WO2019093346A1 - 表示装置 - Google Patents
表示装置 Download PDFInfo
- Publication number
- WO2019093346A1 WO2019093346A1 PCT/JP2018/041260 JP2018041260W WO2019093346A1 WO 2019093346 A1 WO2019093346 A1 WO 2019093346A1 JP 2018041260 W JP2018041260 W JP 2018041260W WO 2019093346 A1 WO2019093346 A1 WO 2019093346A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- light emitting
- display device
- electrode
- transport layer
- Prior art date
Links
- 239000002096 quantum dot Substances 0.000 claims abstract description 77
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 239000010409 thin film Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 229910007541 Zn O Inorganic materials 0.000 claims description 5
- 238000007740 vapor deposition Methods 0.000 claims description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 70
- 238000002347 injection Methods 0.000 description 52
- 239000007924 injection Substances 0.000 description 52
- 230000005525 hole transport Effects 0.000 description 38
- 239000011787 zinc oxide Substances 0.000 description 35
- 239000000463 material Substances 0.000 description 16
- 238000010586 diagram Methods 0.000 description 14
- 239000010408 film Substances 0.000 description 13
- 239000002105 nanoparticle Substances 0.000 description 12
- -1 Aliphatic primary amine Chemical class 0.000 description 9
- 238000000085 photoelectron yield spectroscopy Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 229920002943 EPDM rubber Polymers 0.000 description 5
- 239000011258 core-shell material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 229910052809 inorganic oxide Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000013110 organic ligand Substances 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000005083 Zinc sulfide Substances 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000004770 highest occupied molecular orbital Methods 0.000 description 3
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 description 3
- MMNNWKCYXNXWBG-UHFFFAOYSA-N 2,4,6-tris(3-phenylphenyl)-1,3,5-triazine Chemical compound C1=CC=CC=C1C1=CC=CC(C=2N=C(N=C(N=2)C=2C=C(C=CC=2)C=2C=CC=CC=2)C=2C=C(C=CC=2)C=2C=CC=CC=2)=C1 MMNNWKCYXNXWBG-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 1
- MNZAKDODWSQONA-UHFFFAOYSA-N 1-dibutylphosphorylbutane Chemical compound CCCCP(=O)(CCCC)CCCC MNZAKDODWSQONA-UHFFFAOYSA-N 0.000 description 1
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910017299 Mo—O Inorganic materials 0.000 description 1
- 235000021360 Myristic acid Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910020923 Sn-O Inorganic materials 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910003077 Ti−O Inorganic materials 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- VTXVGVNLYGSIAR-UHFFFAOYSA-N decane-1-thiol Chemical compound CCCCCCCCCCS VTXVGVNLYGSIAR-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- QJAOYSPHSNGHNC-UHFFFAOYSA-N octadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCCCS QJAOYSPHSNGHNC-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000000628 photoluminescence spectroscopy Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- POOSGDOYLQNASK-UHFFFAOYSA-N tetracosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC POOSGDOYLQNASK-UHFFFAOYSA-N 0.000 description 1
- GEKDEMKPCKTKEC-UHFFFAOYSA-N tetradecane-1-thiol Chemical compound CCCCCCCCCCCCCCS GEKDEMKPCKTKEC-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 1
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 1
- FIQMHBFVRAXMOP-UHFFFAOYSA-N triphenylphosphane oxide Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)C1=CC=CC=C1 FIQMHBFVRAXMOP-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- XKKVXDJVQGBBFQ-UHFFFAOYSA-L zinc ethanol diacetate Chemical compound C(C)O.C(C)(=O)[O-].[Zn+2].C(C)(=O)[O-] XKKVXDJVQGBBFQ-UHFFFAOYSA-L 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
- C09K11/562—Chalcogenides
- C09K11/565—Chalcogenides with zinc cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/70—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/33—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/121—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
- H10K59/1213—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1222—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
- H01L27/1225—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/24—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/302—Details of OLEDs of OLED structures
- H10K2102/3023—Direction of light emission
- H10K2102/3026—Top emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
- H10K71/135—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/15—Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
- H10K71/611—Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to a display device using quantum dots.
- the organic EL device is configured by laminating an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode on a substrate.
- Such an organic EL element is formed of an organic compound, and emits light by excitons generated by the recombination of electrons and holes injected into the organic compound.
- the quantum dot is a nanoparticle having a particle diameter of several nm to several tens of nm, which is composed of several hundreds to several thousands of atoms. Quantum dots are also called fluorescent nanoparticles, semiconductor nanoparticles, or nanocrystals.
- the quantum dot has a feature that the emission wavelength can be variously changed according to the particle size and the composition of the nanoparticle.
- a light emitting element using a quantum dot can realize thinning and surface emission similarly to the organic EL element.
- This invention is made in view of this point, and it aims at providing the display provided with the light emitting element containing a quantum dot.
- the present invention is a display device including a display area, wherein the display area includes a first electrode, a layer between the first electrode and a light emitting layer, the light emitting layer, and the light emitting layer and the second electrode. And a light emitting element in which the second electrode is stacked on the substrate in this order, the light emitting layer is formed of an inorganic layer containing quantum dots, and the light emitting element is a top emission. It is characterized by being a type.
- the thin film transistor connected to the light emitting element is preferably an n-ch TFT.
- the oxide semiconductor of the thin film transistor is preferably formed of an In—Ga—Zn—O-based semiconductor.
- the display device preferably has flexibility.
- the quantum dots have a structure in which the surface of the core is not covered by the shell.
- At least one of the layer between the first electrode and the light emitting layer, the light emitting layer, and the layer between the light emitting layer and the second electrode is formed by an inkjet method. Is preferred.
- the layer between the first electrode and the light emitting layer, and the light emitting layer are formed by coating, and the layer between the light emitting layer and the second electrode is formed by evaporation or It is preferable to apply and form.
- the display device of the present invention it is possible to optimize the layered structure of the light emitting element including the quantum dot, which is used for the display device.
- all layers from the cathode to the anode can be formed of an inorganic layer.
- FIG. 3 is a cross-sectional view showing the structure of a thin film transistor different from FIG. 2;
- FIG. 4A is a cross-sectional view of the light-emitting element in the first embodiment, and
- FIG. 4B is an energy level diagram of each layer in the display device of the first embodiment.
