850的材料。优选将具有高功函数的材料(具体地,具有4.5eV或更高的功函数的材料)用于用作阳极的第一电极层870和第二电极层850之一,并且将具有较低功函数的材料(具体地,具有3.5eV或更少的功函数的材料)用于用作阴极的另一个电极层。然而,因为第一层804在空穴注入性质和空穴传输性质上较好并且第三层802在电子注入性质和电子传输性质上较好,所以第一电极层870和第二电极层850均几乎没有被功函数所限制,且可以使用各种材料。
图18A和18B所示的发光元件具有从第一电极层870提取光的结构;从而,第二电极层850不是必需具有透光性质。第二电极层850优选由主要包含一种Ti、Ni、W、Cr、Pt、Zn、Sn、In、Ta、Al、Cu、Au、Ag、Mg、Ca、Li和Mo元素,或者包含该元素作为其主要成分的一种合金材料或一种化合物材料如TiN、TiSiXNY、WSiX、WNX、WSiXNY或NbN的膜;或者总膜厚度为100nm至800nm的其堆叠膜形成。
第二电极层850可以通过蒸发法、溅射法、CVD法、印刷法、滴涂器法或液滴喷出法等形成。
另外,当通过使用类似于用于第一电极层870的材料的透光导电材料形成第二电极层850时,也可以从第二电极层850提取光,并且可以获得双发射结构,其中从发光元件发射的光是从第一电极层870侧和第二电极层850侧发射的。
注意:本发明的发光元件可以通过改变第一电极层870和第二电极层850的类型而具有变化。
图18B显示了从第一电极层870侧在电致发光层860中顺序提供第三层802、第二层803和第一层804的情况。
如上所述,在可应用于本发明的发光元件中,插入在第一电极层870和第二电极层850之间的层由包括结合有机化合物和无机化合物的层的电致发光层860形成。发光元件是一种提供有多层(即第一层804和第三层802)的有机-无机复合物发光元件,其通过混合有机化合物和无机化合物而提供称为高载体注入性质和载体传输性质的功能。这种诸如高载体注入性质和载体传输性质的功能仅从有机化合物或无机化合物之一是不能获得的。另外,当提供在第一电极层870侧时,第一层804和第三层802特别地需要是结合有机化合物和无机化合物的层,并且当提供在第二电极层850侧时也可以只包含有机化合物和无机化合物中的一种。
此外,可以使用各种方法作为形成电致发光层860的方法,该层是混合有机化合物和无机化合物于其中的层。例如,所述方法包括一种通过电阻加热蒸发有机化合物和无机化合物的共蒸发法。此外,对于共蒸发法,在通过电阻加热蒸发有机化合物的同时可以通过电子束(EB)蒸发无机化合物。而且,所述方法也包括在通过电阻加热蒸发有机化合物的同时溅射无机化合物以同时沉积两者。此外,电致发光层也可以通过湿法形成。
以同样的方式,对于第一电极层870和第二电极层850,可以使用电阻加热蒸发、EB蒸发、溅射或湿法等。
在图18C中,在图18A的结构中将具有反射率的电极层用于第一电极层870,并将具有透光性质的电极层用于第二电极层850。从发光元件发射的光在第一电极层870上反射,透射穿过第二电极层850,并发射至外部。以同样的方式,在图18D中,在图18B的结构中将具有反射率的电极层用于第一电极层870,并将具有透光性质的电极层用于第二电极层850。从发光元件发射的光在第一电极层870上反射,透射穿过第二电极层850,并发射至外部。
本实施方式可以自由地与上述实施方式相结合。
实施方式9
参照图37A至37C和图38A至38C,实施方式9将说明另一种可应用于本发明发光元件的结构。
利用电致发光的发光元件通过发光材料是否为有机化合物或无机化合物来区别。一般,前者被称为有机EL元件,而后者被称为无机EL元件。
无机EL元件被分类为分散体型无机EL元件和薄膜型无机EL元件,取决于其元件结构。前者和后者的不同在于前者具有发光材料颗粒分散在粘合剂中的电致发光层,而后者具有从发光材料薄膜形成的电致发光层。然而,前者和后者共同之处在于需要被高电场加速的电子。注意:作为所获得的发光机制,有利用给体能级和受体能级的给体-受体重组型发光和利用金属离子的内壳层电子跃迁的局部型发光。一般,许多情况下,给体-受体重组型发光用于分散体型无机EL元件中,而局部型发光用于薄膜型无机EL元件中。
可用于本发明的发光材料包括主体材料和将成为光发射中心的杂质元素。通过改变包含的杂质元素可以获得各种颜色的光发射。作为发光材料的制造方法,可以使用各种方法如固相法和液相法(共沉淀法)。此外,也可以使用蒸发分解法、复分解法、前体加热分解反应的方法、反向胶束法、这些方法各自与高温烘烤相结合的方法或液相法如冷冻干法等。
固相法是一种方法,通过它来测定、在研钵中混合、在电炉中加热并且烘烤主体材料和杂质元素或包含杂质元素的化合物来使之反应以包含杂质元素在主体材料中。烘烤温度优选为700℃至1500℃。这是因为当温度太低时固相反应不会进行,而当温度太高时主体材料会分解。烘烤可以以粉末状态进行;然而,优选以丸粒状态进行烘烤。尽管烘烤必须在相对高温下进行,固相方法是容易的;从而,固相法适用于高产量的大规模生产。
液相法(共沉淀法)是一种方法,通过它来使主体材料或包含主体材料的化合物在溶液中与杂质元素或包含杂质元素的化合物反应、干燥然后烘烤。发光材料的颗粒均匀地分布,并且即使颗粒尺寸小和烘烤温度低反应也可以进行。
作为用于发光材料的主体材料,可以使用氢硫化物、氧化物或氮化物。作为氢硫化物,例如,可以使用硫化锌(ZnS)、硫化镉(CdS)、硫化钙(CaS)、硫化钇(Y2S3)、硫化镓(Ga2S3)、硫化锶(SrS)或硫化钡(BaS)等。作为氧化物,例如,可以使用氧化锌(ZnO)或氧化钇(Y2O3)等。作为氮化物,例如,可以使用氮化铝(AlN)、氮化镓(GaN)或氮化铟(InN)等。此外,也可以使用硒化锌(ZnSe)或碲化锌(ZnTe)等,并且还可以使用三组分混合的晶体如硫化钙-镓(CaGa2S4)、硫化锶-镓(SrGa2S4)或硫化钡-镓(BaGa2S4)。
作为局部型发光的光发射中心,可以使用锰(Mn)、铜(Cu)、钐(Sm)、铽(Tb)、铒(Er)、铥(Tm)、铕(Eu)、铈(Ce)或镨(Pr)等。注意:可以加入卤族元素如氟(F)或氯(Cl)作为电荷补偿。
另一方面,作为给体-受体重组型发光的光发射中心,可以使用包含形成给体能级的第一杂质元素和形成受体能级的第二杂质元素的发光材料。作为第一杂质元素,例如,可以使用氟(F)、氯(Cl)或铝(Al)等。作为第二杂质元素,例如,可以使用铜(Cu)或银(Ag)等。
在通过固相法合成给体-受体重组型发光的发光材料的情况下,分别测定、在研钵中混合、在电炉中加热并且烘烤主体材料、第一杂质元素或包含第一杂质元素的化合物和第二杂质元素或包含第二杂质元素的化合物。作为主体材料,可以使用上述主体材料。作为第一杂质元素或包含第一杂质元素的化合物,例如,可以使用氟(F)、氯(Cl)或硫化铝(Al2S3)等。作为第二杂质元素或包含第二杂质元素的化合物,例如,可以使用铜(Cu)、银(Ag)、硫化铜(Cu2S)或硫化银(Ag2S)等。烘烤温度优选为700℃至1500℃。这是因为当温度太低时固相反应不会进行,而当温度太高时主体材料会分解。烘烤可以以粉末状态进行;然而,优选以丸粒状态进行烘烤。
在利用固相反应的情况下作为杂质,可以结合包含第一杂质元素和第二杂质元素的化合物。在这种情况下,由于杂质元素易于扩散并且固相反应易于进行,可以获得均匀的发光材料。而且,由于过剩杂质元素没有进入,可以获得具有高纯度的发光材料。作为包含第一杂质元素和第二杂质元素的化合物,例如,可以使用氯化铜(CuCl)或氯化银(AgCl)等。
注意:这些杂质元素的浓度相对于主体材料可以是0.01至10原子%,浓度优选为0.05至5原子%。
在薄膜型无机EL元件的情况下,电致发光层是包含上述发光材料的层,其可通过真空蒸发法如电阻加热蒸发法或电子束蒸发(EB蒸发)法、物理蒸汽沉积(PVD)法如溅射法、化学蒸汽沉积(CVD)法如有机金属CVD法或氢化物输送低压CVD法、或原子层外延法(ALE)等形成。
图37A至37C每个均显示了一个可用作发光元件的薄膜型无机EL元件的例子。在图37A至37C中,发光元件每个均包括第一电极层50、电致发光层52和第二电极层53。
图37B和37C所示的发光元件每个均具有在图37A的发光元件中的电极层和电致发光层之间形成绝缘层的结构。图37B所示的发光元件具有在第一电极层50和电致发光层52之间的绝缘层54。图37C所示的发光元件具有在第一电极层50和电致发光层52之间的绝缘层54a,和在第二电极层53和电致发光层52之间的绝缘层54b。以这种方式,绝缘层可以提供在电致发光层和夹住电致发光层的一对电极层中的一个电极层之间,或者可以提供在电致发光层和两个电极层之间。而且,绝缘层可以是单层或包括多层的堆叠层。
另外,尽管在图37B中提供绝缘层54与第一电极层50相接触,但通过颠倒绝缘层和电致发光层的顺序可以提供绝缘层54与第二电极层53相接触。
在分散体型无机EL元件的情况下,形成发光材料的颗粒被分散在粘合剂中的电致发光层。当不足以通过发光材料的制造方法获得具有所需颗粒尺寸的颗粒时,电致发光层可以通过用研钵等压碎而以颗粒状态形成。粘合剂指的是用于固定颗粒状态的发光材料在分散状态以保持作为电致发光层的形状的物质。发光材料均匀分散并通过粘合剂固定在电致发光层中。
在分散体型无机EL元件的情况下,作为形成电致发光层的方法,可以使用液滴喷出法、可以选择性地形成电致发光层的印刷法(如丝网印刷或胶版印刷)、涂覆法如旋涂法、浸渍法或滴涂器法等。电致发光层的膜厚度没有特别限制;然而,优选10nm至1000nm的膜厚度。另外,在包含发光材料和粘合剂的电致发光层中,发光材料的比例优选设为大于或等于50wt%且小于或等于80wt%。
图38A至38C每个均显示了一个可用作发光元件的分散体型无机EL元件的例子。在图38A中,发光材料具有第一电极层60、电致发光层62和第二电极层63的堆叠结构,其中由粘合剂保持的发光材料61包括在电致发光层62中。
作为可用于本实施方式的粘合剂,可以使用有机材料或无机材料,并且也可以使用有机材料和无机材料的混合材料。作为有机材料,可以使用树脂如聚合体、聚乙烯、聚丙烯、聚苯乙烯基树脂、硅树脂、环氧树脂或像氰乙基纤维素基树脂的具有比较高介电常数的偏二氟乙烯。此外,可以使用耐热高分子化合物如芳香族聚酰胺或聚苯并咪唑,或者硅氧烷树脂。硅氧烷对应于包括Si-O-Si键的树脂。硅氧烷由硅(Si)和氧(O)键形成的骨架结构构成。作为其取代基,使用至少含有氢的有机基团(如烷基或芳烃)。另外,可以使用氟基作为取代基。此外,对于取代基,可以使用至少含有氢的有机基团和氟基。而且,也可以使用乙烯树脂如聚乙烯醇或聚乙烯醇缩丁醛、或者树脂材料如酚醛树酯、酚醛清漆树脂、丙烯酸树脂、三聚氰胺甲醛树脂、氨基甲酸乙酯树脂、噁唑树脂(聚苯并噁唑)。例如,可以使用可光致固化树脂等。介电常数也可以通过合适地把这些树脂与具有高介电常数的微粒如钛酸钡(BaTiO3)或钛酸锶(SrTiO3)相混合来调节。
作为无机材料,可以使用硅氧化物(SiOx)、硅氮化物(SiNx)、含氧和氮的硅、氮化铝(AlN)、含氧和氮的铝或氧化铝(Al2O3)、氧化钛(TiO2)、BaTiO3、SrTiO3、钛酸铅(PbTiO3)、铌酸钾(KNbO3)、铌酸铅(PbNbO3)、氧化钽(Ta2O5)、钽酸钡(BaTa2O6)、钽酸锂(LiTaO3)、氧化钇(Y2O3)、氧化锆(ZrO2)、ZnS材料和其它含无机材料的物质。通过把有机材料与具有高介电常数的无机材料相混合(通过加入等),包括发光材料和粘合剂的电致发光层的介电常数可以被进一步控制且介电常数可以被进一步提高。
