CN1771350A - 钽溅射靶及其制造方法 - Google Patents

钽溅射靶及其制造方法 Download PDF

Info

Publication number
CN1771350A
CN1771350A CNA2004800092582A CN200480009258A CN1771350A CN 1771350 A CN1771350 A CN 1771350A CN A2004800092582 A CNA2004800092582 A CN A2004800092582A CN 200480009258 A CN200480009258 A CN 200480009258A CN 1771350 A CN1771350 A CN 1771350A
Authority
CN
China
Prior art keywords
tantalum
target
recrystallization
annealing
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800092582A
Other languages
English (en)
Inventor
小田国博
福岛笃志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Publication of CN1771350A publication Critical patent/CN1771350A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Forging (AREA)

Abstract

本发明通过对熔融铸造的钽锭或钽坯进行锻造、退火和轧制操作,从而提供了由此制得的钽溅射靶,其中所述钽靶的结构含有未再结晶结构。该钽溅射靶具有高淀积速度和出色的膜均一性,产生较少的电弧和粒子,并具有出色的成膜性能,并通过改进和修正诸如锻造和轧制的塑性加工步骤以及热处理步骤,提供能稳定制造所述钽靶的方法。

Description

钽溅射靶及其制造方法
技术领域
本发明涉及通过对熔融铸造的钽锭或钽坯进行诸如锻造、退火和轧制的加工制造溅射靶的方法,以及由此得到的钽溅射靶。
背景技术
近来,用于形成诸如金属或合金的材料膜的溅射方法已用于诸多领域,所述应用领域例如电子、耐腐蚀材料和装饰、催化剂,以及切削/研磨材料和耐磨材料的制造。
尽管溅射方法自身为前述领域所熟知,但近来,特别是在电子学领域,对适于形成复杂形状膜和形成电路的钽溅射靶存在需求。
通常,该钽靶是通过对将钽材料电子束熔融和铸造而形成的钽锭或钽坯进行锻造和退火(热处理),然后对其进行轧制和精加工(机械加工、抛光等)而制造的。
在此种类型的制造步骤中,为制造钽锭或钽坯而进行的锻造会破坏铸造结构,分散或消除孔和偏析,并且通过进一步的退火会出现再结晶,从而使结构的精度和强度改善至一定程度。
例如,对钽原料进行电子束熔融然后铸造,制得钽锭或钽坯,随后对其进行冷锻—于1173K的再结晶退火—冷锻—于1173K的再结晶退火—冷轧—于1173K的再结晶退火—精加工,从而形成靶材料。在钽靶的该制造方法中,熔融铸造的钽锭或钽坯具有50mm或更大的晶粒直径。
对钽锭或钽坯进行热锻造和再结晶退火的结果是,破坏了铸造结构,通常可得到均匀且微细(100μm或更小)的晶粒。然而,存在的一个问题在于,再结晶退火后部分靶结构内会出现以皱纹形式集合的杂相晶粒;特别地,从靶中心至周边会形成皱纹或条纹形式的图案。
在调查常规技术的制造方法中此类以皱纹形式集合的杂相晶粒的形成原因时发现,即便是在进行热锻造及随后的再结晶退火时,钽锭或钽坯内仍残留有一次晶粒(约50mm),并且仅在1173K(900℃)的再结晶温度时一次晶粒内就会产生再结晶的粒子。
换句话说,锻造使一次晶粒被压碎,并且尽管似乎一次晶粒都消失了,但在随后约1173K的再结晶温度下,认为一次晶粒的破坏并未完全,仍残留了痕量的一次晶粒。即使是进行随后的锻造和再结晶退火,其也不会消失,并且认为以皱纹形式集合的杂相晶粒产生于最终的精加工阶段。
由于靶内存在的锻造、轧制或其后进行的退火过程中产生的不规则晶粒会改变溅射速率,因此存在的问题在于,影响膜的均匀度(均一性),促进电弧和粒子的产生,并且由此可破坏溅射淀积物的质量。因而,有必要尽可能抑制前述杂相的产生。
进行溅射时,由于据说靶的再结晶结构越微细和越均匀,其晶体取向越均匀,就可得到越均匀的淀积物,并且可得到几乎不产生电弧和粒子、具有稳定特性的膜。因而已采取了一些措施,用于使再结晶结构微细和均匀,并且使其以特定的晶体取向排布(例如,参见特表2002-518593号公报,美国专利第6,331,233号)。
考察再结晶的机制时,一般来说,再结晶结构是各自具有不同平面取向的各个晶体的聚集体,各晶体由晶粒边界分开。在再配置发生之前,通过诸如冷轧制的塑性加工而施加于物体的应变,通过某个方向的穿晶滑移而被吸收入一次晶体内,并且应变在其内得以累积。
此类应变的一次晶体,转移等的晶格缺陷聚集,呈现出极微细且取向稍微不同的网络晶胞结构,并且还被分成许多具有显著不同取向的不同区域。当对此种类型的变形结构加热时,晶胞会通过转移的组合或再配置而改变为亚晶粒(恢复过程)。由晶胞至亚晶粒的改变几乎不会涉及到尺寸的任何改变。并且认为这些亚晶粒相结合,并且特定的亚晶粒生长而形成再结晶的晶核,侵蚀未再结晶部分,使再结晶得以生长和促进。
如上所述,对于钽靶,据说基于完全退火的完全再结晶结构对于结构的稳定化是理想的。
尽管如此,对基于高温并且需进行长时间的再结晶退火(完全退火)而言,其存在的问题在于晶粒尺寸会变粗大,平均晶粒尺寸通常会达100μm或更大。
当以具有此类粗大再结晶结构的钽靶进行溅射时,其存在的问题在于膜的均匀度(均一性)会变差,会促进电弧和粒子的产生,并且会破坏溅射淀积物的质量。