- It is a schematic diagram of the quantum dot in this embodiment. It is sectional drawing of the light emitting element of embodiment different from FIG.
- FIG. 7A is an energy level diagram in the case of using a quantum dot of a core-shell structure, and FIG.
- FIG. 7B is an energy level diagram in the case of using a quantum dot of a structure in which the core is not covered by a shell.
- 8A is a cross-sectional view of a light emitting device different from that of FIG. 4, and FIG. 8B is an energy level diagram of each layer in the light emitting device of FIG. 8A. It is sectional drawing of the light emitting element of embodiment different from FIG.
- FIG. 10A is an energy level diagram in the case of using a quantum dot of a core-shell structure
- FIG. 10B is an energy level diagram in the case of using a quantum dot of a structure in which the core is not covered by a shell.
- It is a schematic diagram which shows the process of forming an inorganic layer by the inkjet method.
- It is a PL data of the electron transport layer ZnO is used (ETL) X (Li) and ZnO X (K).
- a PYS data of the electron transport layer ZnO is used (ETL) X (Li) and ZnO X (K).
- a plurality of display areas 2 are arranged in a matrix.
- display area 2 red light emitting area 2 a emitting red light, green light emitting area 2 b emitting green light, and blue light emitting area 2 c emitting blue light.
- red light emitting area 2 a emitting red light
- green light emitting area 2 b emitting green light
- blue light emitting area 2 c emitting blue light.
- These three light emitting regions 2a, 2n, 2c for example, are arranged in a row direction to form one set, and constitute one pixel (pixel) in color display.
- a light emitting element 3 is formed in each of the light emitting regions 2a, 2b and 2c. The layer structure of the light emitting element 3 will be described later.
- a thin film transistor (TFT) 4 is connected to each light emitting element 3.
- the light emitting element 3 is a top emission type.
- the thin film transistor 4 shown in FIG. 2 is an n-ch TFT, and is configured by laminating a gate electrode 4a, a channel layer 4b, a gate insulating film (not shown), a drain electrode 4c, a source electrode 4d, etc. on a substrate 5. It is done.
- the material of the channel layer 4 b is not limited, it is an N-type semiconductor, and an oxide semiconductor is preferably used.
- an oxide semiconductor an In-Ga-Zn-O-based semiconductor is preferably used.
- An In-Ga-Zn-O-based semiconductor has high mobility and low leakage current, and can be suitably used as a thin film transistor. Poly-Si can also be preferably used.
- the thin film transistor 4 shown in FIG. 2 is a top contact-bottom gate type, but may be a bottom contact-bottom gate type.
- the source electrode 4 d is connected to the power supply line, and the drain electrode 4 c is connected to the light emitting element 3.
- the thin film transistor 4 may be a top gate type shown in FIG.
- a channel layer 4b is formed on a substrate 5, and the surface of the channel layer 4 is covered with a gate insulating film 4e.
- the gate electrode 4a is formed on the surface of the gate insulating film 4e.
- the surface of the gate electrode 4a is covered with an insulating film 4f.
- a plurality of through holes penetrating the gate insulating film 4e and the insulating film 4f and communicating with the channel layer 4b are formed, and the drain electrode 4c and the source electrode 4d are formed through the respective through holes.
- the surfaces of the drain electrode 4 c and the source electrode 4 d are covered with a protective film 7.
- a transparent electrode connected to the drain electrode 4 c and the source electrode 4 d is formed on the surface of the protective film 7.
- the transparent electrode 8 shown in FIG. 3 communicates with the drain electrode 4c.
- the channel layer 4b of the thin film transistor 4 shown in FIG. 3 is an N-type semiconductor, and an oxide semiconductor is preferably used.
- an oxide semiconductor is preferably used.
- an In-Ga-Zn-O-based semiconductor is preferably used.
- the display device 1 has a structure in which the thin film transistor 4 and the light emitting element 3 are interposed between a pair of substrates 5 and 6, and a sealing resin (not shown) forms a frame between the substrates 5 and 6. Between the substrates 5 and 6 via the sealing resin.
- FIG. 4A is a cross-sectional view of the light-emitting element in the first embodiment
- FIG. 4B is an energy level diagram of each layer in the display device of the first embodiment.
- the light emitting element 3 includes a substrate 10, a cathode (Cathode) 15 formed on the substrate, an electron transport layer (ETL: Electron Transport Layer) 14 formed on the cathode 15, and electrons A light emitting layer (EML: emitter layer) 13 formed on the transport layer 14, a hole transport layer (HTL: Hole Transport Layer) 12 formed on the light emitting layer 13, and a hole transport layer 12 And an anode (Anode) 11.
- EML Electron Transport Layer
- HTL Hole Transport Layer
- FIG. 4B shows energy level models of the hole transport layer 12, the light emitting layer 13 and the electron transport layer 14, respectively.
- the holes transported in the hole transport layer 12 are injected from the HOMO level of the hole transport layer 12 to the HOMO level of the light emitting layer 13.
- electrons transported from the electron transport layer 14 are injected from the LUMO level of the electron transport layer 14 to the LUMO level of the light emitting layer 13. Then, the holes and the electrons are recombined in the light emitting layer 13, the quantum dots in the light emitting layer 13 are in an excited state, and light emission can be obtained from the excited quantum dots.
- the light emitting layer 13 is formed of an inorganic layer containing quantum dots.
- the configuration and material of the quantum dot are not limited, for example, the quantum dot in the present embodiment is a nanoparticle having a particle diameter of about several nm to several tens of nm.
- quantum dots CdS, CdSe, ZnS, ZnSe , ZnSeS, ZnTe, ZnTeS, InP, (Zn) AgInS 2, is formed by (Zn) CuInS 2, and the like. Since Cd is restricted in its use in various countries due to its toxicity, it is preferable that quantum dots do not contain Cd.
- a large number of organic ligands 21 are preferably coordinated to the surface of the quantum dot 20. Thereby, aggregation of quantum dot 20 comrades can be suppressed and the optical characteristic made into the objective expresses.
- the ligand which can be used for reaction is not specifically limited, For example, the following ligands are mentioned as a typical thing.