在制造过程中,发光材料被分散在含粘合剂的溶液中。然而,作为可用在本实施方式中的含粘合剂溶液的溶剂,优选合适地选择这样一种溶剂,其溶解粘合剂材料并且能产生具有适合于形成电致发光层的方法(各种湿法)和所需膜厚度的粘度的溶液。在可以使用有机溶剂等和例如硅氧烷树脂用作粘合剂的情况下,可以使用丙二醇一甲基醚、丙二醇一甲基醚乙酸酯(也称为PGMEA)或3-甲氧基-3-甲基-1-丁醇(也称为MMB)等。
图38B和38C所示的发光元件每个均具有在图38A的发光元件中的电极层和电致发光层之间形成绝缘层的结构。图38B所示的发光元件具有在第一电极层60和电致发光层62之间的绝缘层64。图38C所示的发光元件具有在第一电极层60和电致发光层62之间的绝缘层64a,和在第二电极层63和电致发光层62之间的绝缘层64b。以这种方式,绝缘层可以提供在电致发光层和夹住电致发光层的一对电极层中的一个电极层之间,或者可以提供在电致发光层和两个电极层之间。而且,绝缘层可以是单层或包括多层的堆叠层。
另外,尽管在图38B中提供绝缘层64与第一电极层60相接触,但通过颠倒绝缘层和电致发光层的顺序可以提供绝缘层64与第二电极层63相接触。
尽管绝缘层如图37B和37C的绝缘层54、54a和54b和图38B和38C的绝缘层64、64a和64b没有特别限制,但这样的绝缘层优选具有高介电强度和致密膜质量,和更优选地高介电常数。例如,可以使用氧化硅(SiO2)、氧化钇(Y2O3)、氧化钛(TiO2)、氧化铝(Al2O3)、氧化铪(HfO2)、氧化钽(Ta2O5)、钛酸钡(BaTiO3)、钛酸锶(SrTiO3)、钛酸铅(PbTiO3)、氮化硅(Si3N4)或氧化锆(ZrO2)等,或者混合膜或两种或更多种膜的堆叠膜。这些绝缘膜可以通过溅射、蒸发或CVD等形成。另外,绝缘层可以通过在粘合剂中分散这些绝缘材料的颗粒形成。粘合剂材料优选用与包含在电致发光层中的粘合剂相同的材料和通过相同的方法形成。这样的绝缘层的膜厚度没有特别限制,优选10nm至1000nm的膜厚度。
本实施方式所示的发光元件可以通过在夹住电致发光层的一对电极层之间施加电压提供光发射;并且,发光元件可以由任何DC驱动和AC驱动来操作。
本发明可以自由地与上述实施方式相结合。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物被分解(分裂)使得层变粗糙并从基板剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状适当地转移至各种类型的基板。
因此,由于元件可以被转移至各种类型的基板,可以从更广范围的材料中选择用于基板的材料。另外,廉价材料可以用于基板,并且除了具有适于应用的各种功能外,可以以低成本制造半导体装置。
根据本发明,使用剥离方法可以制造半导体装置和显示装置,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。因此,可以以高产量制造更可靠的半导体装置和显示装置且未使制造设备和方法复杂化。
实施方式10
接着,实施方式10将描述一种方式,其中用于驱动的驱动电路安装在根据上述实施方式形成的显示面板上。
图27A是显示根据本发明的显示面板的结构的顶视图。在具有绝缘表面的基板2700上形成以矩阵安排像素2702的像素部分2701、扫描信号输入终端2703和数据信号输入终端2704。像素的数量可以根据各种标准确定。在RGB全色XGA情况下,像素数量可以为1024×768×3(RGB)。在RGB全色UXGA情况下,像素数量可以为1600×1200×3(RGB),而全规格高清晰度显示情况下,它可以为1920×1080×3(RGB)。
通过从扫描信号输入终端2703延长的扫描线和从数据信号输入终端2704延长的信号线的交叉点以矩阵形成像素2702。在像素部分2701的每个像素2702均提供有一个开关元件和与其连接的像素电极层。开关元件的典型例子是TFT。TFT的栅电极层侧连接至扫描线,而TFT的源或漏侧连接至信号线,其使得每个像素能够独立地由外部信号输入来控制。
图27A显示了一种显示面板的结构,其中待输入至扫描线和信号线的信号由外部驱动电路控制。或者,驱动IC2751可以通过COG(将芯片固定于玻璃上)法安装在基板2700上,如图28A所示。作为另一种安装方式,也可以使用TAB(卷带自动接合)法,如图28B所示。驱动IC可以在单晶半导体基板上形成或者可以用TFT在玻璃基板上形成。在图28A和28B中,驱动IC2751连接至FPC(挠性印刷电路)2750。
当提供在像素中的TFT由具有结晶性的半导体形成时,扫描线驱动电路3702可以形成在基板3700上,如图27B所示。在图27B中,参考数字3701表示像素部分,并且被连接至数据信号输入终端3704和扫描线驱动电路3702的外部驱动电路所控制。当像素中的TFT由多晶(微晶)半导体或具有高迁移率的单晶半导体形成时,可以形成像素部分4701、扫描线驱动电路4702和信号线驱动电路4704,以集成在玻璃基板4700上,如图27C所示。
首先,参照图28A说明使用COG法的显示装置。在基板2700上提供用于显示字符或图像等信息的像素部分2701。提供有多个驱动电路的基板被分割成长方形,分割后的驱动电路2751(也称为驱动IC)安装在基板2700上。图28A显示了安装多个驱动IC2751和在驱动IC2751末端的FPC2750的方式。另外,可以使由分割获得的尺寸与像素部分在信号线侧的边长几乎相同,且FPC可以安装在单个驱动IC的末端。
或者,可以使用TAB法。在那种情况,可以附着多个卷带且驱动IC可以安装在卷带上,如图28B所示。类似于COG法的情况,单个驱动IC可以安装在单个卷带上。在这种情况,依据强度可以把用于固定驱动IC的金属片等附着在一起。
待安装至显示面板的多个驱动IC优选形成在具有一条300mm至1000mm边或一条长于1000mm边的长方形基板上以改善生产能力。
换句话说,多个各自包括驱动电路部分和输入-输出终端作为一个单元的电路图案可以在基板上形成并且被分割以便最后使用。考虑到像素部分或像素间距的边长,驱动IC可以形成为一个具有15mm至80mm长边和1mm至6mm短边的长方形。或者,驱动IC可以形成具有与像素部分相同的边长,或者等于像素部分边长加上各个驱动电路边长。
驱动IC相比IC芯片的外维的优点是长边的长度。当使用具有15mm至80mm长边长度的驱动IC时,根据像素部分必需安装的驱动IC的数量少于使用IC芯片的情况。因此,可以改进制造产量。当驱动IC在玻璃基板上形成时,生产能力没有降低,因为对用作母体的基板的形状没有限制。与从圆形硅片中取出IC芯片的情况相比这是一个巨大的优点。
当如图27B所示形成扫描线驱动电路3702以在基板上集成时,提供有信号线驱动电路的驱动IC安装在像素部分3701外的区域。驱动IC是信号线驱动电路。为了形成对应于RGB全色的像素部分,XGA等级使用3072根信号线,而UXGA等级使用4800根信号线。以此方式形成的信号线在像素部分3701的末端部分被分割成几块,并且形成导向线(leading lines)。对应于驱动IC的输出终端的间距聚集信号线。
驱动IC优选由形成在基板上的晶态半导体形成。晶态半导体优选通过用连续波激光照射来形成。因此,连续波固态或气体激光器被用于振荡器来产生激光。当使用连续波激光器时几乎没有晶体缺陷,结果,可以通过使用具有大颗粒尺寸的多晶半导体层制造晶体管。另外,高速驱动是可能的,因为迁移率和响应速度是有利的,而且相比传统元件更进一步改善元件的工作频率是可能的。因此,可以获得高可靠性,因为几乎没有特性的变化。注意:为了更进一步改善工作频率,优选地把晶体管的通道长度方向和激光在基板上的移动方向安排在同一个方向。这是因为在连续波激光器的激光晶化步骤中,当晶体管的通道长度方向和激光在基板上的移动方向几乎彼此平行(优选-30°至30°)时可以获得最高的迁移率。注意:通道长度方向对应于电流方向,换句话说,在通道形成区域中电荷移动的方向。如此制造的晶体管具有包括其中晶粒在通道长度方向延长的多晶半导体层的活性层,这意味着晶粒界面几乎沿着通道长度方向形成。
为了进行激光晶化,优选使激光显著地变窄,且激光的形状(束斑)优选具有与驱动IC短边的宽度相同的宽度,大约为1mm至3mm。另外,为了确保将被照射的物体足够且有效的能量密度,激光照射区域优选具有线形形状。这里使用的术语“线形”不是指严格意义的直线,而是具有大长宽比的长方形或椭圆形。例如,线形形状是指具有长宽比2或更大(优选10至10000)的长方形或椭圆形。从而,通过使激光形状(束斑)的宽度与驱动IC的短边一样长,可以提供一种改善了生产能力的制造显示装置的方法。
如图28A和28B所示,可以安装驱动IC作为扫描线驱动电路和信号线驱动电路。在这种情况,优选使用具有不同规格的驱动IC用于扫描线驱动电路和信号线驱动电路。
在像素部分中,信号线与扫描线交叉形成矩阵,晶体管被安排在对应于各个交叉点的部分。本发明的一个特征在于具有作为通道部分的非晶态半导体或半非晶态半导体的TFT被用作安排在像素部分中的晶体管。非晶态半导体通过一种方法如等离子CVD法或溅射法形成。半非晶态半导体可以通过等离子CVD法在300℃或更低的温度下形成。足够形成晶体管的膜厚度在短时间内形成,即使在使用例如具有550mm×650mm外部尺寸的非碱性玻璃基质的情况下也是如此。这种制造技术的特征在制造大尺寸电视装置中有效。另外,半晶态TFT可以通过使用SAS形成通道形成区域而获得2cm2/V·sec至10cm2/V·sec场效应迁移率。当应用本发明时,微小配线可以稳定地形成而没有缺陷如短路,因为可以以高可控性使图案形成所需的形状。因此,可以形成具有充分操作像素所需的电特性的TFT。所以,该TFT可以被用作像素的开关元件或用作包括在扫描线驱动电路中的元件。从而,可以制造实现面板上系统的显示面板。
也可以通过使用具有由SAS形成的半导体层的TFT来形成扫描线驱动电路以在基板上集成。在使用具有由AS形成的半导体层的TFT的情况下,可以安装驱动IC作为扫描线驱动电路和信号线驱动电路。
在那种情况,优选使用具有不同规格的驱动IC用于扫描线驱动电路和信号线驱动电路。例如,包括在扫描线驱动IC中的晶体管需要经受大约30V的电压;然而,驱动频率为100kHz或更低,且不需要比较高速的操作。因此,优选把包括在扫描线驱动器中的晶体管的通道长度(L)设置为足够长。另一方面,信号线驱动IC中的晶体管仅需要经受大约12V的电压;然而,驱动频率在3V下为大约65MHz,且需要高速的操作。因此,优选在微米线(rule)上设置包括在驱动器中的晶体管的通道长度等。通过使用本发明,可以以高可控性形成微小图案。因此,本发明足够处理这样的微米线。
安装驱动IC的方法没有特别限制,可以使用COG法、引线接合法或TAB法。
当使驱动IC和对基板的厚度彼此相等时,驱动IC和对基板的高度几乎相等,这促成显示装置整体变薄。当两个基板都由相同材料形成时,即使当在显示装置内引起温度改变时也不会产生热应力而且不会损坏由TFT形成的电路特性。此外,通过安装具有比IC芯片更长边的驱动IC作为驱动电路可以减少给一个像素部分安装的驱动IC的数量,如本实施方式所示。