发明内容
为了克服前述问题,本发明的目的为提供钽溅射靶,所述钽溅射靶具有高淀积速度和出色的膜均一性,产生出较少的电弧和粒子并具有出色的成膜性能,并且通过改进和修正诸如锻造和轧制的塑性加工步骤以及热处理步骤,从而提供能稳定制造所述靶的方法。
本发明提供:
1.钽溅射靶,所述靶是通过对熔融铸造的钽锭或钽坯进行诸如锻造、退火和轧制的塑性加工而制造的,其中钽靶的结构包含未再结晶结构;
2.根据如上1的钽溅射靶,其中未再结晶结构为20%或更多;
3.根据如上1的钽溅射靶,其中未再结晶结构为40%或更多;
4.根据如上1至3任一项的钽溅射靶,其中所述钽靶具有90或更高的维氏硬度;
5.根据如上1至3任一项的钽溅射靶,其中所述钽靶具有100或更高的维氏硬度;及
6.根据如上1至3任一项的钽溅射靶,其中所述钽靶具有125或更高的维氏硬度。
本发明还提供
7.含有未再结晶结构的钽溅射靶的制造方法,对熔融铸造的钽锭或钽坯进行诸如锻造、退火和轧制的加工,其中最终对其进行塑性加工;
8.含有未再结晶结构的钽溅射靶的制造方法,对熔融铸造的钽锭或钽坯进行诸如锻造、退火和轧制的加工,其中于最终的塑性加工之后,进一步于1173K或更低的温度下进行退火;
9.根据如上7或8的钽溅射靶的制造方法,其中于最终的塑性加工或退火加工之后,进行精加工形成靶形状;
10.根据如上7-9任一项的钽溅射靶的制造方法,其中在加工阶段过程中,将锻造和再结晶退火重复两次或多次;
11.根据如上7-10任一项的钽溅射靶的制造方法,其中重复进行锻伸和镦锻;及
12.根据如上7-11任一项的钽溅射靶的制造方法,其中在加工阶段过程中,于锻造钽锭或钽坯之后在再结晶温度和1673K之间的温度下进行再结晶退火。
附图简述
图1所示为通过进行本发明的冷精整和应力解除退火所得的钽靶结构的显微照片(放大100倍)。图2所示为上述钽靶结构的显微照片(放大50倍)。图3所示为通过进行常规锻造和再结晶退火所得的钽靶结构的显微照片(放大100倍)。图4所示为上述钽靶结构的显微照片(放大50倍)。图5所示为实施例1和比较例3的钽靶的侵蚀曲线图。
发明的最优实施方式
本发明的钽靶是以如下方法制造的。作为例示的具体例,首先将钽原料(通常采用4N5N或更高的高纯度钽)经电子束熔融等方法熔融,并将其铸造而制得钽锭或钽坯。然后对所述钽锭或钽坯进行一系列的加工步骤,包括冷锻、轧制、退火(热处理)、精加工等等。
特别地,例如,对上述钽锭或钽坯进行如下加工而形成钽材料:冷锻—于1373K至1673K温度下进行再结晶退火—冷锻—于1373K至1673K温度下进行再结晶退火—冷锻—于再结晶起始温度与1373K之间温度下进行再结晶退火—冷(热)轧制—于1373K或更低温度进行退火—精加工。
在上述方法中,尽管于1373K至1673K温度下的再结晶退火步骤可仅进行一次,但若将该步骤重复两次,可有效减少结构缺陷。
尽管该制造方法与常规技术基本相同,但在本发明中特别重要的是最终进行诸如冷轧的塑性加工得到钽靶,或避免进行充分的再结晶,从而使最终加工步骤之后留下已加工结构。此后经诸如切削或抛光的精加工将其最终成为靶形。
对钽锭或钽坯进行的锻造或轧制会破坏铸造结构,分散或消除孔及偏析,并通过进一步的退火可出现再结晶,通过重复冷锻或冷轧和再结晶退火可将结构的精度和强度改进至某一程度。
因而,在上述系列加工过程中,有必要以锻造和轧制破坏铸造结构,并充分进行再结晶。在本发明中,在对熔融并铸造的钽锭或钽坯进行锻造和轧制加工之后,理想的是于再结晶起始温度与1673K之间的温度进行再结晶退火,从而使所得结构微细并均一。换句话说,在最终加工之前,通过依照类似于常规方法的再结晶使结构微细并均一,从而寻求材料特性的改良。
在本发明中,理想的是使最终进行诸如冷轧的塑性加工得到材料,或在诸如冷轧的最终塑性加工之后于1173K或更低的温度进行退火。进行此类退火时,具有缓解靶的翘曲或变形的效果。然后对其进行精加工(切削等)从而形成靶形状。
由此所得结构为未再结晶结构,其中残留有已加工结构。具有本发明未再结晶结构的结构(于1073K退火)示于图1(放大100倍)和图2(放大50倍)中。另外,图3(放大100倍)和图4(放大50倍)示出了常规再结晶结构(于1373K进行再结晶退火)。如上述图中所示,本发明钽靶的结构与常规再结晶结构有明显不同。
尽管在上述用于退火的温度条件下不会出现再结晶,但认为在到再结晶的中途阶段,即在亚晶粒(恢复过程)阶段过程中,由于在约1073K进行的退火所产生的热而出现再结晶结构。
通过这些亚晶粒,施加至物体的应变通过某方向的穿晶滑移而被吸收入一次晶体内,应变在一次晶体内累积,亚晶体具有在应变的一次晶体内在由多个转移区分的稍微不同的方向分离成不同区域的晶体生长前结构。
尽管难以测量本发明所得未再结晶结构的晶粒尺寸,但其包括具有显著不同于再结晶结构的亚晶粒的独特结构。
此外,未进行退火的以诸如轧制的塑性加工进行精整的靶,由于依赖于加工条件的溅射操作热会产生应变,并可产年翘曲(弯曲)或破裂。如果未产生显著的应变,则其理所当然地仍可用作靶。
当存在应变变大的可能性时,理想是是进行上述退火。该靶可具有90或更高的维氏硬度,100或更高的维氏硬度,或者125或更高的维氏硬度,并可得到强度优异的靶。
作为上述加工的结果,可得到不具有任何皱纹形缺陷的钽靶,并且所述钽靶不会产生通常由于高温退火而出现的粗大晶粒。尽管以轧制法精整的材料具有轧制结构,但此种类型的结构不会影响淀积结构。
本发明最重要的是最终加工之后不进行充分的再结晶,而是仅通过在其内残留已加工结构即得到改进均一性的效果。由于此种类型的结构仅通过改变最终热处理过程即可实现,因而其适用于迄今为止的任意改进类型,并且不存在成本的增加。