- the quantum dot 20 shown to FIG. 5B is a core-shell structure which has the core 20a and the shell 20b coat
- the core 20a of the quantum dot 20 shown in FIG. 5B is a nanoparticle shown in FIG. 5A. Therefore, the core 20a is formed of, for example, the materials listed above.
- the material of the shell 20b is not limited, it is made of, for example, zinc sulfide (ZnS) or the like. It is preferable that the shell 20b does not contain cadmium (Cd) as well as the core 20a.
- the shell 20 b may be in a solid solution state on the surface of the core 20 a. Although the boundary between the core 20a and the shell 20b is shown by a dotted line in FIG. 5B, this indicates that the boundary between the core 20a and the shell 20b may or may not be confirmed by analysis.
- the light emitting layer 13 may be formed of only the quantum dots listed above, or may include a quantum dot and another fluorescent material.
- the light emitting layer 13 can be formed by applying quantum dots dissolved in a solvent by, for example, an inkjet method, and some solvent component may be left in the light emitting layer 13.
- the light emitting layer 13 of the light emitting element 3 formed in the red light emitting region 2a shown in FIG. 1 contains a red quantum dot that emits red light.
- the light emitting layer 13 of the light emitting element 3 formed in the green light emitting region 2 b shown in FIG. 1 contains green quantum dots that fluoresce green.
- the light emitting layer 13 of the light emitting element 3 formed in the blue light emitting region 2c shown in FIG. 1 contains blue quantum dots that fluoresce in blue.
- the wavelength of blue light emission is preferably about 450 nm. As described above, the health risk can be suppressed by adjusting so as not to emit light with a wavelength shorter than 450 nm.
- the light emitting layer 13 can be formed using an existing thin film forming method such as the above-described ink jet method or vacuum evaporation method.
- the hole transport layer 12 is made of an inorganic substance having the function of transporting holes or an organic substance.
- the hole transport layer 12 is preferably made of an inorganic material, for example, NiO or be formed of an inorganic oxide such as WO 3 is preferable.
- the hole transport layer 12 is preferably formed of, in particular, nanoparticles of NiO.
- the metal oxide may be doped with Li, Mg, Al or the like.
- the hole transport layer 12 may be an inorganic substance other than the inorganic oxide.
- the hole transport layer 12 can be formed by a printing method such as an inkjet method, or can be formed by an existing thin film technology such as a vacuum evaporation method, as in the case of the light emitting layer 13.
- the electron transport layer 14 is made of an inorganic substance or an organic substance having a function of transporting electrons.
- the electron transport layer 14 is preferably made of an inorganic substance, and is preferably formed of an inorganic oxide such as, for example, ZnO x , Ti—O, Sn—O, V—O x , or Mo—O. Two or more of these can be selected.
- the electron transport layer 14 is particularly preferably formed of ZnO X nanoparticles.
- the metal oxide may be doped with Li, Mg, Al, Mn or the like.
- the electron transport layer 14 may be an inorganic substance (for example, CsPbBr 3 or the like) other than the inorganic oxide.
- X is not limited, it is about 0.8 to 1.2.
- the electron transport layer 14 can be formed of a solvent containing nanoparticles by a printing method such as an inkjet method, or an existing thin film technology such as a vacuum evaporation method.
- the material of the anode 11 is not limited.
- the anode 11 may be a metal such as Au or Ag, a conductive transparent material such as CuISnO 2 or ZnO X, or an indium-tin complex oxide Preferably, it is formed of ITO.
- the anode 11 is preferably formed of ITO.
- the anode 11 can be formed on the substrate 10 as a thin film of such an electrode material by a method such as vapor deposition or sputtering.
- the anode 11 since light is taken out from the anode 11 side, the anode 11 needs to be transparent, and a thin metal film excellent in transparency such as Ag described above or a metal oxide excellent in transparency. It is preferable that it is a thing.
- the material of the cathode 15 is not limited, for example, the cathode 15 may be made of an indium-tin complex oxide (ITO), a metal, an alloy, an electrically conductive compound or a mixture thereof as an electrode material. It can be used.
- the cathode 15 is formed of ITO.
- the cathode 15 is formed, for example, via a non-transmissive metal layer formed on the substrate 10. Thereby, the light emitting element 3 can be made top emission.
- the cathode 15 can be formed of a thin film of such electrode material by a method such as vapor deposition or sputtering.
- the material of the substrate 10 is not limited in the present embodiment, the substrate 10 can be formed of, for example, glass, plastic or the like. Specifically, the substrate 10 is formed of, for example, glass, quartz, or a transparent resin film.
- the substrate 10 may be either a rigid substrate or a flexible substrate, but by using a flexible substrate, flexibility can be obtained.
- the transparent resin film is, for example, polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC) or the like.
- the display device 1 of FIG. 2 by making both of the substrates 5 and 6 flexible, the display device 1 can have flexibility.
- the substrates 5 and 6 can also be formed of the same material as the substrate 10.
- the substrate 5 can double as the substrate 10.
- all layers from the cathode 15 to the anode 11, that is, the cathode 15, the electron transport layer 14, the light emitting layer 13, the hole transport layer 12, and the anode 11 can all be formed of an inorganic layer.
- film formation can be performed using the same coating / drying apparatus or the like, and the manufacturing process can be simplified.
- the magnitude relationship of the HOMO levels from the anode 11 to the hole transport layer 12 and the light emitting layer 13 can be optimized, and the magnitude relationship of the LUMO levels from the cathode 15 to the electron transport layer 14 and the light emitting layer 13 is optimized.
- the carrier balance can be improved as compared with the case of using an organic compound.
- the number of layers can be reduced without forming the hole injection layer and the electron injection layer separately from the transport layer.
- the transport layer can also serve as the injection layer.
- FIG. 6A is a cross-sectional view of the light emitting device of the second embodiment.
- the cathode 15, the electron transport layer 14, the light emitting layer 13, the hole transport layer 12, the hole injection layer (HIL: Hole Injection layer) 16, and the anode 11 are stacked in this order on the substrate 10. It is done.
- the hole injection layer 16 is included between the anode 11 and the hole transport layer 12.
- FIG. 6B is a cross-sectional view of the light emitting device of the third embodiment.
