WO2023062839A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
WO2023062839A1
WO2023062839A1 PCT/JP2021/038310 JP2021038310W WO2023062839A1 WO 2023062839 A1 WO2023062839 A1 WO 2023062839A1 JP 2021038310 W JP2021038310 W JP 2021038310W WO 2023062839 A1 WO2023062839 A1 WO 2023062839A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
nanoparticles
particle size
hole injection
Prior art date
Application number
PCT/JP2021/038310
Other languages
English (en)
French (fr)
Inventor
吉裕 上田
峻之 中
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2021/038310 priority Critical patent/WO2023062839A1/ja
Publication of WO2023062839A1 publication Critical patent/WO2023062839A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Definitions

  • the present invention relates to light emitting elements.
  • QLEDs Quantum dot light emitting diodes
  • Cited document 1 discloses a QLED in which the hole injection layer (HIL) comprises nickel oxide nanoparticles and organic ligands.
  • HIL hole injection layer
  • an electron transport layer includes an inorganic layer containing two or more inorganic nanoparticles, and an organic layer formed directly above the inorganic layer and having a work function higher than that of the inorganic layer.
  • a QLED comprising:
  • Citation 3 discloses a QLED including a tunnel layer, an ambipolar layer, a dielectric layer, an insulating layer, or a combination thereof between the electrode and the light emitting layer.
  • Cited Document 4 discloses a thin film transistor (TFT) having a self-assembly monolayer (SAM) between an insulating layer and an organic semiconductor layer.
  • TFT thin film transistor
  • SAM self-assembly monolayer
  • Cited Document 5 discloses a QLED in which the light-emitting layer has particles of semiconductor nanocrystals and a filler material that fills the gaps between the particles of the semiconductor nanocrystals.
  • the organic ligands are degraded or detached from the quantum dots due to electrochemical reactions.
  • the organic hole-transporting material is degraded by electrochemical reactions.
  • QLEDs are typically operated in an excess of electrons, electrons overflow from the emissive layer into the hole transport layer (HTL) and HIL, reducing the EQE, etc. There was a problem due to poor balance.
  • a light-emitting element includes a first electrode, a second electrode facing the first electrode, and a light-emitting layer provided between the first electrode and the second electrode and containing a phosphor. and at least one functional layer provided between the first electrode and the light-emitting layer and containing at least one solvent with high polarity and low vapor pressure.
  • the functional layer may further include nanoparticles of a metal compound containing at least one selected from oxygen, hydroxyl groups, carbon, and nitrogen.
  • the metal element contained in the metal compound is selected from Ni, Mg, Al, Zn, Fe, Sn, Cu, Cr, Ta, Mo, W, and Re. At least one type may be used.
  • the light emitting device may have a configuration in which the functional layer is a hole injection layer.
  • the light-emitting element according to one aspect of the present disclosure may be configured such that the metal element is Ni.
  • the light-emitting element according to one aspect of the present disclosure may be configured such that the first electrode is an anode.
  • the light-emitting element according to one aspect of the present disclosure may be configured such that the metal compound is nickel oxide.
  • the light-emitting element according to one aspect of the present disclosure may have a configuration in which the thickness of the at least one functional layer is 1 nm or more and 50 nm or less.
  • the light-emitting device may have a configuration in which the dipole moment indicating the polarity of the solvent contained in the functional layer is larger than 1.94D.
  • the light-emitting device may have a configuration in which the dipole moment indicating the polarity of the solvent contained in the functional layer is 2D or more.
  • the light-emitting element according to one aspect of the present disclosure may be configured such that the vapor pressure of the solvent contained in the functional layer is less than 3200 Pa.
  • the light-emitting element according to one aspect of the present disclosure may be configured such that the vapor pressure of the solvent contained in the functional layer is less than 1000 Pa.
  • the solvent contained in the functional layer includes propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, mercaptopropionic acid, cysteamine, and mercaptoacetic acid.
  • the configuration may be at least one selected from.
  • a display device may have a configuration including the light-emitting element described above.
  • the ink according to one aspect of the present disclosure includes metal compound nanoparticles containing at least one selected from oxygen, hydroxyl, carbon, and nitrogen, and at least one solvent with high polarity and low vapor pressure. It is a configuration including at least.
  • a light-emitting element and a display device may have a configuration manufactured using the ink described above.
  • a method for manufacturing a light-emitting device is the above-described method for manufacturing a light-emitting device, comprising nanoparticles of a metal compound containing at least one selected from oxygen, hydroxyl groups, carbon, and nitrogen; The method for forming the functional layer by dropping or printing an ink containing at least one solvent with high polarity and low vapor pressure.
  • a light-emitting element includes an anode, a cathode facing the anode, a light-emitting layer provided between the anode and the cathode and containing quantum dots, and a light-emitting layer between the anode and the light-emitting layer. and at least one functional layer provided therebetween, wherein the functional layer contains nanoparticles, and the average particle size of the nanoparticles contained in the functional layer is the quantum dots contained in the light-emitting layer. It is a configuration smaller than the average particle size of
  • the average particle size of the nanoparticles contained in the functional layer is 40% or more and 100% or less with respect to the average particle size of the quantum dots contained in the light-emitting layer. There may be a range of configurations.
  • the average particle diameter of the nanoparticles contained in the functional layer is 60% or more and 90% or less with respect to the average particle diameter of the quantum dots contained in the light-emitting layer. It can be a configuration within a range.
  • the light-emitting device may be configured such that the mode of particle size of the nanoparticles contained in the functional layer is smaller than the average or median particle size of the nanoparticles. .
  • the light-emitting device is configured such that the particle size of the nanoparticles contained in the functional layer is in the range of ⁇ 4 nm or more and +50 nm or less with respect to the average particle size of the nanoparticles, good.
  • the maximum particle size of the nanoparticles contained in the functional layer is Pmax
  • the minimum particle size of the nanoparticles is Pmin
  • the standard deviation of the particle size of the nanoparticles is P ⁇ .
  • the particle size distribution of the nanoparticles may be configured to satisfy 3*P ⁇ (Pmax ⁇ Pmin). It should be noted that the present disclosure uses “*” as an operation symbol indicating integration.
  • Pa is the average particle size of the nanoparticles contained in the functional layer
  • P ⁇ is the standard deviation of the particle size of the nanoparticles
  • the average of the quantum dots contained in the light-emitting layer The configuration may satisfy Q ⁇ /Qa>P ⁇ /Pa, where Qa is the particle size and Q ⁇ is the standard deviation of the quantum dots.
  • the light-emitting device may be configured such that the nanoparticles included in the functional layer include a metal oxide.
  • the nanoparticles included in the functional layer are selected from Ni, Mg, Al, Zn, Fe, Sn, Cu, Cr, Ta, Mo, W, and Re. may include at least one metal element.
  • the metal element contained in the functional layer contains Ni
  • the Ni contained in the functional layer constitutes a compound
  • the compound comprises oxygen, hydroxyl group, carbon, containing at least one selected from nitrogen, wherein the compound is selected from nickel (I) oxide, nickel (II) oxide, nickel (III) oxide, nickel hydroxide, nickel nitrate, and nickel carbonate; It may be a configuration including at least one kind of
  • the light-emitting element according to one aspect of the present disclosure may have a configuration in which Ni included in the functional layer includes Ni having at least two valences.
  • the light-emitting device may be configured such that the nanoparticles included in the functional layer are substantially spherical or substantially spheroidal.
  • the functional layer includes a hole-transporting layer
  • the hole-transporting layer includes a compound having a C—H bond in a part of the molecular structure
  • the hole-transporting The thickness of the layer may be configured to be greater than or equal to 1 nm and less than or equal to 50 nm.
  • the light-emitting device may have a configuration in which the functional layer includes a hole injection layer, and the hole injection layer has a thickness of 1 nm or more and 50 nm or less.
  • the functional layer includes a hole transport layer and a hole injection layer, and the hole transport layer is formed so as to follow the surface of the hole injection layer.
  • the average particle size of the nanoparticles in the functional layer and the average particle size of the quantum dots included in the light-emitting layer are It may be a configuration determined by the nanoparticles and the quantum dots observed in the range of 200 ⁇ m or more and 1000 ⁇ m or less in width at any position in the cross-sectional photograph.
  • the average particle diameter of the nanoparticles contained in the functional layer is observed in a range of 200 ⁇ m or more and 1000 ⁇ m or less in width at any position in a cross-sectional photograph of the functional layer. , mean the average particle size of the nanoparticles.
  • a light-emitting element includes an anode, a cathode facing the anode, a light-emitting layer provided between the anode and the cathode and containing quantum dots, and a light-emitting layer between the anode and the light-emitting layer.
  • a hole-injection layer and a hole-transport layer provided in this order from the anode side, and a monomolecular film provided between the hole-injection layer and the hole-transport layer. .
  • the hole injection layer may contain nanoparticles made of an inorganic material.
  • the hole injection layer includes a compound containing a metal element, and the compound includes Ni, Mg, Al, Zn, Fe, Sn, Cu, Cr, Ta, Mo , W, and Re, and the compound may include at least one metal oxide.
  • the metal element contained in the hole injection layer contains Ni
  • the Ni contained in the hole injection layer forms a compound
  • the compound contains oxygen, containing at least one selected from hydroxyl group, carbon, and nitrogen
  • the compound is nickel (I) oxide, nickel (II) oxide, nickel (III) oxide, nickel hydroxide, nickel nitrate, and nickel carbonate
  • the configuration may include at least one selected from among.
  • the light-emitting element according to one aspect of the present disclosure may have a configuration in which Ni contained in the hole injection layer includes Ni having at least two valences.
  • the light-emitting device may be configured such that the nanoparticles contained in the hole injection layer are substantially spherical or substantially spheroidal.
  • the molecules included in the monomolecular film have hole-transport properties. It can be a configuration.
  • the light-emitting device may have a configuration in which a molecule included in the monomolecular film has a functional group at one end thereof.
  • the light-emitting device may have a configuration in which the monomolecular film contains at least one selected from MeO-2PACz, BA-CF 3 , 2PACz, and Me-4PACz.
  • the light-emitting element according to one aspect of the present disclosure may have a configuration in which the monomolecular film is provided only on the side of the hole injection layer facing the light-emitting layer.
  • the light-emitting device may have a configuration in which a plurality of identical molecules are arranged adjacent to each other in the monomolecular film.
  • the hole transport layer contains a compound having a C—H bond in a part of the molecular structure, and the hole transport layer has a thickness of 1 nm or more and 50 nm or less. , It can be a configuration.
  • the light-emitting element according to one aspect of the present disclosure may have a configuration in which the hole injection layer has a thickness of 1 nm or more and 50 nm or less.
  • One aspect of the present disclosure can realize a QLED with both good emission characteristics and reliability.
  • FIG. 1 is a plan view showing an example of a schematic configuration of a display device according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view showing an example of a schematic configuration of a display area shown in FIG. 1
  • FIG. 1 is a schematic diagram showing an example of a schematic configuration of a hole injection layer according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a schematic diagram showing another example of a schematic configuration of a hole injection layer according to an embodiment of the present disclosure
  • 1 is a schematic flow chart showing an example of a method for manufacturing a display device according to an embodiment of the present disclosure
  • FIG. FIG. 3 is a schematic flow diagram showing an example of a process for forming a hole injection layer according to an embodiment of the present disclosure
  • FIG. 2 is a schematic process diagram showing an example of a formation process of a hole injection layer according to an embodiment of the present disclosure
  • FIG. 5 is a graph showing the relationship between the driving voltage and the current density in the light-emitting element according to the reference example according to the embodiment of the present disclosure
  • FIG. 5 is a graph showing a relationship between relative luminance and elapsed time in a light-emitting element according to a reference example according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing a schematic configuration of a hole injection layer, a hole transport layer, and a light emitting layer in a light emitting element layer according to another embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing the schematic configuration of a hole injection layer, a hole transport layer, and a light emitting layer in a light emitting element layer according to a comparative example;
  • FIG. 3 shows a distribution of particle sizes of nanoparticles in an example of an embodiment of the present disclosure
  • FIG. 10 is a diagram showing a semilogarithmic graph showing the relationship between the driving voltage and the current density in the light-emitting element layer of the reference example and the analysis results thereof.
  • FIG. 4 is a graph showing the relationship between EQE and current density J (mA/cm 2 ) in the light emitting element layer of Reference Example.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a hole injection layer, a hole transport layer, a light emitting layer, and a monomolecular film in a light emitting element layer according to one embodiment of the present disclosure
  • FIG. 1 is a schematic diagram showing molecular self-assembly.
  • FIG. 4 is a graph showing the relationship between drive voltage and current density in light-emitting elements according to examples and reference examples according to an embodiment of the present disclosure. 4] is a cross-sectional view showing a modified example of the schematic configuration of the display area shown in FIG. 1.
  • FIG. 4 is a cross-sectional view showing another modified example of the schematic configuration of the display area shown in FIG. 1;
  • FIG. 4 is a cross-sectional view showing another modified example of the schematic configuration of the display area shown in FIG. 1;
  • FIG. 4 is a cross-sectional view showing another modified example of the schematic configuration of the display area shown in FIG. 1; FIG.
  • FIG. 1 is a plan view showing an example of a schematic configuration of a display device 2 according to an embodiment of the present disclosure.
  • the display device 2 includes a display area DA that performs display by extracting light emitted from each light emitting element described later, and a frame area NA that surrounds the display area DA. . Terminals T to which signals for driving the light emitting elements of the display device 2 are input are formed in the frame area NA.
  • FIG. 2 is a cross-sectional view showing an example of the schematic configuration of the display area DA shown in FIG.
  • FIG. 3 corresponds to the AB cross-sectional view of FIG.
  • the display device 2 includes a plurality of electroluminescent elements.
  • FIG. 2 shows a red light emitting element 6R, a green light emitting element 6G, and a blue light emitting element 6B among the plurality of electroluminescent elements included in the display device 2.
  • light emitting element refers to any one of the red light emitting element 6R, the green light emitting element 6G, and the blue light emitting element 6B.
  • the display device 2 includes a substrate 4 , a light emitting element layer 6 on the substrate 4 , and a sealing layer 8 covering the light emitting element layer 6 .
  • Substrate 4 includes a support substrate.
  • the substrate 4 includes a thin film transistor layer (TFT layer) in which circuit elements such as thin film transistors (TFT) are provided on a support substrate.
  • TFT layer thin film transistor layer
  • Substrate 4 may further include additional components such as barrier layers.
  • the barrier layer reduces penetration of moisture, oxygen, and the like into the light emitting element layer 6 from outside the support substrate.
  • the support substrate may be a non-flexible substrate made of quartz or glass, or a flexible substrate made of a resin film or resin sheet. Quartz substrates and glass substrates are suitable because of their high light transmittance and high gas shielding properties.
  • materials for the resin film include methacrylic resins such as polyethylene methacrylate (PMMA), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene. Polyester resins represented by phthalate (PBN) and polycarbonate resins are preferred.
  • the light emitting element layer 6 is a layer provided with light emitting elements.
  • the light emitting element layer 6 includes an anode 10 (first electrode) on the substrate 4, a cathode 16 (second electrode) facing the anode 10, a bank 12, and an active layer provided between the anode 10 and the cathode 16. 14.
  • the active layer 14 includes a hole injection layer 20, a hole transport layer 22, a light emitting layer 24, and an electron transport layer 26 in order from the anode 10 side.
  • the active layer 14 is also called an electroluminescence layer (EL layer).
  • the direction from the light-emitting layer 24 of the light-emitting element layer 6 to the anode 10 is described as “downward” or “bottom”
  • the direction from the light-emitting layer 24 to the cathode 16 is described as “upward” or “upper”.
  • the anode 10 is individually formed for each light emitting element.
  • the anode 10 is provided in an island shape for each light-emitting element, that is, for each sub-pixel, and is also called a "pixel electrode".
  • Anodes 10 include anode 10R for red light emitting element 6R, anode 10G for green light emitting element 6G, and anode 10B for blue light emitting element 6B.
  • the hole injection layer 20, the hole transport layer 22, the electron transport layer 26, and the cathode 16 are each formed in common for a plurality of light emitting elements. Cathode 16 is also referred to as the "common electrode.”
  • the bank 12 may be formed individually for each light emitting element, but is preferably formed integrally with a plurality of light emitting elements in order to increase the definition of the display device 2 .
  • Bank 12 is formed such that at least a portion of bank 12 is adjacent to or spaced apart from anode 10 or is disposed above anode 10 in top view.
  • adjacent refers to adjacent and touching, and “adjacent” refers to not only touching but also distantly adjacent.
  • the bank 12 is a protruding portion formed on the periphery of the light emitting element and is not functionally limited.
  • the bank 12 may be partially formed around the periphery of the light emitting element.
  • Bank 12 may perform any function other than providing unevenness, either in cooperation with other components or alone.
  • the bank 12 is preferably formed between the light emitting elements adjacent to each other and formed as a partition that electrically insulates the light emitting elements.
  • the bank 12 is insulating, and the bank 12 partitions the light emitting element layer 6 into red light emitting elements 6R, green light emitting elements 6G, and blue light emitting elements 6B.
  • the bank 12 is preferably formed as an edge cover covering the edge of the anode 10. Specifically, at least part of bank 12 is preferably formed so as to be in contact with the end surface of anode 10 or arranged on the end surface of anode 10 when viewed from above.
  • the bank 12 has a bottom surface 12B on the substrate 4 side, a top surface 12U on the sealing layer 8 side, and side surfaces 12S between the bottom surface 12B and the top surface 12U.
  • the side surface 12S includes an inclined side surface and is also referred to as a "slope".
  • the side surfaces and slopes do not necessarily have to be flat, and may include a plurality of flat surfaces, and may include curved surfaces and irregularities.
  • the light emitting layer 24 includes a red light emitting layer 24R that emits red light, a green light emitting layer 24G that emits green light, and a blue light emitting layer 24B that emits blue light.
  • the light-emitting layer 24 may be formed individually for each light-emitting element, or may be formed commonly for a plurality of light-emitting elements of the same color.
  • the light emitting layer 24 is formed so as to cover at least the corresponding anode 10 exposed from the opening 12A of the bank 12 .
  • Contact between the hole-transporting layer 22 and the electron-transporting layer 26 over or near the exposed region of the anode 10 causes reactive current to flow through the contact site, which does not contribute to the light emission of the light-emitting layer 24 .
  • the light emitting layer 24 preferably further covers a portion of the side surface 12S of the bank 12 (specifically, a portion near the outline of the corresponding opening 12A).
  • the hole transport layer 22 is in direct contact with the electron transport layer 26 on the upper surface 12U of the bank 12.
  • Direct contact between the hole-transporting layer 22 and the electron-transporting layer 26 normally results in reactive current flow, but in the present disclosure, this contact is away from the exposed area of the anode 10, thereby suppressing reactive current flow.
  • the electrical resistivity of the charge transport layer and/or the charge injection layer is significantly higher than that of ordinary metals. Due to the high electrical resistance of the path from the anode 10 through the hole transport layer 22 and/or the electron transport layer 26 to the contact site on the upper surface 12U of the bank 12, the reactive current through the path in the present disclosure is It can be negligibly small or can be substantially zero. In order to reduce the contact area on the upper surface 12U of the bank 12, it is preferable that the distance between adjacent light emitting layers 24 is small.
  • blue light is, for example, light having an emission center wavelength in the wavelength band of 400 nm or more and 500 nm or less.
  • green light means light having an emission center wavelength in a wavelength band of more than 500 nm and less than or equal to 600 nm, for example.
  • red light is, for example, light having an emission center wavelength in a wavelength band of more than 600 nm and less than or equal to 780 nm.
  • the light emitting element layer 6 is not limited to the above structure, and may further include an additional layer between the anode 10 and the cathode 16 .
  • the light-emitting device layer 6 may further comprise an electron-injecting layer between the electron-transporting layer 26 and the cathode 16 .
  • the light-emitting layer 24 may emit light of two colors or less, or may emit light of four colors or more.
  • Anode 10 and cathode 16 comprise a conductive material, at least one of which is a transparent electrode.
  • the electrode of the anode 10 and the cathode 16 that is closer to the display surface is the transparent electrode, and the electrode that is farther from the display surface is the reflective electrode.
  • both the anode 10 and the cathode 16 are transparent electrodes.
  • the transparent electrode can be formed from a light-transmitting conductive material.
  • the reflective electrode can be formed from a light-reflective conductive material, and can be formed from a laminate of a light-transmitting conductive material and a light-reflective conductive material.
  • Light-transmitting conductive materials include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), fluorine-doped tin oxide (FTO), and the like. Since these materials have high visible light transmittance, the luminous efficiency of the light-emitting element is improved. Aluminum (Al), silver (Ag), copper (Cu), gold (Au), or the like can be used as the light-reflective conductive material. Since these materials have high visible light reflectance, the luminous efficiency of the light-emitting element is improved. It is also possible to use a light-transmitting conductive material having light-transmitting properties by forming a thin light-reflecting conductive material.
  • the anode 10 supplies holes to the light-emitting layer 24 and the cathode 16 supplies electrons to the light-emitting layer 24 .
  • Anode 10 is provided to face cathode 16 .
  • the hole-injecting layer 20 contains nanoparticles having hole-transporting properties and a solvent with high polarity and low vapor pressure, and has the function of injecting holes from the anode 10 to the hole-transporting layer 22 or the light-emitting layer 24 .
  • the hole-transporting layer 22 contains a material having a hole-transporting property and functions to transport holes from the hole-injecting layer 20 or the anode 10 to the light-emitting layer 24 .
  • At least one of the hole injection layer 20 and the hole transport layer 22 preferably has a function of inhibiting transport of electrons from the light emitting layer 24 to the anode 10 .
  • the hole injection layer 20 will be detailed later.
  • the hole-transporting material used for the hole-transporting layer 22 can be appropriately selected from materials commonly used in the relevant field.
  • organic hole-transporting materials include polystyrenesulfonic acid-doped polyethylenedioxyphene (PEDOT:PSS), 4,4′,4′′-tris(9-carbazoyl)triphenylamine (TCTA), 4,4 '-bis[N-(1-naphthyl)-N-phenyl-amino]-biphenyl (NPB), zinc phthalocyanine (ZnPC), di[4-(N,N-ditolylamino)phenyl]cyclohexane (TAPC), 4, 4′-bis(carbazol-9-yl)biphenyl (CBP), 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HATCN) and the like materials, poly(N-vinylcarbazole) (PVK), poly(2,7-(9,9-di-n-octylfluorene)-(2-
  • tetracyano compounds such as TFB, carbazole derivatives such as PVK, triaryl compounds such as Poly-TPD Amine derivatives are preferred.
  • the hole-transporting material used for the hole-transporting layer 22 preferably contains a compound having C—H as part of the molecular structure.
  • the inorganic hole-transporting material examples include at least one of Zn, Cr, Ni, Ti, Nb, Al, Si, Mg, Ta, Hf, Zr, Y, La, Sr, and W; , nitrogen, and a material containing at least one selected from the group consisting of metal compounds containing at least one of carbon.
  • the inorganic hole transport material is an oxide containing at least one of Zn, Cr, Ni, Ti, Nb, Al, Si, Mg, Ta, Hf, Zr, Y, La, and Sr. is preferred, and at least one selected from NiO, MgO, MgNiO, LaNiO3, CuO and Cu2O is more preferred.
  • suitable hole-transporting materials also include metal-bonded CN, SCN, and SeCN groups, such as CuSCN. These materials may be nanoparticles.
  • Nanoparticle in the present disclosure means a particle having a maximum width of nano-order (less than 1000 nm).
  • the shape of the nanoparticles is not particularly limited as long as it satisfies the above maximum width, and is not limited to a spherical three-dimensional shape (circular cross-sectional shape).
  • a polygonal cross-sectional shape, a rod-like three-dimensional shape, a branch-like three-dimensional shape, a three-dimensional shape having an uneven surface, or a combination thereof may be used.
  • the hole transport layer 22 preferably contains an inorganic hole transport material.
  • the inorganic hole-transporting material is preferably a metal oxide, in which case it has higher chemical stability. In this way, inorganic materials are preferable and metal oxides are more preferable, which is common to all the elements, materials, or layers that constitute the active layer 14 .
  • the electron-transporting layer 26 contains an electron-transporting material and has the function of transporting electrons from the cathode 16 to the light-emitting layer 24 .
  • the electron transport layer 26 preferably has a function of inhibiting transport of holes from the light emitting layer 24 to the cathode 16 .
  • organic electron transport materials suitable for the electron transport layer 26 include nitrogen-containing heterocycles such as oxadiazole rings, triazole rings, triazine rings, quinoline rings, phenanthroline rings, pyrimidine rings, pyridine rings, imidazole rings, and carbazole rings. Compounds and complexes containing one or more are included.
  • 1,10-phenanthroline derivatives such as bathocuproine and bathophenanthroline
  • benzimidazole derivatives such as 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBI), tris(8- quinolinolato)aluminum complex (Alq3), bis(10-benzoquinolinolato)beryllium complex, 8-hydroxyquinoline Al complex, bis(2-methyl-8-quinolinato)-4-phenylphenolate aluminum complex, etc., 4 , 4′-biscarbazole biphenyl and the like.
  • TPBI 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene
  • Alq3 tris(8- quinolinolato)aluminum complex
  • Alq3 bis(10-benzoquinolinolato)beryllium complex
  • 8-hydroxyquinoline Al complex bis(2-methyl-8-quinolinato)-4-pheny
  • aromatic boron compounds aromatic silane compounds
  • aromatic phosphine compounds such as phenyldi(1-pyrenyl)phosphine, bathophenanthroline, bathocuproine, 2,2′,2′′-(1,3,5-benzenetriyl) )-tris(1-phenyl-1-H-benzimidazole) (TPBI)
  • TPBI 2,2′,2′′-(1,3,5-benzenetriyl)
  • nitrogen-containing heterocyclic compounds such as triazine derivatives, and the like.
  • Organic electron-transporting materials suitable for the electron-transporting layer 26 also include, for example, compounds having a paraphenylene vinylene skeleton. Specific examples include poly(2-2'-ethyl-hexoxy)-5-methoxy-1,4-phenylene vinylene (PPh-PPV) and other polyparaphenylene vinylene (PPV) compounds.
  • PPh-PPV poly(2-2'-ethyl-hexoxy)-5-methoxy-1,4-phenylene vinylene
  • PPV polyparaphenylene vinylene