如上所述,驱动电路可以结合在显示面板中。
实施方式11
参照图19A至19F所示的等效电路图将说明本实施方式所示的显示面板的像素结构。本实施方式描述了一个例子,其中包含有机化合物的有机EL元件或包含有机化合物层和无机化合物层的有机EL元件用于发光元件的电致发光层。
在图19A所示的像素中,信号线710和电源线711和712被安排在列方向,而扫描线714被安排在行方向。像素还包括作为开关TFT的TFT701、作为驱动TFT的TFT703、作为电流控制TFT的TFT704、电容元件702、发光元件705和反电极713。
图19C所示的像素具有和图19A所示像素一样的结构,区别在于TFT703的栅电极连接至安排在行方向的电源线712。换句话说,图19A和19C所示的像素都显示了相同的等效电路图。然而,在电源线712安排在列方向(图19A)和电源线712安排在列方向(图19C)的情况之间,电源线由在不同位置的导电层形成。这里,集中注意连接至TFT703的栅电极的接线并且图形分别显示在图19A和19C中以显示接线在不同层中形成。
在图19A和19C所示像素中,TFT703和704互相串联。
注意:TFT703工作在饱和区且用于控制流入发光元件705的电流量,而TFT704工作在线性区且用于控制向发光元件705的电流供应。考虑到制造过程,TFT703和704优选具有相同的导电性。对于TFT703,可以使用耗尽型TFT以及增强型TFT。在具有上述结构的本发明中,TFT704的VGS的轻微变化不会影响流入发光元件705的电流量,因为TFT704工作在线性区。换句话说,流入发光元件705的电流量由工作在饱和区的TFT703来决定。具有上述结构的本发明可以提供一种显示装置,其中通过抑制发光元件由于TFT特性变化而引起的亮度变化来改善图像质量。
图19A至19D所示的每个像素的TFT701控制向像素的视频信号输入。当TFT701接通且视频信号被输入到像素时,视频信号由电容元件702保持。尽管图19A和19C显示了其中提供了电容元件702的结构,但本发明不限于此。当栅电容等可以用作保持视频信号的电容时,没有明确地提供电容元件702。
发光元件705具有在两个电极之间插入电致发光层的结构。像素电极和对电极(阳极和阴极)在其间具有电位差,以便应用正向偏电压。电致发光层由一种选自广泛范围材料如有机材料和无机材料的材料形成。在电致发光层中的发光包括从单激发态返回基态时所产生的光发射(荧光)和从三重激发态返回基态时所产生的光发射(磷光)。
图19B所示的像素具有和图19A所示像素一样的结构,除了加入了TFT706和扫描线716之外。类似地,图19D所示的像素具有和图19C所示像素一样的结构,除了加入了TFT706和扫描线716之外。
TFT706由新安排的扫描线716控制以接通或断开。当接通TFT706时,保持在电容元件702的电荷放电,由此断开TFT704。换句话说,通过提供TFT706可以强制中止到发光元件705的电流供应。因此,通过使用图19B和19D所示的结构,照明周期可以在写周期开始的同时或者之后不久开始而不用等到信号写入所有像素后才开始;从而,可以改善占空率。
在图19E所示的像素中,信号线720和电源线721安排在列方向,而扫描线723安排在行方向。像素还包括作为开关TFT的TFT741、作为驱动TFT的TFT743、电容元件742、发光元件744和反电极722。图19F所示的像素具有和图19E所示像素一样的结构,除了加入了TFT745和扫描线724之外。图19F的结构也可以通过提供TFT745改善占空率。
根据本发明,使用剥离方法可以制造半导体装置和显示装置,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。因此,可以以高产量制造更可靠的半导体装置和显示装置且未使制造设备和方法复杂化。
实施方式12
图22显示了一个使用根据本发明将元件层转移至其的基板2800形成EL显示模块的例子。在图22中,包括像素的像素部分形成在将元件层转移至其的基板2800上。挠性基板可以用于基板2800和密封基板2820。
在图22中,在像素部分外,在驱动电路和像素之间提供使用具有与形成在像素中的TFT相同的结构的TFT的保护电路2801。可以通过把栅极连接至TFT的源极或漏极之一来配置保护电路部分2801以与二极管相同的方式工作。应用由单晶半导体形成的驱动IC、在玻璃基板上由多晶半导体形成的粘性驱动IC或由SAS形成的驱动电路至驱动电路2809。
将元件层转移至其的基板2800被固定至密封基板2820,其间插有通过液滴喷出法形成的隔板2806a和2806b。优选提供这些隔板以使即使当基板薄或像素部分的区域扩大时两个基板之间的距离也保持不变。在基板2800与在分别连接至TFT2802和2803的发光元件2804和2805上的密封基板2820之间的空间可以用具有透光性质的树脂材料填充并且树脂材料可以被固化。或者,该空间可以用无水氮气或一种惰性气体填充。
图22显示了具有顶发射型结构的发光元件2804和2805的例子,其以图中所示箭头方向发射光。可以通过使每一像素发射红、绿和蓝彼此不同颜色的光而完成彩色显示。这时,可以通过在密封基板2820侧相应于各自的颜色形成着色层2807a至2807c来改善向外部射出的光的颜色纯度。而且,可以使用发射白光的像素并且该像素可以与着色层2807a至2807c结合。
将外部电路驱动电路2809连接到通过接线板2810提供在外部接线板2811一端的扫描线连接终端或信号线连接终端。另外,可以在接触或邻近基板2800处提供管型高效导热装置导热管2813和散热片2812,其用于散热至装置外部,以增强散热效果。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物被分解(分裂)使得层变粗糙,并从基板上剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状适当地转移至各种类型的基板。在元件层侧剥离包含光催化剂物质的有机化合物层后的残留层是有机化合物层2815。
因此,由于元件可被转移至各种类型的基板上,可以从更广范围的材料中选择用于基板的材料。另外,廉价材料可以用于基板,并且除了具有适于应用的各种功能外,可以以低成本地制造显示装置。
注意:图22显示了顶发射EL模块;然而通过改变发光元件的结构或外部电路板的安排可以使用底发射模块。自然地,可以使用从顶和底表面两侧都发射光的双发射方式。在顶发射式的情况下,可以将作为隔断墙的绝缘层着色并用作黑色基质。该隔断墙可以通过液滴喷出法形成,它也可以通过在树脂材料如聚酰亚胺中混合颜料材料的黑色树脂或炭黑等形成。还可以使用其堆叠层。
另外,使用推迟板或起偏振片可以阻挡从外部进入的光的反射光。可以将作为隔断墙的绝缘层着色并用作黑色基质。可以通过液滴喷出法等形成该隔断墙。可以将炭黑等混合入树脂材料如聚酰亚胺的黑色树脂中,也可以使用其堆叠层。通过液滴喷出法,可以向同一区域多次喷出不同材料以形成隔断墙。四分之一波板或半波板可被用作推迟板,并且可被设计为能控制光。作为这种结构,在TFT元件基板上顺序形成发光元件、密封基板(密封材料)、推迟板(四分之一波板或半波板)和起偏振片,并且从发光元件射出的光从中透射并从起偏振片侧发射到外部。可以在光穿过的一侧,或者可以在从两个表面射出光的双发射显示装置的两侧提供推迟膜或起偏振片。另外,在起偏振片外侧可以提供抗反射膜。因此,可以显示更高清晰度和更明晰的图像。
至于将元件层转移至其上的基板2800,可以使用密封材料或粘合树脂通过将树脂膜附着在形成像素部分的一侧来形成密封结构。可以采用各种密封方法如使用树脂的树脂密封、使用塑料的塑料密封和使用膜的膜密封。在树脂膜表面优选提供防止水分渗入树脂膜的气体阻挡膜。通过使用膜密封结构,还可以实现厚度和重量的减少。
据本发明,利用剥离方法可以制造半导体装置和显示装置,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。而且,可以以高产量制造更可靠的半导体装置且未使制造设备和方法复杂化。
实施方式13
将参照图23A和23B说明该实施方式。图23A和23B显示了使用应用本发明制造的TFT基板2600形成显示装置(液晶显示模块)的例子。
图23A显示了用密封材料2602附着TFT基板2600和对基板2601的液晶显示模块例子,并且在它们之间提供包括TFT等的像素部分2603和液晶层2604以形成显示区域。对于彩色显示,着色层2605是必需的。在RGB法的例子中,相应于每个像素提供相应于红、绿和蓝每个颜色的着色层。在TFT基板2600和对基板2601外部提供起偏振片2606和2607和扩散板2613。光源包括冷阴极管2610和反射板2611。电路板2612与TFT基板2600和通过挠性配线板2609安装在TFT基板2600上的驱动电路2608相连。外部电路如控制电路和电源电路包括在电路板2612内。将由单晶半导体形成的驱动IC、由玻璃基板上多晶半导体膜形成的粘性驱动IC或由SAS形成的驱动电路等应用于驱动电路2608。
另外,液晶显示模块包括背光。背光可以由发光构件形成,一般地,可以使用射线阴极管、LED或EL发光装置等。用于该实施方式的背光优选具有挠性。而且,可以向背光提供反射板和光学膜。
分别地将起偏振片2607和2606附着于TFT基板2600和对基板2601上。可以使用堆叠结构,其中推迟板包括在基板和起偏振片之间。而且,如果需要,可以在观察者侧在起偏振片2606上进行抗反射处理。
对于液晶显示模块,可以使用TN(扭转向列型)方式、IPS(平面内转换)方式、FFS(边缘场转换)方式、MVA(多畴垂直取向)方式、PVA(图形垂直取向)方式、ASM(轴向对称取向的微单元)方式、OCB(光学补偿双折射)方式或FLC(铁电液晶)方式等。
图23B显示了FS-LCD(场序制-LCD)的例子,其中将FS(场序制)法应用于图23A的液晶显示模块。FS-LCD在一帧周期内发射红光、绿光和蓝光并且可以通过使用时间划分来合成图像而进行彩色显示。由于每束光是由发光二极管或冷阴极管等发射的,不需要彩色滤光片。因此,不需要安排三元色的彩色滤光片和限制每种颜色的显示区域,从而可以在任何区域进行全部三种颜色的彩色显示。另一方面,由于在一帧周期内发射三种颜色的光,需要液晶高速响应。通过将具有FLC模式液晶层或OCB模式液晶层等的FS法应用于本发明的显示装置,可以完成具有高性能和高图像质量的显示装置或液晶电视装置。
OCB模式中的液晶层具有所谓的π-单元结构。在π-单元结构中,使液晶分子取向以便使其前倾角沿有源矩阵基板和对基板间的中心平面平面对称。当在基板间不施加电压时π-单元结构液晶的取向状态是最初喷射的方向,然后当在其间施加电压时改变至弯曲取向。在弯曲取向状态中,当在基板间不施加电压时,可以透射光并获得白色显示。当再施加电压时,弯曲取向的液晶分子被垂直取向于两个基板,以使光不被透射。在OCB模式下,可以获得比传统TN模式速度高约10倍的响应。
而且,作为相应于FS法的模式,可以使用利用能高速运行的铁电液晶(FLC)的HV(半-V)-FLC或SS(表面稳定的)-FLC等。OCB方式使用具有相对低粘度的向列型液晶,而HV-FLC或SS-FLC使用具有铁电相的近晶型液晶。