- the cathode 15, the electron injection layer (EIL: Electron Injection Layer) 18, the electron transport layer 14, the light emitting layer 13, the hole transport layer 12, and the anode 11 are stacked in this order on the substrate 10.
- EIL Electron Injection Layer
- an electron injection layer 18 is included between the electron transport layer 14 and the cathode 15.
- FIG. 6C is a cross-sectional view of the light emitting device of the fourth embodiment.
- the cathode 15, the electron injection layer 18, the electron transport layer 14, the light emitting layer 13, the hole transport layer 12, the hole injection layer 16, and the anode 11 are stacked in this order on the substrate 10.
- the hole injection layer 16 is included between the anode 11 and the hole transport layer 12, and the electron injection layer 18 is further included between the electron transport layer 14 and the cathode 15.
- the material of the hole injection layer 16 and the electron injection layer 18 is not limited and may be an inorganic substance or an organic substance, but by forming the hole injection layer 16 and the electron injection layer 18 with an inorganic layer, the anode 11 to the cathode All layers up to 15 can be formed of inorganic layers, which is preferred.
- the materials of the hole injection layer 16 and the electron injection layer 18 are variously selected based on the energy level model.
- the layer between the cathode 15 and the light emitting layer 13 is the electron transport layer 14 or the electron injection layer 18, or a layer which combines the electron injection layer and the electron transport layer, or the electron transport layer It is preferable that the layer 14 and the electron injection layer 18 be stacked.
- the layer between the anode 11 and the light emitting layer 13 is the hole transport layer 12, or the hole injection layer 16, or the layer that serves both as the hole injection layer and the hole transport layer, or
- the hole transport layer 12 and the hole injection layer 16 are preferably stacked.
- the thin film transistor 4 is, for example, a bottom gate type, and the drain electrode 4 c is connected to the cathode 15 of the light emitting element 3.
- the drain electrode 4 c can be used also as the cathode 15 without overlapping the drain electrode 4 c to form the cathode 15.
- the hole transport layer 12, the light emitting layer 13, and the electron transport layer 14 can all be an inorganic layer formed of nanoparticles.
- each layer can be formed by printing using an inkjet method or the like, and each layer can be formed easily and with a uniform film thickness. Thereby, the light emission efficiency can be effectively improved.
- the quantum dot used for the light emitting layer 13 of the present embodiment has a core-shell structure
- the energy level diagram shown in FIG. 7A is obtained, and the energy level of the shell may become a barrier to recombination of holes and electrons.
- the surface of the core is not covered with the shell (the surface of the core is exposed: the material constituting the quantum dot is uniform from the center of the quantum dot to the surface) It is preferred to use.
- the energy barrier at the time of the recombination of the hole and the electron disappears, the hole and the electron can be efficiently recombined, and the light emission efficiency can be improved. It is.
- the light emitting element 3 includes the substrate 10, the anode 11 formed on the substrate, and the hole transport layer (HTL: formed on the anode 11).
- Hole Transport Layer 12 a light emitting layer (EML: emitter layer) 13 formed on the hole transport layer 12, an electron transport layer (ETL: Electron Transport Layer) 14 formed on the light emitting layer 13, and electron transport And the cathode 15 formed on the layer 14.
- EML light emitting layer
- ETL Electron Transport Layer
- each layer is as described above.
- the anode 11 constitutes a first electrode
- the cathode 15 constitutes a second electrode.
- the anode 15 is formed of a transparent material such as very thin Ag
- the cathode 11 is made of ITO on a non-transparent metal layer, for example.
- it is formed of
- light can be reflected by the cathode 11 and can be extracted from the surface side (the opposite side to the thin film transistor) that is the anode 15 side.
- FIG. 9A is a cross-sectional view of a light emitting element of an embodiment different from FIG. 8A.
- the anode 11, the hole injection layer (HIL: Hole Injection layer) 16, the hole transport layer 12, the light emitting layer 13, the electron transport layer 14, and the cathode 15 are stacked in this order on the substrate 10. ing.
- the hole injection layer 16 is included between the anode 11 and the hole transport layer 12.
- FIG. 9B is a cross-sectional view of a light-emitting element of an embodiment different from FIG. 8A.
- the anode 11, the hole transport layer 12, the light emitting layer 13, the electron transport layer 14, the electron injection layer (EIL: Electron Injection Layer) 18, and the cathode 15 are stacked in this order on the substrate 10. There is.
- an electron injection layer 18 is included between the electron transport layer 14 and the cathode 15.
- FIG. 9C is a cross-sectional view of the light emitting device of the fourth embodiment.
- the anode 11, the hole injection layer 16, the hole transport layer 12, the light emitting layer 13, the electron transport layer 14, the electron injection layer 18, and the cathode 15 are stacked in this order on the substrate 10.
- a hole injection layer 16 is included between the anode 11 and the hole transport layer 12, and an electron injection layer 18 is further included between the electron transport layer 14 and the cathode 15.
- the quantum dot used for the light emitting layer 13 of the embodiment shown in FIGS. 8 and 9 has a core-shell structure
- the energy level diagram shown in FIG. 10A is obtained, and the energy level of the shell is a recombination of holes and electrons. Can be a barrier.
- FIG. 10B by using quantum dots that do not cover the surface of the core with a shell, the energy barrier at the time of recombination of holes and electrons disappears, and holes and electrons can be efficiently reassembled. It is possible to combine and improve the luminous efficiency.
- the light emitting device of the embodiment shown in FIG. 8 and FIG. 9 is the conventional EL, and the light emitting device of the embodiment of FIG. 4 and FIG. 6 has a configuration in which the conventional EL is reversely laminated.
- the thin film transistor is preferably a p-ch TFT, and therefore, the channel layer is preferably formed of a P-type semiconductor.
- At least one layer of the layer between the cathode 15 and the light emitting layer 13, the light emitting layer 13, and the layer between the light emitting layer 13 and the anode 11 can be formed by an inkjet method.
- the mask 30 is disposed on the substrate 10, and the inorganic layer 31 is printed by the ink jet method in the plurality of application areas 30 a which are spaces provided in the mask 30.
- the surface of the side wall 30 b is treated with fluorine so that the side wall 30 b of the mask 30 has water repellency, for example.