为了改进以标准方法制造的溅射靶的均一特性,有必要开发出改进类型,其涉及到由热处理温度改变、待进行的热处理次数改变或待进行的锻造次数的改变而致的成本增加。而采用本发明,仅通过在通用制造方法的最终步骤制造未再结晶结构,即可实现与改进类型的开发匹敌的效果,而不会增加成本。显然,在改进类型的开发中于最终步骤制造未再结晶结构会实现进一步的改进效果。
本发明的钽靶具有由前述制造方法得到的特性未再结晶结构。
实施例和比较例
下面将参照实施例解释本发明。这些实施例仅为示例,本发明不因受此限制。换句话说,本发明仅由权利要求范围所限制,应包括除本发明实施例之外的各种修正。
(实施例1)
对纯度99.97%的钽原料进行电子束熔融,并对其铸造,制得厚度200mm且直径200mmφ的钽锭或钽坯,在此情况下的晶粒直径约55mm。然后,于室温对钽锭或钽坯进行锻伸后,于1500K温度对其进行再结晶退火。其结果得到具有如下结构的材料:平均晶粒直径200μm,厚度100mm,直径100mmφ。
然后于室温再次进行锻伸和镦锻,并于1480K温度再次进行再结晶退火。其结果,得到具有如下结构的材料:平均晶粒直径100μm,厚度100mm,直径100mmφ。
然后,对其进行冷锻伸和镦锻,并于1173K进行再结晶退火,随后再次进行冷轧制,其后于1073K(800℃)进行再结晶退火及精加工,从而得到厚度10mm且直径320mmφ的靶材料。
作为进行上述加工的结果,可得到具有约80%的未再结晶结构、维氏硬度Hv为130-171(维氏硬度Hv为在靶的厚度方向上20点处测得,下同)的钽靶。
此外,实施例1中所得钽靶的显微照片具有与图1和图2中所示钽靶相同的晶体结构。结果示于表1中。
本说明书中所提及的未再结晶结构为晶粒边界不清晰的结构,或晶粒边界呈曲线状扭曲的结构,或同时满足上述两条件的结构,如图1和图2所表示,百分比(%)定义为由100%减去如图3和图4所表示的明显再结晶部分的面积比。
另外,由于表面电阻依赖于膜厚度,因而测量晶片(8英寸)内的表面电阻分布,并由此调查膜厚度的分布状态。特别地,测量晶片上49点处的表面电阻,并计算标准偏差(δ)。
如表1可明显看出,在实施例1中,从溅射的初始阶段到溅射的最终阶段,表面电阻分布的变动小(3.1-3.3%);即,膜厚度分布的变动小。
如上所述,实施例1的钽靶具有高淀积速度,理想的膜均一性,8英寸晶片中膜厚度变动小,并且不产生电弧或粒子,因而能够改进溅射淀积的质量。
图5示出了侵蚀曲线图(●点),该标准及典型的侵蚀曲线图的特征在于靶的性能也良好。
表1
  实施例1   实施例2   实施例3   实施例4   实施例5   实施例6
  纯度   99.997%   99.997%   99.997%   99.997%   99.95%   99.997%
  最终热处理温度   1073K(800℃)   973K(700℃)   1048K(775℃)   1098K(825℃)   1173K(900℃)   -(与轧制一致)
  维氏硬度:Hv   130~171   172~180   147~152   92~123   180~190   173~185
  未再结晶百分比(%)   约80%   约90%   约85%   约25%   约80%   100%
  平均晶粒直径(μm)   -   -   -   -   -   -
  均一性、8英寸晶片内表面电阻的转变(1δ)(溅射初始阶段)   3.3%   3.5%   3.4%   3.8%   4.1%   3.1%
  (溅射中间阶段)   3.1%   3.6%   3.3%   3.6%   4.0%   3.6%
  (溅射最终阶段)   3.2%   3.4%   3.3%   3.6%   3.8%   3.2%
  比较例1   比较例2   比较例3
  纯度   99.997%   99.997%   99.997%
  最终热处理温度   1173K(900℃)   1317K(1100℃)   1123K(850℃)
  维氏硬度:Hv   70~85   71~76   72~85
  未再结晶百分比(%)    -   -   -
  平均晶粒直径(μm)   55μm   96μm   37μm
  均一性、8英寸晶片内表面电阻的转变(1δ)(溅射初始阶段)   4.5%   4.7%   4.1%
  (溅射中间阶段)   5.5%   5.3%   3.9%
  (溅射最终阶段)   5.1%   5.2%   4.5%
在厚度方向上于20点处测量维氏硬度。
(实施例2)
对纯度99.97%的钽原料进行电子束熔融,并对其铸造,制得厚度200mm且直径200mmφ的钽锭或钽坯,在此情况下的晶粒直径约50mm。然后,于室温对钽锭或钽坯进行冷锻伸后,于1500K温度对其进行再结晶退火。其结果得到具有如下结构的材料:平均晶粒直径200μm,厚度100mm,直径100mmφ。
然后于室温再次进行锻伸和镦锻,并于1173K温度再次进行再结晶退火。其结果,得到具有如下结构的材料:平均晶粒直径80μm,厚度100mm,直径100mmφ。
然后,对其进行冷锻伸和镦锻,并于1173K进行再结晶退火,随后再次进行冷轧制,其后于973K进行再结晶退火及精加工,从而得到厚度10mm且直径320mmφ的靶材料。
作为进行上述加工的结果,可得到具有约90%的未再结晶结构、维氏硬度Hv为172-180的钽靶。此外,实施例2中所得钽靶的显微照片具有与图1和图2中所示钽靶相同的晶体结构。结果与实施例1一样示于表1中。
另外,由于表面电阻依赖于膜厚度,因而测量晶片(8英寸)内的表面电阻分布,并由此调查膜厚度的分布状态。特别地,测量晶片上49点处的表面电阻,并计算标准偏差(δ)。