  • Inorganic electron-transporting materials suitable for the electron-transporting layer 26 include oxides containing any one or more of Zn, Ni, Cr, Mg, Li, Ti, W, Mo, In, and Ga. . Among them, an oxide that tends to have a shift toward the oxygen-deficient side based on the stoichiometric composition is preferable. Examples include zinc oxide (ZnO), zinc magnesium oxide (MgZnO), titanium oxide (TiO2), strontium oxide (SrTiO3), and the like. These materials may be nanoparticles.
  • the electron transport layer 26 preferably contains an inorganic electron transport material.
  • the inorganic electron transport material is preferably a metal oxide, in which case the chemical stability is further enhanced. Zinc oxide-based materials are also most preferred.
  • the transparent electrode, the hole injection layer 20, the hole transport layer 22, and the electron transport layer 26 transmit light in the wavelength band used for display on the display device 2.
  • the light emitting layer 24 emits light when recombination of holes from the anode 10 and electrons from the cathode 16 occurs to excite the light emitter (phosphor) and return the excited light emitter to the ground state. It is a layer that emits light. By applying a voltage or current between the anode 10 and the cathode 16, recombination occurs in the light-emitting layer 24, resulting in light emission.
  • the light emitting layer 24 contains quantum dots as light emitters.
  • a quantum dot means a dot with a maximum width of 100 nm or less.
  • the shape of the quantum dot is not particularly limited as long as it satisfies the above maximum width, and is not limited to a spherical three-dimensional shape (circular cross-sectional shape).
  • a polygonal cross-sectional shape, a rod-like three-dimensional shape, a branch-like three-dimensional shape, a three-dimensional shape having an uneven surface, or a combination thereof may be used.
  • the quantum dots are, for example, semiconductor fine particles having a particle size of 100 nm or less, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, Crystals of II-VI group semiconductor compounds such as ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe and/or III-V group semiconductor compounds such as GaAs, GaP, InN, InAs, InP and InSb, and/or may have crystals of group IV semiconductor compounds such as Si, Ge, and the like.
  • the quantum dots may have a core/shell structure in which the above semiconductor crystal is used as a core and the core is overcoated with a shell material having a high bandgap. Furthermore, it may have a ligand that adsorbs (coordinates) to the surface of the quantum dot. Note that the shell does not necessarily have to completely cover the core, and may be formed on even a portion of the core.
  • the light-emitting layer 24 contains the quantum dots and a compound that can be a ligand, the ligand can be regarded as a ligand that adsorbs (coordinates) the compound to the surface of the quantum dots.
  • the bank 12 may contain an insulating material.
  • Bank 12 may include, for example, polyimide resins, acrylic resins, novolac resins, fluorene resins, and the like.
  • the bank 12 can be formed by patterning a photosensitive resin material using photolithography, for example.
  • the photosensitive resin may be either negative or positive.
  • the sealing layer 8 covers the light emitting element layer 6 and seals each light emitting element included in the display device 2 .
  • the sealing layer 8 reduces permeation of moisture, oxygen, and the like from the outside of the display device 2 on the side of the sealing layer 8 into the light emitting element layer 6 and the like.
  • the sealing layer may have a laminated structure of, for example, an inorganic sealing film made of an inorganic material and an organic sealing film made of an organic material.
  • the inorganic sealing film is formed by CVD, for example, and is composed of a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a laminated film thereof.
  • the organic sealing film is composed of, for example, a coatable resin material including polyimide or the like.
  • FIG. 3 is a schematic diagram showing an example of the schematic configuration of the hole injection layer 20 according to this embodiment.
  • FIG. 4 is a schematic diagram showing another example of the schematic configuration of the hole injection layer 20 according to this embodiment.
  • the hole injection layer 20 contains nanoparticles 40 and a solvent 42 .
  • the hole injection layer 20 desirably does not contain ligands that coordinate to the nanoparticles 40 .
  • the ligands may detach from the nanoparticles 40 and cause performance deterioration of the hole injection layer 20 .
  • the organic ligand may deteriorate the performance of the hole injection layer 20 by being deteriorated by an electrochemical reaction.
  • the thickness of the hole injection layer 20 is preferably 1 nm or more at the thinnest portion and 50 nm or less at the thickest portion within the region corresponding to the opening 12A of the bank 12. This is because when the thickness is less than 1 nm, the possibility of direct contact between the anode 10 and the hole transport layer 22 increases. In the case of direct contact, injection of holes from the hole injection layer 20 to the hole transport layer 22 is inhibited, parallel resistance between the anode 10 and the cathode 16 is lowered, and the like. Therefore, leakage current increases and EQE decreases. Also, if the thickness is greater than 50 nm, uncontrollable cohesion of giant nanoparticles 40 may occur in the hole injection layer 20 .
  • a huge aggregation is an aggregation whose maximum width is equal to or greater than the thickness of the light-emitting layer 24 . If there are huge aggregates in the hole injection layer 20, even if they exist only in a part of the hole injection layer 20, it is possible to form the light emitting layer 24 in a layered manner directly above the huge aggregates. This can lead to degradation of performance of layer 24 .
  • the proportion of the nanoparticles 40 in the hole injection layer 20 may be selected as appropriate.
  • the percentage of nanoparticles 40 may be small, and the nanoparticles 40 may be interspersed in the solvent 42 (here, also means the solvent 42 before the solidification step). That is, the level E of the top surface of the solvent 42 may be at or above the level F of the top of the nanoparticles 40, as shown in FIG.
  • the ratio of nanoparticles 40 may be large, and the gaps between the nanoparticles 40 may be filled with the solvent 42 . That is, the level E of the top surface of the solvent 42 may be below the level F of the top of the nanoparticles 40, as shown in FIG.
  • the ratio of the nanoparticles 40 after the solidification process is set to nano to the volume of the hole injection layer 20 so as not to inhibit hole transport to the light emitting layer 24 and to prevent the hole injection layer 20 from forming a huge agglomeration.
  • the weight ratio of the particles 40 is preferably 10 mg/ml or more and 50 mg/ml or less.
  • the nanoparticles 40 used in the hole injection layer 20 have hole transport properties.
  • the nanoparticles 40 according to the present embodiment are preferably composed of an inorganic material that can be dispersed in water or a highly polar solvent that is equal to or higher than water.
  • Such an inorganic material is, for example, a metal compound containing at least one selected from oxygen atoms, hydroxyl groups, carbon atoms, and nitrogen atoms. Since metal compounds have high electrochemical stability, having the nanoparticles 40 made of metal compounds is beneficial to the light emitting properties and reliability of light emitting devices and displays.
  • metal oxides tend to have a deep valence band at the top and have a band structure suitable for hole injection into the light-emitting layer. It is preferred to include
  • the conduction band minimum is hereinafter referred to as CBM
  • the valence band maximum is hereinafter referred to as VBM.
  • the absolute value of the difference between the vacuum level and the CBM can be called electron affinity
  • the absolute value of the difference between the vacuum level and VBM can be called ionization potential.
  • CBM and VBM “deep” means “corresponding electron affinity and ionization energy are large”, and “shallow” for CBM and VBM means “corresponding electron affinity and ionization energy are small”. and “depth” means "corresponding magnitude of electron affinity or ionization energy”.
  • metal compounds as materials for the nanoparticles 40 include nickel (Ni), magnesium (Mg), aluminum (Al), zinc (Zn), iron (Fe), tin (Sn), copper (Cu), and chromium (Cr). , tantalum (Ta), molybdenum (Mo), tungsten (W), and rhenium (Re).
  • a metal compound containing Ni is particularly preferable as the material of the nanoparticles 40. Specifically, for example, Ni(OH) 2 , Ni(NO 3 ) 2 , NiCO 3 , Ni 2 O 3 , NiO or Ni 2 O, Alternatively, a mixture containing two or more selected from these is preferred. This is because the VBM depth of nickel compounds is suitable for hole injection into quantum dots that emit light in the visible light region.
  • Nickel oxide in this disclosure means a compound containing nickel and oxygen. That is, the nickel oxide includes, for example, not only Ni 2 O 3 simple substance, NiO simple substance and Ni 2 O simple substance having uniform valences, but also any two or more kinds of Ni 2 O 3 , NiO, Ni 2 O having different valences. a mixture containing at least one of Ni 2 O 3 , NiO and Ni 2 O plus a nickel compound other than an oxide, or at least one of Ni 2 O 3 , NiO and Ni 2 O Also includes mixtures containing metal compounds other than nickel compounds. "Nickel oxide” in this disclosure includes mixtures produced and/or used industrially as nickel oxide.
  • Ni 2 O is nickel (I) oxide
  • NiO is nickel (II) oxide
  • Ni 2 O 3 is nickel (III) oxide
  • Ni(OH) 2 is nickel hydroxide
  • Ni(NO 3 ) 2 is nickel nitrate
  • NiCO 3 is nickel carbonate.
  • the shape of the nanoparticles 40 is preferably a substantially spherical or substantially spheroidal shape because a three-dimensionally isotropic shape is desirable for uniform dispersion in the solvent and uniform coating properties.
  • the solvent 42 is preferably a solvent other than water.
  • the solvent 42 should be more polar than water and preferably have a lower vapor pressure than water.
  • the solvent 42 is preferably electrochemically stable.
  • the boiling point of the solvent 42 at normal temperature and normal pressure is preferably higher than the upper limit of the operating environmental temperature of the light-emitting element or the display device using the light-emitting element.
  • the upper limit of the operating environment temperature is 80 degrees Celsius
  • the boiling point of the solvent 42 is preferably sufficiently higher than 80 degrees Celsius, and more preferably about 200 degrees Celsius or higher.
  • the metal element used for the hole injection layer 20 has a catalytic action, such as Ni. For this reason, it is preferable that the decomposition temperature of the solvent 42 in an environment where metal oxides and/or active oxygen exist is higher than the upper limit of the operating environment temperature. Active oxygen includes OH radicals and the like.
  • Such solvents include, for example, carbonate-based solvents, ethoxy-based solvents, thiol-carboxyl-based solvents, thiol-amine-based solvents, carboxyl-amine-based solvents, ketone-based solvents, nitrile-based solvents, lactone-based solvents, and mixtures thereof.
  • the highly polar, low vapor pressure solvent was selected from the group consisting of propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, mercaptopropionic acid, cysteamine, and mercaptoacetic acid.
  • One or more solvents may be included.
  • ethylene carbonate which has high fluidity near room temperature, is suitable for the solvent 42 .
  • the boiling point of ethylene carbonate at normal pressure is about 248 degrees Celsius
  • the decomposition temperature of ethylene carbonate in the presence of metal oxides or active oxygen is about 200 degrees Celsius
  • ethylene carbonate is very stable. highly sexual.
  • the dipole moment that indicates the polarity of water is approximately 1.94 D
  • the vapor pressure of water is approximately 3200 Pa
  • the dipole moment indicating the polarity of ethylene carbonate is about 4.5D
  • the vapor pressure of ethylene carbonate is about 2.66Pa.
  • the polar dipole moment of the solvent 42 at normal temperature and pressure is at least greater than about 1.94D, preferably greater than or equal to about 2D, greater than or equal to 3D, greater than or equal to 4.5D, or greater than or equal to 6D.
  • the vapor pressure of the solvent 42 at normal temperature and normal pressure is at least less than about 3200 Pa, preferably less than about 1000 Pa.
  • the solution containing the solvent 42 can easily adjust the properties related to printing, such as viscosity and density, and can easily maintain the properties over a long period of time.
  • the solvent 42 is suitable for making the nanoparticles 40 into an ink because the viscosity, concentration, etc. can be easily adjusted.
  • "inking" refers to dispersing the nanoparticles in a solvent.
  • FIG. 5 is a schematic flow diagram showing an example of a method for manufacturing the display device 2 according to this embodiment.
  • the substrate 4 is formed (step S2).
  • the substrate 4 may be formed, for example, by forming a film substrate and TFTs on the film substrate on a rigid glass substrate, and then peeling the glass substrate from the film substrate.
  • the above-described peeling of the glass substrate may be performed after forming the light-emitting element layer 6 and the sealing layer 8, which will be described later.
  • substrate 4 may be formed, for example, by forming TFTs directly on a rigid glass substrate.
  • an anode 10 is formed on the substrate 4 (step S4).
  • the anode 10 may be formed, for example, by forming a thin film of a metal material by sputtering, vacuum deposition, or the like, and then patterning the thin film by dry etching or wet etching using a photoresist.
  • the anode 10R, the anode 10G, and the anode 10B which are formed in the shape of islands for each sub-pixel on the substrate 4, are obtained.
  • step S6 the bank 12 is formed by photolithography using a positive photosensitive resin. Specifically, for example, the upper surfaces of the substrate 4 and the anode 10 are coated with a positive photosensitive resin that will be the material of the bank 12 .
  • a photomask having a light-transmitting portion at a position corresponding to each sub-pixel is placed above the applied photosensitive resin, and ultraviolet light or the like is irradiated through the photomask. The photosensitive resin irradiated with ultraviolet light is then washed with a suitable developer. As a result, banks 12 are formed between positions corresponding to the sub-pixels on the substrate 4 .
  • step S6 by forming the bank 12 by applying a positive photosensitive resin, exposing, and developing, the bank 12 having the forward tapered side surface 20S can be formed.
  • a hole injection layer 20 is formed (step S8).
  • the formation of the hole injection layer 20 and the hole transport layer 22 will be detailed later.
  • the hole transport layer 22 is formed (step S10).
  • an organic hole transport material is dissolved in a solvent to obtain a second solution, the second solution is applied on the hole injection layer 20, and the solvent is volatilized by heating or the like. Remove to solidify the second solution.
  • the wettability of the material solution of the hole transport layer 22 with respect to the hole injection layer 20 should be high, that is, the contact angle of the material solution is less than 90 degrees.
  • the hole transport layer 22 may be formed by other methods such as vacuum deposition or sputtering.
  • Emissive layer 24 may be formed by any method.
  • the red light emitting layer 24R may be formed and patterned by an inkjet method.
  • the red light emitting layer 24R may be formed by a coating method using a spin coater or the like, and patterned by a photolithographic technique.
  • the red light emitting layer 24R may be formed and patterned by vapor deposition using a fine metal mask (FMM).
  • FMM fine metal mask
  • an electron transport layer 26 is formed (step S14).
  • an electron transport material is dissolved in a solvent to obtain a material solution, and the material solution is applied onto the light emitting layer 24 and the hole transport layer 22 and solidified.
  • the electron transport layer 26 may be formed by other methods such as, for example, vacuum deposition or sputtering.
  • the cathode 16 is formed (step S16).
  • the cathode 16 may be formed, for example, by forming a thin film of a metal material commonly for each sub-pixel by a vacuum deposition method, a sputtering method, or the like. Thus, the formation of the light emitting element layer 6 is completed.
  • a sealing layer 8 is formed (step S18).
  • the formation of the organic encapsulating film may be performed by applying an organic encapsulating material.
  • the sealing layer 8 includes an inorganic sealing film, the inorganic sealing film may be formed by a CVD method or the like. Thus, a sealing layer 8 that seals the light emitting element layer 6 is formed.
  • Functional films include, for example, a polarizing plate film, a sensor film having a touch sensor panel function, a protective film, an antireflection film, and the like.
  • FIG. 6 is a schematic flow diagram showing an example of the formation process of the hole injection layer 20 according to this embodiment.
  • FIG. 7 is a schematic process diagram showing an example of the process of forming the hole injection layer 20 according to this embodiment.
  • step S8 the nanoparticles 40 are first converted into ink using a solvent 42 to obtain ink 44 (step S20).
  • the ink 44 is typically highly viscous at normal temperature and pressure and substantially solid.
  • a solvent having a vapor pressure higher than that of the solvent 42 or a solvent having a boiling point lower than that of the solvent 42 may be added to the ink 44 as appropriate.
  • the ink 44 is slightly heated and fluidized (step S22). For example, if the nanoparticles 40 consist of nickel oxide and the solvent 42 contains ethylene carbonate, the ink 44 acquires a droppable or printable flow around 40 degrees Celsius.
  • ink 44 is then dropped or printed onto the anode 10 (and/or bank 12) (step S24).
  • FIG. 7 shows an ink cross section after the ink 44 has been dropped or printed.
  • the ink 44 is then further heated together with the substrate 4 to increase the fluidity of the ink 44 (step S26).
  • the ink 44 is heated to around 130 degrees Celsius.
  • the increased fluidity causes ink 44 to spread over anode 10 (and/or bank 12) and become substantially flat.
  • another solvent different from the solvent 42 is also added to the ink 44 , and the other solvent has a higher vapor pressure than the solvent 42 , or the other solvent has a boiling point higher than that of the solvent 42 . If is low, the other solvent is likely to volatilize from the ink 44 and be reduced or eliminated. On the other hand, the solvent 42 is relatively difficult to volatilize from the ink 44 and does not decrease or remains.
  • a spin coater is used to spin the ink 44 together with the substrate 4 (step S28).
  • the centrifugal force of the spinning causes the ink 44 to spread further over the anode 10 (and/or over the bank 12).
  • step S30 the substrate 4 and the ink 44 are naturally or forcedly cooled. Cooling causes the ink 44 to become less fluid and substantially solidify.
  • the solidified ink 44 is the hole injection layer 20 .
  • step S28 is omitted when the hole injection layer 20 is patterned using a printing technique such as an inkjet method or a screen printing method. Moreover, when the hole injection layer 20 is formed in islands for each light emitting element by patterning, the film thicknesses of the hole injection layer 20 and the hole transport layer 22 may be uniform.
  • the hole injection layer 20 is formed by applying the ink 44 . Therefore, the hole injection layer 20 according to the present embodiment can be easily formed over a large area with a substantially uniform thickness, as compared with the conventional technique of vapor-depositing a hole-transporting metal compound. Furthermore, the hole injection layer 20 according to this embodiment requires less cost and fewer steps for formation.
  • the solvent easily volatilizes, so the viscosity and density of the ink tend to change over time. Therefore, mass production and long-term storage of ink have been difficult. Furthermore, the solvent remaining in the hole injection layer diffuses into other layers such as the light-emitting layer and alters the other layers.
  • the solvent 42 since the solvent 42 has a low vapor pressure, the ink 44 is suitable for mass production and long-term storage, and the solvent 42 in the hole injection layer 20 is difficult to diffuse.
  • the organic ligand degrades due to an electrochemical reaction or detaches from the quantum dot. , the hole injection efficiency of the hole injection layer decreases over time. Also, the organic ligands themselves are not suitable for hole injection and hole transport.
  • the hole injection layer 20 does not contain a ligand, no problem caused by the ligand occurs.
  • the nanoparticles of the metal compound do not disperse in the low-polarity solvent, so it is difficult or impossible to make the metal compound into an ink and apply it using the low-polarity solvent.
  • the configuration and method according to the present embodiment have the advantage of high light emission characteristics and reliability of the light emitting element and the display device 2, and also have the advantage of high productivity.
  • the solvent 42 is highly polar and functions as an electrolyte, so the solvent 42 enhances the hole transportability of the hole injection layer 20 .
  • the solvent 42 enhances the hole transportability of the hole injection layer 20 .
  • the electrons overflowing the light-emitting layer 24 flow through the solvent 42 , electrons are less likely to accumulate at the interface of the hole injection layer 20 and in the hole injection layer 20 , and deterioration due to the electrochemical reaction of the solvent 42 is less likely to occur. Therefore, there is little or no change in the characteristics of the light-emitting element due to the electrochemical reaction.
  • Arbitrary functional layers for example, any one or more layers such as the hole transport layer 22, the electron transport layer 26, and the electron injection layer are composed of metal compound nanoparticles having charge transport properties and a highly polar and low vapor pressure solvent. and are included in the scope of the present disclosure. Also, for example, configurations in which various modifications are made to the arrangement or patterning of any functional layer and/or light-emitting layer 24 are also included within the scope of the present disclosure.
  • FIG. 18 is a cross-sectional view showing a modified example of the schematic configuration of the display area DA shown in FIG.
  • one or more of the hole injection layer 20, the hole transport layer 22, and the electron transport layer 26 may be individually formed for each light emitting element. Therefore, a configuration in which the functional layer such as the hole injection layer 20 covers only a portion of the side surface 12S of the bank 12 near the boundary line BL is also included in the scope of the present disclosure. That is, in FIG. 18, the hole injection layer 20 is individually separated for each light emitting element on the upper surface 12U of the bank 12. As shown in FIG. However, not limited to this, functional layers such as the hole injection layer 20 may be individually separated for each light emitting element on the side surface 12S of the bank 12 .
  • FIG. 19 is a cross-sectional view showing another modified example of the schematic configuration of the display area DA shown in FIG.
  • the red light emitting layer 24R, the green light emitting layer 24G, and the blue light emitting layer 24B may be formed so as to overlap each other. Therefore, configurations in which the electron-transporting layer 26 does not directly contact the hole-transporting layer 22 are also within the scope of the present disclosure.
  • the light-emitting layer on the upper surface 12U of the bank 12 is formed so as to overlap other light-emitting layers.
  • the present invention is not limited to this, and a certain light emitting layer on the side surface 12S of the bank 12 may be overlapped with another light emitting layer.
  • a light-emitting layer may be formed only on the upper surface 12U of the bank 12 and may be formed to overlap other light-emitting layers.
  • the description describing the hole injection layer can be interpreted within a consistent range by replacing the wording of the hole injection layer with the wording of the hole transport layer.
  • the wording of the hole injection layer is replaced with the electron transport layer or the electron injection layer, and the positive/negative of the charge is reversed so that there is no contradiction. It can be interpreted as a range.
  • Reference example 1 A light-emitting device according to Reference Example 1 was formed.
  • the nanoparticles 40 consisted of PEDOT
  • the solvent 42 contained water
  • the hole transport layer 22 consisted of TFB.
  • the light-emitting device according to Reference Example 2 had the same configuration as that of the light-emitting device according to Reference Example 1, except that the nanoparticles 40 were made of CuSCN.
  • Reference example 3 A light-emitting device according to Reference Example 3 was formed.
  • the light-emitting device according to Reference Example 3 had the same configuration as the light-emitting device according to Reference Example 1, except that the nanoparticles 40 were made of nickel oxide.
  • Reference example 4 A light-emitting device according to Reference Example 4 was formed.
  • the light-emitting device according to Reference Example 4 had the same configuration as the light-emitting device according to Reference Example 1, except that the nanoparticles 40 were made of PEDOT:PSS.
  • Prediction Example 1 is an example in which a light-emitting device is formed in which the nanoparticles 40 are made of nickel oxide, the solvent 42 contains ethylene carbonate, and the hole transport layer 22 is made of TFB.
  • FIG. 8 is a graph showing the relationship between the driving voltage E (V) and the current density J (mA/cm 2 ) in the light-emitting elements according to Reference Examples 1-4.
  • FIG. 9 is a graph showing the relationship between the relative luminance (%) and the elapsed time Time (h) in the light emitting elements according to Reference Examples 2 to 4 and Prediction Example 1.
  • FIG. 9 For the relative luminance, the predicted maximum emission luminance of the light emitting element according to Prediction Example 1 is assumed to be 100%.
  • the driving voltage E (V) of the light emitting elements according to Reference Examples 2 to 4 was significantly lower than the driving voltage E (V) of the light emitting element according to Reference Example 1.
  • the light emission of the light emitting device depends on the effective current passing through the light emitting layer 24 . Therefore, the light emission characteristics of the light emitting devices according to Reference Examples 2 to 4 were significantly improved from the light emission characteristics of the light emitting device according to Reference Example 1. That is, the voltage can be lowered by forming the nanoparticles 40 of the hole injection layer 20 from an inorganic material.
  • the driving voltage E (V) of the light emitting element according to Reference Example 3 was slightly lower than the driving voltage E (V) of the light emitting element according to Reference Example 2. Therefore, the light emission characteristics of the light emitting device according to Reference Example 3 were slightly improved from the light emission characteristics of the light emitting device according to Reference Example 2. That is, by forming the nanoparticles 40 of the hole injection layer 20 from nickel oxide, the voltage can be further lowered.
  • the relative luminance (%) of the light-emitting element according to Reference Example 4 sharply decreases with the elapsed time Time (h), and falls below 20% after about 10 hours. Therefore, the life of the light-emitting element according to Reference Example 4, that is, the long-term reliability is low. Since both the hole injection layer 20 and the hole transport layer 22 according to Reference Example 4 are made of organic materials, the decrease in relative luminance according to Reference Example 4 is due to the electrons overflowing the light emitting layer 24. / Or it is presumed to be due to deterioration of the hole transport layer 22 .
  • the life of the light emitting element according to Reference Examples 2 and 3 is longer than the life of the light emitting element according to Reference Example 4, and the life of the light emitting element according to Reference Example 3 is longer than that of the light emitting element according to Reference Example 2.
  • the reliability can be improved by forming the nanoparticles 40 of the hole injection layer 20 from an inorganic material, and the reliability can be further improved by forming the nanoparticles from nickel oxide. Note that the relative luminance (%) of the light emitting elements according to Reference Examples 2 and 3 decreases with the elapsed time Time (h).
  • the hole injection layer 20 according to Reference Examples 2 and 3 is composed of nanoparticles 40 made of an inorganic substance such as CuSCN or nickel oxide and a solvent 42 containing water. Therefore, it is presumed that the main cause of the decrease in relative luminance in Reference Examples 2 and 3 is the deterioration of the light-emitting layer 24 and/or the hole transport layer 22 due to the water diffused from the hole injection layer 20 .
  • the light-emitting device according to the present embodiment in which the nanoparticles 40 are made of an inorganic substance, is excellent in both light emission characteristics and reliability, and it is particularly preferable that the nanoparticles 40 are made of nickel oxide. shown.
  • Arbitrary functional layers for example, any one or more layers such as the hole transport layer 22, the electron transport layer 26, and the electron injection layer are composed of metal compound nanoparticles having charge transport properties and a highly polar and low vapor pressure solvent. and are included in the scope of the present disclosure. Also, for example, configurations in which various modifications are made to the arrangement or patterning of any functional layer and/or light-emitting layer 24 are also included within the scope of the present disclosure.
  • the description describing the hole injection layer can be interpreted within a consistent range by replacing the wording of the hole injection layer with the wording of the hole transport layer.
  • the wording of the hole injection layer is replaced with the electron transport layer or the electron injection layer, and the positive/negative of the charge is reversed so that there is no contradiction. It can be interpreted as a range.
  • the light-emitting element layer 6 according to this embodiment has a characteristic configuration of the hole injection layer 20 and the hole-transport layer 22, and otherwise has the same configuration as the light-emitting element layer 6 according to the first embodiment.