而且,通过使液晶显示模块的单元间隙变窄而使液晶显示模块的光学响应速度更快。另外,可以通过降低液晶材料的粘度而使光学响应速度更快。当在液晶显示模块的像素部分中像素间距是30μm或更小时,提高响应速度是特别有利的。同样,通过片刻提高(或降低)施加的电压的超速驱动法(overdrive method)可以进一步提高响应速度。
图23B显示了透射液晶显示模块,其中作为光源提供了红光源2910a、绿光源2910b和蓝光源2910c。为了接通或断开红光源2910a、绿光源2910b和蓝光源2910c,向光源提供有控制部分2912。控制部分2912控制每种颜色的光发射,从而使光进入液晶以通过时间划分来合成图像,从而进行彩色显示。
该实施方式可以与上述实施方式自由结合。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物被分解(分裂)使得层变粗糙,并从基板上剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状适当地转移至各种类型的基板。
因此,由于元件可被转移至各种类型的基板上,可以从更广范围的材料中选择用于基板的材料。另外,廉价材料可以用于基板,并且除了具有适于应用的各种功能外,可以以低成本地制造显示装置。
据本发明,利用剥离方法可以制造半导体装置和显示装置,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。而且,可以以高产量制造更可靠的半导体装置且未使制造设备和方法复杂化。
实施方式14
参照图30A至图36将描述背光,其可被用作通过本发明转移过程制造的透射型液晶显示装置的光源。
图30A是背光的顶视图,图30B是沿H-G线的横截面图。在图30A和30B中,在具有挠性的基板6000上提供具有反射性质的共电极层(common electrode layer)6001,并且在绝缘层6006上形成用作阳极的配线层6002a和配线层6002b。在配线层6002a和配线层6002b上分别提供发光二极管6003a和发光二极管6003b。发光二极管6003a电连接到具有各向异性导电层6008的配线层6002a。另外,在绝缘层6006中形成的开口(接触孔)6004a处发光二极管6003a电连接到共电极层6001。类似地,发光二极管6003b电连接到具有各向异性导电层6008的配线层6002b,并且在绝缘层6006中形成的开口(接触孔)6004b处发光二极管6003b电连接到共电极层6001。
共电极层6001也用作反射入射光的反射电极。另外,可以将各向异性导电层6008整个提供或者选择性地提供给发光二极管的连接部分。
图31A是背光的顶视图,图31B是沿图30A的I-J线的横截面图。图31A和31B的背光是一个例子,其中发光二极管、共电极层和配线层之间的连接通过突起(bump)或导电金属膏(如银(Ag)膏)而形成。在图31A中,形成在列方向上延伸的配线层6002a、配线层6002b和配线层6002c。当为每个配线层安排相同颜色的发光二极管时,易于控制向配线层施加的电压,使得连接到配线层6002a的发光二极管(发光二极管6003a等)是红色发光二极管(R),连接到配线层6002b的发光二极管(发光二极管6003b等)是绿色发光二极管(G),连接到配线层6002c的发光二极管(发光二极管6003c等)是蓝色发光二极管(B)。发光二极管6003a用导电膏6009电连接到共电极层6001和配线层6002a,并且发光二极管6003b用导电膏6009电连接到的共电极层6001和配线层6002b。
图32A是背光的顶视图,图32B和32C是图32A沿K-L线的横截面图。图32A至32C的背光具有反射电极层和共电极层分开的结构。在图32B中,在具有挠性的基板6000(也称为挠性基板)上形成反射电极层6021,并且在配线层6002a和共电极层6020a上提供发光二极管6003a。而且,在配线层6002b和共电极层6020b上提供发光二极管6003b。发光二极管6003a用导电膏6008c电连接到配线层6020a,并且发光二极管6003a用导电膏6008d电连接到配线层6002a。发光二极管6003b用导电膏6008a电连接到共电极层6020b,并且发光二极管6003b用导电膏6008b电连接到配线层6002b。
图32C显示了在反射电极层6021上提供包括光散射颗粒6011的绝缘层6010的结构。光散射颗粒6011包括散射入射光和在反射电极层6021上发射的光的效果。在该实施方式中,反射电极层可以以镜面状态进行镜面反射。而且,在其表面上不平坦且被涂白的反射电极层可用于进行漫反射。
参照图33A和33B描述了在挠性基板6100上提供多个发光二极管的例子。当使用具有挠性的背光时,存在一个弯曲频率高度依赖于提供有背光的产品的方向。图33A中背光在顶视图中是水平长矩形,如果在长边沿箭头6105a和6105b方向上产品的弯曲频率高,则在顶视图中挠性基板6100上提供的多个发光二极管是矩形的。安排发光二极管6101a和6101b以使发光二极管6101a和6101b的短边平行于弯曲频率高的挠性基板6100侧。
图33B所示的背光使用了垂直方向长的挠性基板6200,并且沿箭头6205a和6205b方向上的弯曲频率高。在这种情况下,在顶视图中垂直挠性基板6200上提供的多个发光二极管是矩形的。安排发光二极管6201a和6201b以使发光二极管6201a和6201b的短边平行于弯曲频率高的挠性基板6200侧。在弯曲频率根据预定目的和将被装备的显示装置的形状不同而不同(即频率高或低)的情况下,如刚才所述,当预先安排将被弯曲侧和发光二极管的短边平行而易于弯曲时,从而,难以损坏显示装置。因此,可以提高可靠性。
图34A和34B显示了在具有挠性的基板6400(也称为挠性基板)上提供具有间隔b的相邻发光二极管6401a和发光二极管6401b。发光二极管6401a和发光二极管6401b均具有厚度a。图34B是使具有发光二极管6401a和发光二极管6401b的挠性基板6400沿箭头6405a和箭头6405b方向弯曲的图。如图34A和34B所示,当相邻发光二极管的间隔b的宽度大于厚度a的两倍时,即当满足b>2a时,可以容易地使挠性基板6400弯曲而不使发光二极管6401a和发光二极管6401b彼此接触。
图35A和35B显示了其中用树脂层覆盖发光二极管的结构的例子。如图35A所示,在其间具有间隔b的挠性基板6150上形成用树脂层6152a覆盖的发光二极管6151a和用树脂层6152b覆盖的发光二极管6151b。每个树脂层6152a和树脂层6152b的最大厚度是厚度a。图35B显示了将具有发光二极管6151a、树脂层6152a、发光二极管6151b和树脂层6152b的挠性基板6150沿箭头6154a和箭头6154b方向弯曲的状态。如图35A和35B所示,当相邻树脂层或用树脂层覆盖的发光二极管间的间隔b的宽度大于覆盖发光二极管的树脂层最大厚度a的两倍时,即当满足b>2a时,可以容易地使挠性基板6150弯曲而不使用树脂层6152a覆盖的发光二极管6151a和用树脂层6152b覆盖的发光二极管6151b彼此接触。
如图36所示的具有挠性的侧光型背光包括具有挠性的光导向板6300、在挠性基板6301上提供的发光二极管6302和反射从发光二极管6302射出的光的反射片6303a和6303b。提供反射片6303a和6303b以使光有效地导向光导向板。如果将反射片弯曲成圆柱形,背光本身不易于弯曲。然而,可以容易地使如该实施方式所示具有不固定于图36中的圆柱形的形状的反射片6303a和6303b弯曲。发光二极管6303在挠性基板6301上的安排和反射电极层、共电极层和具有发光二极管的配线层等的连接状态可以使用如图30A至34B所示的方式。
当具有挠性且具有上述结构的背光用于使用本发明转移过程形成的具有挠性的显示装置时,可以形成具有挠性的电子装置。另外,可以使用廉价材料用于基板,并且除了具有适于应用的各种功能外,还可以以低成本制造半导体装置。
注意:背光的上述结构可以用于除了本发明所示的显示装置之外的其它液晶显示面板。
实施方式15
参照图39将描述可用作由本发明转移过程制造的透射型液晶显示装置光源的背光。
图39显示了显示装置部分418,其包括挠性基板413、包括液晶元件等的元件层415、挠性对基板416、起偏振片417、起偏振片411、驱动电路419和FPC437,和背光408,其包括挠性基板401、包括由第一导电层、电致发光层和第二导电层形成的发光元件的层402和挠性基板403。
作为如图39所示的背光408,可以使用上述实施方式中的具有有机EL元件和无机EL元件中的一个或两个的发光装置。或者,不使用本发明,包括在其中形成第一导电层、发光层和第二导电层的发光元件的层402在挠性基板401上形成,并用挠性基板403密封以获得EL显示装置(发光装置)。也可以使用EL显示装置(发光装置)。注意:可以以通过液滴喷出法(如喷墨(IJ)法)、蒸发法、溅射法或印刷法等形成第一导电层、发光层和第二导电层这样一种方式来适当地形成发光元件。
注意:作为可用于背光408的发光装置的挠性基板403,可以使用如图39所示的起偏振片411。在这种情况下,在挠性基板401上形成具有发光元件的层,并且用起偏振片411密封挠性基板401和具有发光元件的层402。然后可以用具有透光性质的粘合剂将起偏振片411和挠性基板413彼此附着。从而,可以减少形成背光的挠性基板的数量。
在挠性基板401上形成具有发光元件的层402后,可以用粘合剂将具有发光元件的层402和挠性基板401附着于提供在挠性基板413上的起偏振片411。从而,可以减少形成背光的挠性基板的数量。
在起偏振片411的一个表面上形成具有发光元件的层402后,用粘合剂将挠性基板401附着在具有发光元件的层402的一个表面和起偏振片411上,然后可以用粘合剂将起偏振片411的另一表面和挠性基板401彼此附着。而且,在起偏振片411的一个表面上形成具有发光元件的层402后,用粘合剂将起偏振片411的另一表面和挠性基板413彼此附着,然后可以用粘合剂将挠性基板401附着在起偏振片411的一个表面。从而,可以减少形成背光的挠性基板的数量。
此外,可以使用起偏振片411代替挠性基板401。即,可以用粘合剂将密封挠性基板413和具有发光元件的层402的起偏振片411附着于元件层415。从而,可以减少形成液晶显示面板的挠性基板的数量。
具有大面积覆盖像素部分的发光元件可以作为在具有该实施方式的发光元件的层402中形成的发光元件而形成。优选使用发射白光的元件作为这种发光元件。
另外,线性发光元件可以作为在具有发光元件的层402中形成的发光元件而形成。可以使用发射白光的元件用作发光元件。而且,优选安排发光元件以使在每个像素中提供蓝色发光元件、红色发光元件和绿色发光元件。在这种情况下,不需要提供着色层。注意:当提供着色层时,提高了颜色纯度并且提供了能进行明晰和逼真显示的液晶显示面板。
另外,作为在具有发光元件的层402中形成的发光元件,可以在每个像素中使用发射白光的元件。而且,可以在每个像素中提供包括蓝色发光元件的子像素、包括红色发光元件的子像素和包括绿色发光元件的子像素。从而,可以提供能高清晰显示的液晶显示面板。
当具有挠性且具有上述结构的背光用于利用本发明转移过程形成的具有挠性的显示装置时,可以形成具有挠性的电子装置。另外,可以使用廉价材料用于基板,并且除了具有适于应用的各种功能外,还可以以低成本制造半导体装置。