- the affinity of the ink with the surface of the side wall 30b can be suppressed, and problems such as the surface of the printed inorganic layer 31 being recessed can be suppressed, and the degree of planarization of the surface of the inorganic layer 31 can be increased. It is.
- This embodiment is a top emission type, and in the inverted EL type light emitting element 3 shown in FIG. 4 and FIG. 6, the carrier balance can be appropriately improved.
- layers between the cathode 15 and the light emitting layer 13 (the electron transport layer 14, the electron transport layer 14 and the electron injection layer 18), and the light emitting layer 13 can be formed by coating.
- the layer between the light emitting layer 13 and the anode 11 (the hole transport layer 12, the hole transport layer 12 and the hole injection layer 16) can be formed by vapor deposition or coating.
- the manufacturing process of the light emitting element can be simplified.
- the display device 1 shown in FIG. 1 is an example, and the arrangement of the red light emitting region 2a, the green light emitting region 2b, and the blue light emitting region 2c may be other than that in FIG. Further, it is also possible to make a display device having only one light emitting area or two light emitting areas among the red light emitting area 2a, the green light emitting area 2b, and the blue light emitting area 2c.
- quantum dots can be configured as point light sources or surface light sources, and selection of a substrate realizes curved light sources and flexible products. be able to.
- the display device using the quantum dot of the present embodiment is superior in terms of color rendering property, light emitting property, product life, and product price.
- the display device using the quantum dots of the present embodiment can be used as a PL light emitter in parallel with the EL light emitter.
- a hybrid light emitting element in which an EL light emitter and a PL light emitter are stacked can be realized.
- the PL luminous body can be superimposed on the surface of the EL luminous body, and the emission wavelength can be changed in the quantum dots contained in the PL luminous body by light emission from the excited quantum dots in the EL luminous body .
- the EL luminous body has a laminated structure of the above-described light emitting element, and as the PL luminous body, for example, a sheet-like wavelength conversion member in which a plurality of quantum dots are dispersed in a resin. Such a hybrid configuration can be realized by using quantum dots.
- an inkjet printing method it is preferable to use an inkjet printing method, a spin coater method, or a dispenser method as a coating method in order to achieve both the increase in the area of the display device using quantum dots and the reduction in manufacturing cost.
- the ⁇ in the “dropping” column shown in Table 1 is a sample dropped properly, and the cross is a sample in which a dropping failure occurred.
- each sample of “polyvinylcarbazole” is applied to the hole injection layer (hole injection layer).
- the sample of “zinc oxide nanoparticles” is applied to the electron transport layer and the electron injection layer.
- IPA and propylene glycol are not preferable and need to be changed.
- a hydrophilic solvent is preferable.
- an alcohol type can be applied as a hydrophilic solvent.
- EPDM ethylene propylene diene rubber
- the shell thickness is 0.1 nm or more and 4.0 nm or less, preferably 0.5 nm or more and 3.5 nm or less, more preferably 1.0 nm or more and 3.0 nm or less, and further preferably 1. It was 3 nm or more and 2.5 nm or less.
- the quantum dot thickness is not limited, the quantum dot thickness is 5 nm to 50 nm, preferably 10 nm to 45 nm, more preferably 15 nm to 40 nm, still more preferably 20 nm to 40 nm, still more preferably , 25 nm or more and 40 nm or less.
- Example 1 is a core only and Example 2 of a square mark is a core coated with a shell.
- the ionization potential can be measured.
- it can be measured with a device called AC-2, AC-3 of Riken Keiki Co., Ltd.
- Example 1 As shown in FIG. 13, it was found that the rising energy was different between Example 1 and Example 2. In Example 1, it was about 6.1 eV, and in Example 2, it was about 7.1 eV.
- FIG. 14 is a PYS measurement result of Example 3 and Example 4 of Cd type
- the fourth embodiment is thicker than the third embodiment. It was found that the rising energy was different between Example 3 and Example 4. In Example 3, it was about 7.1 eV, and in Example 4, it was about 8.1 eV.
- FIG. 15 is an energy level diagram of each layer in the light emitting device used in the experiment.
- FIG. 16 is a graph showing the relationship between the current value and the EQE of EL light emitters and PL light emitters using red quantum dots.
- FIG. 17 is a graph showing the relationship between the current value of the EL light emitter and the PL light emitter using red quantum dots and EQE, and the relationship between the current value of the EL light emitter using blue quantum dots and EQE. Is a graph showing The shell thickness is different between the fifth embodiment and the sixth embodiment shown in FIG. The shell thickness of the fifth embodiment is thicker than that of the sixth embodiment. Further, in FIG. 17, the shell thickness is the thickest in the seventh example, and the shell thickness becomes thinner in the order of the eighth example and the ninth example.
- FIG. 18 is a graph showing the energy band gap Eg of each layer, the energy E CB at the lower end of the conduction band, the energy E VB at the upper end of the valence band, and the energy level diagram of each layer in the light emitting device used in the experiment.
- ZnO X (Li) was used for L1 or L2 shown in FIG.
- Li may or may not be doped.
- X is about 0.8 to 1.2.
- ETL electron injection layer
- a ZnO X used for the electron transporting layer was found to be able to widen the band gap With ZnO X (Li).
- ZnO x (Li) has an effect of reducing the particle size.
- PVK shown in FIG. 18 is a hole injection layer, and B1, B2, G (H), G (I3) and R (F) are light emitting layers (EL layers), and ZnO X , L 2 and L 4 are electrons. It is an injection layer.
- B1 or B2 is used for the light emitting layer
- ZnO X can be used for the electron injecting layer, but when G (H), G (I3), R (F) is used for the light emitting layer, electron injecting It has been found preferable to use L2 or L4 for the layer.
- L2 and L4 are ZnO x (Li).
- EL layer when a light emitting layer (EL layer) having a shallow conduction band is used, it is effective to apply ZnO x (Li) to the electron injecting layer or the electron transporting layer.
- ZnO X (Li) is obtained by stirring a zinc acetate-ethanol solution at a predetermined temperature and for a predetermined time and then mixing and stirring a LiOH ⁇ 4H 2 O-ethanol solution to obtain centrifugal separation, washing, etc. Can be generated.