  • FIG. 10 is a schematic diagram showing the schematic configuration of the hole injection layer 20, the hole transport layer 22, and the light emitting layer 24 in the light emitting element layer 6 according to this embodiment.
  • FIG. 11 is a schematic diagram showing the schematic configuration of the hole injection layer 20, the hole transport layer 22, and the light emitting layer 24 in the light emitting element layer 6 according to the comparative example.
  • the hole-injection layer 20 contains nanoparticles 40 made of a hole-transporting material, and the hole-transporting layer 22 forms the surface of the hole-injecting layer 20.
  • the light-emitting layer 24 includes quantum dots 50 as emitters.
  • the hole transport layer 22 may be formed so as to follow the surface of the hole injection layer 20 .
  • the average particle size of nanoparticles 40 is smaller than the average particle size of quantum dots 50 .
  • the average particle size of the nanoparticles 40 is in the range of at least 40% or more and less than 100%, preferably 60% or more and 90% or less, with respect to the average particle size of the quantum dots 50. .
  • the nanoparticles 40 used in the hole injection layer 20 according to the present embodiment need only have hole-transport properties, and may or may not be dispersed in a highly polar solvent.
  • the bottom surface of the hole injection layer 20 is in contact with the anode 10, and the top surface of the hole transport layer 22 is in contact with the light emitting layer 24.
  • the thickness of the hole injection layer 20 is 1 nm or more and 50 nm or less, and the thickness of the hole transport layer 22 is 1 nm or more and 50 nm or less.
  • the charge transport mechanism in the light-emitting element layer 6 consists of a transport mechanism by the light-emitting diode, a transport mechanism by the shunt resistance, and a transport mechanism by the space charge limited current.
  • diode current the current transported by the light-emitting diode
  • Diode current is the effective current directly related to the recombination of holes and electrons in the quantum dots 50 and light emission.
  • Diode current can be described by the Shockley equation as a current flowing through a semiconductor junction.
  • the current transported by the shunt resistor (hereinafter referred to as "shunt current”) is the current that flows through the insulation resistor in parallel with the light emitting diode. Therefore, the shunt current is a reactive current that does not contribute to light emission and is a linear component proportional to voltage. The shunt current is usually very small and does not substantially affect the light emission properties, so it can be ignored.
  • the space-charge limited current is a current flowing through a medium other than the quantum dot 50 and the shunt resistor (not shown), which has a small charge mobility but a non-negligible magnitude.
  • the space-charge limited current specifically flows through an organic material (not shown) such as, for example, a ligand (not shown) contained in the light-emitting layer 24 and/or a hole-transporting material contained in the hole-transporting layer 22 .
  • Space-charge limited current is therefore reactive current that does not contribute to light emission.
  • the space-charge limited current depends on the distance and voltage between the hole-injecting layer 20 and the light-emitting layer 24, and the charge mobility and dielectric constant of the medium, as shown by the following equations. In particular, the space charge limited current is proportional to the -3 power of the distance.
  • I denotes the magnitude of the space-charge limited current
  • d and V denote the distance and voltage between the hole-injecting layer 20 and the light-emitting layer 24, and ⁇ and ⁇ are the charge mobility and dielectric constant of the medium.
  • the distance between the hole injection layer 20 and the light emitting layer 24 is from the surface of the nanoparticles 40 included in the hole injection layer 20 to the surface of the quantum dots 50 included in the light emitting layer 24.
  • the distance between the hole injection layer 20 and the light emitting layer 24 is the surface of the quantum dot 50 included in the particle layer closest to the hole injection layer 20 when the light emitting layer 24 is composed of a plurality of particle layers. means the average vertical distance of .
  • the configuration of the comparative example shown in FIG. 11 is the same as the configuration according to this embodiment shown in FIG. 11
  • the average particle size of the nanoparticles 40 is close to the average particle size of the quantum dots 50, and the particle size distribution of the nanoparticles 40 is small. Therefore, on the upper surface of the hole injection layer 20 having a thickness suitable for hole injection, periodic unevenness occurs with a period close to the average particle size of the quantum dots 50, and the depth of the unevenness is the same as that of the quantum dots 50. about half the particle size. Since the hole transport layer 22 follows the surface of the hole injection layer 20, the surface of the hole transport layer 22 also has similar unevenness. Since the quantum dots 50 are easily aligned according to the unevenness of the hole transport layer 22, the average distance from the surface of the nanoparticles 40 to the surface of the quantum dots 50 is small.
  • the average particle size of the nanoparticles 40 is smaller than the average particle size of the quantum dots 50. For this reason, unevenness that occurs on the upper surfaces of the hole injection layer 20 and the hole transport layer 22 according to the present disclosure makes it difficult to align the quantum dots 50 . As a result, compared to the comparative example, the average distance from the surface of the nanoparticles 40 according to the present disclosure to the surface of the quantum dots 50 is large.
  • the space charge limited current is proportional to the -3 power of the distance between the hole injection layer 20 and the light emitting layer 24. Therefore, according to the configuration of the present disclosure, the space charge limited current is small, so the reactive current is small and the EQE is high.
  • the number of quantum dots 50 filling the gaps between the nanoparticles 40 increases, resulting in positive
  • the average distance between the hole injection layer 20 and the light emitting layer 24 is small.
  • the variation in the particle size of the nanoparticles 40 is small, the average distance between the hole injection layer 20 and the light emitting layer 24 is large. That is, the narrower the distribution range of the particle diameters of the nanoparticles 40 and the smaller the number of nanoparticles 40 having a particle diameter larger than the average particle diameter, the greater the average distance between the hole injection layer 20 and the light emitting layer 24 .
  • the particle size of the nanoparticles 40 is at least in the range of ⁇ 4 nm to +50 nm, preferably ⁇ 4 nm to +30 nm, with respect to the average particle size of the nanoparticles 40 .
  • Pa is the average particle size of the nanoparticles 40
  • P ⁇ is the standard deviation of the particle size of the nanoparticles 40
  • Qa is the average particle size of the quantum dots 50
  • Q ⁇ is the standard deviation of the quantum dots 50
  • Q ⁇ /Qa>P ⁇ / Pa is preferably satisfied.
  • the mode of the particle size distribution of the nanoparticles 40 is on the smaller diameter side than the median and/or average.
  • the average particle size and particle size distribution of nanoparticles 40 in the present disclosure may be nominal or designed values or measured values.
  • Measurement is performed by, for example, light scattering of a solution containing nanoparticles 40, X-ray scattering of a layer containing nanoparticles 40, or observation of a cross section of a layer containing nanoparticles 40 with a scanning or transmission electron microscope.
  • a dynamic light scattering method is used in which a laser beam is incident on a solution and scattered light is detected. This measurement is suitable before the hole injection layer 20 is formed.
  • X-ray small-angle scattering may be used in which X-rays are incident on the surface of a film-formed sample at a small angle and the scattering thereof is detected. This technique is suitable after the hole injection layer 20 is formed. This technique is suitable after the hole injection layer 20 is formed.
  • the measurement can be calculated, for example, based on a cross-sectional image of the hole injection layer 20. Specifically, the hole injection layer 20 is cut, and the cross section is photographed using a scanning electron microscope (SEM). Then, the particle size of the nanoparticles 40 observed in the range of 200 ⁇ m or more and 1000 ⁇ m or less in width is measured at an arbitrary position in the cross-sectional photograph.
  • SEM scanning electron microscope
  • the average particle size is the average value of the measured particle sizes, and the range of the particle size distribution is the range from the minimum value to the maximum value of the measured particle sizes.
  • the number of nanoparticles 40 whose particle diameters are measured may be smaller than the number required to sufficiently reduce the statistical significance probability. This is because in the general nanoparticle production method, including the nanoparticles of the present application, the raw materials are reacted under chemically and thermodynamically balanced conditions, so a very small particle size distribution can be naturally achieved in the production stage. This is because For example, if about 500 measurements are required to get a 5% significance probability, only about 100 may be measured.
  • the diameter of a circle having an area equal to the cross-sectional area of the nanoparticles is taken as the particle size of the nanoparticles 40 .
  • the average particle size of the quantum dots 50 may be a nominal value, a design value, or a measured value.
  • Example 1 A light-emitting device according to Example 1 of the present embodiment was formed.
  • the nanoparticles 40 were made of nickel oxide, the average particle size of the nanoparticles 40 was about 9 nm, the minimum particle size of the nanoparticles 40 was about 6 nm, and the maximum particle size was about 55 nm. That is, the particle size of the nanoparticles 40 was in the range of ⁇ 4 nm or more and +50 nm or less with respect to the average particle size.
  • the quantum dots 50 had an average particle size of about 10 nm, a minimum particle size of about 9 nm, and a maximum particle size of about 12 nm.
  • FIG. 12 is a graph showing the particle size distribution of the nanoparticles 40 in Example 1.
  • the frequency distribution of particle size is indicated by a bar graph with reference to the left scale
  • the cumulative distribution of particle size is indicated by a line graph with reference to the right scale
  • the distribution range of particle size is indicated by hatching at the top.
  • a light-emitting device according to Reference Example 5 was formed.
  • the average particle size of the nanoparticles 40 was about 16 nm
  • the minimum particle size of the nanoparticles 40 was about 12 nm
  • the maximum particle size was about 68 nm. It had the same configuration as the light emitting device according to Example 1.
  • the particle size of the nanoparticles 40 is close to the particle size of the quantum dots 50 .
  • FIG. 13 is a graph showing a semi-logarithmic graph showing the relationship between the driving voltage E (V) and the current density J (mA/cm 2 ) in the light-emitting element layer 6 of Reference Example 5 and the analysis results thereof.
  • FIG. 14 is a graph showing the relationship between the EQE and the current density J (mA/cm 2 ) in the light emitting element layer 6 of Reference Example 5.
  • FIG. 14 is a graph showing the relationship between the EQE and the current density J (mA/cm 2 ) in the light emitting element layer 6 of Reference Example 5.
  • the inventors of the present disclosure analyzed current-voltage characteristics of the light-emitting element layers 6 of Example 1 and Reference Example 5. As mentioned above, the shunt component is negligibly small. For this reason, in the detailed analysis, a current analysis was performed by combining the diode equation and the space charge limited current equation as a parallel circuit.
  • the space-charge limited current of the light-emitting element layer 6 of Reference Example 5 was as large as the diode current. This is because the thickness of each layer in the light emitting element layer 6 is as thin as about nm order, so d is small.
  • the space charge limited current of the light emitting element layer 6 of Reference Example 5 affects the EQE of the light emitting element layer 6 of Reference Example 5.
  • the current-voltage characteristics of the light-emitting element layer 6 according to Example 1 had a smaller space charge limiting current than the current-voltage characteristics of Reference Example 5.
  • the EQE of the light emitting element layer 6 according to Example 1 was better than that of Reference Example 5. Therefore, it can be concluded that increasing the distance d between the hole injection layer 20 and the light emitting layer 24 reduces the space charge limited current and improves the EQE.
  • the particle size of the nanoparticles 40 in Example 1 had a mode value between 6 nm and 7 nm and a median value between 10 nm and 20 nm. Further, as described above, the average particle size of the nanoparticles 40 in Example 1 was about 9 nm, the minimum value was about 6 nm, and the maximum value was about 55 nm. Thus, while the width between the average and maximum values is greater than the width between the average and minimum values, there are more nanoparticles 40 that are smaller than the average than nanoparticles 40 that are larger than the average. .
  • the particle size distribution of the nanoparticles 40 of Example 1 is , 3*P ⁇ (Pmax ⁇ Pmin). It should be noted that the present disclosure uses “*” as an operation symbol indicating integration.
  • the standard deviation of the nanoparticles 40 in Example 1 is smaller than the standard deviation in the normal distribution.
  • the particle size distribution of the nanoparticles 40 in Example 1 has a long tail on the large diameter side, so the distribution is wider on the large diameter side than the average. Since the number of data on the large diameter side is small, the variation itself is not large.
  • the hole injection layer 20 includes nanoparticles 40 smaller than the quantum dots 50 and a highly polar and low vapor pressure solvent 42, and the nanoparticles 40 can be dispersed in the solvent 42, and the nanoparticles 40 may be so high that the top surface of the hole injection layer 20 is uneven due to the nanoparticles 40 .
  • the nanoparticles 40 are exposed on the surface of the functional layer, and the nanoparticles 40 exposed from the surface of the functional layer You may form the hole transport layer 22 so that the surface of may be followed. In this case, since the distance between the hole injection layer 20 and the light emitting layer 24 can be increased, the effect of reducing the reactive current can be obtained.
  • Arbitrary functional layers for example, any one or more layers such as the hole transport layer 22, the electron transport layer 26, and the electron injection layer are composed of metal compound nanoparticles having charge transport properties and a highly polar and low vapor pressure solvent. and are included in the scope of the present disclosure. . Also, for example, configurations in which various modifications are made to the arrangement or patterning of any functional layer and/or light-emitting layer 24 are also included within the scope of the present disclosure.
  • the description describing the hole injection layer can be interpreted within a consistent range by replacing the wording of the hole injection layer with the wording of the hole transport layer.
  • the wording of the hole injection layer is replaced with the electron transport layer or the electron injection layer, and the positive/negative of the charge is reversed so that there is no contradiction. It can be interpreted as a range.
  • FIG. 15 is a schematic diagram showing the schematic configuration of the hole injection layer 20, the hole transport layer 22, the light emitting layer 24, and the monomolecular film 28 in the light emitting element layer 6 according to this embodiment.
  • the light-emitting element layer 6 according to this embodiment has the same structure as in Embodiments 1 and 2 described above, except that a monomolecular film 28 is provided between the hole injection layer 20 and the hole transport layer 22 . It has the same configuration as the light emitting element layer 6 according to .
  • the nanoparticles 40 used in the hole injection layer 20 according to the present embodiment only need to have a hole-transport property, and may or may not be dispersed in a highly polar solvent. good.
  • the monomolecular film 28 is provided only on the side of the hole injection layer 20 facing the layer of the quantum dots 50 (that is, the light emitting layer 24).
  • the monomolecular film 28 may be provided at other locations, but in that case, the luminous efficiency may be lowered.
  • the monomolecular film 28 may reduce the parallel resistance of hole-injecting layer 20 . In order to suppress ohmic leakage current, the higher the parallel resistance is, the better. If the parallel resistance is lowered, the number of carriers not injected into the quantum dots 50 increases and the light emission efficiency decreases.
  • the monomolecular film 28 is composed of molecules 52 .
  • Molecules 52 may include only one type of molecule, or two or more types of molecules.
  • the monomolecular film 28 and molecules 52 have hole-transport properties.
  • Molecules 52 have, for example, hole-transporting molecular chains and functional groups that adsorb to the surfaces of nanoparticles 40 .
  • the functional group is attached to one end of the molecular chain or to both ends of a symmetrical molecular chain.
  • the monolayer 28 is a self-assembled monolayer (SAM), that is, the molecules 52 have self-assembly ability.
  • SAM self-assembled monolayer
  • a plurality of identical molecules 52 are arranged adjacent to each other in the monomolecular film 28 .
  • the monomolecular film 28 can be formed with a substantially uniform film thickness because the thickness is composed of the same molecules, and the film quality is also substantially uniform because it is composed of the same molecules. This is because it can be densely distributed within the Furthermore, it is preferable that the molecules 52 forming the monomolecular film 28 are evenly spaced apart from adjacent molecules because they can be distributed more densely. In addition, it is preferable that the molecules 52 constituting the monomolecular film 28 are arranged in the same direction because they can be distributed more densely and strong bonds can be formed by interaction.
  • H denotes hydrogen
  • S denotes sulfur
  • C denotes carbon
  • N denotes nitrogen
  • Si denotes silicon
  • Cl denotes chlorine
  • Se denotes selenium
  • Te denotes tellurium
  • Mg magnesium
  • Br bromine
  • Li lithium
  • Ar represents an aryl group
  • X represents any of Cl, OCH 3 and OC 2 H 5 .
  • the molecule 52 preferably contains at least one selected from MeO-2PACz, BA-CF3, 2PACz and Me-4PACz.
  • FIG. 16 is a schematic diagram showing the self-assembly of molecules 52. As shown in FIG.
  • a solution in which the molecules 52 are dissolved in a solvent is applied to the surface of the hole injection layer 20 by spin coating or dipping.
  • the molecules 52 in the solution are adsorbed on the surfaces of the nanoparticles 40 with functional groups.
  • the molecule 52 repeats adsorption and desorption to form a monomolecular film 28 as shown in the center of FIG.
  • molecules 52 tend to separate from each other by a predetermined distance or more due to interactions between molecular chains. This predetermined distance is determined by the molecular chain.
  • the molecules 52 have functional groups on only one end of the molecular chain, or functional groups on both ends of the symmetrical molecular chain, so that when bound to the nanoparticles 40, the molecular chains are automatically aligned. As a result, the molecules 52 self-assemble and cover the entire surface of the hole injection layer 20 facing the layer of quantum dots 50 with a substantially uniform density.
  • the solvent is removed by heat treatment or the like, and the monomolecular film 28 is fixed on the surface of the hole injection layer 20 .
  • the monomolecular film 28 is formed after the hole injection layer 20 containing the nanoparticles 40 is formed, but the present invention is not limited to this. Membrane 28 may be formed.
  • the monomolecular film 28 after forming the hole injection layer 20 containing the nanoparticles 40, because it is not necessary to take measures to eliminate the demerit that would otherwise occur. That is, when the monomolecular film 28 is formed on the nanoparticles 40 before the hole injection layer 20 is formed, the solution containing the nanoparticles 40 is applied in a state where the monomolecular film 28 is formed on the entire nanoparticles 40, and the Although the hole injection layer 20 is formed, the nanoparticles 40 with the monomolecular film 28 formed thereon may not be well dispersed in the solution due to the relationship between the polarity of the monomolecular film 28 and the polarity of the solvent. makes it difficult to form the hole injection layer 20 .
  • the monomolecular film 28 can be formed by using a highly polar solvent as a solvent for coating when the hole injection layer 20 is formed. Since even the nanoparticles 40 formed with are well dispersed in the solution, the hole injection layer 20 is easily formed, which is desirable.
  • the monomolecular film 28 on the nanoparticles 40 covers the surface of the hole injection layer 20 and is exposed as the underlying layer of the hole transport layer 22. A configuration with Even if the monomolecular film 28 is not exposed, the effect of reducing the reactive current due to the formation of the monomolecular film 28 can be obtained.
  • the distance between the hole injection layer 20 and the light-emitting layer 24 can be increased by forming the monomolecular film 28, but the monomolecular film 28 is exposed. , the rate of increase in the distance can be further increased, and the effect of reducing the reactive current can be further enhanced by that amount, which is desirable.
  • the monomolecular film 28 on the nanoparticles 40 after forming the hole injection layer 20 after forming the hole injection layer 20 containing the nanoparticles 40 of the present disclosure and before forming the monomolecular film 28 It is more desirable that the nanoparticles 40 are exposed on the surface of the hole injection layer 20 . That is, as shown in FIG. 4, the state where the top level F of the nanoparticles 40 is above the level E of the upper surface (surface) of the solvent 42 (including the solvent before or after the solidification process) of the functional layer is further desirable. This is because the monomolecular film 28 can be exposed as described above, and the effect of reducing the reactive current can be enhanced.
  • the rate of increase in the distance is further reduced. Therefore, the effect of reducing the reactive current can be enhanced.
  • Example 2 A light-emitting device according to Example 2 of the present embodiment was formed.
  • the thickness of the hole injection layer 20 is 20 nm
  • the nanoparticles 40 are made of nickel oxide
  • the molecules 52 constituting the monomolecular film 28 are MeO-2PACz
  • the hole transport layer 22 is The thickness was 40 nm and the hole transport layer 22 consisted of p-TPD.
  • the monomolecular film 28 is formed by dissolving MeO-2PACz in ethanol to a solution of 0.01 mol/l, applying the MeO-2PACz solution on the hole injection layer 20, and after 5 seconds or more, the MeO-2PACz The solution was dried. Thus, SAM was formed on the surface of the hole injection layer 20 .
  • Example 3 A light-emitting device according to Example 3 of the present embodiment was formed.
  • the light-emitting device according to Example 3 had the same configuration as the light-emitting device according to Example 2, except that the molecule 52 was BA-CF 2 and the nanoparticles 40 were made of chromium oxide.
  • chromium oxide in the present disclosure means a compound containing chromium and oxygen. That is, the chromium oxide includes, for example, not only CrO simple substance, Cr 2 O 3 simple substance, CrO 2 simple substance, and CrO 3 simple substance having uniform valences, but also CrO, Cr 2 O 3 , CrO 2 , and CrO 3 having different valences. A mixture containing any two or more, a mixture containing any one or more of CrO, Cr2O3 , CrO2 , CrO3 and a chromium compound other than an oxide, or CrO, Cr2O3 , CrO2 , CrO 3 and mixtures containing metal compounds other than chromium compounds. "Chromium oxide” in this disclosure includes mixtures produced and/or used industrially as chromium oxide.
  • Example 4 A light emitting device according to Example 4 of the present embodiment was formed.
  • the light-emitting device according to Example 4 had the same configuration as that of the light-emitting device according to Example 2, except that the molecule 52 was 2 PaCz.
  • Example 5 A light-emitting device according to Example 5 of the present embodiment was formed.
  • the molecules 52 contain MeO-4PACz and MeO-2PACz, and the monomolecular film 28 is formed using a mixed solution containing MeO-4PACz and MeO-2PACz at a weight ratio of 1:1. It had the same configuration as the light emitting device according to Example 2, except for the point that it was changed.
  • Reference example 6 A light-emitting device according to Reference Example 6 was formed.
  • the light-emitting device according to Reference Example 6 had the same configuration as that of the light-emitting device according to Example 2, except that the monomolecular film 28 was not provided.
  • Reference example 7 A light-emitting device according to Reference Example 7 was formed.
  • the light-emitting device according to Reference Example 7 had the same configuration as that of the light-emitting device according to Example 2, except that the monomolecular film 28 was not provided.
  • Reference example 8 A light-emitting device according to Reference Example 8 was formed.
  • the light-emitting device according to Reference Example 8 had the same configuration as that of the light-emitting device according to Example 3, except that the monomolecular film 28 was replaced with a vapor-deposited Al 2 O 3 film having a thickness of 2 nm.
  • FIG. 17 is a graph showing the relationship between the drive voltage E (V) and the current density J (mA/cm 2 ) in the light emitting devices according to Examples 2-5 and Reference Examples 6-8.
  • the current density decreases in the region of 4 V or less, and the diode characteristics become clear. All current density drops in this region are reactive currents.
  • the light-emitting devices of Examples 2-5 have lower current densities in the region of 4 V or lower than the light-emitting devices of Reference Examples 6-8.
  • the reactive current in the display device 2 is reduced to about 1/20.
  • the diode current:reactive current is about 1:1.
  • the electrical characteristics were improved to a reactive current of about 1:0.05.
  • the maximum EQE value of the display device 2 of the present embodiment was improved by about twice that of the conventional display device 2 .
  • a monomolecular film 28 having hole transport properties is formed uniformly over the entire surface of the hole injection layer 20 as a monomolecular layer by self-organization. Then, the hole transport property of the monomolecular film 28 improves the hole transport to the QD (1).
  • the hole-transporting monomolecular film 28 prevents the hole-injecting layer 20 and the hole-transporting layer 22 from directly contacting each other, and the distance between the nanoparticles 40 and the quantum dots 50 is increased. Reduce. Since the space-charge-limited current is proportional to the -3 power of the distance, even a small change in distance makes a large contribution to the current (3).
  • a hole transport layer 22 made of an organic substance and a light emitting layer 24 are laminated in this order on a hole injection layer 20 made of nanoparticles 40 . Therefore, the average path from the nanoparticles 40 to the quantum dots 50 via the hole transport layer 22 is close.
  • the VBM, CBM, and Fermi level of the hole injection layer 20 and the hole transport layer 22 are different from each other, and the hole transport ability of the hole transport layer 22, which is generally made of an organic material, is insufficient. A reactive current tends to flow in the display device 2 .
  • a geometrically sharp region existing at the interface between the hole injection layer 20 and the hole transport layer 22, for example, the boundary between the adjacent nanoparticles 40 constituting the hole injection layer 20 (Fig. 15 Electric field concentration occurs in a region of a display device having a conventional structure corresponding to the region C of (1). Due to this electric field concentration, a larger reactive current flows in this region.
  • the display device with the conventional configuration is greatly affected by the reactive current and has a low EQE.
  • the reactive current is the space charge limited current, which is proportional to the square of the voltage and the -3 power of the distance between the electrodes. Therefore, increasing the inter-electrode distance and alleviating electric field concentration are effective in suppressing ineffective current.
  • the configuration of this embodiment was created based on the configuration using NiO nanoparticles with excellent properties for the hole injection layer.
  • the configuration of this embodiment is not limited to the configuration using NiO nanoparticles for the hole injection layer.
  • the monomolecular film 28 has been described as a monomolecular film only, it can be made into a structure in which monomolecules are laminated by special treatment. By using a structure in which monomolecules are laminated, a thicker monomolecular film or a monomolecular laminated film can be formed, and the film can be thickened, so that the effect of reducing reactive current can be further enhanced. Therefore, it is preferable.
  • the hole injection layer 20 includes nanoparticles 40 smaller than the quantum dots 50 and a highly polar and low vapor pressure solvent 42, and the nanoparticles 40 can be dispersed in the solvent 42, and the nanoparticles 40 may be so high that the top surface of the hole injection layer 20 is uneven due to the nanoparticles 40 .
  • Arbitrary functional layers for example, any one or more layers such as the hole transport layer 22, the electron transport layer 26, and the electron injection layer are composed of metal compound nanoparticles having charge transport properties and a highly polar and low vapor pressure solvent. and are included in the scope of the present disclosure.
  • the description describing the hole injection layer can be interpreted within a consistent range by replacing the wording of the hole injection layer with the wording of the hole transport layer.
  • the wording of the hole injection layer is replaced with the electron transport layer or the electron injection layer, and the positive/negative of the charge is reversed so that there is no contradiction. It can be interpreted as a range.