注意:背光的结构可以用于除了本发明所示的显示面板之外的其它液晶显示面板。
实施方式16
通过由本发明形成的显示装置,可以完成电视装置(也简单地称为电视或电视接收器)。图24显示了电视装置的主要结构的框图。至于显示面板,可以使用下面的任何方式:作为如图27A所示的结构,仅形成像素部分901和如图28B所示通过TAB法安装扫描线驱动电路903和信号线驱动电路902的例子;仅形成像素部分901和如图28A所示通过COG法安装扫描线驱动电路903和信号线驱动电路902的例子;如图27B形成TFT,在基板上形成像素部分901和扫描线驱动电路903,和独立地安装信号线驱动电路902作为驱动IC的例子;和如图28C所示在相同基板上形成像素部分901、信号线驱动电路902和扫描线驱动电路903的例子等。
另外,作为外部电路的另一种结构,在视频信号的输入侧提供放大由调谐器904接收的信号中的视频信号的视频信号放大电路905、将从视频信号放大电路905输出的信号转换为与红、绿和蓝每种颜色相应的色度信号的视频信号处理电路906和转换视频信号以便输入驱动IC的控制电路907等。控制电路907将信号输出至扫描线侧和信号线侧。在数字驱动的情况下,可以在信号线侧提供信号驱动电路908并且可以将输入的数字信号分成m份来供给。
由调谐器904接收的信号中的音频信号传送至音频信号放大电路909并且通过音频信号处理电路910供给至扬声器913。控制电路911接收接收站(接收频率)的控制信息或来自输入部分912的音量,再将信号传送至调谐器904或音频信号处理电路910。
如图25A和25B所示将上述显示模块结合在各自的外壳中,从而可以使电视装置完整。当使用如图22所示的EL显示模块时,可以使EL电视装置完整。当使用如图23所示的液晶显示模块时,可以使液晶电视装置完整。在图25A中,由显示模块形成主屏2003,并且作为辅助设备提供扬声器部分2009和操作开关等。以这种方式,根据本发明可以使电视装置完整。
将显示面板2002结合在外壳2001中,可以由接收器2005接收普通的电视广播。而且,通过用有线或无线的连接器经过调制解调器2004连接到通讯网络,可以进行一路(从发送器到接收器)或二路(在发送器和接收器之间或在接收器之间)信息通信。可以使用安装在外壳中的开关或遥控单元2006来操作电视装置。也可以在遥控单元2006中提供用于显示输出信息的显示部分2007。
而且,除了主屏2003之外,电视装置可以包括使用第二显示面板形成的子屏2008来显示频道或音量等。在这种结构中,可以使用本发明的液晶显示面板形成主屏2003和子屏2008。可以使用具有较好可视角度的EL显示面板形成主屏2003,并且可以使用能以较低能量损耗显示子图像的液晶显示面板形成子屏2008。为了优先降低能量损耗,可以使用液晶显示面板形成主屏2003,并且可以使用EL显示面板形成子屏2008以使子屏可以闪亮和闪灭。通过使用本发明,甚至当使用大尺寸基板和使用许多TFT和电子部件时,也可以形成高度可靠的显示装置。
图25B显示了具有尺寸例如为20至80英寸的大显示部分的电视装置。电视装置包括外壳2010、显示部分2011、键盘部分2012即操作部分和扬声器部分2013等。将本发明应用至显示部分2011的制造中。
根据本发明,通过在有机化合物层中分散光催化剂物质,并利用光催化剂物质的光催化剂作用,有机化合物被分解(分裂)使得层变粗糙,并从基板上剥离元件层。因此,由于不需要为了剥离而向元件层施加大量的力,在剥离过程中没有损坏元件并且元件可以以良好形状适当地转移至各种类型的基板。
据本发明,利用剥离方法可以制造半导体装置和显示装置,其中转移过程能在保留元件剥离前形状和性质的良好状态下进行。而且,可以以高产量制造更可靠的半导体装置和显示装置,以及安装有这种装置的电视装置且未使制造设备和方法复杂化。
自然,本发明不限于电视装置。本发明可以应用至各种应用如个人电脑的监视器、尤其以火车站或机场等的信息显示板和街道上的广告显示板为代表的大尺寸显示介质。
实施方式17
本发明的电子装置包括:电视装置(也简单地称为TV或电视接收器)、照相机如数码相机和数码摄像机、移动电话装置(也简单地称为手机装置或手机)、手提信息终端如PDA、手提游戏机、计算机的监视器、计算机、音频重放装置如汽车音频装置和具有记录介质的图像重放装置如家用游戏机等。参照图26A至26E将说明其具体的例子。
如图26A所示的手提信息终端包括主体9201和显示部分9202等。可以将本发明的显示装置应用至显示部分9202。因此,可以提供重量轻、薄且高度可靠的手提信息终端。
如图26B所示的数码摄像机包括显示部分9701和显示部分9702等。可以将本发明的显示装置应用至显示部分9701。因此,可以提供重量轻、薄且高度可靠的数码摄像机。
如图26C所示的手机装置包括主体9101和显示部分9102等。可以将本发明的显示装置应用至显示部分9102。因此,可以提供重量轻、薄且高度可靠的手机装置。
如图26D所示的手提电视装置包括主体9301和显示部分9302等。可以将本发明的显示装置应用至显示部分9302。因此,可以提供重量轻、薄且高度可靠的手提电视装置。可以将本发明的显示装置应用至各种类型的电视装置,其包括安装在手提终端如手机装置上的小尺寸电视、手提的中等尺寸电视和大尺寸电视(例如40英寸或更大的尺寸)。
如图26E所示的手提计算机包括主体9401和显示部分9402等。可以将本发明的显示装置应用至显示部分9402。因此,可以提供重量轻、薄且高度可靠的手提计算机。
通过本发明的显示装置,可以提供重量轻、薄且高度可靠的电子装置。
实施方式18
用图21A将描述此实施方式的半导体装置的结构。如图21A,本发明的半导体装置20具有以非接触方式传递数据的功能,其包括电源电路11、时钟发生电路12、数据调制-解调电路13、用于控制另一种电路的控制电路14、接口电路15、记忆电路16、数据总线17和天线(天线线圈)18、传感器21和传感电路22。
电源电路11是基于从天线18输入的交替信号产生供应至半导体装置20中每一电路的各种电源的电路。时钟发生电路12是基于从天线18输入的交替信号产生供应至半导体装置20中每一电路的各种时钟信号的电路。数据调制-解调电路13具有调制和解调将用读写器19传递的数据的功能。控制电路14具有控制记忆电路16的功能。天线18具有传送和接收电磁波或电波的功能。读写器19与半导体装置连通、控制半导体装置并控制其处理数据。半导体装置不限于上述结构;例如,可以加入另一种元件如电源电压的限幅电路或专用于编码处理的硬件。
记忆电路16包括其中有机化合物层或相变层被夹在一对导电层之间的记忆元件。注意:记忆电路16可以仅包括其中有机化合物层或相变层被夹在一对导电层之间的记忆元件或者包括具有另一种结构的记忆电路。具有另一种结构的记忆电路相应于例如DRAM、SRAM、FeRAM、掩膜ROM、PROM、EPROM、EEPROM和闪存中的一个或多个。
传感器21由半导体电路如电阻元件、电容耦合元件、感应耦合元件、光致电压元件、光电转换元件、热电转换元件、晶体管、热敏电阻或二极管形成。通过传感电路22,检测阻抗、电抗、电感、电压或电流的变化并且进行模数转换(A/D转换),以使信号输出至控制电路14。
实施方式19
根据本发明,可以形成用作具有处理电路的芯片(下文中也称为处理芯片、无线芯片、无线处理器、无线存储器、无线标签或RFID标签)的半导体装置。本发明的半导体装置的应用范围广泛。例如,本发明的半导体装置可以用于提供给物体如纸币、硬币、证券、证书、不记名债券、包装箱、书籍、记录介质、个人财产、车辆、食品、衣服、保健产品、日用品、药物和电子装置等。
使用本发明具有记忆元件的半导体装置在记忆元件内部具有良好的粘合性;所以,可以以良好状态进行剥离和转移过程。因此,可以将元件自由地转移至各种类型的基板上,因此,也可以选择廉价材料用于基板,所以可以以低成本制造半导体装置并且可以获得根据预定目的的广泛功能。从而,具有处理电路的芯片也具有这些根据本发明的成本低、尺寸小而薄和重量轻的特征,因此适用于常携带的货币、广泛流通的硬币或书籍、个人财产或衣服等。
纸币和硬币是在市场中流通的钱,并且在其范畴内包括类似于货币和纪念币等在某些领域有效的那些(现金收据)。证券指支票、单据和期票等,并且可以提供有具有处理电路的芯片190(图29A)。证书指驾驶执照和居住证等,并且可以提供有具有处理电路的芯片191(图29B)。个人财产指包和眼镜等,并且可以提供有具有处理电路的芯片197(图29C)。不记名债券指邮票、饭票和各种礼券等。包装箱指食品容器等的包装纸和塑料瓶等,并且可以提供有具有处理电路的芯片193(图29D)。书籍指精装书和平装书等,并且可以提供有具有处理电路的芯片194(图29E)。记录介质指DVD软件和录像磁带等,并且可以提供有具有处理电路的芯片195(图29F)。交通工具指有轮的交通工具如自行车和船等,并且可以提供有具有处理电路的芯片196(图29G)。食品指食物商品和饮料等。衣服指服装和鞋类等。保健产品指医疗仪器和保健仪器等。日用品指家具和照明设备等。药物指医疗产品和杀虫剂等。电子装置指液晶显示装置、EL显示装置、电视装置(TV装置和薄TV装置)和手机等。
本发明的半导体装置通过安装在印制电路板上、附着在其表面上或埋置入其中而固定在这些物品上。例如,以书为例,可以将半导体装置埋置入其纸中;以由有机树脂制备的包装为例,可以将半导体装置埋置入有机树脂中。本发明的可以实现尺寸小而薄且重量轻的半导体装置不损坏物品本身的设计,甚至在它被固定在物品上之后也是如此。而且,通过向纸币、硬币、证券、证书或不记名债券等提供本发明的半导体装置,可以提供识别功能,并且使用识别功能可以防止伪造。而且,通过向包装箱、记录介质、个人财产、食品、衣服、日用品或电子装置提供本发明的半导体装置,可以提高系统如检查系统的效率。
下面,参照附图将描述在其上已经安装本发明的半导体装置的一种电子装置方式。在此示范的电子装置是手机,其包括外壳5700和5706、面板5701、封盖5702、印制电路板5703、操作按键5704和电池5705(图21B)。面板5701可拆卸地结合在封盖5702中,并且使封盖5702适合装入印制电路板5703中。根据在其中结合有面板5701的电子装置适当地改变封盖5702的形状和尺寸。在印制电路板5703上,安装多个包装好的半导体装置;可以使用本发明的半导体装置作为包装好的半导体装置之一。在印制电路板5703上安装的多个半导体装置具有控制器、中央处理器(CPU)、存储器、电源电路、音频处理电路和传送/接收电路等的任何功能。
面板5701经过连接膜5708连接到印制电路板5703上。在外壳5700和5706内部,将上述的面板5701、封盖5702和印制电路板5703与操作按键5704和电池5705容纳在一起。提供在面板5701内的像素部分5709使其通过在外壳5700中的窗口而被观察。
如上所述,本发明的半导体装置具有尺寸小而薄且重量轻的特征。该特征使其可以有效地使用电子装置外壳5700和5706内的有限空间。
注意:外壳5700和5706的形状仅是手机的外部形状的一个例子;根据功能或应用可以将该实施方式的电子装置改变成各种方式。
本申请是基于2006年3月3号在日本特许厅提交的序号为2006-058513的日本专利申请,在此引入其全部内容作为参考。