如表1可明显看出,在实施例2中,从溅射的初始阶段到溅射的最终阶段,表面电阻分布的变动小(3.4-3.6%);即,膜厚度分布的变动小。
作为以该靶进行溅射的结果,该靶具有高淀积速度,良好的膜均一性,8英寸晶片中极小的膜厚度变动,且不产生电弧或粒子,因而能够改进溅射淀积的质量。与实施例1一样,该靶的性能也是良好的。
(实施例3)
对纯度99.997%的钽原料进行电子束熔融,并对其铸造,制得厚度200mm且直径300mmφ的钽锭或钽坯,在此情况下的晶粒直径约50mm。然后,于室温对钽锭或钽坯进行冷锻伸后,于1500K温度对其进行再结晶退火。其结果得到具有如下结构的材料:平均晶粒直径250μm,厚度100mm,直径100mmφ。
然后于室温再次进行锻伸和镦锻,并于1173K温度再次进行再结晶退火。其结果,得到具有如下结构的材料:平均晶粒直径80μm,厚度100mm,直径100mmφ。
然后,对其进行冷混锻,并于1173K进行再结晶退火,随后再次进行冷轧制,其后于1048K进行再结晶退火及精加工,从而得到厚度10mm且直径320mmφ的靶材料。
作为进行上述加工的结果,可得到具有约90%的未再结晶结构、维氏硬度Hv为147-152的钽靶。此外,实施例3中所得钽靶的显微照片具有与图1和图2中所示钽靶相同的晶体结构。结果与实施例1一样示于表1中。
另外,由于表面电阻依赖于膜厚度,因而测量晶片(8英寸)内的表面电阻分布,并由此调查膜厚度的分布状态。特别地,测量晶片上49点处的表面电阻,并计算标准偏差(δ)。
如表1可明显看出,在实施例3中,从溅射的初始阶段到溅射的最终阶段,表面电阻分布的变动小(3.4-3.3%);即,膜厚度分布的变动小。
作为以该靶进行溅射的结果,该靶具有高淀积速度,良好的膜均一性,8英寸晶片中极小的膜厚度变动,且不产生电弧或粒子,因而能够改进溅射淀积的质量。与实施例1一样,该靶的性能也是良好的。
(实施例4)
对纯度99.997%的钽原料进行电子束熔融,并对其铸造,制得厚度200mm且直径300mmφ的钽锭或钽坯,在此情况下的晶粒直径约50mm。然后,于室温对钽锭或钽坯进行冷锻伸后,于1500K温度对其进行再结晶退火。其结果得到具有如下结构的材料:平均晶粒直径250μm,厚度100mm,直径100mmφ。
然后于室温再次进行锻伸和镦锻,并于1173K温度再次进行再结晶退火。其结果,得到具有如下结构的材料:平均晶粒直径80μm,厚度100mm,直径100mmφ。
然后,对其进行冷混锻,并于1173K进行再结晶退火,随后再次进行冷轧制,其后于1098K进行再结晶退火及精加工,从而得到厚度10mm且直径320mmφ的靶材料。
作为进行上述加工的结果,可得到具有约25%的未再结晶结构、维氏硬度Hv为92-123的钽靶。此外,实施例4中所得钽靶的显微照片具有与图1和图2中所示钽靶相同的晶体结构。结果与实施例1一样示于表1中。
另外,由于表面电阻依赖于膜厚度,因而测量晶片(8英寸)内的表面电阻分布,并由此调查膜厚度的分布状态。特别地,测量晶片上49点处的表面电阻,并计算标准偏差(δ)。
如表1可明显看出,在实施例4中,从溅射的初始阶段到溅射的最终阶段,表面电阻分布的变动小(3.6-3.8%);即,膜厚度分布的变动小。
作为以该靶进行溅射的结果,该靶具有高淀积速度,良好的膜均一性,8英寸晶片中极小的膜厚度变动,且不产生电弧或粒子,因而能够改进溅射淀积的质量。与实施例1一样,该靶的性能也是良好的。
(实施例5)
对纯度99.95%的钽原料进行电子束熔融,并对其铸造,制得厚度200mm且直径300mmφ的钽锭或钽坯,在此情况下的晶粒直径约50mm。然后,于室温对钽锭或钽坯进行冷锻伸后,于1500K温度对其进行再结晶退火。其结果得到具有如下结构的材料:平均晶粒直径250μm,厚度100mm,直径100mmφ。
然后于室温再次进行锻伸和镦锻,并于1173K温度再次进行再结晶退火。其结果,得到具有如下结构的材料:平均晶粒直径80μm,厚度100mm,直径100mmφ。
然后,对其进行冷混锻,并于1173K进行再结晶退火,随后进行冷轧制,其后于1173K进行应力解除退火及精加工,从而得到厚度10mm且直径320mmφ的靶材料。
作为进行上述加工的结果,可得到具有约80%的未再结晶结构、维氏硬度Hv为180-190的钽靶。此外,实施例5中所得钽靶的显微照片具有与图1和图2中所示钽靶相同的晶体结构。结果与实施例1一样示于表1中。
另外,由于表面电阻依赖于膜厚度,因而测量晶片(8英寸)内的表面电阻分布,并由此调查膜厚度的分布状态。特别地,测量晶片上49点处的表面电阻,并计算标准偏差(δ)。
如表1可明显看出,在实施例5中,从溅射的初始阶段到溅射的最终阶段,表面电阻分布的变动小(3.8-4.1%);即,膜厚度分布的变动小。
作为以该靶进行溅射的结果,该靶具有高淀积速度,良好的膜均一性,8英寸晶片中极小的膜厚度变动,且不产生电弧或粒子,因而能够改进溅射淀积的质量。与实施例1一样,该靶的性能也是良好的。
(实施例6)
对纯度99.997%的钽原料进行电子束熔融,并对其铸造,制得厚度200mm且直径300mmφ的钽锭或钽坯,在此情况下的晶粒直径约50mm。然后,于室温对钽锭或钽坯进行冷锻伸后,于1500K温度对其进行再结晶退火。其结果得到具有如下结构的材料:平均晶粒直径250μm,厚度100mm,直径100mmφ。
然后于室温再次进行锻伸和镦锻,并于1173K温度再次进行再结晶退火。其结果,得到具有如下结构的材料:平均晶粒直径80μm,厚度10mm,直径100mmφ。
然后,对其进行冷混锻,并于1173K进行再结晶退火,随后进行冷轧制和精加工,但不进行应力解除退火,从而得到最终进行冷轧制且厚度10mm、直径320mmφ的靶材料。