Abstract

発光層(24)は量子ドット(50)を含み、アノードと発光層(24)との間に設けられ、その一方の面がアノードと接する正孔注入層(20)は、ナノ粒子(42)を含み、正孔注入層(20)に含まれるナノ粒子(40)の平均粒径が、発光層(24)に含まれる量子ドット(50)の平均粒径より小さい。

Description

発光素子
 本発明は、発光素子に関する。
 量子ドット発光ダイオード(Quantum dot light emitting diode:QLED)が普及してきている。
 引用文献1は、正孔注入層(hole injection layer:HIL)が酸化ニッケルのナノ粒子と有機リガンドとを有するQLEDを開示している。
 引用文献2は、電子輸送層(electron transport layer:ETL)が2つ以上の無機物ナノ粒子を含む無機層と、前記無機層の真上に形成されて無機層よりも高い仕事関数を有する有機層と、を含むQLEDを開示している。
 引用文献3は、電極と発光層との間に、トンネル層、両極性層、誘電体層、絶縁層、またはこれらの組合せを含むQLEDを開示している。
 引用文献4は、絶縁層と有機半導体層との間に自己組織化単分子膜(self-assembly monolayer:SAM)を有する薄膜トランジスタ(thin film transistor:TFT)を開示している。
 引用文献5は、発光層が半導体ナノ結晶の粒子と、半導体ナノ結晶の粒子間の間隙を満たす充填物質とを有するQLEDを開示している。
US 2021-0091325 A1(2021年5月25日公開) 特開2019-160796(2019年9月19日公開) US 2008-0309234 A1(2008年12月18日公開) US 2007-0087389 A1(2007年4月19日公開) 特開2007-95685(2007年4月12日公開)
 しかしながら、上述のような従来技術には、外部量子効率(external quantum efficiency:EQE)などの発光特性および信頼性が低いという問題があった。
 例えば、引用文献1に開示されている有機リガンドを含むHILにおいては、有機リガンドが電気化学反応によって劣化したり、量子ドットから離脱したりする。例えば、引用文献2に開示されている有機正孔輸送材料を含むHILにおいては、有機正孔輸送材料が電気化学反応によって劣化する。また、QLEDは一般的に、電子が過剰である状態で動作しているため、発光層から正孔輸送層(hole transport layer:HTL)およびHILに電子がオーバーフローし、EQEが低下するなど、キャリアバランスが悪いことによる問題があった。
 本開示の一態様に係る発光素子は、第一電極と、前記第一電極に対向する第二電極と、前記第一電極と前記第二電極との間に設けられ、蛍光体を含む発光層と、前記第一電極と前記発光層との間に設けられ、高極性かつ低蒸気圧の少なくとも1種の溶媒を含む、少なくとも1つの機能層と、を備える構成である。
 本開示の一態様に係る発光素子は、前記機能層は、酸素、水酸基、炭素、窒素の中から選択される少なくとも1種を含む金属化合物のナノ粒子をさらに含む構成であって良い。
 本開示の一態様に係る発光素子は、前記金属化合物に含まれる金属元素は、Ni,Mg,Al,Zn,Fe,Sn,Cu,Cr,Ta,Mo,W,およびRe中から選択される少なくとも1種である構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層は正孔注入層である構成であって良い。
 本開示の一態様に係る発光素子は、前記金属元素は、Niである、構成であって良い。
 本開示の一態様に係る発光素子は、前記第1電極はアノードである構成であって良い。
 本開示の一態様に係る発光素子は、前記金属化合物は、ニッケル酸化物である構成であって良い。
 本開示の一態様に係る発光素子は、前記少なくとも1つの機能層の厚さは、1nm以上、50nm以下である、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記溶媒の極性を示す双極子モーメントは、1.94Dより大きい、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記溶媒の極性を示す双極子モーメントは、2D以上である、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記溶媒の蒸気圧は、3200Pa未満である、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記溶媒の蒸気圧は、1000Pa未満である、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記溶媒は、プロピレンカーボネート,エチレンカーボネート,1,2-ジメトキシエタン,ジメチルカーボネート,ジエチルカーボネート,メルカプトプロピオン酸,システアミン及びメルカプト酢酸の中から選択される少なくとも1種である構成であって良い。
 本開示の一態様に係る表示装置は、上述の発光素子を備える構成であって良い。
 本開示の一態様に係るインクは、酸素、水酸基、炭素、窒素の中から選択される少なくとも1種を含む金属化合物のナノ粒子と、高極性かつ低蒸気圧の少なくとも1種の溶媒と、を少なくとも含む構成である。
 本開示の一態様に係る発光素子および表示装置は、上述のインクを用いて製造した構成であって良い。
 本開示の一態様に係る発光素子の製造方法は、上述の発光素子の製造方法であって、酸素、水酸基、炭素、窒素の中から選択される少なくとも1種を含む金属化合物のナノ粒子と、高極性かつ低蒸気圧の少なくとも1種の溶媒とを少なくとも含むインクを滴下または印刷することによって、前記機能層を形成する方法である。
 本開示の一態様に係る発光素子は、アノードと、前記アノードに対向するカソードと、前記アノードと前記カソードとの間に設けられ、量子ドットを含む発光層と、前記アノードと前記発光層との間に設けられた少なくなくとも1つの機能層とを備え、前記機能層は、ナノ粒子を含み、前記機能層に含まれる前記ナノ粒子の平均粒径が、前記発光層に含まれる前記量子ドットの平均粒径より小さい構成である。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記ナノ粒子の平均粒径は、前記発光層に含まれる前記量子ドットの平均粒径に対して、40%以上100%以下の範囲にある構成であってよい。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記ナノ粒子の平均粒径は、前記発光層に含まれる前記量子ドットの平均粒径に対して、60%以上90%以下の範囲にある、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記ナノ粒子の粒径の最頻値は、当該ナノ粒子の粒径の平均値または中央値よりも小さい、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記ナノ粒子の粒径は、前記ナノ粒子の平均粒径に対して、-4nm以上+50nm以下の範囲にある、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記ナノ粒子の最大粒径をPmax、前記ナノ粒子の最小粒径をPmin、前記ナノ粒子の粒径の標準偏差をPσとして、前記ナノ粒子の粒径分布は、3*Pσ<(Pmax-Pmin)を満たす、構成であって良い。なお、本開示は、積算を示す演算記号として「*」を用いる。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記ナノ粒子の平均粒径をPa、前記ナノ粒子の粒径の標準偏差をPσ、前記発光層に含まれる前記量子ドットの平均粒径をQa、前記量子ドットの標準偏差をQσとして、Qσ/Qa>Pσ/Paを満たす、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記ナノ粒子は、金属酸化物を含む構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記ナノ粒子は、Ni,Mg,Al,Zn,Fe,Sn,Cu,Cr,Ta,Mo,W,およびRe中から選択される少なくとも1種の金属元素を含む、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記金属元素は、Niを含み、前記機能層に含まれるNiは、化合物を構成し、前記化合物は、酸素、水酸基、炭素、窒素の中から選択される少なくとも1種を含み、前記化合物は、酸化ニッケル(I)、酸化ニッケル(II)、酸化ニッケル(III)、水酸化ニッケル、硝酸ニッケル、および炭酸ニッケルの中から選択される少なくとも1種を含む、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれるNiは、少なくとも2種の価数を有するNiを含む、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記ナノ粒子は、略球体または略回転楕円体である、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層は、正孔輸送層を含み、前記正孔輸送層は、分子構造の一部にC-H結合を有する化合物を含み、前記正孔輸送層の厚さは、1nm以上50nm以下である、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層は、正孔注入層を含み、前記正孔注入層の厚さは、1nm以上50nm以下である、構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層は、正孔輸送層と正孔注入層とを含み、前記正孔輸送層は前記正孔注入層の表面に追従して形成される構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層の前記ナノ粒子の前記平均粒径、及び、前記発光層に含まれる前記量子ドットの前記平均粒径は、前記機能層及び前記発光層の断面写真における、任意の位置での、幅200μm以上1000μm以下の範囲において観察される、前記ナノ粒子及び前記量子ドットにより定められる構成であって良い。
 本開示の一態様に係る発光素子は、前記機能層に含まれる前記ナノ粒子の前記平均粒径は、前記機能層の断面写真における任意の位置での幅200μm以上1000μm以下の範囲において観察される、前記ナノ粒子の粒径の平均値を意味する構成であって良い。
 本開示の一態様に係る発光素子は、アノードと、前記アノードに対向するカソードと、前記アノードと前記カソードとの間に設けられ、量子ドットを含む発光層と、前記アノードと前記発光層との間に、前記アノード側から順に設けられた正孔注入層及び正孔輸送層と、前記正孔注入層と前記正孔輸送層との間に設けられた単分子膜と、を備える構成である。
 本開示の一態様に係る発光素子は、前記正孔注入層は、無機材料からなるナノ粒子を含む構成であってよい。
 本開示の一態様に係る発光素子は、前記正孔注入層は、金属元素を含む化合物、を含み、前記化合物は、Ni,Mg,Al,Zn,Fe,Sn,Cu,Cr,Ta,Mo,W,およびRe中から選択される少なくとも1種を含み、前記化合物は、少なくとも1種の金属酸化物を含む構成であって良い。
 本開示の一態様に係る発光素子は、前記正孔注入層に含まれる前記金属元素は、Niを含み、前記正孔注入層に含まれるNiは、化合物を構成し、前記化合物は、酸素、水酸基、炭素、窒素の中から選択される少なくとも1種を含み、前記化合物は、酸化ニッケル(I)、酸化ニッケル(II)、酸化ニッケル(III)、水酸化ニッケル、硝酸ニッケル、および炭酸ニッケルの中から選択される少なくとも1種を含む、構成であって良い。
 本開示の一態様に係る発光素子は、前記正孔注入層に含まれるNiは、少なくとも2種の価数を有するNiを含む、構成であって良い。
 本開示の一態様に係る発光素子は、前記正孔注入層に含まれる前記ナノ粒子は、略球体または略回転楕円体である構成であって良い。
 本開示の一態様に係る発光素子は、前記単分子膜に含まれる分子は、ホール輸送性を有する。構成であって良い。
 本開示の一態様に係る発光素子は、前記単分子膜に含まれる分子は、その一端に官能基を有する、構成であって良い。
 本開示の一態様に係る発光素子は、前記単分子膜に含まれる分子は、官能基を有し、
 前記官能基をR及びR´と示すと、前記分子は、R-SH,RS-SR´,R-RSCN,R-SeH,R-TeH,RSe-SeR´,R-NC,R-NCO,R-SiH,R-Si(CHH,R-Si(CH,R-COOH,dye-COOH,R-PO,RO-PO,R-SiX[X=Cl,OCH,OC],R-NH,R-OH,[R-C(O)O],R-CH=CH,R-C≡CH,R-MgBr,R-Li,Ar-N+X-及びR-BrR-CH=CHの中から選択される少なくとも1種の分子を含む、構成であって良い。
 本開示の一態様に係る発光素子は、前記単分子膜は、MeO-2PACz,BA-CF,2PACz及びMe-4PACzの中から選択される少なくとも1種を含む、構成であって良い。
 本開示の一態様に係る発光素子は、前記単分子膜は、前記正孔注入層における前記発光層と対向する面側にのみ、備えられる、構成であって良い。
 本開示の一態様に係る発光素子は、前記単分子膜において、複数の同じ分子が互いに隣り合って配置されている、構成であって良い。
 本開示の一態様に係る発光素子は、前記正孔輸送層は、分子構造の一部にC-H結合を有する化合物を含み、前記正孔輸送層の厚さは、1nm以上50nm以下である、
構成であって良い。
 本開示の一態様に係る発光素子は、前記正孔注入層の厚さは、1nm以上50nm以下である、構成であって良い。
 本開示の一態様は、発光特性および信頼性の双方が良好なQLEDを実現できる。
本開示の一実施形態に係る表示装置の概略構成の一例を示す平面図である。 図1に示した表示領域の概略構成の一例を示す断面図である。 本開示の一実施形態に係る正孔注入層の概略構成の一例を示す模式図である。 本開示の一実施形態に係る正孔注入層の概略構成の別の一例を示す模式図である。 本開示の一実施形態に係る表示装置の製造方法の一例を示す概略フロー図である。 本開示の一実施形態に係る正孔注入層の形成工程の一例を示す概略フロー図である。 本開示の一実施形態に係る正孔注入層の形成工程の一例を示す概略工程図である。 本開示の一実施形態に係る参考例に係る発光素子における駆動電圧と電流密度との関係を示すグラフを示す図である。 本開示の一実施形態に係る参考例に係る発光素子における相対輝度と経過時間との関係を示すグラフを示す図である。 本開示の別の一実施形態に係る発光素子層における正孔注入層と正孔輸送層と発光層との概略構成を示す模式図である。 比較例による発光素子層における正孔注入層と正孔輸送層と発光層との概略構成を示す模式図である。 本開示の一実施形態の一実施例におけるナノ粒子の粒径の分布を示す図である。 参考例の発光素子層における駆動電圧と電流密度との関係およびその解析結果を示す片対数グラフを示す図である。 参考例の発光素子層におけるEQEと電流密度J(mA/cm)との関係を示すグラフを示す図である。 本開示の一実施形態に係る本実施形態に係る発光素子層における正孔注入層と正孔輸送層と発光層と単分子膜との概略構成を示す模式図である。 分子の自己組織化を示す模式図である。 本開示の一実施形態に係る実施例および参考例に係る発光素子における駆動電圧と電流密度との関係を示すグラフを示す図である。 は、図1に示した表示領域の概略構成の一変形例を示す断面図である。 は、図1に示した表示領域の概略構成の別の一変形例を示す断面図である。
 〔実施形態1〕
 <表示装置の概要>
 図1は、本開示の一実施形態に係る表示装置2の概略構成の一例を示す平面図である。
 図1に示すように、本開示に係る表示装置2は、後述する各発光素子からの発光を取り出すことにより表示を行う表示領域DAと、当該表示領域DAの周囲を囲う額縁領域NAとを備える。額縁領域NAにおいては、表示装置2の各発光素子を駆動するための信号が入力される端子Tが形成されている。
 図2は、図1に示した表示領域DAの概略構成の一例を示す断面図である。図3は、図1のAB断面図に相当する。
 表示領域DAにおいて、本実施形態に係る表示装置2は複数の電界発光素子を備える。図2には、表示装置2が備える複数の電界発光素子のうち、赤色発光素子6Rと緑色発光素子6Gと青色発光素子6Bとについて示している。本開示において特段の説明が無い限り、「発光素子」は、赤色発光素子6Rと緑色発光素子6Gと青色発光素子6Bとの何れかを指す。
 図2に示すように、表示装置2は、基板4と、基板4上の発光素子層6と、発光素子層6を覆う封止層8とを備える。
 <基板>
 基板4は、支持基板を含む。基板4は、支持基板の上に薄膜トランジスタ(TFT)などの回路素子が設けられた薄膜トランジスタ層(TFT層)を含む。基板4はさらに、バリア層などの追加の構成要素を含んでもよい。バリア層は、支持基板よりも外側から水分および酸素などが発光素子層6へ侵入することを低減する。
 支持基板は、石英またはガラスなどから成る非可撓性基板であっても、樹脂フィルムまたは樹脂シートから成る可撓性基板であってもよい。石英基板およびガラス基板は、光透過性が高く、ガス遮蔽性が高いため、好適である。また、光透過性およびガス遮蔽性の観点から樹脂フィルムの場合の材質は、ポリエチレンメタクリレート(PMMA)に代表されるメタクリル樹脂類、ポリエチレンテレフタラート(PET)とポリエチレンナフタレート(PEN)とポリブチレンナフタレート(PBN)に代表されるポリエステル樹脂類、およびポリカーボネート樹脂類などが好ましい。
 <発光素子層>
 発光素子層6は、発光素子が設けられている層である。
 発光素子層6は、基板4上のアノード10(第1電極)と、アノード10に対向するカソード16(第2電極)と、バンク12と、アノード10およびカソード16の間に設けられた活性層14とを含む。活性層14は、アノード10側から順に、正孔注入層20と正孔輸送層22と発光層24と電子輸送層26とを含む。活性層14は、エレクトロルミネッセンス層(EL層)とも称する。
 本開示において、発光素子層6の発光層24からアノード10への方向を「下方向」または「下」、発光層24からカソード16への方向を「上方向」または「上」として記載する。
 ここで、アノード10は発光素子毎に個別に形成されている。アノード10は、発光素子毎に、すなわちサブ画素毎に島状に設けられ、「画素電極」とも称される。アノード10は、赤色発光素子6R用のアノード10R、緑色発光素子6G用のアノード10G、および青色発光素子6B用のアノード10Bを含む。一方、正孔注入層20と正孔輸送層22と電子輸送層26とカソード16とはそれぞれ、複数の発光素子に対して共通に形成されている。カソード16は、「共通電極」とも称される。
 バンク12は、発光素子毎に個別に形成されてもよいが、表示装置2の高精細化のために、複数の発光素子に対して一体に形成されることが好ましい。バンク12は、バンク12の少なくとも一部が、アノード10に隣接するもしくは離れて隣り合うか、または、上面視でアノード10の上に配置するように形成される。本開示において、「隣接」は、隣り合いかつ接触している場合を指し示し、「隣り合う」は接触している場合のみならず、離れて隣り合っている場合も指し示す。
 バンク12は、発光素子の周縁部に形成される突出部であり、機能的には限定されない。バンク12は、発光素子の周縁部に部分的に形成されてもよい。バンク12は、他の構成要素と協働して、または単独で、凹凸を設ける以外の任意の機能を果たしてもよい。
 例えば、バンク12は、互いに隣り合う発光素子の間に形成され、発光素子間を電気的に絶縁する隔壁として形成されることが好ましい。この場合、バンク12は絶縁性であり、バンク12により、発光素子層6は、赤色発光素子6R、緑色発光素子6G、および青色発光素子6Bに区画される。
 例えば、バンク12は、アノード10のエッジを覆うエッジカバーとして形成されることが好ましい。具体的には、バンク12の少なくとも一部が、アノード10の端面に接触するか、または、上面視でアノード10の端面の上に配置するように形成されることが好ましい。バンク12は、基板4側の底面12Bと、封止層8側の上面12Uと、底面12Bと上面12Uとの間の側面12Sとを有する。側面12Sは、傾斜側面を含み、「斜面」とも称される。ただし、側面および斜面は必ずしも平面である必要はなく複数の平面を含んでもよく、曲面や凹凸を含んでもよい。以降、説明の簡単化のために、バンク12の一部がアノード10の上に配置している場合についてのみ図示を行った説明をする。当業者にとって、バンク12の一部がアノード10に隣接もしくは隣り合っている場合を、この説明に基づいて理解することは容易である。
 発光層24は、赤色光を発する赤色発光層24R、緑色光を発する緑色発光層24G、および青色光を発する青色発光層24Bを含む。発光層24は、発光素子毎に個別に形成されても、同じ色の複数の発光素子に対して共通に形成されてもよい。
 発光層24は、少なくともバンク12の開口12Aから露出する対応するアノード10を覆うように形成される。アノード10の露出領域の上またはその近傍の上で正孔輸送層22と電子輸送層26とが接触すると、接触部位を通って、発光層24の発光に寄与しない無効電流が流れる。このため、発光層24は、バンク12の側面12Sの一部(具体的には、対応する開口12Aの輪郭に近い部分)をさらに覆うことが好ましい。
 なお、図2に示した構成では、正孔輸送層22が電子輸送層26に、バンク12の上面12U上で直接接触している。通常、正孔輸送層22と電子輸送層26が直接接触すると無効電流が流れるが、本開示において、この接触は、アノード10の露出領域から離れているため、無効電流が抑制される。なぜならば、電荷輸送層および/または電荷注入層の電気抵抗率は、通常の金属の電気抵抗率と比較して、顕著に大きいからである。アノード10から正孔輸送層22および/または電子輸送層26を通ってバンク12の上面12U上の接触部位に到る経路の電気抵抗値が大きいため、本開示における当該経路を通る無効電流は、無視可能なほど小さくすることができ、または実質的に0とすることができる。バンク12の上面12U上の接触部位を小さくするために、隣り合う発光層24の間隔が小さいことが好ましい。