Claims (42)

1.一种制造半导体装置的方法,包括:
在具有透光性质的第一基板上形成包含光催化剂物质的有机化合物层;
在该有机化合物层上形成元件层;
用光照射该有机化合物层;和
从第一基板分开元件层,
其中所述光为灯光源发出的光和激光的组合。
2.根据权利要求1的制造半导体装置的方法,其中薄膜晶体管形成在元件层中。
3.根据权利要求1的制造半导体装置的方法,其中液晶显示元件包括在元件层中。
4.根据权利要求1的制造半导体装置的方法,其中发光层包括在元件层中。
5.根据权利要求1的制造半导体装置的方法,其中有机化合物层掺杂有过渡金属。
6.根据权利要求1的制造半导体装置的方法,其中有机化合物层用紫外光照射。
7.一种制造半导体装置的方法,包括:
在具有透光性质的第一基板上形成包含光催化剂物质的有机化合物层;
在该有机化合物层上形成绝缘层;
在该绝缘层上形成元件层;
用光照射该有机化合物层;和
从第一基板分开元件层和绝缘层,
其中所述光为灯光源发出的光和激光的组合。
8.根据权利要求7的制造半导体装置的方法,其中薄膜晶体管形成在元件层中。
9.根据权利要求7的制造半导体装置的方法,其中液晶显示元件包括在元件层中。
10.根据权利要求7的制造半导体装置的方法,其中发光层包括在元件层中。
11.根据权利要求7的制造半导体装置的方法,其中有机化合物层掺杂有过渡金属。
12.根据权利要求7的制造半导体装置的方法,其中有机化合物层用紫外光照射。
13.一种制造半导体装置的方法,包括:
在具有透光性质的第一基板上形成包含光催化剂物质的有机化合物层;
在该有机化合物层上形成元件层;
用光照射该有机化合物层;
附着第二基板至该元件层;和
元件层同第二基板一起从第一基板分开,
其中所述光为灯光源发出的光和激光的组合。
14.根据权利要求13的制造半导体装置的方法,其中第二基板具有挠性。
15.根据权利要求13的制造半导体装置的方法,其中薄膜晶体管形成在元件层中。
16.根据权利要求13的制造半导体装置的方法,其中液晶显示元件包括在元件层中。
17.根据权利要求13的制造半导体装置的方法,其中发光层包括在元件层中。
18.根据权利要求13的制造半导体装置的方法,其中有机化合物层掺杂有过渡金属。
19.根据权利要求13的制造半导体装置的方法,其中有机化合物层用紫外光照射。
20.一种制造半导体装置的方法,包括:
在具有透光性质的第一基板上形成包含光催化剂物质的有机化合物层;
在该有机化合物层上形成绝缘层;
在该绝缘层上形成元件层;
用光照射该有机化合物层;
附着第二基板至该元件层;和
元件层和绝缘层同第二基板一起从第一基板分开,
其中所述光为灯光源发出的光和激光的组合。
21.根据权利要求20的制造半导体装置的方法,其中第二基板具有挠性。
22.根据权利要求20的制造半导体装置的方法,其中薄膜晶体管形成在元件层中。
23.根据权利要求20的制造半导体装置的方法,其中液晶显示元件包括在元件层中。
24.根据权利要求20的制造半导体装置的方法,其中发光层包括在元件层中。
25.根据权利要求20的制造半导体装置的方法,其中有机化合物层掺杂有过渡金属。
26.根据权利要求20的制造半导体装置的方法,其中有机化合物层用紫外光照射。
27.一种制造半导体装置的方法,包括如下步骤:
在具有透光性质的第一基板上形成包含光催化剂物质的有机化合物层;
在该有机化合物层上形成元件层;
用光照射该有机化合物层;
附着第二基板至该元件层;
元件层同第二基板一起从第一基板分开;和
通过粘合层附着元件层至第三基板,
其中所述光为灯光源发出的光和激光的组合。
28.根据权利要求27的制造半导体装置的方法,其中第三基板不透光。
29.根据权利要求27的制造半导体装置的方法,其中第二基板和第三基板具有挠性。
30.根据权利要求27的制造半导体装置的方法,其中薄膜晶体管形成在元件层中。
31.根据权利要求27的制造半导体装置的方法,其中液晶显示元件包括在元件层中。
32.根据权利要求27的制造半导体装置的方法,其中发光层包括在元件层中。
33.根据权利要求27的制造半导体装置的方法,其中有机化合物层掺杂有过渡金属。
34.根据权利要求27的制造半导体装置的方法,其中有机化合物层用紫外光照射。
35.一种制造半导体装置的方法,包括如下步骤:
在具有透光性质的第一基板上形成包含光催化剂物质的有机化合物层;
在该包含光催化剂物质的有机化合物层上形成绝缘层;
在该绝缘层上形成元件层;
用光照射该有机化合物层;
附着第二基板至该元件层;和
元件层和绝缘层同第二基板一起从第一基板分开;和
通过粘合层附着元件层至第三基板,
其中所述光为灯光源发出的光和激光的组合。
36.根据权利要求35的制造半导体装置的方法,其中第三基板不透光。
37.根据权利要求35的制造半导体装置的方法,其中第二基板和第三基板具有挠性。
38.根据权利要求35的制造半导体装置的方法,其中薄膜晶体管形成在元件层中。
39.根据权利要求35的制造半导体装置的方法,其中液晶显示元件包括在元件层中。
40.根据权利要求35的制造半导体装置的方法,其中发光层包括在元件层中。
41.根据权利要求35的制造半导体装置的方法,其中有机化合物层掺杂有过渡金属。
42.根据权利要求35的制造半导体装置的方法,其中有机化合物层用紫外光照射。
CN2007100844217A 2006-03-03 2007-03-02 制造半导体装置的方法 Expired - Fee Related CN101030526B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006-058513 2006-03-03
JP2006058513 2006-03-03
JP2006058513 2006-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2011100442982A Division CN102157349B (zh) 2006-03-03 2007-03-02 制造半导体装置的方法