- FIGS. 19 to 21 show UV (band gap), PL, and PYS data of ZnO x (Li) and ZnO x (K) applied to the electron injection layer (ETL).
- ZnO x (K) is produced using KOH as a catalyst, and K and Li are not doped. It was found that in the case of ZnO x (Li) and ZnO x (K), deviations occurred in the UV and PL data.
- PYS it was found that ZnO X (Li) and ZnO X (K) were hardly deviated, and the rising energy was hardly changed.
- ZnO X whose band gap is controlled with various particle sizes as electron injection / transport layers of EL elements using quantum dots, or doped ZnO whose defects or band gaps are controlled by adding a doped species.
- a thin insulating layer may be interposed between the EL layer and the electron injection layer, or ZnO X and the molecule may be integrated, for balance adjustment. It is preferable to add the function of performing hole blocking by
- the integral layer refers to, for example, the integration of ZnO x and T2T (2,4,6-tris (biphenyl-3-yl) -1,3,5-triazine).
- X is about 0.8 to 1.2.
- ZnO x has a function that can be used as a hole injection / transport layer by performing not only the electron injection / transport layer but also ozone treatment or the like. In other words, it has been found that by carrying out ozone treatment on ZnO x , the hole transport capability is improved.
- a light emitting element including a quantum dot can be applied to a display device, and excellent light emission characteristics can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
量子ドットの構成及び材質を限定するものではないが、例えば、本実施形態における量子ドットは、数nm~数十nm程度の粒径を有するナノ粒子である。
脂肪族1級アミン系、オレイルアミン:C18H35NH2、ステアリル(オクタデシル)アミン:C18H37NH2、ドデシル(ラウリル)アミン:C12H25NH2、デシルアミン:C10H21NH2、オクチルアミン:C8H17NH2
脂肪酸、オレイン酸:C17H33COOH、ステアリン酸:C17H35COOH、パルミチン酸:C15H31COOH、ミリスチン酸:C13H27COOH、ラウリル(ドデカン)酸:C11H23COOH、デカン酸:C9H19COOH、オクタン酸:C7H15COOH
チオール系、オクタデカンチオール:C18H37SH、ヘキサンデカンチオール:C16H33SH、テトラデカンチオール:C14H29SH、ドデカンチオール:C12H25SH、デカンチオール:C10H21SH、オクタンチオール:C8H17SH
ホスフィン系、トリオクチルホスフィン:(C8H17)3P、トリフェニルホスフィン:(C6H5)3P、トリブチルホスフィン:(C4H9)3P
ホスフィンオキシド系、トリオクチルホスフィンオキシド:(C8H17)3P=O、トリフェニルホスフィンオキシド:(C6H5)3P=O、トリブチルホスフィンオキシド:(C4H9)3P=O
発光層13は、上記に挙げた量子ドットのみで形成されてもよいし、量子ドットと、別の蛍光物質とを含んでいてもよい。また、発光層13は、溶剤に溶かした量子ドットを、例えば、インクジェット法により塗布して形成することができ、発光層13中に多少、溶剤成分が残されていてもよい。
正孔輸送層12は、正孔を輸送する機能を有する無機物質、或いは、有機物質からなる。正孔輸送層12は、無機物質から成ることが好ましく、例えば、NiOや、WO3等の無機酸化物で形成されることが好ましい。正孔輸送層12は、特に、NiOのナノ粒子で形成されることが好ましい。また、正孔輸送層12には、例えば、NiOにAl2O3等を混合させることも出来る。また、金属酸化物に、Li、Mg、Al等がドープされてもよい。また、正孔輸送層12は、無機酸化物以外の無機物質であってもよい。
電子輸送層14は、電子を輸送する機能を有する無機物質、或いは、有機物質からなる。電子輸送層14は、無機物質から成ることが好ましく、例えば、ZnOX、Ti-O、Sn-O、V-Ox、Mo-O等の無機酸化物で形成されることが好ましい。これらのうち2種以上選択することもできる。電子輸送層14は、特に、ZnOXのナノ粒子で形成されることが好ましい。また、金属酸化物に、Li、Mg、Al、Mn等がドープされてもよい。また、電子輸送層14は、無機酸化物以外の無機物質(例えば、CsPbBr3等)であってもよい。Xは、限定されるものではないが、0.8~1.2程度である。
本実施形態では、陽極11の材質を限定するものではないが、例えば、陽極11は、Au、Ag等の金属、CuISnO2、ZnOX等の導電性透明材、インジウム-スズの複合酸化物(ITO)で形成されることが好ましい。このうち、陽極11は、ITOで形成されることが好ましい。陽極11は、基板10上に、これらの電極物質を蒸着やスパッタリング等の方法により薄膜で形成することができる。
本実施形態では、陰極15の材質を限定するものではないが、例えば、陰極15は、インジウム-スズの複合酸化物(ITO)、金属、合金、電気伝導性化合物及びこれらの混合物を電極物質として用いることができる。例えば、陰極15は、ITOで形成される。なお、陰極15は、例えば、基板10上に形成された非透過性の金属層を介して形成される。これにより、発光素子3を、トップエミッションとすることができる。
本実施形態では、基板10の材質を限定するものでないが、基板10としては、例えば、ガラス、プラスチック等で形成することができる。基板10は、具体的には、例えば、ガラス、石英、透明樹脂フィルムで形成される。
実験では、表2に示す各サンプルの量子ドット(緑色QD)を製造し、図4Aの発光素子を備えたボトムボトムエミッション型の表示装置にて、シェル厚と外部量子効率(External Quantum Efficiency:EQE)との関係について調べた。
図15は、実験で使用した発光素子における各層のエネルギー準位図である。図16は、赤色量子ドットを使用したEL発光体及びPL発光体の電流値とEQEとの関係を示すグラフである。また、図17は、赤色量子ドットを使用したEL発光体及びPL発光体の電流値とEQEとの関係を示すグラフ、更に、青色量子ドットを使用したEL発光体の電流値とEQEとの関係を示すグラフである。図16に示す実施例5と実施例6では、シェル厚が異なる。実施例5のほうが実施例6よりシェル厚が厚い。また、図17では、実施例7が、最もシェル厚が厚く、実施例8及び実施例9の順にシェル厚が薄くなっている。
図18は、実験で使用した発光素子における各層のエネルギーバンドギャップEg、伝導帯下端のエネルギーECB、価電子帯上端のエネルギーEVBを表すグラフ、及び各層のエネルギー準位図である。図18に示すL1或いはL2に、ZnOX(Li)を用いた。ここで、Liはドープされていても、されていなくてもよい。限定するものではないが、Xは、0.8~1.2程度である。図18に示すように、電子注入層(ETL)や、電子輸送層に用いるZnOXに、ZnOX(Li)を用いるとバンドギャップを広げることができるとわかった。ZnOX(Li)により粒子径を小さくする効果があるものと推測される。図18に示すPVKは、ホール注入層であり、B1、B2、G(H)、G(I3)、R(F)は、発光層(EL層)であり、ZnOX、L2、L4が電子注入層である。発光層に、B1やB2を用いる場合、電子注入層に、ZnOXを用いることができるが、発光層に、G(H)、G(I3)、R(F)を用いる場合は、電子注入層に、L2或いはL4を用いることが好ましいとわかった。L2及びL4は、ZnOX(Li)である。