 本開示において、「青色光」とは、例えば、400nm以上500nm以下の波長帯域に発光中心波長を有する光である。また、「緑色光」とは、例えば、500nm超600nm以下の波長帯域に発光中心波長を有する光のことである。また、「赤色光」とは、例えば、600nm超780nm以下の波長帯域に発光中心波長を有する光のことである。
 なお、本実施形態に係る発光素子層6は、上記構成に限らず、アノード10およびカソード16の間に、さらに追加の層を備えていてもよい。例えば、発光素子層6は、電子輸送層26とカソード16との間に、電子注入層をさらに備えていてもよい。また発光層24は、2色以下の光を発し得てもよく、4色以上の光を発し得てもよい。
 アノード10およびカソード16は導電性材料を含み、少なくとも一方は透明電極である。表示装置2が片面表示である場合、アノード10およびカソード16のうちの表示面に近い電極が透明電極であり、表示面に遠い電極が反射電極である。表示装置2が両面表示である場合、アノード10およびカソード16の両方が透明電極である。透明電極は、光透過性の導電性材料から形成できる。反射電極は、光反射性の伝導性材料から形成でき、光透過性の導電性材料と光反射性の伝導性材料との積層体から形成できる。
 光透過性の導電性材料は、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化スズ(SnO2)、フッ素ドープ酸化スズ(FTO)などを含む。これらの材料は可視光の透過率が高いため、発光素子の発光効率が向上する。光反射性の伝導性材料は、アルミニウム(Al)、銀(Ag)、銅(Cu)、金(Au)などを用いることができる。これらの材料は可視光の反射率が高いため、発光素子の発光効率が向上する。なお、光反射性の伝導性材料を薄く形成することにより、結果的に光透過性を持つ光透過性の導電性材料として用いることも可能である。
 アノード10は発光層24に正孔を供給し、カソード16は発光層24の電子を供給する。アノード10はカソード16と対向するように設けられる。
 正孔注入層20は、正孔輸送性を有するナノ粒子と高極性かつ低蒸気圧の溶媒とを含み、アノード10から正孔輸送層22または発光層24へ正孔注入する機能を担う。正孔輸送層22は、正孔輸送性を有する材料を含み、正孔注入層20またはアノード10から発光層24へ正孔輸送する機能を担う。なお、正孔注入層20および正孔輸送層22の少なくとも一方が、発光層24からアノード10への電子の輸送を阻害する機能を有することが好ましい。
 正孔注入層20については、後に詳述する。
 正孔輸送層22に用いる正孔輸送材料は、当該分野で一般的に用いられる材料から適宜選択できる。
 有機正孔輸送材料としては例えば、ポリスチレンスルホン酸をドープしたポリエチレンジオキシオフェン(PEDOT:PSS)、4,4’,4’’-トリス(9-カルバゾイル)トリフェニルアミン(TCTA)、4,4’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]-ビフェニル(NPB)、亜鉛フタロシアニン(ZnPC)、ジ[4-(N,N-ジトリルアミノ)フェニル]シクロヘキサン(TAPC)、4,4’-ビス(カルバゾール-9-イル)ビフェニル(CBP)、2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(HATCN)などの材料や、ポリ(N-ビニルカルバゾール)(PVK)、ポリ(2,7-(9,9-ジ-n-オクチルフルオレン)-(1,4-フェニレン-((4-第2ブチルフェニル)イミノ)-1,4-フェニレン(TFB)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)などが挙げられる。なかでも、TFB等のテトラシアノ化合物、PVK等のカルバゾール誘導体、Poly-TPD等のトリアリールアミン誘導体が好ましい。また、例えばC-H結合などを最小単位として単結合と二重結合とが交互に結合した鎖状構造を有する化合物は、導電性を示しやすい傾向にある。このため、正孔輸送層22に用いる正孔輸送材料は、分子構造の一部にC-Hを有する化合物を含むことが好ましい。
 無機正孔輸送材料としては例えば、Zn、Cr、Ni、Ti、Nb、Al、Si、Mg、Ta、Hf、Zr、Y、La、Sr、Wのうちのいずれか1つ以上を含み、酸素、窒素、および炭素の少なくとも1つ以上を含む金属化合物からなる群から選択される一種以上を含む材料が挙げられる。中でも、無機系正孔輸送材料としては、Zn、Cr、Ni、Ti、Nb、Al、Si、Mg、Ta、Hf、Zr、Y、La、Srのうちのいずれか1つ以上を含む酸化物が好ましく、NiO、MgO、MgNiO、LaNiO3、CuOおよびCu2Oから選択される少なくとも1種であることがより好ましい。さらに、好適な正孔輸送材料として、CuSCNなど、金属にCN基、SCN基、およびSeCN基が結合した材料も挙げられる。これらの材料は、ナノ粒子であっても良い。
 本開示において「ナノ粒子」は、ナノオーダー(1000nm未満)の最大幅を有する粒子のことを意味する。ナノ粒子の形状は、上記最大幅を満たす範囲であればよく、特に制約されず、球状の立体形状(円状の断面形状)に限定されるものではない。例えば、多角形状の断面形状、棒状の立体形状、枝状の立体形状、表面に凹凸を有す立体形状でもよく、または、それらの組合せでもよい。
 無機材料は有機材料よりも化学的安定性が高く、発光素子または発光素子を含む表示装置などの製品の信頼性を向上できる。このため、正孔輸送層22は、無機系正孔輸送材料を含むことが好ましい。さらに、無機系正孔輸送材料は金属酸化物であることが好ましく、この場合、より化学的安定性が高くなる。このように無機材料が好適であり、金属酸化物がより好適であることは、活性層14を構成するすべての要素、材料または層に共通する。
 電子輸送層26は、電子輸送性を有する材料を含み、カソード16から発光層24へ電子輸送する機能を担う。電子輸送層26は、発光層24からカソード16への正孔の輸送を阻害する機能を有することが好ましい。
 電子輸送層26に適した有機電子輸送材料としては、例えば、オキサジアゾール環、トリアゾール環、トリアジン環、キノリン環、フェナントロリン環、ピリミジン環、ピリジン環、イミダゾール環カルバゾール環等の含窒素ヘテロ環を1つ以上含む化合物や錯体が挙げられる。具体例としては、バソクプロインやバソフェナントロリン等の1,10-フェナントロリン誘導体、1,3,5-トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼン(TPBI)等のベンズイミダゾール誘導体、トリス(8-キノリノラト)アルミニウム錯体(Alq3)、ビス(10-ベンゾキノリノラト)ベリリウム錯体、8-ヒドロキシキノリンAl錯体、ビス(2-メチル-8-キノリナート)-4-フェニルフェノレートアルミニウム等の金属錯体、4,4’-ビスカルバゾールビフェニル等が挙げられる。その他、芳香族ホウ素化合物、芳香族シラン化合物、フェニルジ(1-ピレニル)ホスフィン等の芳香族ホスフィン化合物、バソフェナントロリン、バソクプロイン、2,2’,2’’-(1,3,5-ベンゼントリイル)-トリス(1-フェニル-1-H-ベンズイミダゾール)(TPBI)、またはトリアジン誘導体等の含窒素ヘテロ環化合物等が挙げられる。
 電子輸送層26に適した有機電子輸送材料としては加えて、例えば、パラフェニレンビニレン骨格を有する化合物が挙げられる。具体例としては、ポリ(2-2’-エチル-ヘキソキシ)-5-メトキシ-1,4-フェニレンビニレン(POPh-PPV)等のポリパラフェニレンビニレン(PPV)系化合物が挙げられる。
 また、電子輸送層26に適した無機電子輸送材料としては、Zn、Ni,Cr,Mg、Li、Ti、W、Mo、In、Gaのうちのいずれか1つ以上を含む酸化物が挙げられる。中でも、化学量論組成に基づいて酸素欠損側へのずれを有しやすい酸化物が好ましい。例えば、酸化亜鉛(ZnO)、酸化亜鉛マグネシウム(MgZnO)、酸化チタン(TiO2)、酸化ストロンチウム(SrTiO3)等が挙げられる。これらの材料は、ナノ粒子であっても良い。
 前述したように、無機材料は有機材料よりも化学的安定性が高く、製品の信頼性を向上できる。このため、電子輸送層26は、無機系電子輸送材料を含むことが好ましい。さらに、無機系電子輸送材料は金属酸化物であることが好ましく、この場合、より化学的安定性が高くなる。また、亜鉛酸化物系材料が最も好ましい。
 透明電極、正孔注入層20、正孔輸送層22、電子輸送層26は、表示装置2の表示に利用される波長帯域の光を透過する。
 発光層24は、アノード10からの正孔とカソード16からの電子との再結合が発生することにより、発光体(蛍光体)が励起し、励起した発光体が基底状態に戻るときに光を発する層である。アノード10とカソード16との間に電圧、または、電流を印加することによって、発光層24で再結合が生じて発光が生じる。発光層24は、発光体として、量子ドットを含む。
 量子ドットは、最大幅が100nm以下のドットを意味する。量子ドットの形状は、上記最大幅を満たす範囲であればよく、特に制約されず、球状の立体形状(円状の断面形状)に限定されるものではない。例えば、多角形状の断面形状、棒状の立体形状、枝状の立体形状、表面に凹凸を有す立体形状でもよく、または、それらの組合せでもよい。本実施例においては、量子ドットは、例えば、100nm以下の粒子サイズを有する半導体微粒子であり、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、HgTe等のII-VI族半導体化合物、及び/又は、GaAs、GaP、InN、InAs、InP、InSb等のIII-V族半導体化合物の結晶、及び/又は、Si、Ge等のIV族半導体化合物の結晶を有することができる。また、量子ドットは、例えば、上記の半導体結晶をコアとして、当該コアをバンドギャップの高いシェル材料でオーバーコートしたコア/シェル構造を有していてもよい。さらに、量子ドットの表面に吸着(配位)するリガンドを有していてもよい。なお、シェルは必ずしもコアを完全に覆う必要はなく、コア上の一部にでも形成されていればよい。また、リガンドは、発光層24に量子ドットとリガンドとなり得る化合物とが含まれていることで、当該化合物を量子ドットの表面に吸着(配位)しているリガンドとみなすことができる。
 バンク12が絶縁性である場合、バンク12は、絶縁材料を含んでもよい。バンク12は例えば、ポリイミド樹脂類、アクリル樹脂類、ノボラック樹脂類、フルオレン樹脂類などを含とよい。バンク12は、例えば、フォトリソグラフィ技術を用いて、感光性の樹脂材料をパターニングすることによって形成することができる。感光性樹脂は、ネガ型であっても、ポジ型であってもよい。
 封止層8は、発光素子層6を覆い、表示装置2が備える各発光素子を封止する。封止層8は、表示装置2の封止層8側の外部から、水分および酸素等が発光素子層6等に浸透することを低減する。封止層は、例えば、無機材料からなる無機封止膜と、有機材料からなる有機封止膜との積層構造を有していてもよい。無機封止膜は、例えば、CVDにより形成され、酸化ケイ素膜、窒化ケイ素膜、あるいは酸窒化ケイ素膜、またはこれらの積層膜により構成される。有機封止膜は、例えば、ポリイミド等を含む塗布可能な樹脂材料により構成される。
 <正孔注入層>
 図3は、本実施形態に係る正孔注入層20の概略構成の一例を示す模式図である。図4は、本実施形態に係る正孔注入層20の概略構成の別の一例を示す模式図である。
 図3および図4に示すように、本実施形態に係る正孔注入層20は、ナノ粒子40と溶媒42とを含む。正孔注入層20は、ナノ粒子40に配位するリガンドを含まないことが望ましい。リガンドはナノ粒子40から離脱したりなどして正孔注入層20の性能劣化を招くことがある。また、有機リガンドは電気化学反応によって劣化することによって正孔注入層20の性能劣化を招くことがある。
 正孔注入層20の厚さは、バンク12の開口12Aに対応する領域内において、最も薄い部分で1nm以上、もっと厚い部分で50nm以下であることが好ましい。なぜならば、厚さが1nmよりも薄い場合、アノード10と正孔輸送層22とが直接接触する可能性が高くなるからである。直接接触した場合、正孔注入層20から正孔輸送層22への正孔注入が阻害されたり、アノード10とカソード16との間の並列抵抗が低下したりなどする。そのため、リーク電流が増加し、EQEが低下する。また、厚さが50nmよりも厚い場合、正孔注入層20内に制御できない巨大なナノ粒子40の凝集が生じる可能性があるからである。ここで、巨大な凝集とは、その最大幅が発光層24の厚さと同等以上である凝集である。仮に、正孔注入層20に巨大な凝集が存在した場合、正孔注入層20の一部に存在するに過ぎないとしても、巨大な凝集の直上に発光層24を層状に形成することが発光層24の性能劣化に繋がることがある。
 正孔注入層20に占めるナノ粒子40の割合は、適宜選択されてよい。例えば、図3に示すようにナノ粒子40の割合が小さく、溶媒42(ここでは、固化工程前の溶媒42のことも意味する)の中にナノ粒子40が散在してもよい。すなわち、図3に示すように、溶媒42の上面のレベルEがナノ粒子40の最上部のレベルFと同じまたはそれより上になってもよい。また、例えば、図4に示すようにナノ粒子40の割合が大きく、ナノ粒子40の間の間隙に溶媒42が充填されてもよい。すなわち、図4に示すように、溶媒42の上面のレベルEがナノ粒子40の最上部のレベルFより下になってもよい。なお、インクによる層形成方法における加熱、冷却など固化工程の温度や時間を適宜選択することにより、固化工程前の溶媒42の上面より、固化工程後の溶媒42の上面をより下方向に形成することが可能となる。
 発光層24への正孔輸送を阻害せず、かつ、正孔注入層20に巨大な凝集が生じないように、固化工程後のナノ粒子40の割合は、正孔注入層20の体積に対するナノ粒子40の重量の比率で、10mg/ml以上50mg/ml以下が好ましい。
 正孔注入層20に用いられるナノ粒子40は、正孔輸送性を有する。本実施形態に係るナノ粒子40は、水または水と同等以上の高極性の溶媒に分散し得る無機材料から構成されることが好ましい。このような無機材料は、例えば、酸素原子、水酸基、炭素原子、および窒素原子の中から選択される少なくとも1種を含む金属化合物である。金属化合物は電気化学的な安定性が高いため、ナノ粒子40が金属化合物から成ることは、発光素子および表示装置の発光特性および信頼性に有益である。特に、金属酸化物は、価電子帯上端が深くなる傾向にあり、発光層への正孔注入に適したバンド構造を取るので、ナノ粒子40が含む正孔輸送性無機材料は、金属酸化物を含むことが好ましい。
 本開示において、伝導帯の下端(Conduction band minimum)を以下CBM、価電子帯の上端(Valence band maximum)を以下VBMと言う。さらに、真空準位とCBMとの差の絶対値は電子親和力と言い換えることができ、また、真空準位とVBMとの差の絶対値は、イオン化ポテンシャルと言い換えることができる。なお、CBMやVBMについて「深い」とは「対応する電子親和力やイオン化エネルギーが大きい」ことを意味し、CBMやVBMについて「浅い」とは「対応する電子親和力やイオン化エネルギーが小さい」ことを意味し、「深さ」とは「対応する電子親和力やイオン化エネルギーの大きさ」を意味する。
 ナノ粒子40の材料として金属化合物は例えば、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、亜鉛(Zn)、鉄(Fe)、スズ(Sn)、銅(Cu)、クロム(Cr)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、およびレニウム(Re)から成る群から選択された1種または2種以上の金属元素を含むことが好ましい。ナノ粒子40の材料として特に、Niを含む金属化合物が好ましく、具体的には、例えば、Ni(OH),Ni(NO,NiCO,Ni,NiOまたはNiO、もしくはこれらのうちから選択した2種類以上を含む混合物が好ましい。なぜならば、ニッケル化合物のVBMの深さは、可視光領域で発光する量子ドットへの正孔注入に適しているからである。
 本開示における「ニッケル酸化物」は、ニッケルと酸素とを含む化合物を意味する。すなわち、ニッケル酸化物は例えば、価数が揃ったNi単体、NiO単体およびNiO単体だけでなく、価数の異なるNi,NiO,NiOの何れか2種類以上を含む混合物、Ni,NiOおよびNiOの何れか1種類以上に加えて酸化物以外のニッケル化合物を含む混合物、あるいはNi,NiOおよびNiOの何れか1種類以上に加えてニッケル化合物以外の金属化合物を含む混合物も含む。本開示における「ニッケル酸化物」は、ニッケル酸化物として工業的に生産および/または使用される混合物を含む。
 ここで、NiOは酸化ニッケル(I)であり、NiOは酸化ニッケル(II)であり、Niは酸化ニッケル(III)であり、Ni(OH)は水酸化ニッケルであり、Ni(NOは硝酸ニッケルであり、NiCOは炭酸ニッケルである。
 ナノ粒子40の形状は、溶媒への均一な分散及び均一な塗布性に対して、立体的に等方的な形状が望ましいので、略球体または略回転楕円体であることが好ましい。
 溶媒42は、水以外の溶媒であることが好ましい。溶媒42は、水よりも極性が高ければよく、さらに、水よりも蒸気圧が低いことが好ましい。加えて、溶媒42は電気化学的に安定性が高いことが好ましい。具体的には、常温常圧における溶媒42の沸点が、少なくとも発光素子または発光素子を用いた表示装置の使用環境温度の上限よりも高いことが好ましい。例えば、使用環境温度の上限が摂氏80度の場合、溶媒42の沸点が摂氏80度より十分に高いことが好ましく、摂氏約200度以上であることがより望ましい。また、正孔注入層20に用いられる金属元素は、Niなど触媒作用を持つものがある。このため、金属酸化物および/または活性酸素が存在している環境下での溶媒42の分解温度が、使用環境温度の上限よりも高いことが好ましい。活性酸素は、OHラジカル等を含む。
 このような溶媒は、例えば、カーボネート系溶媒、エトキシ系溶媒、チオール-カルボキシル系溶媒、チオール-アミン系溶媒、カルボキシル-アミン系溶媒、ケトン系溶媒、ニトリル系溶媒、ラクトン系溶媒、およびこれらの混合物である。具体的には、高極性かつ低蒸気圧の溶媒は、プロピレンカーボネート、エチレンカーボネート、1,2-ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、メルカプトプロピオン酸、システアミン、及びメルカプト酢酸から成る群から選択された1種または2種以上の溶媒を含んで良い。中でも、常温付近で流動性が高いエチレンカーボネートが溶媒42に適する。例えば、常圧におけるエチレンカーボネートの沸点は、摂氏約248度であり、金属酸化物または活性酸素が存在する環境でのエチレンカーボネートの分解温度は、摂氏約200度であり、エチレンカーボネートは非常に安定性が高い。
 常温常圧(摂氏約20°かつ1気圧)において、水の極性を示す双極子モーメントは約1.94Dであり、水の蒸気圧は約3200Paである。また、常温常圧において、エチレンカーボネートの極性を示す双極子モーメントは約4.5Dであり、エチレンカーボネートの蒸気圧は約2.66Paである。したがって、常温常圧における溶媒42の極性を示す双極子モーメントは、少なくとも約1.94Dより大きく、好ましくは、約2D以上、3D以上、4.5D以上、6D以上である。また、常温常圧における溶媒42の蒸気圧は、少なくとも約3200Pa未満であり、好ましくは約1000Pa未満である。
 高極性溶媒は、様々な有機溶媒に混和する性質がある。また低蒸気圧溶媒は揮発しにくい。これらのため、溶媒42を含む溶液は、粘度および濃度などの印刷に関わる特性を調整容易であり、かつ、特性を長期に亘り維持容易である。また、粘度および濃度などの調整が容易なので、溶媒42は、ナノ粒子40のインク化に適している。本開示において「インク化」は、ナノ粒子を溶媒に分散することを指し示す。
 <表示装置の製造方法>
 図5は、本実施形態に係る表示装置2の製造方法の一例を示す概略フロー図である。
 本実施形態に係る表示装置2の製造方法において、はじめに、基板4を形成する(ステップS2)。基板4は、例えば、硬直なガラス基板上に、フィルム基材と、当該フィルム基材上のTFTとを形成した後、フィルム基材からガラス基板を剥離することにより形成してもよい。上述したガラス基板の剥離は、後述する発光素子層6および封止層8の形成後に実行してもよい。あるいは、基板4は、例えば、硬直なガラス基板上に直接TFTを形成することにより形成してもよい。
 次いで、基板4上にアノード10を形成する(ステップS4)。アノード10は、例えば、金属材料の薄膜をスパッタ法および真空蒸着法等により製膜した後、フォトレジストを用いたドライエッチングまたはウェットエッチングにより、当該薄膜のパターニングを行うことにより実行してもよい。これにより、基板4に、サブ画素ごとに島状に形成された、アノード10R、アノード10G、およびアノード10Bが得られる。
 次いで、バンク12を形成する(ステップS6)。ステップS6においては、ポジ型の感光性樹脂のフォトリソグラフィにより、バンク12を形成する。具体的には、例えば、基板4およびアノード10の上面に、バンク12の材料となるポジ型の感光性樹脂を塗布する。次いで、塗布した感光性樹脂の上方に、各サブ画素に対応する位置に透光部を有したフォトマスクを設置して、フォトマスク越しに紫外光等を照射する。次いで、紫外光を照射した感光性樹脂を、適切な現像液によって洗浄する。これにより、基板4上の各サブ画素に対応する位置の間に、バンク12を形成する。