Publications (2)

Publication Number Publication Date
CN101030526A CN101030526A (zh) 2007-09-05
CN101030526B true CN101030526B (zh) 2011-04-27

Family

ID=38689088

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2011100442982A Active CN102157349B (zh) 2006-03-03 2007-03-02 制造半导体装置的方法
CN2007100844217A Expired - Fee Related CN101030526B (zh) 2006-03-03 2007-03-02 制造半导体装置的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2011100442982A Active CN102157349B (zh) 2006-03-03 2007-03-02 制造半导体装置的方法

Country Status (4)

Country Link
US (6) US8222116B2 (zh)
JP (4) JP2013084973A (zh)
KR (2) KR101382150B1 (zh)
CN (2) CN102157349B (zh)

Families Citing this family (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3409331A (en) * 1968-01-05 1968-11-05 Cincinnati Mine Machinery Co Mining machine rotary cutter bar
DE10260149A1 (de) 2002-12-20 2004-07-01 BSH Bosch und Siemens Hausgeräte GmbH Vorrichtung zur Bestimmung des Leitwertes von Wäsche, Wäschetrockner und Verfahren zur Verhinderung von Schichtbildung auf Elektroden
US8018117B2 (en) * 2006-01-31 2011-09-13 Tempronics, Inc. Closely spaced electrodes with a uniform gap
US8173519B2 (en) * 2006-03-03 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7877895B2 (en) * 2006-06-26 2011-02-01 Tokyo Electron Limited Substrate processing apparatus
TWI424499B (zh) * 2006-06-30 2014-01-21 Semiconductor Energy Lab 製造半導體裝置的方法
TWI427682B (zh) * 2006-07-04 2014-02-21 Semiconductor Energy Lab 顯示裝置的製造方法
JP2010503219A (ja) * 2006-08-30 2010-01-28 テンプロニクス,インコーポレイテッド 均一ギャップを備える近接電極
KR100839750B1 (ko) * 2007-01-15 2008-06-19 삼성에스디아이 주식회사 유기 전계 발광 표시 장치
JP2008258584A (ja) * 2007-03-15 2008-10-23 Citizen Electronics Co Ltd Ledユニット
US7838410B2 (en) * 2007-07-11 2010-11-23 Sony Corporation Method of electrically connecting element to wiring, method of producing light-emitting element assembly, and light-emitting element assembly
TWI350944B (en) * 2007-08-03 2011-10-21 Univ Yuan Ze Photoresist and a pattern-forming process using the same
KR101329139B1 (ko) * 2007-10-12 2013-11-14 삼성전자주식회사 투과/반투과/반사 모드를 구현하는 스위칭 디스플레이 제어시스템 및 방법
US20090193676A1 (en) * 2008-01-31 2009-08-06 Guo Shengguang Shoe Drying Apparatus
CN102089858B (zh) * 2008-02-20 2013-03-13 夏普株式会社 柔性半导体基板的制造方法
KR101802137B1 (ko) * 2008-07-10 2017-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기
JP5790968B2 (ja) * 2008-08-18 2015-10-07 Nltテクノロジー株式会社 表示装置及びその製造方法
US7883953B2 (en) * 2008-09-30 2011-02-08 Freescale Semiconductor, Inc. Method for transistor fabrication with optimized performance
WO2010038819A1 (en) 2008-10-03 2010-04-08 Semiconductor Energy Laboratory Co., Ltd. Display device
EP2178133B1 (en) 2008-10-16 2019-09-18 Semiconductor Energy Laboratory Co., Ltd. Flexible Light-Emitting Device, Electronic Device, and Method for Manufacturing Flexible-Light Emitting Device
US8610155B2 (en) 2008-11-18 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method for manufacturing the same, and cellular phone
JP5620921B2 (ja) * 2008-12-05 2014-11-05 コーニンクレッカ フィリップス エヌ ヴェ プラスチック基板を有する電子デバイス及びその製造方法
WO2010078521A1 (en) * 2009-01-02 2010-07-08 Tempronics, Inc. Device for energy conversion, electrical switching, and thermal switching
GB2466846A (en) * 2009-01-13 2010-07-14 Barco Nv Sensor system and method for detecting a property of light emitted from at least one display area of a display device
US8703521B2 (en) * 2009-06-09 2014-04-22 International Business Machines Corporation Multijunction photovoltaic cell fabrication
US8802477B2 (en) * 2009-06-09 2014-08-12 International Business Machines Corporation Heterojunction III-V photovoltaic cell fabrication
US20110048517A1 (en) * 2009-06-09 2011-03-03 International Business Machines Corporation Multijunction Photovoltaic Cell Fabrication
JP2011009298A (ja) * 2009-06-23 2011-01-13 Citizen Electronics Co Ltd 発光ダイオード光源装置
US8576209B2 (en) 2009-07-07 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Display device
WO2011010542A1 (en) * 2009-07-23 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2011073282A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 有機膜の形成方法、ノズルプレート、インクジェットヘッド、および電子機器
CN105655340B (zh) * 2009-12-18 2020-01-21 株式会社半导体能源研究所 半导体装置
KR20130062919A (ko) * 2010-03-26 2013-06-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치를 제작하는 방법
US8420208B2 (en) 2010-08-11 2013-04-16 Micron Technology, Inc. High-k dielectric material and methods of forming the high-k dielectric material
US8969703B2 (en) 2010-09-13 2015-03-03 Tempronics, Inc. Distributed thermoelectric string and insulating panel
DE102010062547B4 (de) * 2010-12-07 2021-10-28 Semikron Elektronik Gmbh & Co. Kg Verfahren zur Herstellung einer Schaltungsanordnung
JP5121962B2 (ja) * 2011-03-31 2013-01-16 株式会社東芝 電子機器
CN102707532B (zh) * 2011-05-13 2015-07-15 京东方科技集团股份有限公司 一种显示器
DE102011102032A1 (de) * 2011-05-19 2012-11-22 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleitermodul und Display mit einer Mehrzahl derartiger Module
CN102208440B (zh) * 2011-06-03 2013-03-27 清华大学 半导体结构及其形成方法
KR101727786B1 (ko) * 2011-07-06 2017-04-17 파나소닉 주식회사 플렉시블 디바이스의 제조 방법 및 플렉시블 디바이스
US9596944B2 (en) 2011-07-06 2017-03-21 Tempronics, Inc. Integration of distributed thermoelectric heating and cooling
DE102011080620B4 (de) * 2011-08-08 2014-06-05 Siemens Aktiengesellschaft Verfahren für die Beschichtung eines Isolationsbauteils und Isolationsbauteil sowie elektrisch leitfähiges Heizkabel
US20130168706A1 (en) * 2011-09-08 2013-07-04 Agency For Science, Technology And Research Printed light emitting devices and method for fabrication therof
WO2013108300A1 (ja) * 2012-01-20 2013-07-25 パナソニック株式会社 薄膜トランジスタ
CN102592556A (zh) * 2012-02-22 2012-07-18 鞍山亚世光电显示有限公司 一种低功耗电子价签显示模块
JP6111455B2 (ja) * 2012-03-12 2017-04-12 株式会社Joled 表示パネル、表示装置および電子機器
CN102759050B (zh) * 2012-07-09 2015-08-05 创维液晶器件(深圳)有限公司 背光模组及液晶显示装置
KR20140019699A (ko) * 2012-08-07 2014-02-17 삼성디스플레이 주식회사 플렉시블 유기 발광 표시 장치 및 그 제조방법
US9638442B2 (en) 2012-08-07 2017-05-02 Tempronics, Inc. Medical, topper, pet wireless, and automated manufacturing of distributed thermoelectric heating and cooling
TWI492373B (zh) * 2012-08-09 2015-07-11 Au Optronics Corp 可撓式顯示模組的製作方法
WO2014052145A1 (en) 2012-09-25 2014-04-03 Faurecia Automotive Seating, Llc Vehicle seat with thermal device
JP2014107447A (ja) * 2012-11-28 2014-06-09 Nitto Denko Corp 封止シート、光半導体装置およびその製造方法
US9935152B2 (en) 2012-12-27 2018-04-03 General Electric Company X-ray detector having improved noise performance
US8890408B2 (en) * 2013-01-18 2014-11-18 Nokia Corporation Method and apparatus for coupling an active display portion and substrate
CN107768408A (zh) * 2013-04-15 2018-03-06 株式会社半导体能源研究所 发光装置
KR102078679B1 (ko) 2013-05-30 2020-02-20 삼성디스플레이 주식회사 가요성 표시 장치 및 가요성 표시 장치의 제조 방법
WO2014205489A1 (en) * 2013-06-25 2014-12-31 The University Of Melbourne A circuit board comprising an insulating diamond material
KR20150025231A (ko) * 2013-08-28 2015-03-10 서울반도체 주식회사 광원 모듈 및 그 제조 방법, 및 백라이트 유닛
KR20230014843A (ko) 2013-08-30 2023-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
TWI794098B (zh) 2013-09-06 2023-02-21 日商半導體能源研究所股份有限公司 發光裝置以及發光裝置的製造方法
KR102139577B1 (ko) * 2013-10-24 2020-07-31 삼성디스플레이 주식회사 유기 발광 표시 장치
WO2015066244A1 (en) * 2013-10-29 2015-05-07 University Of Southern California Host materials and ligands for dopants in organic light emitting diodes
WO2015066518A1 (en) 2013-11-04 2015-05-07 Tempronics, Inc. Design of thermoelectric string, panel, and covers for function and durability
WO2015083034A1 (en) * 2013-12-02 2015-06-11 Semiconductor Energy Laboratory Co., Ltd. Display device
US9917133B2 (en) 2013-12-12 2018-03-13 General Electric Company Optoelectronic device with flexible substrate
US9257480B2 (en) * 2013-12-30 2016-02-09 General Electric Company Method of manufacturing photodiode detectors
CN104779265B (zh) * 2014-01-14 2020-07-07 松下电器产业株式会社 发光装置
TWI748456B (zh) * 2014-02-28 2021-12-01 日商半導體能源研究所股份有限公司 顯示裝置的製造方法及電子裝置的製造方法
US9472410B2 (en) * 2014-03-05 2016-10-18 Applied Materials, Inc. Pixelated capacitance controlled ESC
WO2015138329A1 (en) 2014-03-13 2015-09-17 General Electric Company Curved digital x-ray detector for weld inspection
JP2015187635A (ja) * 2014-03-26 2015-10-29 株式会社Joled 色変化部材、光装置、表示装置および電子機器
KR102241846B1 (ko) * 2014-07-16 2021-04-20 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
DE102014110268B4 (de) * 2014-07-22 2017-11-02 Osram Oled Gmbh Verfahren zum Herstellen eines optoelektronischen Bauelements
US9515272B2 (en) * 2014-11-12 2016-12-06 Rohm And Haas Electronic Materials Llc Display device manufacture using a sacrificial layer interposed between a carrier and a display device substrate
CN105702879B (zh) * 2014-11-27 2017-08-25 上海和辉光电有限公司 柔性显示器的制备方法
US9467190B1 (en) * 2015-04-23 2016-10-11 Connor Sport Court International, Llc Mobile electronic device covering
KR102438718B1 (ko) * 2015-08-11 2022-08-31 삼성디스플레이 주식회사 표시 장치
TW201707959A (zh) * 2015-08-21 2017-03-01 Jsr Corp 基材的處理方法、暫時固定用組成物及半導體裝置
TWI733693B (zh) * 2015-09-07 2021-07-21 日商昭和電工材料股份有限公司 接合用銅糊、接合體的製造方法及半導體裝置的製造方法
US9515044B1 (en) * 2015-10-14 2016-12-06 Napra Co., Ltd. Electronic device, method of manufacturing the same, metal particle, and electroconductive paste
CN105355740B (zh) * 2015-10-19 2017-09-22 天津三安光电有限公司 发光二极管及其制作方法
US11437236B2 (en) 2016-01-08 2022-09-06 The Trustees Of Columbia University In Thf City Of New York Methods and systems for spot beam crystallization
US10917953B2 (en) * 2016-03-21 2021-02-09 X Display Company Technology Limited Electrically parallel fused LEDs
US10586817B2 (en) * 2016-03-24 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and separation apparatus
US10877189B2 (en) * 2016-03-25 2020-12-29 Panasonic Intellectual Property Management Co., Ltd. Mirror panel, mirror film and display system
JP6863803B2 (ja) 2016-04-07 2021-04-21 株式会社半導体エネルギー研究所 表示装置
JP6332330B2 (ja) * 2016-05-20 2018-05-30 日亜化学工業株式会社 配線基体の製造方法及びそれを用いた発光装置の製造方法並びに配線基体及びそれを用いた発光装置。
US20180040638A1 (en) * 2016-08-05 2018-02-08 Innolux Corporation Display device
KR102554183B1 (ko) 2016-07-29 2023-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 박리 방법, 표시 장치, 표시 모듈, 및 전자 기기
TWI753868B (zh) 2016-08-05 2022-02-01 日商半導體能源研究所股份有限公司 剝離方法、顯示裝置、顯示模組及電子裝置
TWI730017B (zh) 2016-08-09 2021-06-11 日商半導體能源研究所股份有限公司 顯示裝置的製造方法、顯示裝置、顯示模組及電子裝置
CN109564851A (zh) 2016-08-31 2019-04-02 株式会社半导体能源研究所 半导体装置的制造方法
US10923350B2 (en) 2016-08-31 2021-02-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10369664B2 (en) 2016-09-23 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10374093B2 (en) 2016-12-08 2019-08-06 Electronics And Telecommunications Research Institute Method of fabricating a flexible substrate and the flexible substrate fabricated thereby
JP6341345B1 (ja) * 2017-03-07 2018-06-13 富士ゼロックス株式会社 発光装置、画像形成装置及び光照射装置
US10021762B1 (en) * 2017-06-30 2018-07-10 Innolux Corporation Display device
KR102503578B1 (ko) 2017-06-30 2023-02-24 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
WO2019003838A1 (ja) * 2017-06-30 2019-01-03 富士フイルム株式会社 圧力測定用材料
WO2019093346A1 (ja) * 2017-11-08 2019-05-16 Nsマテリアルズ株式会社 表示装置
JP7234573B2 (ja) * 2017-12-25 2023-03-08 三菱マテリアル株式会社 サーミスタ及びその製造方法並びにサーミスタセンサ
JP2019121734A (ja) * 2018-01-10 2019-07-22 株式会社Joled 半導体装置および表示装置
JP2019149473A (ja) * 2018-02-27 2019-09-05 東芝メモリ株式会社 半導体記憶装置およびその製造方法
EP3534416B1 (en) * 2018-02-28 2022-06-22 Nichia Corporation Method of manufacturing light emitting device and light emitting device
CN111903199A (zh) * 2018-03-26 2020-11-06 应用材料公司 用于生产柔性装置、柔性电子装置及多个电子装置的柔性布置的方法
CN110365422B (zh) * 2018-04-04 2021-01-29 京东方科技集团股份有限公司 一种信号处理装置及其制备方法
CN111344878B (zh) * 2018-05-16 2021-12-21 华为技术有限公司 有机发光二极管和电子设备
WO2020012974A1 (ja) * 2018-07-10 2020-01-16 日本電気硝子株式会社 パッケージ、パッケージ製造方法、接合材付き蓋体、および接合材付き蓋体の製造方法
KR102145219B1 (ko) * 2018-07-27 2020-08-18 삼성전자주식회사 반도체 패키지 및 이를 포함하는 안테나 모듈
CN109148137B (zh) * 2018-09-04 2023-10-20 湖南创一电子科技股份有限公司 一种耐高压电感器及其制备方法
WO2020110619A1 (ja) * 2018-11-27 2020-06-04 リンテック株式会社 半導体装置の製造方法
CN109507826A (zh) * 2018-12-27 2019-03-22 厦门天马微电子有限公司 显示装置
WO2020141861A1 (ko) * 2018-12-31 2020-07-09 주식회사 나노엑스 양면 발광 led 칩
CN111509353B (zh) * 2019-01-31 2022-03-01 群创光电股份有限公司 电子装置及天线装置
US11469491B2 (en) 2019-01-31 2022-10-11 Innolux Corporation Electronic device and antenna device
WO2020174612A1 (ja) * 2019-02-27 2020-09-03 シャープ株式会社 表示装置
CN110109293A (zh) * 2019-04-04 2019-08-09 深圳市华星光电技术有限公司 液晶无机配向薄膜的制造方法
JP2020187180A (ja) * 2019-05-10 2020-11-19 株式会社ジャパンディスプレイ 表示装置
CN112099263A (zh) * 2019-06-18 2020-12-18 群创光电股份有限公司 电子装置
US10971472B2 (en) * 2019-07-09 2021-04-06 Mikro Mesa Technology Co., Ltd. Method of liquid assisted bonding
CN111081743B (zh) * 2019-12-11 2022-06-07 深圳市华星光电半导体显示技术有限公司 显示面板的制造方法及显示面板
US11276716B2 (en) * 2019-12-17 2022-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Image sensor with improved near-infrared (NIR) radiation phase-detection autofocus (PDAF) performance
CN111063650A (zh) * 2019-12-17 2020-04-24 深圳市华星光电半导体显示技术有限公司 发光二极管的转移方法及转移装置
CN111276894B (zh) * 2020-03-18 2022-04-05 南通苏源恒炫电气有限公司 一种固体绝缘环网柜用分层式抗老化绝缘罩
KR20210145049A (ko) * 2020-05-22 2021-12-01 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
TWI748488B (zh) * 2020-05-29 2021-12-01 逢甲大學 雙閘極金氧半導體場效電晶體元件及其製造方法
CN111628047B (zh) * 2020-06-01 2023-02-28 常州顺风太阳能科技有限公司 一种N型TOPCon太阳能电池的制作方法
WO2022021003A1 (zh) * 2020-07-27 2022-02-03 重庆康佳光电技术研究院有限公司 转接板、巨量转移方法及Micro-LED显示器
CN112965162A (zh) * 2021-03-04 2021-06-15 山东大学 一种基于单晶光纤声学各向异性和掺杂调制的高灵敏单晶光纤测温方法
CN113804266A (zh) * 2021-09-15 2021-12-17 河南卓正电子科技有限公司 一种超声流量计高压换能器驱动电路
CN113760020B (zh) * 2021-09-26 2023-06-02 北京北方华创微电子装备有限公司 半导体设备的压力控制装置及半导体设备
CN113948654B (zh) * 2021-10-26 2024-03-01 湖南恒显坤光电科技有限公司 一种oled器件及其制备方法
US11906133B2 (en) 2022-03-31 2024-02-20 Alliance Sports Group, L.P. Outdoor lighting apparatus
CN115799420B (zh) * 2023-01-06 2023-05-16 华灿光电(苏州)有限公司 改善转移精度的发光二极管及其制备方法
CN116024570B (zh) * 2023-03-29 2023-06-06 中北大学 超高温曲面金属基厚/薄膜传感器绝缘层及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379792B1 (en) * 1999-07-09 2002-04-30 Dow Corning Toray Silicone Co., Ltd. Silicone adhesive sheet and method for manufacturing
US6627518B1 (en) * 1998-02-27 2003-09-30 Seiko Epson Corporation Method for making three-dimensional device