Claims (7)
- 表示領域を備えた表示装置であって、
前記表示領域は、第1電極、前記第1電極と発光層との間の層、前記発光層、前記発光層と第2電極との間の層、及び、前記第2電極が基板上にこの順で積層された発光素子を有し、
前記発光層は、量子ドットを含む無機層で形成されており、前記発光素子は、トップエミッション型であることを特徴とする表示装置。 - 前記発光素子に接続される薄膜トランジスタが、n-ch TFTであることを特徴とする請求項1に記載の表示装置。
- 前記薄膜トランジスタの酸化物半導体が、In-Ga-Zn-O系半導体で形成されることを特徴とする請求項2に記載の表示装置。
- 前記表示装置は、可撓性を有することを特徴とする請求項1から請求項3のいずれかに記載の表示装置。
- 前記量子ドットは、コアの表面がシェルで覆われていない構造であることを特徴とする請求項1から請求項4のいずれかに記載の表示装置。
- 前記第1電極と発光層との間の層、前記発光層、及び前記発光層と第2電極との間の層の少なくともいずれか1層は、インクジェット法で形成されることを特徴とする請求項1から請求項5のいずれかに記載の表示装置。
- 前記第1電極と発光層との間の層、及び、前記発光層は、塗布して形成されており、前記発光層と第2電極との間の層は、蒸着或いは塗布して形成されていることを特徴とする請求項1から請求項6のいずれかに記載の表示装置。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410334502.1A CN118450742A (zh) | 2017-11-08 | 2018-11-07 | 显示装置 |
JP2019552823A JPWO2019093346A1 (ja) | 2017-11-08 | 2018-11-07 | 表示装置 |
EP18876173.8A EP3709774A4 (en) | 2017-11-08 | 2018-11-07 | DISPLAY DEVICE |
KR1020207012489A KR20200085275A (ko) | 2017-11-08 | 2018-11-07 | 표시 장치 |
CN201880070018.5A CN111279794B (zh) | 2017-11-08 | 2018-11-07 | 显示装置 |
US16/759,105 US11672135B2 (en) | 2017-11-08 | 2018-11-07 | Display device |
AU2018363926A AU2018363926A1 (en) | 2017-11-08 | 2018-11-07 | Display device |
US18/132,160 US12069878B2 (en) | 2017-11-08 | 2023-04-07 | Display device |
JP2023194460A JP2024014954A (ja) | 2017-11-08 | 2023-11-15 | 表示装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-215801 | 2017-11-08 | ||
JP2017215801 | 2017-11-08 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/759,105 A-371-Of-International US11672135B2 (en) | 2017-11-08 | 2018-11-07 | Display device |
US18/132,160 Continuation US12069878B2 (en) | 2017-11-08 | 2023-04-07 | Display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019093346A1 true WO2019093346A1 (ja) | 2019-05-16 |
Family
ID=66438429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/041260 WO2019093346A1 (ja) | 2017-11-08 | 2018-11-07 | 表示装置 |
Country Status (8)
Country | Link |
---|---|
US (2) | US11672135B2 (ja) |
EP (1) | EP3709774A4 (ja) |
JP (2) | JPWO2019093346A1 (ja) |
KR (1) | KR20200085275A (ja) |
CN (2) | CN118450742A (ja) |
AU (1) | AU2018363926A1 (ja) |
TW (1) | TW201923433A (ja) |
WO (1) | WO2019093346A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112970130A (zh) * | 2018-10-30 | 2021-06-15 | 夏普株式会社 | 发光元件、发光元件的制造方法 |
WO2021117076A1 (ja) * | 2019-12-09 | 2021-06-17 | シャープ株式会社 | 発光装置、および、発光装置の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11672135B2 (en) * | 2017-11-08 | 2023-06-06 | Ns Materials Inc. | Display device |
US20230292541A1 (en) * | 2020-06-22 | 2023-09-14 | Sharp Kabushiki Kaisha | Display device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110291071A1 (en) * | 2010-05-25 | 2011-12-01 | Young-Mi Kim | Quantum dot light emitting diode device and display device therewith |
JP2017028301A (ja) * | 2006-03-03 | 2017-02-02 | 株式会社半導体エネルギー研究所 | 剥離方法 |
JP2017045650A (ja) | 2015-08-27 | 2017-03-02 | 株式会社カネカ | 白色発光有機el素子及びこれを含む白色発光有機elパネル |
JP2017168420A (ja) * | 2015-09-01 | 2017-09-21 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、電子機器及び照明装置 |
JP2017215801A (ja) | 2016-05-31 | 2017-12-07 | キヤノン株式会社 | 情報処理装置、情報処理方法およびプログラム |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4931858B2 (ja) * | 2008-05-13 | 2012-05-16 | パナソニック株式会社 | 有機エレクトロルミネッセント素子の製造方法 |
JP2011076770A (ja) | 2009-09-29 | 2011-04-14 | Hoya Corp | 電界発光素子およびその製造方法 |
WO2011081037A1 (ja) * | 2009-12-28 | 2011-07-07 | 独立行政法人産業技術総合研究所 | ゾル-ゲル法によって作製した半導体ナノ粒子分散蛍光性微粒子 |
KR101973834B1 (ko) * | 2012-04-20 | 2019-04-29 | 코니카 미놀타 가부시키가이샤 | 유기 일렉트로루미네센스 소자 |
WO2014057971A1 (ja) * | 2012-10-10 | 2014-04-17 | コニカミノルタ株式会社 | エレクトロルミネッセンス素子 |
JP5994551B2 (ja) * | 2012-10-10 | 2016-09-21 | コニカミノルタ株式会社 | エレクトロルミネッセンスデバイス |
KR102093628B1 (ko) * | 2013-10-10 | 2020-03-26 | 엘지디스플레이 주식회사 | 유기전계 발광소자 및 이의 제조 방법 |
EP2918701A1 (en) * | 2014-03-14 | 2015-09-16 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Method of manufacturing a stacked organic light emitting diode, stacked OLED device, and apparatus for manufacturing thereof |
CN103904178B (zh) * | 2014-04-11 | 2016-08-17 | 浙江大学 | 量子点发光器件 |