 一般に、フォトマスクと露光対象との距離が離れる程、フォトマスクの平面視における露光面積および露光強度は低下する傾向にある。このため、ポジ型の感光性樹脂を用いたフォトリソグラフィによってバンク12を形成した場合、バンク12は、基板4側から上方に向かって次第に小さく形成される。したがって、ステップS6において、ポジ型の感光性樹脂の塗布、露光、および現像により、バンク12を形成することにより、順テーパー面である側面20Sを有するバンク12を形成できる。
 次いで、正孔注入層20を形成する(ステップS8)。正孔注入層20および正孔輸送層22の形成については、後に詳述する。
 次いで、正孔輸送層22を形成する(ステップS10)。正孔輸送層22の形成において例えば、有機系正孔輸送性材料を溶媒に溶かして第2溶液を得、当該第2溶液を正孔注入層20の上に塗布し、加熱などによって溶媒を揮発除去して当該第2溶液を固化する。ここで、メニスカス効果によって正孔注入層20に膜厚差を設けるためには、正孔注入層20に対する正孔輸送層22の材料溶液の濡れ性が高いことが、すなわち、材料溶液の接触角が90度未満であることが要求される。正孔輸送層22は、例えば、真空蒸着法またはスパッタ法などの他の方法によって形成されてもよい。
 次いで、発光層24を形成する(ステップS12)。発光層24は、任意の方法で形成されてよい。例えば赤色発光層24Rは、インクジェット法によって形成およびパターニングされてもよい。また例えば赤色発光層24Rは、スピンコータなどを用いた塗布法によって形成され、フォトリソグラフィ技術によってパターニングされてもよい。また例えば赤色発光層24Rは、ファインメタルマスク(FMM)を用いた蒸着によって、形成およびパターニングされてもよい。
 次いで、電子輸送層26を形成する(ステップS14)。電子輸送層26は、例えば、電子輸送性材料を溶媒に溶かして材料溶液を得、当該材料溶液を発光層24および正孔輸送層22の上に塗布および固化する。電子輸送層26は、例えば、真空蒸着法またはスパッタ法などの他の方法によって形成されてもよい。
 次いで、カソード16を形成する(ステップS16)。カソード16は、例えば、金属材料の薄膜を真空蒸着法またはスパッタ法等により、各サブ画素に対し共通に成膜することにより形成してもよい。以上により、発光素子層6の形成が完了する。
 次いで、封止層8を形成する(ステップS18)。封止層8が有機封止膜を含む場合、当該有機封止膜の形成は、有機封止材料の塗布により実行してもよい。また、封止層8が無機封止膜を含む場合、当該無機封止膜は、CVD法等により成膜してもよい。これにより、発光素子層6を封止する封止層8が形成される。
 そして、必要に応じて、ガラス基板の剥離、および機能フィルムの貼り付けなどを実行して、表示装置2の製造が完了する。機能フィルムは、例えば、偏光板フィルム、タッチセンサパネル機能を有するセンサフィルム、保護フィルム、および反射防止フィルムなどを含む。
 <正孔注入層の形成>
 図6は、本実施形態に係る正孔注入層20の形成工程の一例を示す概略フロー図である。
 図7は、本実施形態に係る正孔注入層20の形成工程の一例を示す概略工程図である。
 図6に示すように、ステップS8においては、まず、溶媒42を用いてナノ粒子40をインク化して、インク44を得る(ステップS20)。インク44は通常、常温常圧での粘性が高く、実質的に固体である。なお、インク44の粘性を調整するために、溶媒42よりも蒸気圧が大きい溶媒または、溶媒42よりも沸点が低い溶媒を、インク44に適宜添加してもよい。
 次いで、インク44を少し加熱して流動化する(ステップS22)。例えば、ナノ粒子40がニッケル酸化物から成り、溶媒42がエチレンカーボネートを含む場合、インク44は摂氏40°付近で滴下可能または印刷可能な流動性を得る。
 図6および図7に示すように、次いで、インク44をアノード10上(および/またはバンク12上)に滴下または印刷する(ステップS24)。図7はインク44の滴下または印刷後のインク断面を示している。
 図6に示すように、次いで、基板4と共にインク44をさらに加熱し、インク44の流動性を高める(ステップS26)。例えば、ナノ粒子40がニッケル酸化物から成り、溶媒42がエチレンカーボネートを含む場合、インク44を摂氏130°付近まで加熱する。流動性の増大によって、インク44がアノード10上(および/またはバンク12上)を濡れ広がり、略平坦になる。ここで、インク44に溶媒42に加えて、溶媒42と異なる別の溶媒も添加されており、その別の溶媒が溶媒42よりも蒸気圧が大きい場合またはその別の溶媒が溶媒42よりも沸点が低い場合は、その別の溶媒がインク44から揮発しやすく、減少または除去される。一方、溶媒42はインク44から比較的揮発しにくく、あまり減少しないまたは残留する。
 次いで、インク44が熱いうちにスピンコータを用いて、基板4と共にインク44をスピンする(ステップS28)。スピンによる遠心力によって、インク44がアノード10上(および/またはバンク12上)をさらに濡れ広がる。
 次いで、基板4と共にインク44を自然冷却または強制冷却する(ステップS30)。冷却によって、インク44の流動性が低下し、実質的に固化する。固化したインク44が、正孔注入層20である。
 なお、インクジェット法およびスクリーン印刷法などの印刷技術を用いて正孔注入層20をパターニングする場合、ステップS28を省略する。また、パターニングによって、正孔注入層20を発光素子毎に島状に形成する場合、正孔注入層20および正孔輸送層22の膜厚が均一でもよい。
 (作用効果)
 以上のように、正孔注入層20はインク44の塗布によって形成される。このため、正孔輸送性の金属化合物を蒸着する従来技術と比較して、本実施形態に係る正孔注入層20は、大面積に略均一な厚さで容易に形成できる。さらに、本実施形態に係る正孔注入層20は、形成に要する費用および工程数などが少ない。
 また、水およびアルコール類などの蒸気圧が高い溶媒に正孔輸送性の金属化合物を分散した従来技術では、溶媒が揮発しやすいので、インクの粘度および濃度が経時変化しやすい。このため、インクの大量生産および長期保管が困難であった。さらに、正孔注入層に残留する溶媒が、発光層などの他の層に拡散し、他の層を変質させる。一方、本実施形態によれば、溶媒42の蒸気圧が低いため、インク44が大量生産および長期保管に適しており、さらに、正孔注入層20中の溶媒42が拡散し難い。
 また、トルエンおよびオクタンなどの低極性の溶媒に有機リガンを介して正孔輸送性の金属化合物を分散した従来技術では、有機リガンドが電気化学反応によって劣化したり、量子ドットから離脱したりするため、正孔注入層の正孔注入効率が経時的に低下する。また、有機リガンド自体が正孔注入および正孔輸送に適していない。一方、本実施形態によれば、正孔注入層20はリガンドを含まない場合、リガンドに起因する問題が生じない。なお、リガンドを含まない場合、金属化合物のナノ粒子は低極性溶媒中で分散しないため、低極性溶媒による金属化合物のインク化および塗布は困難または不可能である。
 したがって、従来技術と比較して、本実施形態に係る構成および方法は、発光素子および表示装置2の発光特性および信頼性が高いという利点を有し、生産性も高いという利点も有する。
 さらに、本実施形態によれば、溶媒42が高極性であり、電解質として機能するため、溶媒42が正孔注入層20の正孔輸送性を高める。また、発光層24をオーバーフローした電子が溶媒42を流れるため、正孔注入層20の界面および正孔注入層20中に電子が蓄積し難く、溶媒42の電気化学反応による劣化が起こり難い。このため、電気化学反応に起因する発光素子の特性変化が小さいまたは無い。
 (変形例)
 なお、本開示の範囲は上述に限らない。任意の機能層、例えば、正孔輸送層22、電子輸送層26および電子注入層などの何れか1層以上が、電荷輸送性を有する金属化合物のナノ粒子と、高極性かつ低蒸気圧の溶媒とを含む構成は、本開示の範囲に含まれる。また例えば、任意の機能層および/または発光層24の配置またはパターニングについて、種々の変形を施した構成も、本開示の範囲に含まれる。
 図18は、図1に示した表示領域DAの概略構成の一変形例を示す断面図である。
 図18に示すように、正孔注入層20と正孔輸送層22と電子輸送層26との何れか1つ以上が、発光素子毎に個別に形成されてもよい。したがって、正孔注入層20などの機能層が、バンク12の側面12Sのうち境界線BLに近い部分のみを覆う構成も、本開示の範囲に含まれる。すなわち、図18では、バンク12の上面12Uにおいて発光素子毎に正孔注入層20が個別に分離されている。しかしそれに限らず、バンク12の側面12S上において発光素子毎に正孔注入層20などの機能層が個別に分離されていてもよい。
 図19は、図1に示した表示領域DAの概略構成の別の一変形例を示す断面図である。
 図19に示すように、赤色発光層24Rと緑色発光層24Gと青色発光層24Bとが、互いに重なるように、形成されてもよい。したがって、電子輸送層26が正孔輸送層22と直接接触しない構成も、本開示の範囲に含まれる。
 さらに、図19では、バンク12の上面12Uにおいてある発光層がその他の発光層と重なって形成されている。しかしそれに限らず、バンク12の側面12S上においてある発光層がその他の発光層と重なって形成されていてもよい。
 さらに、バンク12の上面12Uにのみある発光層が形成され、その他の発光層と重なって形成されていてもよい。
 上述の記載のうち、正孔注入層について説明した記載については、その正孔注入層の文言を正孔輸送層に置き換えて矛盾の無い範囲で解釈することができる。また、同様に、電子輸送層または電子注入層の記載として解釈する場合は、正孔注入層の文言を電子輸送層または電子注入層に置き換えて、また電荷の正負を逆転して、矛盾の無い範囲で解釈することができる。
 (参考例1)
 参考例1に係る発光素子を形成した。参考例1において、ナノ粒子40がPEDOTから成り、溶媒42が水を含み、正孔輸送層22がTFBから成った。
 (参考例2)
 参考例2に係る発光素子を形成した。参考例2に係る発光素子は、ナノ粒子40がCuSCNから成る点を除いて、参考例1に係る発光素子と同一構成を有した。
 (参考例3)
 参考例3に係る発光素子を形成した。参考例3に係る発光素子は、ナノ粒子40がニッケル酸化物から成る点を除いて、参考例1に係る発光素子と同一構成を有した。
 (参考例4)
 参考例4に係る発光素子を形成した。参考例4に係る発光素子は、ナノ粒子40がPEDOT:PSSから成る点を除いて、参考例1に係る発光素子と同一構成を有した。
 (予測例1)
 予測例1は、ナノ粒子40がニッケル酸化物から成り、溶媒42がエチレンカーボネートを含み、正孔輸送層22がTFBから成る発光素子を形成した場合を予測した例である。
 図8は、参考例1~4に係る発光素子における駆動電圧E(V)と電流密度J(mA/cm)との関係を示すグラフを示す図である。
 図9は、参考例2~4および予測例1に係る発光素子における相対輝度(%)と経過時間Time(h)との関係を示すグラフを示す図である。相対輝度は、予測例1に係る発光素子の予想最大発光輝度を100%とする。
 図8において、参考例2~4に係る発光素子の駆動電圧E(V)が、参考例1に係る発光素子の駆動電圧E(V)よりも顕著に小さかった。発光素子の発光は、発光層24を通る有効電流に依存する。したがって、参考例2~4に係る発光素子の発光特性が、参考例1に係る発光素子の発光特性から、顕著に向上した。すなわち、正孔注入層20のナノ粒子40を無機材料から形成することによって、低電圧化できた。
 また、参考例3に係る発光素子の駆動電圧E(V)が、参考例2に係る発光素子の駆動電圧E(V)よりも少し小さかった。したがって、参考例3に係る発光素子の発光特性が、参考例2に係る発光素子の発光特性から、少し向上した。すなわち、正孔注入層20のナノ粒子40をニッケル酸化物から形成することによって、より低電圧化できた。
 図9において、参考例4に係る発光素子の相対輝度(%)が、経過時間Time(h)に伴って急激に低下し、約10時間経過時点で20%を下回っている。したがって、参考例4に係る発光素子の寿命すなわち長期信頼性は、低い。参考例4に係る正孔注入層20および正孔輸送層22の双方が有機材料から成るため、参考例4に係る相対輝度の低下は、発光層24をオーバーフローした電子による正孔注入層20および/または正孔輸送層22の劣化に起因すると推定される。
 図9において、一方、参考例2,3に係る発光素子の寿命が参考例4に係る発光素子の寿命よりも長く、参考例3に係る発光素子の寿命が参考例2に係る発光素子の寿命よりも長い。したがって、正孔注入層20のナノ粒子40を無機材料から形成することによって、信頼性を向上でき、ニッケル酸化物から形成することによって信頼性をより向上できた。なお、参考例2,3に係る発光素子の相対輝度(%)が、経過時間Time(h)に伴って低下している。参考例2,3に係る正孔注入層20が、CuSCNまたはニッケル酸化物などの無機物から成るナノ粒子40と水を含む溶媒42とから成る。このため、参考例2,3に係る相対輝度の低下の主因は、正孔注入層20から拡散した水による発光層24および/または正孔輸送層22の劣化であると推定される。
 したがって、ナノ粒子40が無機物から成る本実施形態に係る発光素子が発光特性および信頼性の双方で優れていることと、ナノ粒子40がニッケル酸化物から成ることが特に好適であることと、が示された。
 なお、本開示の範囲は上述に限らない。任意の機能層、例えば、正孔輸送層22、電子輸送層26および電子注入層などの何れか1層以上が、電荷輸送性を有する金属化合物のナノ粒子と、高極性かつ低蒸気圧の溶媒とを含む構成は、本開示の範囲に含まれる。また例えば、任意の機能層および/または発光層24の配置またはパターニングについて、種々の変形を施した構成も、本開示の範囲に含まれる。
 上述の記載のうち、正孔注入層について説明した記載については、その正孔注入層の文言を正孔輸送層に置き換えて矛盾の無い範囲で解釈することができる。また、同様に、電子輸送層または電子注入層の記載として解釈する場合は、正孔注入層の文言を電子輸送層または電子注入層に置き換えて、また電荷の正負を逆転して、矛盾の無い範囲で解釈することができる。
 〔実施形態2〕
 本開示の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 本実施形態に係る発光素子層6は、正孔注入層20および正孔輸送層22に特徴的構成を有し、その他は前述の実施形態1に係る発光素子層6と同一構成を有する。
 図10は、本実施形態に係る発光素子層6における正孔注入層20と正孔輸送層22と発光層24との概略構成を示す模式図である。
 図11は、比較例による発光素子層6における正孔注入層20と正孔輸送層22と発光層24との概略構成を示す模式図である。
 図10に示すように、本実施形態に係る発光素子層6において、正孔注入層20は正孔輸送性材料から成るナノ粒子40を含み、正孔輸送層22は正孔注入層20の表面に形成され、発光層24は発光体として量子ドット50を含む。ここで、正孔輸送層22は正孔注入層20の表面に追従するように形成されてもよい。そして、ナノ粒子40の平均粒径が、量子ドット50の平均粒径より小さい。具体的には、ナノ粒子40の平均粒径が、量子ドット50の平均粒径に対して、少なくとも40%以上100%未満の範囲にあり、好ましくは、60%以上90%以下の範囲にある。
 本実施形態に係る正孔注入層20に用いられるナノ粒子40は、正孔輸送性を有していればよく、高極性の溶媒に分散し得てもよく、分散し得なくてもよい。
 正孔注入層20の下面はアノード10に接し、正孔輸送層22の上面は発光層24に接する。正孔注入層20の厚さは1nm以上50nm以下であり、正孔輸送層22の厚さは1nm以上50nm以下である。
 発光素子層6における電荷輸送機構は、発光ダイオードによる輸送機構と、シャント抵抗による輸送機構と、空間電荷制限電流による輸送機構と、から成る。
 これらのうち、発光ダイオードにより輸送される電流(以降、「ダイオード電流」と称する)は、量子ドット50における正孔と電子との再結合および発光に直接関係する有効電流である。ダイオード電流は、半導体接合に流れる電流として、ショックレーの方程式で記述できる。
 また、シャント抵抗により輸送される電流(以降、「シャント電流」と称する)は、発光ダイオードに並列な絶縁抵抗を流れる電流である。したがって、シャント電流は、発光に寄与しない無効電流であり、電圧に比例する線形成分である。シャント電流は通常、極めて小さく、発光特性に実質的に影響しないので、無視可能である。
 また、空間電荷制限電流は、量子ドット50およびシャント抵抗(不図示)の外の、電荷移動度が小さいが、無視できない程度の大きさを有する媒体を流れる電流である。空間電荷制限電流は、具体的には例えば、発光層24に含まれるリガンド(不図示)および/または正孔輸送層22に含まれる正孔輸送材料などの有機物(不図示)を流れる。したがって、空間電荷制限電流は、発光に寄与しない無効電流である。空間電荷制限電流は、下記式が示すように、正孔注入層20と発光層24との間の距離および電圧と、媒体の電荷移動度および誘電率とに依存する。特に、空間電荷制限電流は距離の-3乗に比例する。
Figure JPOXMLDOC01-appb-M000001
 ここで、Iは空間電荷制限電流の大きさを示し、dおよびVは正孔注入層20と発光層24との間の距離および電圧を示し、εおよびμは媒体の電荷移動度および誘電率を示す。
 なお本開示において、正孔注入層20と発光層24との間の距離とは、正孔注入層20に含まれるナノ粒子40の表面から発光層24に含まれる量子ドット50の表面に到るまでの上下方向の平均距離を意味する。また、正孔注入層20と発光層24との間の距離とは、正孔注入層20が複数の粒子層からなる場合、最も発光層24に近い粒子層に含まれるナノ粒子40の表面からの上下方向の平均距離を意味する。また、正孔注入層20と発光層24との間の距離とは、発光層24が複数の粒子層からなる場合、最も正孔注入層20に近い粒子層に含まれる量子ドット50の表面までの上下方向の平均距離を意味するである。
 図11に示す比較例の構成は、ナノ粒子40の平均粒径が量子ドット50の平均粒径に近い点を除いて、図10に示した本実施形態に係る構成と同等である。
 図11に示す比較例では、ナノ粒子40の平均粒径が量子ドット50の平均粒径に近く、かつ、ナノ粒子40の粒径分布が小さい。このため、正孔注入に適した厚さの正孔注入層20の上面には、量子ドット50の平均粒径に近しい周期で周期的な凹凸が生じ、その凹凸の深さは量子ドット50の粒径の約半分である。正孔輸送層22が正孔注入層20の表面に追従するため、正孔輸送層22の表面にも同様の凹凸が生じる。量子ドット50が、正孔輸送層22の凹凸に従って整列しやすいので、ナノ粒子40の表面から量子ドット50の表面に到るまでの平均距離が小さい。
 一方、図10に示す本開示に係る構成によれば、ナノ粒子40の平均粒径が量子ドット50の平均粒径よりも小さい。このため、本開示に係る正孔注入層20および正孔輸送層22の上面に生じる凹凸は、量子ドット50を整列し難い。この結果、比較例と比較して、本開示に係るナノ粒子40の表面から量子ドット50の表面に到るまでの平均距離が大きい。
 前述のように、空間電荷制限電流は、正孔注入層20と発光層24との間の距離の-3乗に比例する。したがって、本開示の構成によれば、空間電荷制限電流が小さいので、無効電流が小さく、EQEが高い。
 さらに、発光層24から見て、下方に位置する正孔注入層20の最表面のナノ粒子40の粒径のバラつきが大きい場合、ナノ粒子40の隙間を埋める量子ドット50が増え、そのため、正孔注入層20と発光層24との平均距離が小さい。反対に、ナノ粒子40の粒径のバラつきが小さい場合、正孔注入層20と発光層24との平均距離が大きい。つまり、ナノ粒子40の粒径の分布範囲が狭いほど、平均粒径より粒径が大きいナノ粒子40が少ないほど、正孔注入層20と発光層24との間の平均距離が大きい。このため、ナノ粒子40の粒径は、ナノ粒子40の平均粒径に対して、少なくとも-4nm以上+50nm以下の範囲にあり、好ましくは、-4nm以上+30nm以下の範囲にある。また、ナノ粒子40の平均粒径をPa、ナノ粒子40の粒径の標準偏差をPσ、量子ドット50の平均粒径をQa、量子ドット50の標準偏差をQσとして、Qσ/Qa>Pσ/Paを満たすことが好ましい。また、ナノ粒子40の粒径分布は、最頻値が中央値および/または平均値よりも小径側にあることが好ましい。
 (平均粒径および粒径分布)
 本開示におけるナノ粒子40の平均粒径および粒径分布は、公称値または設計値であっても、計測値であってもよい。
 計測は例えば、ナノ粒子40を含む溶液の光散乱、ナノ粒子40を含む層のX線散乱、または、ナノ粒子40を含む層の断面を走査型または透過型電子顕微鏡により観察する等の方法に基づいて算出できる。具体的には、溶液に対して、レーザ光を溶液に入射させて散乱光を検出する動的光散乱法を用いる。この計測は、正孔注入層20の形成前が適する。または、X線を製膜した試料表面に微小角で入射させ、その散乱を検出するX線小角散乱を用いても良い。この手法は正孔注入層20の形成後に適する。この手法は正孔注入層20の形成後に適する。
 計測は例えば、正孔注入層20の断面画像に基づいて算出できる。具体的には、正孔注入層20を切断し、その断面を走査型電子顕微鏡(Scanning Electoron Microscope:SEM)を用いて撮影する。そして、断面写真の任意の位置において、幅200μm以上1000μm以下の範囲に観察されるナノ粒子40の粒径を計測する。
 そして、平均粒径は計測した粒径の平均値を算出したものであり、粒径分布の範囲は計測した粒径の最小値から最大値の範囲である。ここで、粒径を計測するナノ粒子40の個数は、統計的に有意確率を十分に小さくするために要求される個数よりも少なくてもよい。なぜならば、本願のナノ粒子を含む一般的なナノ粒子の製法では、化学的および熱力学的に平衡な条件下で原料を反応させるため、製造段階で非常に小さい粒径分布が自然に実現できているためである。例えば、有意確率5%を得るために約500個の計測が要求される場合に、約100個だけを計測してもよい。