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122123A (en) 1980-03-03 1981-09-25 Shunpei Yamazaki Semiamorphous semiconductor
JP2567985B2 (ja) 1990-09-25 1996-12-25 富士通株式会社 ディジタル回路のパス自動選択方法及びディジタル回路のパス自動選択装置
JP2581083Y2 (ja) * 1991-05-28 1998-09-17 三洋電機株式会社 発光ダイオード表示装置
JPH0525749A (ja) 1991-07-10 1993-02-02 Toyota Autom Loom Works Ltd 織機におけるクロスロール交換装置の織布巻き付け機構
JPH0525749U (ja) * 1991-09-10 1993-04-02 株式会社小糸製作所 チツプ型発光ダイオードの取付構造
PL316118A1 (en) 1994-03-08 1996-12-23 Rgc Mineral Sands Ltd Method of digesting titanium-bearing raw materials
JP3218861B2 (ja) 1994-05-17 2001-10-15 ソニー株式会社 液晶表示装置の製造方法
JP2001148517A (ja) 1994-12-06 2001-05-29 Sharp Corp 発光デバイス
JP3127195B2 (ja) 1994-12-06 2001-01-22 シャープ株式会社 発光デバイスおよびその製造方法
US5834327A (en) 1995-03-18 1998-11-10 Semiconductor Energy Laboratory Co., Ltd. Method for producing display device
JP4619462B2 (ja) 1996-08-27 2011-01-26 セイコーエプソン株式会社 薄膜素子の転写方法
CN1143394C (zh) 1996-08-27 2004-03-24 精工爱普生株式会社 剥离方法、溥膜器件的转移方法和薄膜器件
JP3809681B2 (ja) 1996-08-27 2006-08-16 セイコーエプソン株式会社 剥離方法
US6127199A (en) 1996-11-12 2000-10-03 Seiko Epson Corporation Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
KR100304161B1 (ko) 1996-12-18 2001-11-30 미다라이 후지오 반도체부재의제조방법
JPH1126733A (ja) * 1997-07-03 1999-01-29 Seiko Epson Corp 薄膜デバイスの転写方法、薄膜デバイス、薄膜集積回路装置,アクティブマトリクス基板、液晶表示装置および電子機器
JPH1154802A (ja) * 1997-07-30 1999-02-26 Matsushita Electric Ind Co Ltd 発光装置およびそれを用いて作製されたディスプレイ装置
JPH11122424A (ja) 1997-10-20 1999-04-30 Citizen Watch Co Ltd 光学装置
JPH11168235A (ja) * 1997-12-05 1999-06-22 Toyoda Gosei Co Ltd 発光ダイオード
JP3361820B2 (ja) 1997-12-24 2003-01-07 三菱電機株式会社 フレキシブル液晶表示板の設置構造
JP3809733B2 (ja) 1998-02-25 2006-08-16 セイコーエプソン株式会社 薄膜トランジスタの剥離方法
JPH11274572A (ja) * 1998-03-23 1999-10-08 Nec Corp Led表示素子および表示装置
US6335479B1 (en) 1998-10-13 2002-01-01 Dai Nippon Printing Co., Ltd. Protective sheet for solar battery module, method of fabricating the same and solar battery module
JP4631113B2 (ja) 1999-10-26 2011-02-16 株式会社デンソー 半導体装置の製造方法
CN2415462Y (zh) 2000-02-22 2001-01-17 林常义 芯片型式发光二极管
JP2001260597A (ja) 2000-03-17 2001-09-25 Takiron Co Ltd 転写フィルム
JP2002026282A (ja) 2000-06-30 2002-01-25 Seiko Epson Corp 単純マトリクス型メモリ素子の製造方法
JP4869471B2 (ja) 2000-07-17 2012-02-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
FR2817395B1 (fr) 2000-11-27 2003-10-31 Soitec Silicon On Insulator Procede de fabrication d'un substrat notamment pour l'optique, l'electronique ou l'optoelectronique et substrat obtenu par ce procede
US6680724B2 (en) 2001-05-31 2004-01-20 Hewlett-Packard Development Company, L.P. Flexible electronic viewing device
TW548860B (en) 2001-06-20 2003-08-21 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
JP2003017667A (ja) 2001-06-29 2003-01-17 Canon Inc 部材の分離方法及び分離装置
US6814832B2 (en) 2001-07-24 2004-11-09 Seiko Epson Corporation Method for transferring element, method for producing element, integrated circuit, circuit board, electro-optical device, IC card, and electronic appliance
JP2003142666A (ja) 2001-07-24 2003-05-16 Seiko Epson Corp 素子の転写方法、素子の製造方法、集積回路、回路基板、電気光学装置、icカード、及び電子機器
WO2003010825A1 (en) * 2001-07-24 2003-02-06 Seiko Epson Corporation Transfer method, method of manufacturing thin film element, method of manufacturing integrated circuit, circuit substrate and method of manufacturing the circuit substrate, electro-optic device and method of manufacturing the electro-optic device, and ic card and electronic equipmen
JP2003098977A (ja) 2001-09-19 2003-04-04 Sony Corp 素子の転写方法、素子の配列方法、及び画像表示装置の製造方法
JP4236081B2 (ja) 2001-10-16 2009-03-11 大日本印刷株式会社 パターン形成体の製造方法
US7359026B2 (en) 2002-05-13 2008-04-15 Paul Bullwinkel Liquid crystal display projector
EP1363319B1 (en) 2002-05-17 2009-01-07 Semiconductor Energy Laboratory Co., Ltd. Method of transferring an object and method of manufacturing a semiconductor device
JP2004047791A (ja) 2002-07-12 2004-02-12 Pioneer Electronic Corp 有機薄膜スイッチングメモリ素子及びメモリ装置
JP2004103993A (ja) * 2002-09-12 2004-04-02 Ichikoh Ind Ltd Led設置用フレキシブル基板及びそのled設置用フレキシブル基板を用いた車両用灯具
JP5022552B2 (ja) 2002-09-26 2012-09-12 セイコーエプソン株式会社 電気光学装置の製造方法及び電気光学装置
US6709944B1 (en) * 2002-09-30 2004-03-23 General Electric Company Techniques for fabricating a resistor on a flexible base material
JP2004140267A (ja) * 2002-10-18 2004-05-13 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US7009199B2 (en) * 2002-10-22 2006-03-07 Cree, Inc. Electronic devices having a header and antiparallel connected light emitting diodes for producing light from AC current
JP4373085B2 (ja) 2002-12-27 2009-11-25 株式会社半導体エネルギー研究所 半導体装置の作製方法、剥離方法及び転写方法
JP2004253483A (ja) * 2003-02-18 2004-09-09 Dainippon Printing Co Ltd 半導体ウエハの製造方法
JP3816457B2 (ja) 2003-03-18 2006-08-30 株式会社東芝 表示装置
JP3915985B2 (ja) 2003-08-22 2007-05-16 セイコーエプソン株式会社 画素素子基板、表示装置、電子機器、及び画素素子基板の製造方法
WO2005059990A1 (en) 2003-12-02 2005-06-30 Semiconductor Energy Laboratory Co., Ltd. Electronic device and semiconductor device and method for manufacturing the same
US7084045B2 (en) 2003-12-12 2006-08-01 Seminconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN1558451A (zh) * 2004-02-03 2004-12-29 ���ڿƼ��ɷ����޹�˾ 可防止静电破坏的发光二极管元件
JP2005239042A (ja) * 2004-02-27 2005-09-08 Nippon Seiki Co Ltd 車両用情報表示装置及び車両用情報表示方法
US7025464B2 (en) * 2004-03-30 2006-04-11 Goldeneye, Inc. Projection display systems utilizing light emitting diodes and light recycling
US7431463B2 (en) * 2004-03-30 2008-10-07 Goldeneye, Inc. Light emitting diode projection display systems
JP2006011239A (ja) 2004-06-29 2006-01-12 Kyocera Corp 液晶表示装置
JP2006072115A (ja) 2004-09-03 2006-03-16 Fuji Photo Film Co Ltd 画像表示装置
JP4667803B2 (ja) * 2004-09-14 2011-04-13 日亜化学工業株式会社 発光装置
JP2006339060A (ja) * 2005-06-03 2006-12-14 Akita Denshi Systems:Kk 照明装置
JP2007059073A (ja) 2005-08-22 2007-03-08 Toshiba Lighting & Technology Corp レンズおよび照明装置
US8173519B2 (en) 2006-03-03 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7600896B2 (en) 2007-07-27 2009-10-13 Baoliang Wang Outer case of LED module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627518B1 (en) * 1998-02-27 2003-09-30 Seiko Epson Corporation Method for making three-dimensional device
US6379792B1 (en) * 1999-07-09 2002-04-30 Dow Corning Toray Silicone Co., Ltd. Silicone adhesive sheet and method for manufacturing

Also Published As

Publication number Publication date
US20180102271A1 (en) 2018-04-12
US20070295973A1 (en) 2007-12-27
KR101382150B1 (ko) 2014-04-07
KR20070090828A (ko) 2007-09-06
US8823023B2 (en) 2014-09-02
US20150293404A1 (en) 2015-10-15
JP2015029120A (ja) 2015-02-12
US20160372356A1 (en) 2016-12-22
US20120274879A1 (en) 2012-11-01
CN102157349B (zh) 2013-06-12
US9082679B2 (en) 2015-07-14
JP2017028301A (ja) 2017-02-02
US20140339578A1 (en) 2014-11-20
US8222116B2 (en) 2012-07-17
JP2013084973A (ja) 2013-05-09
US9793150B2 (en) 2017-10-17
KR101403312B1 (ko) 2014-06-05
KR20130115187A (ko) 2013-10-21
JP6240728B2 (ja) 2017-11-29
CN101030526A (zh) 2007-09-05
US9436036B2 (en) 2016-09-06
JP2016026407A (ja) 2016-02-12
CN102157349A (zh) 2011-08-17
US10229940B2 (en) 2019-03-12

Similar Documents

Publication Publication Date Title
CN101030526B (zh) 制造半导体装置的方法
CN101101872B (zh) 一种半导体装置及其制造方法
CN101479777B (zh) 显示设备和电子装置
CN100592477C (zh) 半导体装置制造方法
CN102522504B (zh) 半导体装置的制造方法以及半导体装置
JP5276792B2 (ja) 半導体装置の作製方法
CN1905165B (zh) 半导体器件的制造方法
JP4777078B2 (ja) 半導体装置の作製方法
CN101114612B (zh) 显示器件的制造方法
JP5210594B2 (ja) 半導体装置の作製方法
JP4700484B2 (ja) 半導体装置の作製方法
CN102208419B (zh) 半导体器件的制造方法及显示器件的制造方法
JP2007073976A (ja) 半導体装置
JP5089036B2 (ja) 半導体装置の作製方法及び発光装置の作製方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110427