作为进行上述加工的结果,可得到具有约100%的未再结晶结构、维氏硬度Hv为173-185的钽靶。此外,实施例6中所得钽靶的显微照片具有与图1和图2中所示钽靶相同的晶体结构。结果与实施例1一样示于表1中。
另外,由于表面电阻依赖于膜厚度,因而测量晶片(8英寸)内的表面电阻分布,并由此调查膜厚度的分布状态。特别地,测量晶片上49点处的表面电阻,并计算标准偏差(δ)。
如表1可明显看出,在实施例6中,从溅射的初始阶段到溅射的最终阶段,表面电阻分布的变动小(3.1-3.6%);即,膜厚度分布的变动小。
作为以该靶进行溅射的结果,该靶具有高淀积速度,良好的膜均一性,8英寸晶片中极小的膜厚度变动,且不产生电弧或粒子,因而能够改进溅射淀积的质量。与实施例1一样,该靶的性能也是良好的。
(比较例1)
与实施例1一样,对纯度99.997%的钽原料进行电子束熔融,并对其铸造,制得厚度200mm且直径200mmφ的钽锭或钽坯,在此情况下的晶粒直径约55mm。然后,于室温对钽锭或钽坯进行锻伸和镦锻,其后于1173K温度进行再结晶退火。其结果,得到具有如下结构的材料:平均晶粒直径180μm,厚度100mm,直径100mmφ。
然后,于室温对钽锭或钽坯再次进行锻伸和镦锻,其后于1173K温度再次进行再结晶退火。其结果,得到具有如下结构的材料:平均晶粒直径80μm,厚度100mm,直径100mmφ。
然后,对其进行冷混锻,并于1173K进行再结晶退火及精加工,从而得到厚度10mm、直径320mmφ的靶材料。
从如上方法所得钽靶的中心至周边可观测到皱纹形式的诸多痕迹,其结果得到具有杂相晶体结构的钽靶。另外,比较例1中所得钽靶的显微照片具有与图3中所示钽靶相同的晶体结构。
如上方法所得的钽靶,其平均晶粒尺寸高达55μm并且有变动,取向从靶表面至中心部分大致均一。维氏硬度Hv为70-85,强度弱。
当以该钽靶进行溅射时,膜的均匀度(均一性)差,并引起溅射淀积的质量恶化。其结果也示于表1中。
表1的比较例1中所示结果为在晶片(8英寸)上的49点处测量表面电阻并计算其标准偏差(δ)而得到,与实施例1一样。在比较例1中,从溅射的初始阶段至最终阶段表面电阻分布的变动均大(4.5-5.5%);即膜厚度分布的变动明显。
另外,8英寸晶片中膜厚度的变动明显,产生电弧和粒子,这使得溅射淀积的质量恶化。
(比较例2)
与实施例1一样,对纯度99.997%的钽原料进行电子束熔融,并对其铸造,制得厚度200mm且直径200mmφ的钽锭或钽坯,在此情况下的晶粒直径约55mm。然后,于室温对钽锭或钽坯进行冷混锻,其后于1173K温度进行再结晶退火。其结果,得到具有如下结构的材料:平均晶粒直径180μm,厚度100mm,直径100mmφ。
然后,于室温对钽锭或钽坯再次进行锻伸和镦锻,其后于1173K温度再次进行再结晶退火。其结果,得到具有如下结构的材料:平均晶粒直径80μm,厚度100mm,直径100mmφ。
然后,对其进行冷轧制,并于1373K进行再结晶退火及精加工,从而得到厚度10mm、直径320mmφ的靶材料。
从如上方法所得的钽靶具有粗大化的晶粒。另外,比较例2中所得钽靶的显微照片具有与图3和图4中所示钽靶相同的晶体结构。
如上方法所得的钽靶,其平均晶粒尺寸高达96μm并且有变动,取向从靶表面至中心部分大致均一。维氏硬度Hv为71-76,强度弱。
当以该钽靶进行溅射时,膜的均匀度(均一性)差,并引起溅射淀积的质量恶化。其结果也示于表1中。
表1的比较例2中所示结果为在晶片(8英寸)上的49点处测量表面电阻并计算其标准偏差(δ)而得到,与实施例1一样。在比较例2中,从溅射的初始阶段至最终阶段表面电阻分布的变动均大(4.7-5.3%);即膜厚度分布的变动明显。
另外,该钽靶,膜的均匀度(均一性)差,8英寸晶片中膜厚度的变动明显,产生电弧和粒子,这使得溅射淀积的质量恶化。
(比较例3)
与实施例1一样,对纯度99.997%的钽原料进行电子束熔融,并对其铸造,制得厚度200mm且直径200mmφ的钽锭或钽坯,在此情况下的晶粒直径约55mm。然后,于室温对钽锭或钽坯进行冷混锻,其后于1173K温度进行再结晶退火。其结果,得到具有如下结构的材料:平均晶粒直径180μm,厚度100mm,直径100mmφ。
然后,于室温对钽锭或钽坯再次进行锻伸和镦锻,其后于1173K温度再次进行再结晶退火。其结果,得到具有如下结构的材料:平均晶粒直径80μm,厚度100mm,直径100mmφ。
然后,对其进行冷混锻,并于1123K进行再结晶退火及精加工,从而得到厚度10mm、直径320mmφ的靶材料。
从如上方法所得的钽靶具有粗大化的晶体。另外,比较例3中所得钽靶的显微照片具有与图3和图4中所示钽靶相同的晶体结构。
如上方法所得的钽靶,其平均晶粒尺寸高达37μm并且有变动,取向从靶表面至中心部分大致均一。维氏硬度Hv为72-85,强度弱。
当以该钽靶进行溅射时,膜的均匀度(均一性)差,并引起溅射淀积的质量恶化。其结果也示于表1中。
然而对于该靶,如图5中的侵蚀曲线图(▲点)所示,其性能与实施例相比较差。
表1的比较例3中所示结果为在晶片(8英寸)上的49点处测量表面电阻并计算其标准偏差(δ)而得到,与实施例1一样。
在比较例3中,从溅射的初始阶段至最终阶段表面电阻分布的变动均大(3.9-4.5%);即膜厚度分布的变动明显。
另外,该钽靶,膜的均匀度(均一性)差,8英寸晶片中膜厚度的变动明显,产生电弧和粒子,这使得溅射淀积的质量恶化。
本发明的效果
本发明提供具有未再结晶结构、但不具有由常规的再结晶退火或引起的任何粗大化的异常结晶或以皱纹状集合的异相晶粒,并通过进行诸如锻造和轧制的塑性加工及热处理,然后进行诸如冷轧的冷塑性加工,并在此类塑性加工之后进行退火或进行最终加工,产生了如下优良效果:其能够稳定地得到具有高淀积速度和出色的膜均一性,产生较少的电弧和粒子,并且具有出色的成膜性能的钽溅射靶。