 ナノ粒子40の形状が球形以外である場合、ナノ粒子の断面の面積と等しい面積を持つ円の直径をナノ粒子40の粒径とする。
 量子ドット50の平均粒径も同様に、公称値または設計値であっても、計測値であってもよい。
 (実施例1)
 本実施形態の実施例1に係る発光素子を形成した。実施例1において、ナノ粒子40が酸化ニッケルから成り、ナノ粒子40の平均粒径が約9nmであり、ナノ粒子40の最小粒径が約6nmであり、最大粒径が約55nmであった。すなわち、ナノ粒子40の粒径は、平均粒径に対して-4nm以上+50nm以下の範囲にあった。また、量子ドット50の平均粒径が約10nmであり、量子ドット50の最小粒径が約9nmであり、最大粒径が約12nmであった。
 図12は、実施例1におけるナノ粒子40の粒径の分布を示すグラフを示す図である。図12において、粒径の頻度分布を左側目盛を参照する棒グラフによって示し、粒径の累積分布を右側目盛を参照する折線グラフによって示し、粒径の分布範囲を上部に網掛けによって示す。
 (参考例5)
 参考例5に係る発光素子を形成した。参考例5に係る発光素子は、ナノ粒子40の平均粒径が約16nmであり、ナノ粒子40の最小粒径が約12nmであり、最大粒径が約68nmであった点を除いて、実施例1に係る発光素子と同一構成を有した。
 したがって、参考例5に係る発光素子において、ナノ粒子40の粒径は量子ドット50の粒径に近い。
 (発光素子の詳細解析)
 図13は、参考例5の発光素子層6における駆動電圧E(V)と電流密度J(mA/cm)との関係およびその解析結果を示す片対数グラフを示す図である。
 図14は、参考例5の発光素子層6におけるEQEと電流密度J(mA/cm)との関係を示すグラフを示す図である。
 本開示の発明者らは、実施例1および参考例5の発光素子層6の電流電圧特性を解析した。前述のようにシャント成分は無視可能なほど小さい。このため、詳細解析は、ダイオード方程式及び空間電荷制限電流の式を並列回路として組み合わせた電流解析を行った。
 図13に示すように、参考例5の発光素子層6の空間電荷制限電流は、ダイオード電流に近い水準まで大きかった。なぜならば、発光素子層6における各層の厚さはnmオーダー程度と薄いため、dが小さいからである。
 図14に示すように、故に、参考例5の発光素子層6の空間電荷制限電流は、参考例5の発光素子層6のEQEに影響する。
 一方、実施例1に係る発光素子層6の電流電圧特性は、参考例5の電流電圧特性よりも空間電荷制限電流が小さかった。また、実施例1に係る発光素子層6のEQEは、参考例5のEQEよりも良好であった。したがって、正孔注入層20と発光層24との間の距離dを大きくすることによって、空間電荷制限電流が減少し、EQEが向上したと判断される。
 図12に示すように実施例1におけるナノ粒子40の粒径は、最頻値が6nm~7nmの間にあり、中央値が10nm~20nmの間にあった。また、前述のように実施例1におけるナノ粒子40の粒径は、平均値が約9nmであり、最小値が約6nmであり、最大値が約55nmであった。したがって、平均値と最小値との間の幅と比べて、平均値と最大値との間の幅が大きいものの、一方で、平均よりも小さいナノ粒子40が平均より大きいナノ粒子40よりも多い。
 より詳細には、ナノ粒子40の最大粒径をPmax、ナノ粒子40の最小粒径をPmin、ナノ粒子40の粒径の標準偏差をPσとして、実施例1のナノ粒子40の粒径分布は、3*Pσ<(Pmax-Pmin)を満たした。なお、本開示は、積算を示す演算記号として「*」を用いる。
 正規分布の場合、標準偏差の3倍が最大値と最小値との差に略等しい。すなわち、正規分布における最大値をMax、最小値をMin、標準偏差をσとして、3*σ≒(Max-Min)を満たす。
 したがって、実施例1におけるナノ粒子40の標準偏差は、正規分布における標準偏差と比較して、小さい。換言すると、図12が示すように、実施例1におけるナノ粒子40の粒径分布は、大径側に長い尾を引いているので平均より大径側に広く分布するが、しかし、平均よりも大径側のデータ数が少ないのでばらつき自体は大きくない。
 なお、本実施形態に係る構成は、前述の実施形態1に係る構成と組み合わせ可能である。例えば、正孔注入層20が、量子ドット50よりも小さいナノ粒子40と高極性かく低蒸気圧の溶媒42とを含み、かつ、ナノ粒子40が溶媒42に分散し得、かつ、ナノ粒子40の割合が、正孔注入層20の上面にナノ粒子40による凹凸が生じるように、高い構成であってもよい。
 なお、本開示のナノ粒子40を含む正孔注入層20などの機能層形成後に、当該機能層の表面にナノ粒子40が露出している構成とし、当該機能層の表面から露出したナノ粒子40の表面に追従するように正孔輸送層22を形成しても良い。この場合、正孔注入層20と発光層24間の距離を増加させることができるため、無効電流の低減の効果が得られる。
 また、本開示の範囲は上述に限らない。任意の機能層、例えば、正孔輸送層22、電子輸送層26および電子注入層などの何れか1層以上が、電荷輸送性を有する金属化合物のナノ粒子と、高極性かつ低蒸気圧の溶媒とを含む構成は、本開示の範囲に含まれる。。また例えば、任意の機能層および/または発光層24の配置またはパターニングについて、種々の変形を施した構成も、本開示の範囲に含まれる。
 上述の記載のうち、正孔注入層について説明した記載については、その正孔注入層の文言を正孔輸送層に置き換えて矛盾の無い範囲で解釈することができる。また、同様に、電子輸送層または電子注入層の記載として解釈する場合は、正孔注入層の文言を電子輸送層または電子注入層に置き換えて、また電荷の正負を逆転して、矛盾の無い範囲で解釈することができる。
 〔実施形態3〕
 図15は、本実施形態に係る発光素子層6における正孔注入層20と正孔輸送層22と発光層24と単分子膜28との概略構成を示す模式図である。
 図15に示すように、本実施形態に係る発光素子層6は、正孔注入層20および正孔輸送層22の間に単分子膜28を有する点を除いて、前述の実施形態1,2に係る発光素子層6と同一構成を有する。
 なお、本実施形態に係る正孔注入層20に用いられるナノ粒子40は、正孔輸送性を有していればよく、高極性の溶媒に分散し得てもよく、分散し得なくてもよい。
 (単分子膜)
 単分子膜28は、正孔注入層20における量子ドット50の層(すなわち発光層24)と対向する面側にのみに設けられることが最も好ましい。単分子膜28は、加えて、それ以外の箇所に設けられてもよいが、その場合、発光効率の低下を招くことがある。例えば、単分子膜28を、正孔注入層20の発光層24と対向する面と、その反対面である正孔注入層20のアノード10に対向する面との双方に設けた場合、単分子膜28が正孔輸送性を持つことから、正孔注入層20の並列抵抗を低下させる場合がある。オーム性のリーク電流を抑制するため並列抵抗は高い程望ましく、並列抵抗が下がると量子ドット50に注入されないキャリアが増加して発光効率が低下する。
 単分子膜28は、分子52から構成される。分子52は、1種類の分子のみを含んでも、2種類以上の分子を含んでもよい。
 単分子膜28および分子52は、正孔輸送性を有する。分子52は例えば、正孔輸送性の分子鎖を有し、ナノ粒子40の表面に吸着する官能基を有する。官能基は、分子鎖の一端に結合しているか、または、対称な分子鎖の両端に結合していることが好ましい。
 単分子膜28が自己組織化単分子膜(Self Assembled Monolayers:SAM)であることが、すなわち、分子52が自己組織化能力を備えることが好ましい。なぜならば、後述するように、分子52を溶媒に溶かした溶液を正孔注入層20に塗布する等の簡易な方法で、単分子膜28を形成できるからである。
 単分子膜28には、複数の同じ分子52が互いに隣り合って配置されていることが好ましい。なぜならば、同じ分子により厚みが構成されるので単分子膜28の膜厚が略均一に形成でき、同じ分子で構成されるので膜質も略均一であり、同じ分子が隣り合う構造なので分子が膜内で密に分布することができるからである。さらに、単分子膜28を構成する分子52は、隣り合う分子との間隔が等間隔で配置されていると、さらに密に分布できるので、好ましい。また、単分子膜28を構成する分子52は、互いに同じ向きで配置されていると、さらに密に分布でき相互作用により強固な結合を形成できるので、好ましい。
 例えば、分子52が有する官能基をR及びR´と示すと、分子52は、R-SH,RS-SR´,R-RSCN,R-SeH,R-TeH,RSe-SeR´,R-NC,R-NCO,R-SiH,R-Si(CHH,R-Si(CH,R-COOH,dye-COOH,R-PO,RO-PO,R-SiX[X=Cl,OCH,OC],R-NH,R-OH,[R-C(O)O],R-CH=CH,R-C≡CH,R-MgBr,R-Li,Ar-N [X=Cl,OCH,OC]及びR-BrR-CH=CHの中から選択される少なくとも1種の分子を含んでもよい。これらの分子は、自己組織化して、単分子膜を形成する。
 ここで、Hは水素を示し、Sは硫黄を示し、Cは炭素を示し、Nは窒素を示し、Siは珪素を示し、Clは塩素を示し、Seはセレンを示し、Teはテルルを示し、Mgはマグネシウムを示し、Brは臭素を示し、Liはリチウムを示し、Arはアリール基を示し、Xは、Cl、OCH、およびOCの何れかを示す。
 分子52として特に、MeO-2PACz,BA-CF3,2PACz及びMe-4PACzの中から選択された少なくとも1種を含むことが好ましい。
 (自己組織化)
 図16は、分子52の自己組織化を示す模式図である。
 まず、分子52を溶媒に溶かした溶液を、正孔注入層20の表面にスピンコートまたは浸漬により塗布する。
 図16の左側に示すように、溶液中の分子52は官能基でナノ粒子40の表面に吸着する。そして、分子52は吸着と離脱を繰り返しながら、図16の中央に示すように単分子膜28を形成する。
 正孔注入層20の表面エネルギーと分子52の表面エネルギーとの合計は、分子52がナノ粒子40に吸着することによって低下する。このため、なるべく多くの分子52がナノ粒子40に吸着しようとする。一方、分子52は、分子鎖同士の相互作用によって、互いから所定距離以上離れようとする傾向にある。この所定距離は、分子鎖によって決定される。加えて、分子52は、分子鎖の一端にのみ官能基を有するか、または、対称な分子鎖の両端に官能基を有するため、ナノ粒子40と結合すると自動的に分子鎖の方向が揃う。これらの結果、分子52が自己組織化し、正孔注入層20における量子ドット50の層と対向する面側の表面全体を略均一な密度で覆う。
 そして、図16の右側に示すように、表面エネルギーの低下によって、過剰な分子52が排除され、単分子膜28が2層以上形成されることがない。
 次に、熱処理などで溶媒を除去し、単分子膜28を正孔注入層20の表面に定着する。
 なお、ここでは、ナノ粒子40を含む正孔注入層20を形成した後に、単分子膜28を形成したが、それに限られるものではなく、正孔注入層20形成前のナノ粒子40に単分子膜28を形成してもよい。
 ただし、ナノ粒子40を含む正孔注入層20を形成した後に単分子膜28を形成する方が、そうでない場合に生じるデメリットを解消する対策を取る必要がなくなるので、望ましい。すなわち、正孔注入層20形成前のナノ粒子40に単分子膜28を形成した場合には、ナノ粒子40全体に単分子膜28が形成された状態でナノ粒子40を含む溶液を塗布し正孔注入層20を形成することになるが、単分子膜28の極性と溶媒の極性などの関係により単分子膜28が形成されたナノ粒子40が溶液にうまく分散しないことがあり、その場合には正孔注入層20が形成しにくくなる。
 しかし、正孔注入層20形成前のナノ粒子40に単分子膜28を形成した場合でも、正孔注入層20形成の際の塗布時の溶媒として高極性溶媒を用いることにより、単分子膜28が形成されたナノ粒子40でも溶液中にうまく分散するので、正孔注入層20が形成しやすくなり、望ましい。
 また、ナノ粒子40上に単分子膜28を形成した後に正孔注入層20を形成する場合、および、正孔注入層20を形成した後にナノ粒子40上に単分子膜28を形成する場合の何れにおいても、正孔注入層20および単分子膜28の形成後にナノ粒子40上の単分子膜28が、正孔注入層20表面を被覆し、正孔輸送層22の下地層として露出している構成がさらに望ましい。単分子膜28を露出させない場合でも単分子膜28を形成することによる無効電流の低減の効果は得られるが、単分子膜28を露出させることによって、単分子膜28を形成することによる無効電流の低減の効果をさらに高くすることができるからである。すなわち、単分子膜28を露出させない場合でも正孔注入層20と発光層24との間の距離は単分子膜28を形成することで増加させることができるが、単分子膜28を露出させることによってさらに距離の増加割合を上げることができ、その分無効電流の低減の効果をさらに高くすることができるので望ましい。
 なお、正孔注入層20を形成した後にナノ粒子40上に単分子膜28を形成する場合、本開示のナノ粒子40を含む正孔注入層20の形成後かつ単分子膜28の形成前には、正孔注入層20の表面にナノ粒子40が露出している構成がさらに望ましい。すなわち、図4に示したように、ナノ粒子40の最上部のレベルFが機能層の溶媒42(固化工程前または後の溶媒を含む)上面(表面)のレベルEより上にくる状態がさらに望ましい。これによって、単分子膜28を前述のように露出でき、無効電流を減少させる効果を高くすることができるからである。
 また、単分子膜28を前述のように正孔輸送層22の下地層として露出させ、単分子膜28の表面に追従するように正孔輸送層22を形成した場合、さらに距離の増加割合を上げることができるため、無効電流を減少させる効果を高くすることができる。
 (実施例2)
 本実施形態の実施例2に係る発光素子を形成した。実施例2において、正孔注入層20の厚さが20nmであり、ナノ粒子40がニッケル酸化物から成り、単分子膜28を構成する分子52がMeO-2PACzであり、正孔輸送層22の厚さが40nmであり、正孔輸送層22がp-TPDから成った。
 単分子膜28は、MeO-2PACzをエタノールに0.01mol/lの溶液になるように溶かし、正孔注入層20上にMeO-2PACz溶液を塗布し、5秒以上経過してからMeO-2PACz溶液を乾燥した。これによって、正孔注入層20の表面にSAMを形成した。
 (実施例3)
 本実施形態の実施例3に係る発光素子を形成した。実施例3に係る発光素子は、分子52がBA-CFである点,ナノ粒子40がクロム酸化物から成る点を除いて、実施例2に係る発光素子と同一構成を有した。
 なお、本開示における「クロム酸化物」は、クロムと酸素とを含む化合物を意味する。すなわち、クロム酸化物は例えば、価数が揃ったCrO単体、Cr単体、CrO単体およびCrO単体だけでなく、価数の異なるCrO,Cr,CrO,CrOの何れか2種類以上を含む混合物、CrO,Cr,CrO,CrOの何れか1種類以上に加えて酸化物以外のクロム化合物を含む混合物、あるいはCrO,Cr,CrO,CrOの何れか1種類以上に加えてクロム化合物以外の金属化合物を含む混合物も含む。本開示における『クロム酸化物』は、クロム酸化物として工業的に生産および/または使用される混合物を含む。
 (実施例4)
 本実施形態の実施例4に係る発光素子を形成した。実施例4に係る発光素子は、分子52が2PaCzである点,を除いて、実施例2に係る発光素子と同一構成を有した。
 (実施例5)
 本実施形態の実施例5に係る発光素子を形成した。実施例5に係る発光素子は、分子52がMeO-4PACzとMeO-2PACzとを含み、単分子膜28をMeO-4PACzとMeO-2PACzとを重量比1:1で含む混合溶液を用いて形成した点を除いて、実施例2に係る発光素子と同一構成を有した。
 (参考例6)
 参考例6に係る発光素子を形成した。参考例6に係る発光素子は、単分子膜28を有さない点を除いて、実施例2に係る発光素子と同一構成を有した。
 (参考例7)
 参考例7に係る発光素子を形成した。参考例7に係る発光素子は、単分子膜28を有さない点を除いて、実施例2に係る発光素子と同一構成を有した。
 (参考例8)
 参考例8に係る発光素子を形成した。参考例8に係る発光素子は、単分子膜28を2nmの厚さのAlの蒸着膜に置換した点を除いて、実施例3に係る発光素子と同一構成を有した。
 図17は、実施例2~5および参考例6~8に係る発光素子における駆動電圧E(V)と電流密度J(mA/cm)との関係を示すグラフを示す図である。
 図17に示すように、参考例6~8の発光素子は、4V以下の領域で、電流密度が低下し、ダイオード特性が明確になる。この領域での電流密度低下は全て無効電流である。一方、実施例2~5の発光素子は、参考例6~8の発光素子と比較して、4V以下の領域における電流密度が減少している。
 最良の単分子膜28を導入することにより、表示装置2において1/20程度まで無効電流が減少する。
 すなわち、従来の表示装置2では、ダイオード電流:無効電流=1:1程度であったのに対して、単分子膜28を導入することにより、本実施の形態の表示装置2では、ダイオード電流:無効電流=1:0.05程度まで電気特性が改善した。また、最大EQE値は、本実施の形態の表示装置2において、従来の表示装置2に対して、2倍程度の向上が見られた。
 (特性への考察1)
 以下、本実施の形態の表示装置2における、前記の電気特性の向上について、その概要を説明する。
 正孔注入層20最表面には、ホール輸送性を有する単分子膜28が自己組織化により、単分子層として正孔注入層20表面全面に渡り均一に形成される。そして、単分子膜28のホール輸送性により、QDへのホール輸送が向上する(1)。
 また、単分子膜28の高いホール輸送性により、ホール輸送性を有する単分子膜28全体の電位差が縮小して電界集中を緩和する(2)。
 さらに、正孔注入層20と正孔輸送層22はホール輸送性の単分子膜28により、直接接触せず、ナノ粒子40と量子ドット50との間の距離が大きくなるため、無効電流はさらに低減する。空間電荷制限電流は距離の-3乗に比例するため、距離の変化が僅かであっても電流への寄与は大きい(3)。
 これら3つの作用により、ダイオード電流が増加(1)し、無効電流が減少(2,3)するので、QD表示装置のEQEが改善するものと考えられる。
 (特性への考察2)
 以下、従来構成を有する表示装置との対比も含めて、より詳しく特性について説明する。
 従来構成の表示装置では、ナノ粒子40からなる正孔注入層20上に有機物からなる正孔輸送層22、発光層24が順に積層される。そのためナノ粒子40から正孔輸送層22を経て量子ドット50に至る平均的な経路が近い。
 正孔注入層20と正孔輸送層22のVBM,CBM,及びフェルミ準位は互いに異なり、また、一般に有機物が用いられる正孔輸送層22のホール輸送能は不十分であるため、従来構成の表示装置2では無効電流が流れやすい。
 従来構成ではさらに、正孔注入層20と正孔輸送層22との界面に存在する幾何学的に鋭角な領域例えば、正孔注入層20を構成する互いに隣り合うナノ粒子40の境界(図15の領域Cに相当する従来構成の表示装置における領域)等では、電界集中が起こる。この電界集中のため、この領域でさらに大きな無効電流が流れる。
 これらの理由から、従来構成の表示装置では、無効電流の影響が大きく、EQEが低くい。
 そこで、EQEを改善すべく検討を行い、以下の知見を得た。
 すなわち、QD表示装置の電気特性を詳細に解析した結果、有機材料と無機材料とが混在するQD表示装置には、電流輸送機構が複数存在することがわかった。中でも、QDに注入されない無効電流がEQE低下の原因であり、この電流を抑制する必要があることが分かった。
 ここで、無効電流は、空間電荷制限電流であり、電圧の2乗と電極間距離の-3乗に比例する。そのため、電極間距離の拡大と電界集中緩和が、無効電流の抑制に効果的である。
 この知見に基づいて、新たな構造と材料を検討し、特性に優れるNiOナノ粒子を正孔注入層に用いた構成をベースとして、本実施形態の構成を創作した。ただし、本実施形態の構成は上述したとおり、NiOナノ粒子を正孔注入層に用いた構成に限定されるものではない。
 なお、単分子膜28は、単分子の膜のみで説明したが、特別な処置によって、単分子を積層した構造とすることができる。単分子を積層する構造とすることで、さらに厚膜の単分子膜または単分子積層膜を構成すことができ、厚膜化することができるので、無効電流の低減効果をさらに高めることができるので好ましい。
 なお、本実施形態に係る構成は、前述の実施形態1および/または実施形態2に係る構成と組み合わせ可能である。例えば、正孔注入層20が、量子ドット50よりも小さいナノ粒子40と高極性かく低蒸気圧の溶媒42とを含み、かつ、ナノ粒子40が溶媒42に分散し得、かつ、ナノ粒子40の割合が、正孔注入層20の上面にナノ粒子40による凹凸が生じるように、高い構成であってもよい。
 また、本発明の範囲は上述に限らない。任意の機能層、例えば、正孔輸送層22、電子輸送層26および電子注入層などの何れか1層以上が、電荷輸送性を有する金属化合物のナノ粒子と、高極性かつ低蒸気圧の溶媒とを含む構成は、本開示の範囲に含まれる。
 上述の記載のうち、正孔注入層について説明した記載については、その正孔注入層の文言を正孔輸送層に置き換えて矛盾の無い範囲で解釈することができる。また、同様に、電子輸送層または電子注入層の記載として解釈する場合は、正孔注入層の文言を電子輸送層または電子注入層に置き換えて、また電荷の正負を逆転して、矛盾の無い範囲で解釈することができる。
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
2 表示装置
6B 青色発光素子
6G 緑色発光素子
6R 赤色発光素子
10、10R、10G、10B アノード(第一電極)
16 カソード(第ニ電極)
20 正孔注入層(機能層)
22 正孔輸送層(機能層)
24 発光層
24B 青色発光層
24G 緑色発光層
24R 赤色発光層
26 電子輸送層(機能層)
28 単分子膜
40 ナノ粒子
42 溶媒
44 インク
50 量子ドット(蛍光体)
52 分子