KR102543330B1 (ko) * | 2015-02-25 | 2023-06-14 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 소자, 표시 소자, 표시 장치, 전자 기기, 및 조명 장치 |
FR3034097A1 (fr) * | 2015-03-23 | 2016-09-30 | Commissariat Energie Atomique | Procede pour augmenter le rendement quantique interne de photoluminescence de nanocristaux, en particulier de nanocristaux d'agins2-zns |
CN106549109A (zh) * | 2016-10-25 | 2017-03-29 | Tcl集团股份有限公司 | 一种基于p‑i‑n结构的QLED器件及其制备方法 |
CN107293647A (zh) * | 2017-06-13 | 2017-10-24 | 苏州大学 | 一种量子点发光二极管及其制备方法 |
US11672135B2 (en) * | 2017-11-08 | 2023-06-06 | Ns Materials Inc. | Display device |
-
2018
- 2018-11-07 US US16/759,105 patent/US11672135B2/en active Active
- 2018-11-07 WO PCT/JP2018/041260 patent/WO2019093346A1/ja unknown
- 2018-11-07 KR KR1020207012489A patent/KR20200085275A/ko not_active Application Discontinuation
- 2018-11-07 CN CN202410334502.1A patent/CN118450742A/zh active Pending
- 2018-11-07 AU AU2018363926A patent/AU2018363926A1/en not_active Abandoned
- 2018-11-07 JP JP2019552823A patent/JPWO2019093346A1/ja active Pending
- 2018-11-07 CN CN201880070018.5A patent/CN111279794B/zh active Active
- 2018-11-07 EP EP18876173.8A patent/EP3709774A4/en active Pending
- 2018-11-08 TW TW107139693A patent/TW201923433A/zh unknown
-
2023
- 2023-04-07 US US18/132,160 patent/US12069878B2/en active Active
- 2023-11-15 JP JP2023194460A patent/JP2024014954A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017028301A (ja) * | 2006-03-03 | 2017-02-02 | 株式会社半導体エネルギー研究所 | 剥離方法 |
US20110291071A1 (en) * | 2010-05-25 | 2011-12-01 | Young-Mi Kim | Quantum dot light emitting diode device and display device therewith |
JP2017045650A (ja) | 2015-08-27 | 2017-03-02 | 株式会社カネカ | 白色発光有機el素子及びこれを含む白色発光有機elパネル |
JP2017168420A (ja) * | 2015-09-01 | 2017-09-21 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、電子機器及び照明装置 |
JP2017215801A (ja) | 2016-05-31 | 2017-12-07 | キヤノン株式会社 | 情報処理装置、情報処理方法およびプログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3709774A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112970130A (zh) * | 2018-10-30 | 2021-06-15 | 夏普株式会社 | 发光元件、发光元件的制造方法 |
WO2021117076A1 (ja) * | 2019-12-09 | 2021-06-17 | シャープ株式会社 | 発光装置、および、発光装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3709774A1 (en) | 2020-09-16 |
KR20200085275A (ko) | 2020-07-14 |
CN118450742A (zh) | 2024-08-06 |
US20210399249A1 (en) | 2021-12-23 |
EP3709774A4 (en) | 2021-08-18 |
JPWO2019093346A1 (ja) | 2020-12-17 |
CN111279794B (zh) | 2024-04-19 |
TW201923433A (zh) | 2019-06-16 |
AU2018363926A1 (en) | 2020-05-14 |
CN111279794A (zh) | 2020-06-12 |
JP2024014954A (ja) | 2024-02-01 |
US11672135B2 (en) | 2023-06-06 |
US12069878B2 (en) | 2024-08-20 |
US20230247849A1 (en) | 2023-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019093345A1 (ja) | 表示装置 | |
WO2019093346A1 (ja) | 表示装置 | |
KR102156760B1 (ko) | 양자 발광 표시 장치 및 이의 제조 방법 | |
WO2021100104A1 (ja) | 発光素子、発光デバイス | |
KR102081101B1 (ko) | 양자 발광 소자 | |
US20230006166A1 (en) | Light-emitting device | |
JP2008300270A (ja) | 発光素子 | |
TWI838349B (zh) | 發光元件、以及照明裝置 | |
US11716863B2 (en) | Hybrid display architecture | |
US20230380206A1 (en) | Photoelectric conversion element, display device, and method of manufacturing photoelectric conversion element | |
CN114430934B (zh) | 发光装置 | |
US20240365576A1 (en) | Display device | |
Ali et al. | Advances in Colloidal Quantum Dot-Based Displays for QLEDs and Patterning Applications | |
WO2024003983A1 (ja) | 発光素子、及び表示装置 | |
US20230292540A1 (en) | Light-emitting element and light-emitting device | |
WO2023062839A1 (ja) | 発光素子 | |
JP2023081108A (ja) | 量子ドット発光素子及び表示装置 | |
Neshataeva et al. | Light-Emitting Devices Based on Direct Band Gap Semiconductor Nanoparticles | |
TW202431895A (zh) | 發光元件、以及照明裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18876173 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019552823 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018363926 Country of ref document: AU Date of ref document: 20181107 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018876173 Country of ref document: EP Effective date: 20200608 |