Claims (12)

1.通过对熔融铸造的钽锭或钽坯进行诸如锻造、退火和轧制的塑性加工而制得的钽溅射靶,其中所述钽靶的结构含有未再结晶结构。
2.根据权利要求1的钽溅射靶,其中未再结晶结构为20%或更多。
3.根据权利要求1的钽溅射靶,其中未再结晶结构为40%或更多。
4.根据权利要求1-3任一项的钽溅射靶,其中所述钽靶具有90或更高的维氏硬度。
5.根据权利要求1-3任一项的钽溅射靶,其中所述钽靶具有100或更高的维氏硬度。
6.根据权利要求1-3任一项的钽溅射靶,其中所述钽靶具有125或更高的维氏硬度。
7.含有未再结晶结构的钽溅射靶的制造方法,对熔融铸造的钽锭或钽坯进行诸如锻造、退火和轧制的加工,其中最后对其进行塑性加工。
8.含有未再结晶结构的钽溅射靶的制造方法,对熔融铸造的钽锭或钽坯进行诸如锻造、退火和轧制的加工,其中在最终的塑性加工之后,进一步于1173K或更低的温度进行退火。
9.根据权利要求7或8的钽溅射靶制造方法,其中在最终的塑性加工或退火加工之后,进行精加工形成靶形状。
10.根据权利要求7-9任一项的钽溅射靶制造方法,其中在加工阶段过程中,将锻造和再结晶退火重复两次或多次。
11.根据权利要求7-10任一项的钽溅射靶制造方法,其中重复进行锻伸和镦锻。
12.根据权利要求7-11任一项的钽溅射靶制造方法,其中对钽锭或钽坯进行锻造之后,在加工过程中于再结晶温度到1673K之间的温度进行再结晶退火。
CNA2004800092582A 2003-04-01 2004-02-19 钽溅射靶及其制造方法 Pending CN1771350A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP97659/2003 2003-04-01
JP2003097659 2003-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410106657.6A Division CN103966561A (zh) 2003-04-01 2004-02-19 钽溅射靶及其制造方法