 

Claims (17)

  1.  アノードと、
     前記アノードに対向するカソードと、
     前記アノードと前記カソードとの間に設けられ、量子ドットを含む発光層と、
     前記アノードと前記発光層との間に設けられた少なくなくとも1つの機能層とを備え、
     前記機能層は、ナノ粒子を含み、
     前記機能層に含まれる前記ナノ粒子の平均粒径が、前記発光層に含まれる前記量子ドットの平均粒径より小さい発光素子。
  2.  前記機能層に含まれる前記ナノ粒子の平均粒径は、前記発光層に含まれる前記量子ドットの平均粒径に対して、40%以上100%以下の範囲にある、請求項1に記載の発光素子。
  3.  前記機能層に含まれる前記ナノ粒子の平均粒径は、前記発光層に含まれる前記量子ドットの平均粒径に対して、60%以上90%以下の範囲にある、請求項1または2に記載の発光素子。
  4.  前記機能層に含まれる前記ナノ粒子の粒径の最頻値は、当該ナノ粒子の粒径の平均値または中央値よりも小さい、請求項1から3の何れか1項に記載の発光素子。
  5.  前記機能層に含まれる前記ナノ粒子の粒径は、前記ナノ粒子の平均粒径に対して、-4nm以上+50nm以下の範囲にある、請求項1から4の何れか1項に記載の発光素子。
  6.  前記機能層に含まれる前記ナノ粒子の最大粒径をPmax、前記ナノ粒子の最小粒径をPmin、前記ナノ粒子の粒径の標準偏差をPσとして、前記ナノ粒子の粒径分布は、3*Pσ<(Pmax-Pmin)を満たす、請求項1から5の何れか1項に記載の発光素子。
  7.  前記機能層に含まれる前記ナノ粒子の平均粒径をPa、前記ナノ粒子の粒径の標準偏差をPσ、前記発光層に含まれる前記量子ドットの平均粒径をQa、前記量子ドットの標準偏差をQσとして、Qσ/Qa>Pσ/Paを満たす、請求項1から6の何れか1項に記載の発光素子。
  8.  前記機能層に含まれる前記ナノ粒子は、金属酸化物を含む請求項1から7の何れか1項に記載の発光素子。
  9.  前記機能層に含まれる前記ナノ粒子は、Ni,Mg,Al,Zn,Fe,Sn,Cu,Cr,Ta,Mo,W,およびRe中から選択される少なくとも1種の金属元素を含む、請求項1から8の何れか1項に記載の発光素子。
  10.  前記機能層に含まれる前記金属元素は、Niを含み、
     前記機能層に含まれるNiは、化合物を構成し、
     前記化合物は、酸素、水酸基、炭素、窒素の中から選択される少なくとも1種を含み、
     前記化合物は、酸化ニッケル(I)、酸化ニッケル(II)、酸化ニッケル(III)、水酸化ニッケル、硝酸ニッケル、および炭酸ニッケルの中から選択される少なくとも1種を含む、請求項9に記載の発光素子。
  11.  前記機能層に含まれるNiは、少なくとも2種の価数を有するNiを含む、請求項10に記載の発光素子。
  12.  前記機能層に含まれる前記ナノ粒子は、略球体または略回転楕円体である、請求項1から11の何れか1項に記載の発光素子。
  13.  前記機能層は、正孔輸送層を含み、
     前記正孔輸送層は、分子構造の一部にC-H結合を有する化合物を含み、
     前記正孔輸送層の厚さは、1nm以上50nm以下である、請求項1から12の何れか1項に記載の発光素子。
  14.  前記機能層は、正孔注入層を含み、
     前記正孔注入層の厚さは、1nm以上50nm以下である、請求項1から13の何れか1項に記載の発光素子。
  15.  前記機能層は、正孔輸送層と正孔注入層とを含み、
     前記正孔輸送層は前記正孔注入層の表面に追従して形成される請求項1から12の何れか1項に記載の発光素子。
  16.  前記機能層の前記ナノ粒子の前記平均粒径、及び、前記発光層に含まれる前記量子ドットの前記平均粒径は、前記機能層及び前記発光層の断面写真における、任意の位置での、幅200μm以上1000μm以下の範囲において観察される、前記ナノ粒子及び前記量子ドットにより定められる、請求項1から15の何れか1項に記載の発光素子。
  17.  前記機能層に含まれる前記ナノ粒子の前記平均粒径は、前記機能層の断面写真における任意の位置での幅200μm以上1000μm以下の範囲において観察される、前記ナノ粒子の粒径の平均値を意味する、請求項1から16の何れか1項に記載の発光素子。
PCT/JP2021/038310 2021-10-15 2021-10-15 発光素子 WO2023062839A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038310 WO2023062839A1 (ja) 2021-10-15 2021-10-15 発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038310 WO2023062839A1 (ja) 2021-10-15 2021-10-15 発光素子

Publications (1)

Publication Number Publication Date
WO2023062839A1 true WO2023062839A1 (ja) 2023-04-20

Family

ID=85988205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038310 WO2023062839A1 (ja) 2021-10-15 2021-10-15 発光素子

Country Status (1)

Country Link
WO (1) WO2023062839A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161179A1 (ja) * 2011-05-26 2012-11-29 株式会社 村田製作所 発光デバイス
WO2017054887A1 (en) * 2015-10-02 2017-04-06 Toyota Motor Europe All quantum dot based optoelectronic device
US20170110679A1 (en) * 2015-10-14 2017-04-20 The University Of Hong Kong Simple Approach For Preparing Post-Treatment-Free Solution Processed Non-Stoichiometric Niox Nanoparticles As Conductive Hole Transport Materials
WO2019171556A1 (ja) * 2018-03-08 2019-09-12 シャープ株式会社 素子、電子機器、および素子の製造方法
KR20210034953A (ko) * 2019-09-23 2021-03-31 삼성전자주식회사 발광소자, 발광소자의 제조 방법과 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161179A1 (ja) * 2011-05-26 2012-11-29 株式会社 村田製作所 発光デバイス
WO2017054887A1 (en) * 2015-10-02 2017-04-06 Toyota Motor Europe All quantum dot based optoelectronic device
US20170110679A1 (en) * 2015-10-14 2017-04-20 The University Of Hong Kong Simple Approach For Preparing Post-Treatment-Free Solution Processed Non-Stoichiometric Niox Nanoparticles As Conductive Hole Transport Materials
WO2019171556A1 (ja) * 2018-03-08 2019-09-12 シャープ株式会社 素子、電子機器、および素子の製造方法
KR20210034953A (ko) * 2019-09-23 2021-03-31 삼성전자주식회사 발광소자, 발광소자의 제조 방법과 표시 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DYLAN C. GARY, MAXWELL W. TERBAN, SIMON J. L. BILLINGE, BRANDI M. COSSAIRT: "Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates", CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, US, vol. 27, no. 4, 24 February 2015 (2015-02-24), US , pages 1432 - 1441, XP055462428, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.5b00286 *

Similar Documents

Publication Publication Date Title
US10403690B2 (en) Light emitting device including tandem structure with quantum dots and nanoparticles
US11024820B2 (en) Photo-patterned emissive layer containing passivated quantum dots, arrangement of light-emitting devices including same, and method of making same
Li et al. Enhanced efficiency of InP-based red quantum dot light-emitting diodes
Liang et al. Polymer as an additive in the emitting layer for high-performance quantum dot light-emitting diodes
WO2020208810A1 (ja) 発光素子、表示装置および発光素子の製造方法
Bulovi et al. Molecular organic light-emitting devices
JP2008300270A (ja) 発光素子
WO2009084273A1 (ja) 有機エレクトロルミネッセンス素子
WO2023062839A1 (ja) 発光素子
WO2023062840A1 (ja) 発光素子
WO2021044495A1 (ja) 発光素子および表示装置
WO2023062838A1 (ja) 発光素子、インク、表示装置および発光素子の製造方法
US20230071128A1 (en) Display device
US20230380206A1 (en) Photoelectric conversion element, display device, and method of manufacturing photoelectric conversion element
US20230309334A1 (en) Display device and method for manufacturing same
CN113243054B (zh) 显示装置及其制造方法
WO2020213070A1 (ja) 表示装置
WO2023053450A1 (ja) 発光素子、表示装置、および発光素子の製造方法
US7812517B2 (en) Organic electroluminescent device and method of manufacturing the same
WO2023105711A1 (ja) 発光素子、表示装置、および発光素子の製造方法
WO2023286148A1 (ja) 発光素子、表示デバイス、および発光素子の製造方法
WO2023112201A1 (ja) 表示装置の製造方法、発光素子および表示装置
CN113196881B (zh) 电致发光元件以及显示器件
WO2023026348A1 (ja) 発光素子および発光装置並びに発光素子の製造方法
WO2024003983A1 (ja) 発光素子、及び表示装置