Publications (1)

Publication Number Publication Date
CN1771350A true CN1771350A (zh) 2006-05-10

Family

ID=33156648

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2004800092582A Pending CN1771350A (zh) 2003-04-01 2004-02-19 钽溅射靶及其制造方法
CN201410106657.6A Pending CN103966561A (zh) 2003-04-01 2004-02-19 钽溅射靶及其制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201410106657.6A Pending CN103966561A (zh) 2003-04-01 2004-02-19 钽溅射靶及其制造方法

Country Status (8)

Country Link
US (1) US8172960B2 (zh)
EP (2) EP2253731B1 (zh)
JP (2) JP4256388B2 (zh)
KR (1) KR100698745B1 (zh)
CN (2) CN1771350A (zh)
DE (1) DE602004032323D1 (zh)
TW (1) TWI281507B (zh)
WO (1) WO2004090193A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517550A (zh) * 2011-12-20 2012-06-27 宁波江丰电子材料有限公司 高纯钽靶材的制备方法和高纯钽靶材
CN115044876A (zh) * 2022-06-02 2022-09-13 有研亿金新材料有限公司 一种小尺寸高性能钽靶坯的制备方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4109901B2 (ja) 2001-05-29 2008-07-02 キヤノン株式会社 画像表示装置
WO2003046250A1 (fr) * 2001-11-26 2003-06-05 Nikko Materials Company, Limited Cible de pulverisation et procede de fabrication associe
JP4883546B2 (ja) * 2002-09-20 2012-02-22 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲットの製造方法
JP4263900B2 (ja) * 2002-11-13 2009-05-13 日鉱金属株式会社 Taスパッタリングターゲット及びその製造方法
EP1681368B1 (en) * 2003-11-06 2021-06-30 JX Nippon Mining & Metals Corporation Method to produce a tantalum sputtering target
EP1876258A4 (en) * 2005-04-28 2008-08-13 Nippon Mining Co sputtering Target
JP4949259B2 (ja) * 2005-10-04 2012-06-06 Jx日鉱日石金属株式会社 スパッタリングターゲット
JP4974362B2 (ja) * 2006-04-13 2012-07-11 株式会社アルバック Taスパッタリングターゲットおよびその製造方法
JP5187713B2 (ja) * 2006-06-09 2013-04-24 国立大学法人電気通信大学 金属材料の微細化加工方法
SG173141A1 (en) * 2009-05-22 2011-08-29 Jx Nippon Mining & Metals Corp Tantalum sputtering target
KR101133029B1 (ko) * 2009-07-09 2012-04-04 한국생산기술연구원 고순도 탄탈륨 판재 및 그 제조방법
JP4913261B2 (ja) 2009-08-11 2012-04-11 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲット
KR20120082943A (ko) * 2009-11-17 2012-07-24 도시바 마테리알 가부시키가이샤 탄탈 스퍼터링 타겟 및 탄탈 스퍼터링 타겟의 제조 방법 및 반도체 소자의 제조 방법
CN103052733B (zh) 2010-08-09 2015-08-12 吉坤日矿日石金属株式会社 钽溅射靶
KR101374281B1 (ko) * 2011-09-19 2014-04-09 (주)나인디지트 스퍼터링 타겟용 탄탈륨 판재 및 그 제조방법
CN103827348B (zh) 2011-11-30 2015-11-25 吉坤日矿日石金属株式会社 钽溅射靶及其制造方法
KR101690394B1 (ko) 2012-03-21 2016-12-27 제이엑스금속주식회사 탄탈 스퍼터링 타깃의 제조 방법
CN102658346A (zh) * 2012-04-06 2012-09-12 宁夏东方钽业股份有限公司 一种大规格钽靶材的锻造方法
EP2878699B1 (en) 2012-12-19 2020-07-15 JX Nippon Mining & Metals Corp. Tantalum sputtering target and method for producing same
CN104755651B (zh) 2012-12-19 2017-05-24 吉坤日矿日石金属株式会社 钽溅射靶及其制造方法
JP5905600B2 (ja) 2013-03-04 2016-04-20 Jx金属株式会社 タンタルスパッタリングターゲット及びその製造方法
CN103243285B (zh) * 2013-05-27 2015-08-26 宁夏东方钽业股份有限公司 一种钽钨材料及其制备方法
JP5969138B2 (ja) 2013-10-01 2016-08-17 Jx金属株式会社 タンタルスパッタリングターゲット
KR102112937B1 (ko) 2014-03-27 2020-05-19 제이엑스금속주식회사 탄탈 스퍼터링 타깃 및 그 제조 방법
CN104313600B (zh) * 2014-09-28 2016-08-24 燕山大学 受损钛合金锻件连续点式锻压激光成形修复方法
CN105722355B (zh) * 2014-12-05 2020-01-21 宏达国际电子股份有限公司 电子装置壳体及其加工方法
CN104741872B (zh) * 2015-01-16 2017-06-16 宁夏东方钽业股份有限公司 一种钽靶材的制备方法
SG11201704463VA (en) 2015-05-22 2017-07-28 Jx Nippon Mining & Metals Corp Tantalum sputtering target, and production method therefor
CN107532287B (zh) 2015-05-22 2019-11-05 捷客斯金属株式会社 钽溅射靶及其制造方法
KR102190707B1 (ko) 2017-03-30 2020-12-14 제이엑스금속주식회사 탄탈륨 스퍼터링 타겟
CN109338316B (zh) * 2018-09-12 2020-04-28 中南大学 一种组织及织构可控的超高纯钽及其制备方法和应用
KR102078068B1 (ko) * 2018-10-26 2020-02-17 한국생산기술연구원 탄탈륨 잉곳 및 와이어 제조 방법
CN113025972B (zh) * 2021-03-01 2023-09-08 宁波江丰电子材料股份有限公司 一种铝靶材的制造方法
CN113755801B (zh) * 2021-09-17 2023-03-28 福州大学 一种具有均匀取向的高纯铝靶材的制备方法
CN114164406B (zh) * 2021-11-30 2023-10-20 西北核技术研究所 用于脉冲功率装置的颗粒压结式二极管阳极靶及制备方法
CN114892136A (zh) * 2022-05-25 2022-08-12 同创(丽水)特种材料有限公司 一种钽靶材及其制备方法与应用
CN115572844B (zh) * 2022-10-27 2024-01-19 先导薄膜材料(安徽)有限公司 从钽残靶中回收钽的方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3825634C2 (de) * 1988-07-28 1994-06-30 Thyssen Stahl Ag Verfahren zur Erzeugung von Warmbad oder Grobblechen
JPH06264232A (ja) 1993-03-12 1994-09-20 Nikko Kinzoku Kk Ta製スパッタリングタ−ゲットとその製造方法
JP2713198B2 (ja) * 1995-01-06 1998-02-16 三菱化学株式会社 フィルター
JPH09104972A (ja) * 1995-10-05 1997-04-22 Hitachi Metals Ltd スパッタリング用チタンターゲットおよびその製造方法
JP2877195B2 (ja) * 1996-03-19 1999-03-31 日本電気株式会社 ディジタル携帯無線端末装置及びそのバックライト駆動方法
US6197134B1 (en) * 1997-01-08 2001-03-06 Dowa Mining Co., Ltd. Processes for producing fcc metals
JPH1180942A (ja) * 1997-09-10 1999-03-26 Japan Energy Corp Taスパッタターゲットとその製造方法及び組立体
US6323055B1 (en) * 1998-05-27 2001-11-27 The Alta Group, Inc. Tantalum sputtering target and method of manufacture
US6348139B1 (en) * 1998-06-17 2002-02-19 Honeywell International Inc. Tantalum-comprising articles
US6193821B1 (en) * 1998-08-19 2001-02-27 Tosoh Smd, Inc. Fine grain tantalum sputtering target and fabrication process
US6348113B1 (en) * 1998-11-25 2002-02-19 Cabot Corporation High purity tantalum, products containing the same, and methods of making the same
US6878250B1 (en) * 1999-12-16 2005-04-12 Honeywell International Inc. Sputtering targets formed from cast materials
US6331233B1 (en) * 2000-02-02 2001-12-18 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
JP2001303240A (ja) * 2000-04-26 2001-10-31 Toshiba Corp スパッタリングターゲット
JP3905301B2 (ja) * 2000-10-31 2007-04-18 日鉱金属株式会社 タンタル又はタングステンターゲット−銅合金製バッキングプレート組立体及びその製造方法
JP2002363662A (ja) * 2001-06-01 2002-12-18 Nikko Materials Co Ltd 高純度タンタルの回収方法並びに高純度タンタルスパッタリングターゲット及び該スパッタリングターゲットにより形成された薄膜
JP4817536B2 (ja) 2001-06-06 2011-11-16 株式会社東芝 スパッタターゲット
US6770154B2 (en) * 2001-09-18 2004-08-03 Praxair S.T. Technology, Inc. Textured-grain-powder metallurgy tantalum sputter target
JP4883546B2 (ja) * 2002-09-20 2012-02-22 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲットの製造方法
JP4263900B2 (ja) * 2002-11-13 2009-05-13 日鉱金属株式会社 Taスパッタリングターゲット及びその製造方法
EP1681368B1 (en) * 2003-11-06 2021-06-30 JX Nippon Mining & Metals Corporation Method to produce a tantalum sputtering target

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517550A (zh) * 2011-12-20 2012-06-27 宁波江丰电子材料有限公司 高纯钽靶材的制备方法和高纯钽靶材
CN102517550B (zh) * 2011-12-20 2014-07-09 宁波江丰电子材料有限公司 高纯钽靶材的制备方法和高纯钽靶材
CN115044876A (zh) * 2022-06-02 2022-09-13 有研亿金新材料有限公司 一种小尺寸高性能钽靶坯的制备方法

Also Published As

Publication number Publication date
TW200422414A (en) 2004-11-01
JP4256388B2 (ja) 2009-04-22
EP1609881A4 (en) 2008-08-13
KR100698745B1 (ko) 2007-03-23
WO2004090193A1 (ja) 2004-10-21
EP1609881B1 (en) 2011-04-20
KR20060012577A (ko) 2006-02-08
JP4754617B2 (ja) 2011-08-24
US8172960B2 (en) 2012-05-08
US20070102288A1 (en) 2007-05-10
EP2253731B1 (en) 2019-07-31
JPWO2004090193A1 (ja) 2006-07-06
JP2009114540A (ja) 2009-05-28
CN103966561A (zh) 2014-08-06
TWI281507B (en) 2007-05-21
EP1609881A1 (en) 2005-12-28
EP2253731A1 (en) 2010-11-24
DE602004032323D1 (de) 2011-06-01

Similar Documents

Publication Publication Date Title
CN1771350A (zh) 钽溅射靶及其制造方法
CN1871372A (zh) 钽溅射靶
CN100445419C (zh) Ta溅射靶及其制造方法
CN1578849A (zh) 溅射靶及其制造方法
CN1681960A (zh) 铜溅射靶和形成铜溅射靶的方法
CN1659305A (zh) 钽溅射靶及其制造方法
CN1314832C (zh) 高纯度镍或镍合金靶及其制造方法
CN1250756C (zh) 具有良好弯曲特性的高强度铜合金及其制造方法,及使用该铜合金的接线端连接器
TWI518197B (zh) 熱軋銅板
CN1769985A (zh) 铜合金薄膜、铜合金溅射靶和平板显示器
JP2008511757A (ja) モリブデンスパッタリングターゲット
KR101882606B1 (ko) 탄탈 스퍼터링 타깃 및 그 제조 방법 그리고 동 타깃을 사용하여 형성한 반도체 배선용 배리어막
TWI480396B (zh) Production method of pure copper plate and pure copper plate
CN100344801C (zh) 硅片和单晶硅锭
CN1766143A (zh) 经过锭冶金的细粒铌片
JP6027823B2 (ja) 熱延銅板、及び、熱延銅板の形状調整方法
JP2000234167A (ja) Moスパッターリングターゲット材及びその製造方法
WO2019058721A1 (ja) スパッタリング用チタンターゲット及びその製造方法、並びにチタン含有薄膜の製造方法
CN1665953A (zh) 电解电容器电极用铝材的制造方法及电解电容器电极用铝材和电解电容器
JP4562664B2 (ja) Ito焼結体およびitoスパッタリングターゲット
CN1050413A (zh) 精细的等轴微结构的钛和钛合金制法
CN1898403A (zh) 具有优异可成形性的烘烤可硬化冷轧钢板及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: JX NIPPON MINING + METALS CO., LTD.

Free format text: FORMER OWNER: NIPPON MINING + METALS CO., LTD.

Effective date: 20110104

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20110104

Address after: Tokyo, Japan, Japan

Applicant after: JX Nippon Mining & Metals Co., Ltd.

Address before: Tokyo, Japan

Applicant before: Nippon Mining & Metals Co., Ltd.

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20060510